-
Notifications
You must be signed in to change notification settings - Fork 0
/
sort.py
614 lines (542 loc) · 21.7 KB
/
sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
"""
SORT: A Simple, Online and Realtime Tracker
Copyright (C) 2016-2020 Alex Bewley [email protected]
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from __future__ import print_function
import os
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage import io
import glob
import time
import argparse
from filterpy.kalman import KalmanFilter
np.random.seed(0)
def linear_assignment(cost_matrix):
try:
import lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True)
return np.array([[y[i],i] for i in x if i >= 0]) #
except ImportError:
from scipy.optimize import linear_sum_assignment
x, y = linear_sum_assignment(cost_matrix)
return np.array(list(zip(x, y)))
def iou_batch(bb_test, bb_gt):
"""
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
"""
bb_gt = np.expand_dims(bb_gt, 0)
bb_test = np.expand_dims(bb_test, 1)
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
return(o)
def convert_bbox_to_z(bbox):
"""
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
the aspect ratio
"""
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w/2.
y = bbox[1] + h/2.
s = w * h #scale is just area
r = w / float(h)
return np.array([x, y, s, r]).reshape((4, 1))
def convert_x_to_bbox(x,score=None):
"""
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
"""
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if(score==None):
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
else:
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
class KalmanBoxTracker(object):
"""
This class represents the internal state of individual tracked objects observed as bbox.
"""
count = 0
def __init__(self,bbox):
"""
Initialises a tracker using initial bounding box.
"""
#define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
self.kf.R[2:,2:] *= 10.
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1,-1] *= 0.01
self.kf.Q[4:,4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
def update(self,bbox):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if((self.kf.x[6]+self.kf.x[2])<=0):
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if(self.time_since_update>0):
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate.
"""
return convert_x_to_bbox(self.kf.x)
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
# if(len(trackers)==0):
# return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
if (len(trackers) == 0) or (len(detections) == 0):
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.arange(len(trackers))
# if(len(detections)==0):
# return np.empty((0,1),dtype=int), np.arange(len(detections)), np.arange(len(trackers))
iou_matrix = iou_batch(detections, trackers)
if min(iou_matrix.shape) > 0:
a = (iou_matrix > iou_threshold).astype(np.int32)
if a.sum(1).max() == 1 and a.sum(0).max() == 1:
matched_indices = np.stack(np.where(a), axis=1)
else:
matched_indices = linear_assignment(-iou_matrix)
else:
matched_indices = np.empty(shape=(0,2))
unmatched_detections = []
for d, det in enumerate(detections):
if(d not in matched_indices[:,0]):
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if(t not in matched_indices[:,1]):
unmatched_trackers.append(t)
#filter out matched with low IOU
matches = []
for m in matched_indices:
if(iou_matrix[m[0], m[1]]<iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1,2))
if(len(matches)==0):
matches = np.empty((0,2),dtype=int)
else:
matches = np.concatenate(matches,axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class Sort(object):
def __init__(self, max_age=3, min_hits=3, iou_threshold=0.3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.iou_threshold = iou_threshold
self.trackers = []
self.frame_count = 0
def update(self, dets=np.empty((0, 5))):
"""
Params:
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
self.frame_count += 1
# get predicted locations from existing trackers.
trks = np.zeros((len(self.trackers), 5))
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if np.any(np.isnan(pos)):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks, self.iou_threshold)
# update matched trackers with assigned detections
for m in matched:
self.trackers[m[1]].update(dets[m[0], :])
# create and initialise new trackers for unmatched detections
for i in unmatched_dets:
trk = KalmanBoxTracker(dets[i,:])
self.trackers.append(trk)
i = len(self.trackers)
dead_tracks=list()
for trk in reversed(self.trackers):
# print("timesince",trk.time_since_update)
# print("max_age",self.max_age)
d = trk.get_state()[0]
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
i -= 1
# remove dead tracklet
if(trk.time_since_update > self.max_age):
# print(trk.id)
# print(len(ret))
# exit()
# if(trk.id<len(ret)):
# exit()
dead_tracks.append(trk.id)
self.trackers.pop(i)
if(len(ret)>0):
return np.concatenate(ret), dead_tracks
return np.empty((0,5)), dead_tracks
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='SORT demo')
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data')
parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train')
parser.add_argument("--max_age",
help="Maximum number of frames to keep alive a track without associated detections.",
type=int, default=2)
parser.add_argument("--min_hits",
help="Minimum number of associated detections before track is initialised.",
type=int, default=3)
parser.add_argument("--iou_threshold", help="Minimum IOU for match.", type=float, default=0.3)
args = parser.parse_args()
return args
if __name__ == '__main__':
# all train
args = parse_args()
display = args.display
phase = args.phase
total_time = 0.0
total_frames = 0
colours = np.random.rand(32, 3) #used only for display
if(display):
if not os.path.exists('mot_benchmark'):
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
exit()
plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(111, aspect='equal')
if not os.path.exists('output'):
os.makedirs('output')
pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt')
for seq_dets_fn in glob.glob(pattern):
mot_tracker = Sort(max_age=args.max_age,
min_hits=args.min_hits,
iou_threshold=args.iou_threshold) #create instance of the SORT tracker
seq_dets = np.loadtxt(seq_dets_fn, delimiter=',')
seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0]
with open(os.path.join('output', '%s.txt'%(seq)),'w') as out_file:
print("Processing %s."%(seq))
for frame in range(int(seq_dets[:,0].max())):
frame += 1 #detection and frame numbers begin at 1
dets = seq_dets[seq_dets[:, 0]==frame, 2:7]
dets[:, 2:4] += dets[:, 0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
total_frames += 1
if(display):
fn = os.path.join('mot_benchmark', phase, seq, 'img1', '%06d.jpg'%(frame))
im =io.imread(fn)
ax1.imshow(im)
plt.title(seq + ' Tracked Targets')
start_time = time.time()
trackers = mot_tracker.update(dets)
cycle_time = time.time() - start_time
total_time += cycle_time
for d in trackers:
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)
if(display):
d = d.astype(np.int32)
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
if(display):
fig.canvas.flush_events()
plt.draw()
ax1.cla()
print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time))
if(display):
print("Note: to get real runtime results run without the option: --display")
# from __future__ import print_function
# from numba import jit
# import os.path
# import numpy as np
# import matplotlib.pyplot as plt
# import matplotlib.patches as patches
# from skimage import io
# from sklearn.utils.linear_assignment_ import linear_assignment
# import glob
# import time
# import argparse
# from filterpy.kalman import KalmanFilter
# @jit
# def iou(bb_test,bb_gt):
# """
# Computes IUO between two bboxes in the form [x1,y1,x2,y2]
# """
# xx1 = np.maximum(bb_test[0], bb_gt[0])
# yy1 = np.maximum(bb_test[1], bb_gt[1])
# xx2 = np.minimum(bb_test[2], bb_gt[2])
# yy2 = np.minimum(bb_test[3], bb_gt[3])
# w = np.maximum(0., xx2 - xx1)
# h = np.maximum(0., yy2 - yy1)
# wh = w * h
# o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1])
# + (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh)
# return(o)
# def convert_bbox_to_z(bbox):
# """
# Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
# [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
# the aspect ratio
# """
# w = bbox[2]-bbox[0]
# h = bbox[3]-bbox[1]
# x = bbox[0]+w/2.
# y = bbox[1]+h/2.
# s = w*h #scale is just area
# r = w/float(h)
# return np.array([x,y,s,r]).reshape((4,1))
# def convert_x_to_bbox(x,score=None):
# """
# Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
# [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
# """
# w = np.sqrt(x[2]*x[3])
# h = x[2]/w
# if(score==None):
# return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
# else:
# return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
# class KalmanBoxTracker(object):
# """
# This class represents the internel state of individual tracked objects observed as bbox.
# """
# count = 0
# def __init__(self,bbox):
# """
# Initialises a tracker using initial bounding box.
# """
# #define constant velocity model
# self.kf = KalmanFilter(dim_x=7, dim_z=4)
# self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
# self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
# self.kf.R[2:,2:] *= 10.
# self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
# self.kf.P *= 10.
# self.kf.Q[-1,-1] *= 0.01
# self.kf.Q[4:,4:] *= 0.01
# self.kf.x[:4] = convert_bbox_to_z(bbox)
# self.time_since_update = 0
# self.id = KalmanBoxTracker.count
# KalmanBoxTracker.count += 1
# self.history = []
# self.hits = 0
# self.hit_streak = 0
# self.age = 0
# def update(self,bbox):
# """
# Updates the state vector with observed bbox.
# """
# self.time_since_update = 0
# self.history = []
# self.hits += 1
# self.hit_streak += 1
# self.kf.update(convert_bbox_to_z(bbox))
# def predict(self):
# """
# Advances the state vector and returns the predicted bounding box estimate.
# """
# if((self.kf.x[6]+self.kf.x[2])<=0):
# self.kf.x[6] *= 0.0
# self.kf.predict()
# self.age += 1
# if(self.time_since_update>0):
# self.hit_streak = 0
# self.time_since_update += 1
# self.history.append(convert_x_to_bbox(self.kf.x))
# return self.history[-1]
# def get_state(self):
# """
# Returns the current bounding box estimate.
# """
# return convert_x_to_bbox(self.kf.x)
# def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
# """
# Assigns detections to tracked object (both represented as bounding boxes)
# Returns 3 lists of matches, unmatched_detections and unmatched_trackers
# """
# if(len(trackers)==0):
# return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
# iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32)
# for d,det in enumerate(detections):
# for t,trk in enumerate(trackers):
# iou_matrix[d,t] = iou(det,trk)
# matched_indices = linear_assignment(-iou_matrix)
# unmatched_detections = []
# for d,det in enumerate(detections):
# if(d not in matched_indices[:,0]):
# unmatched_detections.append(d)
# unmatched_trackers = []
# for t,trk in enumerate(trackers):
# if(t not in matched_indices[:,1]):
# unmatched_trackers.append(t)
# #filter out matched with low IOU
# matches = []
# for m in matched_indices:
# if(iou_matrix[m[0],m[1]]<iou_threshold):
# unmatched_detections.append(m[0])
# unmatched_trackers.append(m[1])
# else:
# matches.append(m.reshape(1,2))
# if(len(matches)==0):
# matches = np.empty((0,2),dtype=int)
# else:
# matches = np.concatenate(matches,axis=0)
# return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
# class Sort(object):
# def __init__(self,max_age=1,min_hits=3):
# """
# Sets key parameters for SORT
# """
# self.max_age = max_age
# self.min_hits = min_hits
# self.trackers = []
# self.frame_count = 0
# def update(self,dets):
# """
# Params:
# dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
# Requires: this method must be called once for each frame even with empty detections.
# Returns the a similar array, where the last column is the object ID.
# NOTE: The number of objects returned may differ from the number of detections provided.
# """
# self.frame_count += 1
# #get predicted locations from existing trackers.
# trks = np.zeros((len(self.trackers),5))
# to_del = []
# ret = []
# for t,trk in enumerate(trks):
# pos = self.trackers[t].predict()[0]
# trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
# if(np.any(np.isnan(pos))):
# to_del.append(t)
# trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
# for t in reversed(to_del):
# self.trackers.pop(t)
# matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks)
# #update matched trackers with assigned detections
# for t,trk in enumerate(self.trackers):
# if(t not in unmatched_trks):
# d = matched[np.where(matched[:,1]==t)[0],0]
# trk.update(dets[d,:][0])
# #create and initialise new trackers for unmatched detections
# for i in unmatched_dets:
# trk = KalmanBoxTracker(dets[i,:])
# self.trackers.append(trk)
# i = len(self.trackers)
# for trk in reversed(self.trackers):
# d = trk.get_state()[0]
# if((trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits)):
# ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
# i -= 1
# #remove dead tracklet
# if(trk.time_since_update > self.max_age):
# self.trackers.pop(i)
# if(len(ret)>0):
# return np.concatenate(ret)
# return np.empty((0,5))
# def parse_args():
# """Parse input arguments."""
# parser = argparse.ArgumentParser(description='SORT demo')
# parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
# args = parser.parse_args()
# return args
# if __name__ == '__main__':
# # all train
# sequences = ['PETS09-S2L1','TUD-Campus','TUD-Stadtmitte','ETH-Bahnhof','ETH-Sunnyday','ETH-Pedcross2','KITTI-13','KITTI-17','ADL-Rundle-6','ADL-Rundle-8','Venice-2']
# args = parse_args()
# display = args.display
# phase = 'train'
# total_time = 0.0
# total_frames = 0
# colours = np.random.rand(32,3) #used only for display
# if(display):
# if not os.path.exists('mot_benchmark'):
# print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
# exit()
# plt.ion()
# fig = plt.figure()
# if not os.path.exists('output'):
# os.makedirs('output')
# for seq in sequences:
# mot_tracker = Sort() #create instance of the SORT tracker
# seq_dets = np.loadtxt('data/%s/det.txt'%(seq),delimiter=',') #load detections
# with open('output/%s.txt'%(seq),'w') as out_file:
# print("Processing %s."%(seq))
# for frame in range(int(seq_dets[:,0].max())):
# frame += 1 #detection and frame numbers begin at 1
# dets = seq_dets[seq_dets[:,0]==frame,2:7]
# dets[:,2:4] += dets[:,0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
# total_frames += 1
# if(display):
# ax1 = fig.add_subplot(111, aspect='equal')
# fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase,seq,frame)
# im =io.imread(fn)
# ax1.imshow(im)
# plt.title(seq+' Tracked Targets')
# start_time = time.time()
# trackers = mot_tracker.update(dets)
# cycle_time = time.time() - start_time
# total_time += cycle_time
# for d in trackers:
# print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)
# if(display):
# d = d.astype(np.int32)
# ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
# ax1.set_adjustable('box-forced')
# if(display):
# fig.canvas.flush_events()
# plt.draw()
# ax1.cla()
# print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time))
# if(display):
# print("Note: to get real runtime results run without the option: --display")