-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbedrock.py
134 lines (109 loc) · 4.19 KB
/
bedrock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import boto3
import pprint
from botocore.client import Config
import re
region_name = "us-east-1"
pp = pprint.PrettyPrinter(indent=2)
# Connect to AWS Bedrock
session = boto3.Session(
aws_access_key_id='abc',
aws_secret_access_key='xyz',
aws_session_token='123'
)
# Connect to AWS Bedrock
model_id = 'anthropic.claude-3-sonnet-20240229-v1:0'
region_id = region_name
bedrock_agent_client = session.client("bedrock-agent-runtime", region_name=region_name)
kbId = 'ZMHF67DY2R'
def retrieveAndGenerate(input, kbId, model_id, sessionId=None, region_id="us-east-1", temp = 0.2, top_p = 0.9):
model_arn = f'arn:aws:bedrock:{region_id}::foundation-model/{model_id}'
if sessionId:
return bedrock_agent_client.retrieve_and_generate(
input={
'text': input
},
retrieveAndGenerateConfiguration={
'type': 'KNOWLEDGE_BASE',
'knowledgeBaseConfiguration': {
'knowledgeBaseId': kbId,
'modelArn': model_arn,
'generationConfiguration': {
'retrievalConfiguration': {
'vectorSearchConfiguration': {
'numberOfResults': 50
}
}
}
}
},
sessionId=sessionId
)
else:
return bedrock_agent_client.retrieve_and_generate(
input={
'text': input
},
retrieveAndGenerateConfiguration={
'type': 'KNOWLEDGE_BASE',
'knowledgeBaseConfiguration': {
'knowledgeBaseId': kbId,
'modelArn': model_arn,
'generationConfiguration': {
'inferenceConfig': {
'textInferenceConfig': {
'maxTokens': 4096,
#please note that these temperature and topP values are somewhat arbitrary and may need to be adjusted
'temperature': temp,
'topP': top_p
}
}
},
'retrievalConfiguration': {
'vectorSearchConfiguration': {
'numberOfResults': 50
}
}
}
}
)
# response = retrieveAndGenerate("Tell me about MPNST-SP-001, a Animal Model, resource ID 41c369b5-25f3-4285-829f-5481b41b230e.",
# kbId,
# model_id)
def retrieve(input, kbId):
return bedrock_agent_client.retrieve(
knowledgeBaseId = kbId,
retrievalQuery={
'text': input
},
retrievalConfiguration={
'vectorSearchConfiguration': {
'numberOfResults': 50
}
}
)
# response = retrieve('Tell me about "B6;129S2-Trp53tm1Tyj Nf1tm1Tyj/J", a Animal Model',
# kbId)
response_2 = retrieveAndGenerate("Tell me about HCT 116 Cell Line also known as RRID:CVCL_0291",
kbId,
model_id)
# result_text = str(response.get('retrievalResults'))
# #truncate response to under 25 kb
# if len(result_text) > 25000:
# result_text = result_text[:25000] + "..."
# print(result_text)
# #extract scores from result_text
# def extract_scores(result_text):
# scores = re.findall(r"'score': (\d+\.\d+)", result_text)
# return scores
# scores = extract_scores(result_text)
# print(scores)
#repeat for response_2
result_text_2 = response_2.get("citations")
retrieved_references = result_text_2[0]['retrievedReferences']
# #truncate response_2 to under 25 kb
# if len(result_text_2) > 25000:
# result_text_2 = result_text_2[:25000] + "..."
print(retrieved_references)
# #extract scores from result_text_2
# scores_2 = extract_scores(result_text_2)
# print(scores_2)