-
Notifications
You must be signed in to change notification settings - Fork 9
/
postSpikeFieldAnalysis_old.m
316 lines (273 loc) · 12.9 KB
/
postSpikeFieldAnalysis_old.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
function [fieldPar,h]=postSpikeFieldAnalysis(avgWF,ch,Fs,preSpikeMs,neuronNames,En,varargin)
% PostSpikeFieldAnalysis(avgWF,ch,Fs,preSpikeMs,neuronNames,En,varargin)
% Function purpose : Calculate distribution of post spike fields (PSF)
%
% Function recives : avgWF - average spike STAs over all electrodes in ch [Double [neurons x ch x samples]
% ch - the channel numbers of the channels in avgWFWaveform [NChannels,Time] - the raw voltage samples of all channels
% Fs - sampling frequency of the WFs
% preSpikeMs - pre spike time in avgWF
% neuronNames - names of neurons [2 x n], [channel numbers ; neuron number]
% En - electrode layout
% varargin ('property name','property value')
%
% Function give back : par - a structure of output parameters
% .classIE - I/E marker (I=2, E=3)
% h - a structure of handles from generated plots
%
% Last updated : 14/12/14
%help, avgWF [neurons x ch x samples]
%% default variables
electrodePitch=100;
distanceForIEFieldCheck=190;
postSpikeIntegralStartMs=5;
postSpikeIntegralEndMs=40;
preSpikePeakMs=2;
postSpike0CrossLimMs=20;
classIEThreshMs=2;
medianFilterLengthMs=7;
PSFMethod='max';%'integral','max','extrapInt'
fieldPositionMethod='interpolatedMaxima';%'maxima','interpolatedMaxima','COM'
preProcessing='medianFilter'; %'none'
removeEdges=false;
dAngle4Plot=30;
maxFields4Plot=375;
plotAllFields=false;
polarPlot=true;
plotVectorsOnElectrodes=true;
plotNeuronNumbersAllFields=false;
normalizeColorCode=true;
extrapolateMaxima=true;
markerSizeAllFields=15;
XYSpikeCorrection=[0;0]; % [2 x nNeurons] correction to position based on spike shape [um]
classIE=true; %[true,false,vec]if false, all assumed inhibitory, can also be a vector with excitatory (2) and inhibitory (3) classifications (or 0 for require classification)
%% Output list of default variables
%print out default arguments and values if no inputs are given
if nargin==0
defaultArguments=who;
for i=1:numel(defaultArguments)
eval(['defaultArgumentValue=' defaultArguments{i} ';']);
disp([defaultArguments{i} ' = ' num2str(defaultArgumentValue)]);
end
return;
end
%% Collects all input variables
for i=1:2:length(varargin)
eval([varargin{i} '=' 'varargin{i+1};'])
end
%% Main code - general calculations
postSpikeIntegralStartSamples=postSpikeIntegralStartMs*Fs/1000;
postSpikeIntegralEndSamples=postSpikeIntegralEndMs*Fs/1000;
preSpikeSamples=preSpikeMs*Fs/1000;
preSpikePeakSamples=preSpikePeakMs*Fs/1000;
medianFilterSamples=round(medianFilterLengthMs*Fs/1000/2)*2+1; %has to be an odd number
postSpike0CrossLimSamples=postSpike0CrossLimMs*Fs/1000;
pRelevantSamples=(preSpikeSamples+postSpikeIntegralStartSamples):(preSpikeSamples+postSpikeIntegralEndSamples);
[nNeurons,nCh,nSamples]=size(avgWF);
%Build inverse map between electrode and location
[meshX,meshY]=meshgrid(1:size(En,1),1:size(En,2));
Xc(En(~isnan(En)))=meshX(~isnan(En))*electrodePitch;
Yc(En(~isnan(En)))=meshY(~isnan(En))*electrodePitch;
%% pre-process the input waveforms
switch preProcessing
case 'medianFilter'
fprintf('Calculating median filter on neuron: ');
for i=1:nNeurons
fprintf('%d,',i);
for j=1:nCh
avgWF(i,j,:) = fastmedfilt1d(squeeze(avgWF(i,j,:))',medianFilterSamples);
end
end
otherwise
end
%% inhibitory excitatory classification
if numel(classIE)==1
if classIE==0 %do not classify, but set all to be inhibitory
classIE=3*ones(1,nNeurons);
elseif classIE==1 %classify all
classIE=ones(1,nNeurons);
end %nothing happens for the case of one neuron in recording that was already clasified in the input
end
toClassify=(classIE==1);
if any(toClassify)
preBaseline=median(avgWF(:,:,1:(preSpikeSamples-preSpikePeakSamples)),3);
normWF=bsxfun(@minus,avgWF,preBaseline); %baseline substruction
tmp = num2cell( cat(3, normWF(:,:,(preSpikeSamples+1):(preSpikeSamples+postSpike0CrossLimSamples)) > 0 , true([nNeurons, nCh]) ) , 3); %transform to cell mat and add one at the end of every vector
firstNon0Idx = cell2mat(cellfun(@(x) find(x, 1, 'first'), tmp,'UniformOutput',0)); %find first threshold crossing for every trace
firstNon0Idx(firstNon0Idx==(postSpike0CrossLimSamples+1))=0; %set to zero (meaning no crossing found) all the traces with crossings in the last artificially added bin
for i=1:nNeurons %go over neurons and collect the closest N channel around the spike peak for determining I or E
pRelevantElectrodes=find(sqrt((Xc-Xc(neuronNames(1,i))).^2+(Yc-Yc(neuronNames(1,i))).^2)<=distanceForIEFieldCheck);
fieldPar.IEScore(i)=mean(firstNon0Idx(i,pRelevantElectrodes));
end
fieldPar.IEScore=fieldPar.IEScore/Fs*1000; %convert from samples to ms
pExcit=find(fieldPar.IEScore>=classIEThreshMs);
pInhib=find(fieldPar.IEScore<classIEThreshMs);
fieldPar.classIE(pExcit)=3;
fieldPar.classIE(pInhib)=2;
fieldPar.classIE(~toClassify)=classIE(~toClassify); %give the neurons that should not be classified their original classification
%!!!! check if to give the classified cells a constant firstNon0Idx value instead of calculating it
end
%% calculate post spike fields
fprintf('\nCalculating PSDs...');
switch PSFMethod
case 'max'
%peak voltage normalized by pre spike peak
val(pInhib,:)=max(avgWF(pInhib,:,pRelevantSamples),[],3)-mean(avgWF(pInhib,:,1:(preSpikeSamples-preSpikePeakSamples)),3);
val(pExcit,:)=-min(avgWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)),[],3)-mean(avgWF(pExcit,:,1:(preSpikeSamples-preSpikePeakSamples)),3);
case 'integral'
%mean voltage normalized by pre spike mean
val(pInhib,:)=mean(avgWF(pInhib,:,pRelevantSamples),3)-mean(avgWF(pInhib,:,1:(preSpikeSamples-preSpikePeakSamples)),3); %for inhibitory cells
%for inhibitory cells - in places where no threshold crossing occured, a NaN is placed
postSpike0CrossLimSamplesCell=mat2cell(firstNon0Idx(pExcit,:),ones(1,numel(pExcit)),ones(1,nCh));
tmp = num2cell( normWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)) , 3);
val(pExcit,:)= -cellfun(@(x,y) mean(x(1:y)), tmp, postSpike0CrossLimSamplesCell); %baseline alreadys substructed for normWF
%tmp = num2cell( avgWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)) , 3);
%val(pExcit,:)= cellfun(@(x,y) mean(x(1:y)), tmp, postSpike0CrossLimSamplesCell)-mean(avgWF(pExcit,:,1:(preSpikeSamples-preSpikePeakSamples)),3);
case 'interpInt' %!!!! Has to be rewritten to support separation between excitatory and inhibitory
%angle and magnitude of integral voltage maximium divided by the average profile before spike
sideSamples=[1:(preSpikeSamples-preSpikePeakSamples) postSpikeIntegralEndSamples:nSamples];
val=zeros(nNeurons,nCh);
for i=1:nNeurons
vq = interp1(sideSamples,squeeze(avgWF(i,:,sideSamples))',pRelevantSamples); %calculate the linear line between the two noise ends (before and after PSD)
val(i,:)=mean(squeeze(avgWF(i,:,pRelevantSamples))-vq',2);
%{
h=axes;[hPlot]=activityTracePhysicalSpacePlot(h,1:120,squeeze(avgWF(i,:,:)),En);hold on;
test=squeeze(avgWF(i,:,:));test(:,pRelevantSamples)=vq';
[hPlot]=activityTracePhysicalSpacePlot(h,1:120,test,En);
%}
end
end
makeGaussianFit=0;
if makeGaussianFit
gaussFit.mX=zeros(1,nNeurons);
gaussFit.mY=zeros(1,nNeurons);
gaussFit.sX=zeros(1,nNeurons);
gaussFit.sY=zeros(1,nNeurons);
gaussFit.A=zeros(1,nNeurons);
gaussFit.Theta=zeros(1,nNeurons);
for i=1:nNeurons
[fitresult] = fmgaussfit(Xc,Yc,val(i,:)); %[amp, ang, sx, sy, xo, yo, zo]
gaussFit.A(i)=fitresult(1);
gaussFit.Theta(i)=fitresult(2);
gaussFit.sX(i)=fitresult(3);
gaussFit.sY(i)=fitresult(4);
gaussFit.mX(i)=fitresult(5);
gaussFit.mY(i)=fitresult(6);
end
end
if removeEdges
[~,pMax]=max(val,[],2);
[m,n]=size(En);
fieldPar.edgeNeurons=zeros(1,nNeurons);
for i=1:nNeurons
[pX,pY]=find(En==neuronNames(1,i));
if pX==1 || pX==n || pY==1 || pY==m
fieldPar.edgeNeurons(i)=1;
else
surroundingSquare=En(pY-1:pY+1,pX-1:pX+1);
if any(any(isnan(surroundingSquare)))
fieldPar.edgeNeurons(i)=2;
end
end
end
else
fieldPar.edgeNeurons=zeros(1,nNeurons); %set all neuron as ones not at the edge
end
fprintf('\nCalculating field peak...');
switch fieldPositionMethod
case 'interpolatedMaxima'
[m,n]=size(En);
Z=nan([m,n]);
%Z=zeros([m,n]);
fieldCoord=zeros(2,nNeurons);
for i=1:nNeurons
Z(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=val(i,:);
[fieldCoord(:,i)] = peakfit2d(Z);
end
Xfield=fieldCoord(1,:)*electrodePitch;
Yfield=fieldCoord(2,:)*electrodePitch;
case 'COM' %biased by array edges
Xfield=(sum(bsxfun(@times,val,Xc),2)./sum(val,2))';
Yfield=(sum(bsxfun(@times,val,Yc),2)./sum(val,2))';
case 'maxima'
[PSF,pChPSF]=max(val,[],2);%location of field integral maxima
Xfield=Xc(ch(pChPSF));
Yfield=Yc(ch(pChPSF));
end
%check that dimensions of spike position correction are correct
if size(XYSpikeCorrection,2)==1 && size(XYSpikeCorrection,1)~=2
error('XYSpikeCorrection was not entered in the correct format');
end
X=[Xc(neuronNames(1,:))+XYSpikeCorrection(1,:);Xfield];
Y=[Yc(neuronNames(1,:))+XYSpikeCorrection(2,:);Yfield];
mag=sqrt((X(2,:)-X(1,:)).^2 + (Y(2,:)-Y(1,:)).^2);
angle=atan2(Y(2,:)-Y(1,:),X(2,:)-X(1,:));
pPosMagI=intersect(find(mag>0 & fieldPar.edgeNeurons==0),pInhib);
pPosMagE=intersect(find(mag>0 & fieldPar.edgeNeurons==0),pExcit);
%% Plotting results
if polarPlot
%prepare for plotting
f=figure('position',[100 100 500 500]);
P = panel(f);
P.pack(2,2);
P.margin=8;
angleBins=(dAngle4Plot/360/2*pi):(dAngle4Plot/360*pi):(pi*2);
maximalMag=median(mag([pPosMagI pPosMagE]))+6*mad(mag([pPosMagI pPosMagE]),1);
%inhibitory
h.polar(1,1)=P(1, 1).select();
hRose=rose(angle(pPosMagI),angleBins);
XdataRose = get(hRose,'Xdata');
YdataRose = get(hRose,'Ydata');
hPatch=patch(XdataRose,YdataRose,[0.8 0.2 0.2]);
set(gca,'color','k');
%compass(U,V)
h.polar(1,2)=P(1, 2).select();
polar(0,maximalMag,'-k');hold on; %set scale for polar plot
polar(angle(pPosMagI),mag(pPosMagI),'.r');
%excitatory
h.polar(2,1)=P(2, 1).select();
hRose=rose(angle(pPosMagE),angleBins);
XdataRose = get(hRose,'Xdata');
YdataRose = get(hRose,'Ydata');
hPatch=patch(XdataRose,YdataRose,[0.2 0.2 0.8]);
set(gca,'color','k');
h.polar(2,2)=P(2, 2).select();
polar(0,maximalMag,'-k');hold on; %set scale for polar plot
polar(angle(pPosMagE),mag(pPosMagE),'.');
end
%DSI=(prefered - (prefered+pi))/(prefered + (prefered+pi))
if plotVectorsOnElectrodes
f=figure('position',[100 100 700 700]);
h.hVec=axes;
%hQ=quiver(Xc(neuronNames(1,:)),Yc(neuronNames(1,:)),intdX,intdY,'filled','lineWidth',2,'MaxHeadSize',0.1,'color','k','MarkerSize',2,'MarkerFaceColor','k');
[tmpX,tmpY]=pol2cart(angle,50);
%hQ=arrow3([X(1,:);Y(1,:)]',[X(1,:)+tmpX;Y(1,:)+tmpY]','k1',0.5);
%set(hQ,'AutoScale','off');
h.hArrowI=arrow3([X(1,pPosMagI);Y(1,pPosMagI)]',[X(1,pPosMagI)+tmpX(pPosMagI);Y(1,pPosMagI)+tmpY(pPosMagI)]','r2',0.5,1);hold on;
h.hArrowE=arrow3([X(1,pPosMagE);Y(1,pPosMagE)]',[X(1,pPosMagE)+tmpX(pPosMagE);Y(1,pPosMagE)+tmpY(pPosMagE)]','b2',0.5,1);
xlabel('X [\mum]','FontSize',14);
ylabel('Y [\mum]','FontSize',14);
end
if plotAllFields
if normalizeColorCode
Ilim=0;
else
Ilim=[min(val(:)) max(val(:))];
end
n=ceil(sqrt(min(maxFields4Plot,nNeurons)/3/5));%define images in a 3 x 5 ratio
xPlots=n*5;
yPlots=n*3;
nPlotPerPage=xPlots*yPlots;
f=figure;
P = panel(f);
P.pack(yPlots,xPlots);
P.margin=0.001;
for i=1:nNeurons
h.hAllFieldAxes(i)=P(ceil(i/xPlots),i-(ceil(i/xPlots)-1)*xPlots).select();
IntensityPhysicalSpacePlot(1:120,val(i,:),En,'plotElectrodeNumbers',0,'plotGridLines',0,'plotColorBar',0,'markerSize',markerSizeAllFields,'h',h.hAllFieldAxes(i),'Ilim',Ilim);
text(Xc(neuronNames(1,i))/electrodePitch-0.5,Yc(neuronNames(1,i))/electrodePitch-0.5,'o','horizontalAlignment','center','fontsize',6);
if plotNeuronNumbersAllFields
text(0,0,num2str(i),'horizontalAlignment','left','verticalAlignment','bottom','fontsize',6);
end
line( [Xc(neuronNames(1,i)) Xfield(i)]/electrodePitch - 0.5 , [Yc(neuronNames(1,i)) Yfield(i)]/electrodePitch - 0.5 ,'color','k');
end
end