-
Notifications
You must be signed in to change notification settings - Fork 9
/
postSpikeFieldAnalysis.m
720 lines (617 loc) · 31.3 KB
/
postSpikeFieldAnalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
function [fieldPar,hand,varOut]=postSpikeFieldAnalysis(avgWF,ch,Fs,preSpikeMs,neuronNames,En,varargin)
% [fieldPar,hand,varOut]=postSpikeFieldAnalysis(avgWF,ch,Fs,preSpikeMs,neuronNames,En,varargin)
% Function purpose : Calculate distribution of post spike fields (PSF)
%
% Function recives : avgWF - average spike STAs over all electrodes in ch [Double [neurons x ch x samples]
% ch - the channel numbers of the channels in avgWFWaveform [NChannels,Time] - the raw voltage samples of all channels
% Fs - sampling frequency of the WFs
% preSpikeMs - pre spike time in avgWF
% neuronNames - names of neurons [2 x n], [channel numbers ; neuron number]
% En - electrode layout
% varargin ('property name','property value')
%
% Function give back : par - a structure of output parameters
% .classIE - I/E marker (I=2, E=3)
% lowpassWF - the sif waveforms with spikes removed
% hand - a structure of handles from generated plots
%
% Last updated : 14/12/14
%help, avgWF [neurons x ch x samples]
hand=[];fieldPar=[];
%% default variables
electrodePitch=100;
nearestNeighborsDistance=190;
postSpikeFieldStartMs=4;
postSpikeFieldEndMs=20;
preSpikePeakMs=2; %this can be larger since the exact spike time is defined by the algorithm
postSpike0CrossLimMs=20;
medianFilterLengthMs=7;
spikePeakWidthMs=1;
smartInterSmoothness=0.0001; %smoothing [0 1] - higher values fit is close to data (no low pass), 0.0000005 - more low pass
weightFunctionStdMs=7;
maxPostSpikeWidthMs=3;
stdThresholdCrossingSpikeInitiation=4;
preSpikeMinInitiationMs=1.5;
preSpikeMaxInitiationMs=0.5;
postSpikeCorrMs=10; %5
maxSIFMethod='spikeNearstNeigbohrs'; %maxLocalPeak
IEclassificationMethod='kernelProd'; %'kernelProd','delay2Crossing';
ECorrTh=[0];
ICorrTh=[0];
plotIEClass=0;
plotMaxWFAll=0;
PSFMethod='max';%'integral','max','extrapInt'
fieldPositionMethod='interpolatedMaxima';%'maxima','interpolatedMaxima','COM'
removeEdges=false;
dAngle4Plot=30;
maxFields4Plot=375;
plotFieldMapAllNeurons=false;
polarPlot=true;
plotElectrodeNames=true;
plotFieldVectors=true;
summaryPlotPerNeurons=false;
neuronIdxPolarPlot=false;
plotNeuronNumbersAllFields=false;
polarPlotRemoveOuliers=false;
polarPlotDistanceThreshold=[];
normalizeColorCode=true;
extrapolateMaxima=true;
markerSizeAllFields=15;
triangulateCellPosition = true;
cellPosition=[]; % [2 x nNeurons] correction to position based on spike shape [um]
preSpikeHPMs=2;
postSpikeHPMs=3;
classIE=true; %[true,false,vec]if false, all assumed inhibitory, can also be a vector with excitatory (2) and inhibitory (3) classifications (or 0 for require classification)
%internal variables that can be added as input
lowpassWF=[];
lowpassWFBaseline=[];
%% Output list of default variables
%print out default arguments and values if no inputs are given
if nargin==0
defaultArguments=who;
for i=1:numel(defaultArguments)
eval(['defaultArgumentValue=' defaultArguments{i} ';']);
if numel(defaultArgumentValue)==1
disp([defaultArguments{i} ' = ' num2str(defaultArgumentValue)]);
else
fprintf([defaultArguments{i} ' = ']);
disp(defaultArgumentValue);
end
end
return;
end
%% Collects all input variables
for i=1:2:length(varargin)
eval([varargin{i} '=' 'varargin{i+1};'])
end
%% Main code - general calculations
postSpikeFieldStartSamples=postSpikeFieldStartMs*Fs/1000;
postSpikeFieldEndSamples=postSpikeFieldEndMs*Fs/1000;
preSpikeSamples=preSpikeMs*Fs/1000;
preSpikePeakSamples=preSpikePeakMs*Fs/1000;
spikePeakWidthSamples=spikePeakWidthMs*Fs/1000;
maxPostSpikeWidthSamples=maxPostSpikeWidthMs*Fs/1000;
postSpikeCorrSamples=postSpikeCorrMs*Fs/1000;
weightFunctionStdSamples=weightFunctionStdMs*Fs/1000;
preSpikeMinInitiationSamples=preSpikeMinInitiationMs*Fs/1000;
preSpikeMaxInitiationSamples=preSpikeMaxInitiationMs*Fs/1000;
preSpikeHPSamples=preSpikeHPMs*Fs/1000;
postSpikeHPSamples=postSpikeHPMs*Fs/1000;
medianFilterSamples=round(medianFilterLengthMs*Fs/1000/2)*2+1; %has to be an odd number
postSpike0CrossLimSamples=postSpike0CrossLimMs*Fs/1000;
[nNeurons,nCh,nSamples]=size(avgWF);
timeVec=(1:nSamples)/Fs*1000-preSpikeMs;
%Build inverse map between electrode and location
[meshX,meshY]=meshgrid(1:size(En,1),1:size(En,2));
Xc(En(~isnan(En)))=meshX(~isnan(En))*electrodePitch;
Yc(En(~isnan(En)))=meshY(~isnan(En))*electrodePitch;
% get the channel with max spike for extimating spike remove segment
maxSpikeAmp=max( abs(avgWF(:,:,(preSpikeSamples-spikePeakWidthSamples/2):(preSpikeSamples+spikePeakWidthSamples/2))) ,[],3);
[~,pMaxSpikeElec]=max( maxSpikeAmp ,[],2);
for i=1:nCh
pNeighbors{i}=find(sqrt((Xc-Xc(i)).^2+(Yc-Yc(i)).^2)<=nearestNeighborsDistance);
end
if size(ch,1)>size(ch,2)
ch=ch';
end
%% pre-process the input waveforms
if isempty(lowpassWF) || isempty(lowpassWFBaseline)
lowpassWF=zeros(size(avgWF));
lowpassWFBaseline=zeros(size(avgWF));
pBaseline=1:(preSpikePeakSamples-preSpikeMinInitiationSamples);
preExtension=round(preSpikePeakSamples/8); %extend the detection point by a few samples
for i=1:nNeurons
fprintf('%d,',i);
%extract the initiation segment right before the spike (on nearest neigbohrs) and remove the mean of the initial part of this segment so that all segments start at 0
spikeInitiationWF=squeeze(avgWF(i,pNeighbors{pMaxSpikeElec(i)},(preSpikeSamples-preSpikePeakSamples):preSpikeSamples));%
spikeInitiationWF=bsxfun(@minus,spikeInitiationWF,mean(spikeInitiationWF(:,pBaseline),2) );
%calculate the spike onset (tr) according to where std increases rapidely over different electrode
stdProfile=std(spikeInitiationWF);
pSpikeOnset=min([preSpikePeakSamples-preSpikeMaxInitiationSamples,find(stdProfile > mean(stdProfile(pBaseline)) + stdThresholdCrossingSpikeInitiation*std(stdProfile(pBaseline)),1,'first')-1]);
pSpikeStart(i)=(preSpikeSamples-preSpikePeakSamples+pSpikeOnset-preExtension);
pSpikeSoftEnd=(preSpikeSamples+maxPostSpikeWidthSamples);
%weights for slow synaptic potential extraction
w1=ones(1,nSamples);
w1(pSpikeStart(i) : pSpikeSoftEnd)=0;
w1((pSpikeSoftEnd+1):(pSpikeSoftEnd+weightFunctionStdSamples*3))=1-exp(-( (1:weightFunctionStdSamples*3)/weightFunctionStdSamples).^2);
%weights for baseline extraction
pSpikeSoftEnd2=1200;
w2=ones(1,nSamples);
w2(pSpikeStart(i) : pSpikeSoftEnd2)=0;
w2((pSpikeSoftEnd2+1):end)=1-exp(-( (1:(nSamples-pSpikeSoftEnd2))/weightFunctionStdSamples/2).^2);
w2(1:pSpikeStart(i))=1-exp(-( (pSpikeStart(i):-1:1)/weightFunctionStdSamples/3).^2);
lowpassWF(i,:,:) = csaps(1:nSamples,squeeze(avgWF(i,:,:)),smartInterSmoothness,1:nSamples,w1);
lowpassWFBaseline(i,:,:) = csaps(1:nSamples,squeeze(lowpassWF(i,:,:)),1e-6,1:nSamples,w2);
%lowpassWFBaseline(i,:,:) = lowpassWF(i,:,:);
%lowpassWFBaseline(i,:,(pSpikeStart(i)-50):1200) = interp1([1:(pSpikeStart(i)-50) 1200:2000],squeeze(lowpassWF(i,:,[1:(pSpikeStart(i)-50) 1200:2000]))',(pSpikeStart(i)-50):1200)';
%plotting
%{
h(1)=subplot(2,3,1);
plot(timeVec,squeeze(avgWF(i,pMaxSpikeElec(i),:)));hold on;plot(timeVec,squeeze(lowpassWF(i,pMaxSpikeElec(i),:)));plot(timeVec,(w1-1)*50);plot(timeVec,(w2-1)*50);
xlabel('Time [ms]');axis tight;
spikeZoom=squeeze(avgWF(i,pNeighbors{pMaxSpikeElec(i)},(preSpikeSamples-preSpikePeakSamples):(preSpikeSamples+postSpikeFieldEndSamples)));%
spikeZoom=bsxfun(@minus,spikeZoom,mean(spikeZoom(:,200),2) );
h(2)=subplot(2,3,4);
plot(timeVec((preSpikeSamples-preSpikePeakSamples):(preSpikeSamples+postSpikeFieldEndSamples)),spikeZoom');
xlabel('Time [ms]');axis tight;
h(3)=subplot(2,3,[2 6]);
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h(3),1:120,squeeze(avgWF(i,:,:)),En,'traceColor','r','DrawElectrodeNumbers',1);hold on;
[hPlot]=activityTracePhysicalSpacePlot(h(3),1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac);hold on;
[hPlot]=activityTracePhysicalSpacePlot(h(3),1:120,squeeze(lowpassWFBaseline(i,:,:)),En,'scaleFac',scaleFac,'traceColor',[0.5 0.5 0.5]);
pause;
delete(h);
%}
end
end
%%
%calculate baseline substracted traces
%preBaseline=median(lowpassWF(:,:,(preSpikeSamples-preSpikePeakSamples):(preSpikeSamples-preSpikeMinInitiationSamples)),3);
%baselineSubstractedSIF=bsxfun(@minus,lowpassWF,preBaseline);
%baselineSubstractedSIF=lowpassWF-lowpassWFBaseline;
baselineSubstractedSIF=bsxfun(@minus,lowpassWF,lowpassWF(:,:,preSpikeSamples));
% get the channel with max field for classification
if strcmp(maxSIFMethod,'spikeNearstNeigbohrs')
%build extended grid
nNeighbors=1;
[nRowsTmp,nColsTmp]=size(En);
EnExt=NaN(nRowsTmp+nNeighbors*2,nColsTmp+nNeighbors*2);
EnExt(1+nNeighbors:end-nNeighbors,1+nNeighbors:end-nNeighbors)=En;
%find max amp electrode
[~,pSpikeElec]=min(avgWF(:,:,preSpikeSamples+1),[],2);
for i=1:nNeurons
[pX,pY]=find(EnExt==pSpikeElec(i));
pElecs=EnExt(pX-nNeighbors:pX+nNeighbors,pY-nNeighbors:pY+nNeighbors); %get electrodes in extended grid
pElecs=pElecs(~isnan(pElecs)); %remove NaNs
nElecs=numel(pElecs);
tmp=squeeze(baselineSubstractedSIF(i,pElecs,(preSpikeSamples+postSpikeFieldStartSamples):(preSpikeSamples+postSpikeFieldEndSamples)));
pIntersection=findfirst(tmp(:,2:end)>0 & tmp(:,1:end-1)<0, 2, 1);
pIntersection(pIntersection==0)=postSpikeFieldEndSamples-postSpikeFieldStartSamples;
sortedIntersection=sort(pIntersection);
postSpikeFieldEndSamplesNew(i)=(preSpikeSamples+postSpikeFieldStartSamples)+sortedIntersection(round(0.2*nElecs));
tmp=tmp(:,1:(postSpikeFieldEndSamplesNew(i)-(preSpikeSamples+postSpikeFieldStartSamples)));
[SIFscore]=mean( tmp ,2);
[~,pOrder]=sort(abs(SIFscore));
polarityScoreAll{i}=SIFscore(pOrder(round((nElecs*0.5):end))); %take only the high 50% of fields
polarityScore(i)=mean(polarityScoreAll{i});
polarityVote(i)=mean(sign(polarityScoreAll{i}));
pMaxField(i)=pElecs(pOrder(end));
%polarity for verification does not work well
%[polarityValidity(i)]=mean(sign( mean( abs(lowpassWF(i,pElecs,(preSpikeSamples+postSpikeFieldStartSamples):(preSpikeSamples+postSpikeFieldEndSamples)))-...
% abs(lowpassWFBaseline(i,pElecs,(preSpikeSamples+postSpikeFieldStartSamples):(preSpikeSamples+postSpikeFieldEndSamples))) ,3) ));
%{
h(1)=subplot(1,3,1:2);
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h(1),1:120,squeeze(avgWF(i,:,:)),En,'traceColor','r','DrawElectrodeNumbers',1);hold on;
[hPlot]=activityTracePhysicalSpacePlot(h(1),1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac);hold on;
[hPlot]=activityTracePhysicalSpacePlot(h(1),1:120,squeeze(lowpassWFBaseline(i,:,:)),En,'scaleFac',scaleFac,'traceColor',[0.5 0.5 0.5]);
h(2)=subplot(1,3,3);
plot(SIFscore);
%title(['polarity= ' num2str(polarityScore(i)), ' , Validity= ' num2str(polarityValidity(i))]);
pause;
delete(h);
%}
end
end
%% inhibitory excitatory classification
%determine which neurons to classify
%classes: 3 = excitatory, 2 = inhibitory, 1 = unclassified
if numel(classIE)==1
if classIE==0 %do not classify, but set all to be inhibitory
classIE=3*ones(1,nNeurons);
elseif classIE==1 %classify all
classIE=ones(1,nNeurons);
end %nothing happens for the case of one neuron in recording that was already clasified in the input
toClassify=(classIE==1);
else
toClassify=false(1,nNeurons);
end
pNotClassified=[];
if any(toClassify)
useScore=0;
if useScore
polarityThresh=0.5;
pExcit=find(polarityScore<-polarityThresh);
pInhib=find(polarityScore>polarityThresh);
pNotClassified=find(polarityScore>=-polarityThresh & polarityScore<=polarityThresh);
else
polarityThresh=0;
pExcit=find(polarityVote<-polarityThresh);
pInhib=find(polarityVote>polarityThresh);
pNotClassified=[];
%pNotClassified=find(polarityScore>=-polarityThresh & polarityScore<=polarityThresh);
end
fieldPar.polarityScore=polarityScore;
fieldPar.polarityVote=polarityVote;
fieldPar.classIE=ones(1,nNeurons);
fieldPar.classIE(pExcit)=3; %excitatory
fieldPar.classIE(pInhib)=2; %inhibitory
fieldPar.classIE(~toClassify)=classIE(~toClassify); %give the neurons that should not be classified their original classification
else
pExcit=find(classIE==3);
pInhib=find(classIE==2);
fieldPar.classIE=classIE;
end
if plotMaxWFAll
%define number of subplots
n=ceil(sqrt(min(maxFields4Plot,nNeurons)/3/5));%define images in a 3 x 5 ratio
xPlots=n*5;
yPlots=n*3;
nPlotPerPage=xPlots*yPlots;
cMap=lines(2);
cMap=[cMap;0 0 0;0 0 0];
f=figure('Position',[50 50 1800 900],'Visible','off');
for i=1:nNeurons
h=subaxis(f,yPlots,xPlots,i,'S',0.001,'M',0.001);
plot(timeVec,squeeze(avgWF(i,pMaxField(i),:)));hold on;
plot(timeVec,squeeze(lowpassWF(i,pMaxField(i),:)),'r');axis tight;
set(h,'XTickLabel',[],'YTick',[],'XTick',0,'TickLength',h.TickLength*5);
%text(h.XLim(2),h.YLim(2),[num2str(neuronNames(1,i)) '-' num2str(neuronNames(2,i))],'VerticalAlignment','top','HorizontalAlignment','right');
text(h.XLim(1),h.YLim(1),'*','color',cMap(4-fieldPar.classIE(i),:),'FontSize',18)
text(h.XLim(2),h.YLim(2),[num2str(i) ',' num2str(neuronNames(1,i)) '-' num2str(neuronNames(2,i))],'VerticalAlignment','top','HorizontalAlignment','right');
end
f.Visible='on';
end
%{
for i=1:nNeurons
f=figure;
h=axes;
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h,1:120,squeeze(avgWF(i,:,:)),En,'traceColor','r','DrawElectrodeNumbers',1);hold on;
[hPlot]=activityTracePhysicalSpacePlot(h,1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac);
title(['neuron ' num2str(neuronNames(:,i)') ', class = ' num2str(fieldPar.classIE(i))]);
pause;
delete(f);
end
%}
%% calculate post spike fields
fprintf('\nCalculating PSDs...');
pRelevantSamples=(preSpikeSamples+postSpikeFieldStartSamples):(preSpikeSamples+postSpikeFieldEndSamples);
% include the fact that each neuron has a different end time for integration
% pRelevantSamples=(preSpikeSamples+postSpikeFieldStartSamples):postSpikeFieldEndSamplesNew(i);
switch PSFMethod
case 'max'
%peak voltage normalized by pre spike peak
%fieldPar.val(pInhib,:)=max(lowpassWF(pInhib,:,pRelevantSamples),[],3)-mean(lowpassWF(pInhib,:,1:(preSpikeSamples-preSpikePeakSamples)),3);
%fieldPar.val(pExcit,:)=-(min(lowpassWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)),[],3)-mean(lowpassWF(pExcit,:,1:(preSpikeSamples-preSpikePeakSamples)),3));
fieldPar.val(pInhib,:)=max(lowpassWF(pInhib,:,pRelevantSamples),[],3)-mean(lowpassWF(pInhib,:,(preSpikeSamples-spikePeakWidthSamples/2):(preSpikeSamples+spikePeakWidthSamples/2)),3);
fieldPar.val(pExcit,:)=-(min(lowpassWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)),[],3)-mean(lowpassWF(pExcit,:,(preSpikeSamples-spikePeakWidthSamples/2):(preSpikeSamples+spikePeakWidthSamples/2)),3));
%set not classified the same as inhibitory
fieldPar.val(pNotClassified,:)=max(lowpassWF(pNotClassified,:,pRelevantSamples),[],3)-mean(lowpassWF(pNotClassified,:,(preSpikeSamples-spikePeakWidthSamples/2):(preSpikeSamples+spikePeakWidthSamples/2)),3);
case 'maxBaselineSubstracted'
fieldPar.val(pInhib,:)=max(baselineSubstractedSIF(pInhib,:,pRelevantSamples),[],3);
fieldPar.val(pExcit,:)=-(min(baselineSubstractedSIF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)),[],3));
%set not classified the same as inhibitory
fieldPar.val(pNotClassified,:)=max(baselineSubstractedSIF(pNotClassified,:,pRelevantSamples),[],3);
%{
IE=['?';'I';'E'];
pTmp=find(timeVec==0);
spikeMarker=ones(120,1)*nan(1,numel(timeVec));
spikeMarker(:,pTmp)=min(lowpassWF(:));
spikeMarker(:,pTmp+1)=max(lowpassWF(:));
for i=1:nNeurons;
h1=subplot(3,4,[1 11]);
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h1,1:120,squeeze(avgWF(i,:,:)),En,'traceColor','r');hold on;
activityTracePhysicalSpacePlot(h1,1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac,'DrawElectrodeNumbers',1);
activityTracePhysicalSpacePlot(h1,1:120,spikeMarker,En,'scaleFac',scaleFac,'DrawElectrodeNumbers',1,'traceColor',[0.7 0.7 0.7]);
title(['Neuron=' num2str(neuronNames(:,i)') 'index=' num2str(i) ', Max ch=' num2str(pMaxField(i)) ', C=' num2str(fieldPar.polarityVote(i))]);
h2=subplot(3,4,8);hCB=IntensityPhysicalSpacePlot(ch,fieldPar.val(i,:),En,'h',h2,'plotElectrodeNumbers',0);
title(IE(fieldPar.classIE(i)));
pause;
delete([h1 h2]);
end
%}
case 'baselineSubstractedIntegral' %!!!! Has to be rewritten to support separation between excitatory and inhibitory
%mean voltage normalized by pre spike mean
fieldPar.val(pInhib,:)=mean(baselineSubstractedSIF(pInhib,:,pRelevantSamples),3); %for inhibitory cells
fieldPar.val(pExcit,:)=-mean(baselineSubstractedSIF(pExcit,:,pRelevantSamples),3); %for inhibitory cells
fieldPar.val(pNotClassified,:)=mean(baselineSubstractedSIF(pNotClassified,:,pRelevantSamples),3);
otherwise
error('SIF calculation method not valid');
end
makeGaussianFit=0;
if makeGaussianFit
gaussFit.mX=zeros(1,nNeurons);
gaussFit.mY=zeros(1,nNeurons);
gaussFit.sX=zeros(1,nNeurons);
gaussFit.sY=zeros(1,nNeurons);
gaussFit.A=zeros(1,nNeurons);
gaussFit.Theta=zeros(1,nNeurons);
for i=1:nNeurons
[fitresult] = fmgaussfit(Xc,Yc,fieldPar.val(i,:)); %[amp, ang, sx, sy, xo, yo, zo]
gaussFit.A(i)=fitresult(1);
gaussFit.Theta(i)=fitresult(2);
gaussFit.sX(i)=fitresult(3);
gaussFit.sY(i)=fitresult(4);
gaussFit.mX(i)=fitresult(5);
gaussFit.mY(i)=fitresult(6);
end
end
if removeEdges
[~,pMax]=max(fieldPar.val,[],2);
[m,n]=size(En);
fieldPar.edgeNeurons=zeros(1,nNeurons);
for i=1:nNeurons
[pX,pY]=find(En==neuronNames(1,i));
if pX==1 || pX==n || pY==1 || pY==m
fieldPar.edgeNeurons(i)=1;
else
surroundingSquare=En(pY-1:pY+1,pX-1:pX+1);
if any(any(isnan(surroundingSquare)))
fieldPar.edgeNeurons(i)=2;
end
end
end
else
fieldPar.edgeNeurons=zeros(1,nNeurons); %set all neuron as ones not at the edge
end
fprintf('\nCalculating field peak...');
switch fieldPositionMethod
case 'interpolatedMaxima' %fits a 2D polynomial on a local grid of 9 points surrounding center
[m,n]=size(En);
Z=nan([m,n]);
%Z=zeros([m,n]);
fieldCoord=zeros(2,nNeurons);
for i=1:nNeurons
Z(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=fieldPar.val(i,:);
[fieldCoord(:,i)] = peakfit2d(Z);
%p = polyFit2D(Z,XGrid,YGrid,2,2);f = polyVal2D(p,XGrid,YGrid,2,2);imagesc(f)
end
fieldPar.Xfield=fieldCoord(1,:)*electrodePitch;
fieldPar.Yfield=fieldCoord(2,:)*electrodePitch;
case 'medianCOM' %biased by array edges
%pTmp=fieldPar.val>median(fieldPar.val,2)*ones(1,nCh);
medSubstractedField=fieldPar.val-(median(fieldPar.val,2)*ones(1,nCh));
fieldPar.Xfield=(sum(bsxfun(@times,medSubstractedField,Xc),2)./sum(medSubstractedField,2))';
fieldPar.Yfield=(sum(bsxfun(@times,medSubstractedField,Yc),2)./sum(medSubstractedField,2))';
case 'maxima'
[PSF,pChPSF]=max(fieldPar.val,[],2);%location of field integral maxima
fieldPar.Xfield=Xc(ch(pChPSF));
fieldPar.Yfield=Yc(ch(pChPSF));
case 'fitGaussian'
[m,n]=size(En);
Z=nan([m,n]);
%Z=zeros([m,n]);
fieldCoord=zeros(2,nNeurons);
[YGrid,XGrid]=meshgrid(1:size(Z,1),1:size(Z,2));
for i=1:nNeurons
Z(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=fieldPar.val(i,:);
[fitresult] = fmgaussfit(XGrid,YGrid,Z);
fieldCoord(:,i) = fitresult([5 6]);
end
fieldPar.Xfield=fieldCoord(1,:)*electrodePitch;
fieldPar.Yfield=fieldCoord(2,:)*electrodePitch;
case 'sumOfRegMax'
[m,n]=size(En);
%Z=min(fieldPar.val(:))*ones([m+2,n+2]);
%Z0=min(fieldPar.val(:))*ones([m,n]);
Z=zeros([m+2,n+2]);
Z0=zeros([m,n]);
fieldCoord=zeros(2,nNeurons);
[YGrid,XGrid]=meshgrid(1:size(Z,1),1:size(Z,2));
for i=1:nNeurons
%Z0(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=fieldPar.val(i,:);
Z0(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=fieldPar.val(i,:)-min(fieldPar.val(i,:));
Z(2:end-1,2:end-1)=Z0;
[ind] = find(imregionalmax(Z,8));
pTmp=find(Z(ind)>(fieldPar.val(i,pMaxField(i))/2));
nPeaks=numel(pTmp);
ys=zeros(nPeaks,1);xs=zeros(nPeaks,1);
for j=1:nPeaks
K=Z((XGrid(ind(pTmp(j)))-1):(XGrid(ind(pTmp(j)))+1),(YGrid(ind(pTmp(j)))-1):(YGrid(ind(pTmp(j)))+1));
% approximate polynomial parameter
a = (K(2,1)+K(1,1)-2*K(1,2)+K(1,3)-2*K(3,2)-2*K(2,2)+K(2,3)+K(3,1)+K(3,3));
b = (K(3,3)+K(1,1)-K(1,3)-K(3,1));
c = (-K(1,1)+K(1,3)-K(2,1)+K(2,3)-K(3,1)+K(3,3));
%d = (2*K(2,1)-K(1,1)+2*K(1,2)-K(1,3)+2*K(3,2)+5*K(2,2)+2*K(2,3)-K(3,1)-K(3,3));
e = (-2*K(2,1)+K(1,1)+K(1,2)+K(1,3)+K(3,2)-2*K(2,2)-2*K(2,3)+K(3,1)+K(3,3));
f = (-K(1,1)-K(1,2)-K(1,3)+K(3,1)+K(3,2)+K(3,3));
% (ys,xs) is subpixel shift of peak location relative to point (2,2)
xs(j) = (6*b*c-8*a*f)/(16*e*a-9*b^2);
ys(j) = (6*b*f-8*e*c)/(16*e*a-9*b^2);
end
fieldCoord(:,i)=[mean(XGrid(ind(pTmp))-1+xs);mean(YGrid(ind(pTmp))-1+ys)];
testPos{i}=[XGrid(ind(pTmp))-1+xs YGrid(ind(pTmp))-1+ys]'*electrodePitch;
%testPos{i}=[XGrid(ind(pTmp))-1 YGrid(ind(pTmp))-1]'*electrodePitch;
end
fieldPar.Xfield=fieldCoord(1,:)*electrodePitch;
fieldPar.Yfield=fieldCoord(2,:)*electrodePitch;
%s = regionprops(L, 'Centroid');
end
%incorporate cell position
if triangulateCellPosition && isempty(cellPosition) %run cell position estimation
avgSpkWF=avgWF(:,:, (preSpikeSamples-preSpikeHPSamples+1):(preSpikeSamples+postSpikeHPSamples) )-lowpassWF(:,:, (preSpikeSamples-preSpikeHPSamples+1):(preSpikeSamples+postSpikeHPSamples) );
[est,hest]=spikePositionEstimation(avgSpkWF,ch,preSpikeHPMs,Fs,En,fieldPar.classIE,'plot3D',0);
cellPosition(1,:)=est.X;
cellPosition(2,:)=est.Y;
%{
figure;
for i=1:nNeurons
h=axes;
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h,1:120,squeeze(avgSpkWF(i,:,:)),En,'traceColor','b','DrawElectrodeNumbers',1);hold on;title(neuronNames(:,i));
pause;
delete(h);
end
%}
elseif ~triangulateCellPosition && isempty(cellPosition) %use max spike electrode as a cell position estimator
cellPosition(1,:)=Xc(neuronNames(1,:));
cellPosition(1,:)=Yc(neuronNames(1,:));
end
%create projection vectors
X=[cellPosition(1,:);fieldPar.Xfield];
Y=[cellPosition(2,:);fieldPar.Yfield];
pTmp=isnan(fieldPar.Xfield);
X(:,pTmp)=NaN;
Y(:,pTmp)=NaN;
if size(cellPosition,2)==1 && size(cellPosition,1)~=2
error('cellPosition was not entered in the correct format');
end
mag=sqrt((X(2,:)-X(1,:)).^2 + (Y(2,:)-Y(1,:)).^2);
angle=atan2(Y(2,:)-Y(1,:),X(2,:)-X(1,:));
if ~isempty(polarPlotDistanceThreshold)
pp=find(mag>=polarPlotDistanceThreshold(1) & mag<=polarPlotDistanceThreshold(2));
mag(pp)=0;
end
pPosMagI=intersect(find(mag>0 & fieldPar.edgeNeurons==0),pInhib);
pPosMagE=intersect(find(mag>0 & fieldPar.edgeNeurons==0),pExcit);
if summaryPlotPerNeurons
IE=['?';'I';'E'];
pTmp=find(timeVec==0);
spikeMarker=ones(120,1)*nan(1,numel(timeVec));
spikeMarker(:,pTmp)=min(lowpassWF(:));
spikeMarker(:,pTmp+1)=max(lowpassWF(:));
minMaxXPos=[min(Xc) max(Xc)];
minMaxYPos=[min(Yc) max(Yc)];
f=figure('position',[10 50 1500 600]);
for i=1:nNeurons
hA(1)=subplot(2,5,[1 7]);
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(hA(1),1:120,squeeze(avgWF(i,:,:)),En,'traceColor',[0.2 0.1 0.8],'gridLineWidth',0.5);hold on;
%activityTracePhysicalSpacePlot(hA(1),1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac,'DrawElectrodeNumbers',0,'DrawGrid',0);
%activityTracePhysicalSpacePlot(hA(1),1:120,spikeMarker,En,'scaleFac',scaleFac,'traceColor',[0.7 0.7 0.7],'gridLineWidth',0.5);
title(['Neu=' num2str(neuronNames(:,i)') ',idx=' num2str(i) ',Cls=' num2str(IE(fieldPar.classIE(i))) ',Mxch=' num2str(pMaxField(i)) ',P=' num2str(fieldPar.polarityVote(i))]);
hA(2)=subplot(2,5,[3 9]);
hA(2).Clipping='off';
F = scatteredInterpolant(Xc', Yc',fieldPar.val(i,:)');
[Xtmp,Ytmp]=meshgrid([(minMaxXPos(1)):100:(minMaxXPos(2))],[(minMaxYPos(1)):100:(minMaxYPos(2))]);
[XtmpNew,YtmpNew]=meshgrid([(minMaxXPos(1)):10:(minMaxXPos(2))],[(minMaxYPos(1)):10:(minMaxYPos(2))]);
Vq = interp2(Xtmp, Ytmp,F(Xtmp,Ytmp),XtmpNew,YtmpNew,'spline');
imagesc([(minMaxXPos(1)):10:(minMaxXPos(2))],[(minMaxYPos(1)):10:(minMaxYPos(2))],Vq);hold on;
set(hA(2),'YDir','normal');
hCB=colorbar('position',[ 0.7463 0.5943 0.0064 0.3314]);
xlabel('[\mum]');
ylabel('[\mum]');
plot(Xc,Yc,'.g')
hTmp=arrow([X(1,i);Y(1,i)]',[X(2,i);Y(2,i)],'Width',4);
plot(testPos{i}(1,:),testPos{i}(2,:),'*r');
hA(3)=subplot(2,5,5);
hCB2=IntensityPhysicalSpacePlot(ch,fieldPar.val(i,:),En,'h',hA(3),'plotElectrodeNumbers',0,'plotGridLines',0,'markerSize',50,'plotColorBar',0);hold on;
hCB2=IntensityPhysicalSpacePlot(ch,maxSpikeAmp(i,:),En,'h',hA(3),'plotElectrodeNumbers',0,'plotGridLines',0,'markerSize',25);
set(hCB2,'position',[0.9129 0.7800 0.0051 0.1457],'YTick',[]);
title('out=SIF , in=spk');
pause;
delete(hA);
end
end
%% Plotting results
if polarPlot
%prepare for plotting
f=figure('position',[100 100 500 500]);
P = panel(f);
P.pack(2,2);
P.margin=8;
angleBins=(dAngle4Plot/360/2*pi):(dAngle4Plot/360*pi):(pi*2);
if polarPlotRemoveOuliers
maximalMag=median(mag([pPosMagI pPosMagE]))+6*mad(mag([pPosMagI pPosMagE]),1);
else
maximalMag=max(mag([pPosMagI pPosMagE]));
end
%inhibitory
hand.polar(1,1)=P(1, 1).select();
hRose=rose(angle(pPosMagI),angleBins);
hRose.Color=[0.8 0.2 0.2];
XdataRose = get(hRose,'Xdata');XdataRose=reshape(XdataRose,[4,numel(XdataRose)/4]);
YdataRose = get(hRose,'Ydata');YdataRose=reshape(YdataRose,[4,numel(YdataRose)/4]);
hPatch=patch(XdataRose,YdataRose,[0.8 0.2 0.2]);
set(gca,'color','k');
%compass(U,V)
hand.polar(1,2)=P(1, 2).select();
polar(0,maximalMag,'-k');hold on; %set scale for polar plot
hTmp=polar(angle(pPosMagI),mag(pPosMagI),'.r');
if neuronIdxPolarPlot
text(hTmp.XData',hTmp.YData',num2str(neuronNames(:,pPosMagI)'),'FontSize',8);
%text(hTmp.XData',hTmp.YData',num2str(pPosMagI'),'FontSize',8);
end
%excitatory
hand.polar(2,1)=P(2, 1).select();
hRose=rose(angle(pPosMagE),angleBins);
XdataRose = get(hRose,'Xdata');XdataRose=reshape(XdataRose,[4,numel(XdataRose)/4]);
YdataRose = get(hRose,'Ydata');YdataRose=reshape(YdataRose,[4,numel(YdataRose)/4]);
hPatch=patch(XdataRose,YdataRose,[0.2 0.2 0.8]);
set(gca,'color','k');
hand.polar(2,2)=P(2, 2).select();
polar(0,maximalMag,'-k');hold on; %set scale for polar plot
hTmp=polar(angle(pPosMagE),mag(pPosMagE),'.');
if neuronIdxPolarPlot
text(hTmp.XData',hTmp.YData',num2str(neuronNames(:,pPosMagE)'),'FontSize',8);
%text(hTmp.XData',hTmp.YData',num2str(pPosMagE'),'FontSize',8);
end
end
%DSI=(prefered - (prefered+pi))/(prefered + (prefered+pi))
if plotFieldVectors
f=figure('position',[100 100 700 700]);
hand.hVec=axes;
hand.hVec.WarpToFill='off'; %to avoid error in arrow3 function
if plotElectrodeNames
hand.electrodeText=text(Xc,Yc,num2str(ch'),'fontsize',8,'Parent',hand.hVec,'horizontalAlignment','center');
xlim([min(Xc)-electrodePitch max(Xc)+electrodePitch]);
ylim([min(Yc)-electrodePitch max(Yc)+electrodePitch]);
hold(hand.hVec,'on');
end
%hQ=quiver(Xc(neuronNames(1,:)),Yc(neuronNames(1,:)),intdX,intdY,'filled','lineWidth',2,'MaxHeadSize',0.1,'color','k','MarkerSize',2,'MarkerFaceColor','k');
[tmpX,tmpY]=pol2cart(angle,50);
nInhib2Display=numel(pPosMagI);
cMapR=flipud([ones(1,60);(0:0.01:0.59);(0:0.01:0.59)]');
normColorI = ceil(min(mag(pPosMagI)./maximalMag,1).*60);
if ~isempty(pPosMagI)
hand.hArrowI=arrow3([X(1,pPosMagI);Y(1,pPosMagI)]',[X(1,pPosMagI)+tmpX(pPosMagI);Y(1,pPosMagI)+tmpY(pPosMagI)]','^r2',0.7,1);hold on;
for i=1:nInhib2Display
hand.hArrowI(i+1).FaceColor=cMapR(normColorI(i) ,:,:);
end
end
nExcit2Display=numel(pPosMagE);
cMapB=flipud([(0:0.01:0.59);(0:0.01:0.59);ones(1,60)]');
normColorE = ceil(min(mag(pPosMagE)./maximalMag,1).*60);
if ~isempty(pPosMagE)
hand.hArrowE=arrow3([X(1,pPosMagE);Y(1,pPosMagE)]',[X(1,pPosMagE)+tmpX(pPosMagE);Y(1,pPosMagE)+tmpY(pPosMagE)]','^b2',0.7,1);
for i=1:nExcit2Display
hand.hArrowE(i+1).FaceColor=cMapB(normColorE(i) ,:,:);
end
end
xlabel('X [\mum]','FontSize',14);
ylabel('Y [\mum]','FontSize',14);
end
if plotFieldMapAllNeurons
if normalizeColorCode
Ilim=0;
else
Ilim=[min(fieldPar.val(:)) max(fieldPar.val(:))];
end
n=ceil(sqrt(min(maxFields4Plot,nNeurons)/3/5));%define images in a 3 x 5 ratio
xPlots=n*5;
yPlots=n*3;
nPlotPerPage=xPlots*yPlots;
f=figure;
P = panel(f);
P.pack(yPlots,xPlots);
P.margin=0.001;
for i=1:nNeurons
hand.hAllFieldAxes(i)=P(ceil(i/xPlots),i-(ceil(i/xPlots)-1)*xPlots).select();
IntensityPhysicalSpacePlot(1:120,fieldPar.val(i,:),En,'plotElectrodeNumbers',0,'plotGridLines',0,'plotColorBar',0,'markerSize',markerSizeAllFields,'h',hand.hAllFieldAxes(i),'Ilim',Ilim);
text(Xc(neuronNames(1,i))/electrodePitch-0.5,Yc(neuronNames(1,i))/electrodePitch-0.5,'o','horizontalAlignment','center','fontsize',6);
if plotNeuronNumbersAllFields
text(0,0,num2str(i),'horizontalAlignment','left','verticalAlignment','bottom','fontsize',6);
end
line( [Xc(neuronNames(1,i)) fieldPar.Xfield(i)]/electrodePitch - 0.5 , [Yc(neuronNames(1,i)) fieldPar.Yfield(i)]/electrodePitch - 0.5 ,'color','k');
end
end
if nargout==3
varOut.lowpassWF=lowpassWF;
varOut.lowpassWFBaseline=lowpassWFBaseline;
end