From 0fbf34c30f1740364a221fff24ab6221643ab4bd Mon Sep 17 00:00:00 2001 From: Jakub Date: Thu, 21 May 2020 10:13:36 +0200 Subject: [PATCH] Optuna NeptuneMonitor upgrades (#86) * added interactive charts, renamed NeptuneMonitor to NeptuneCallback * added option to log optuna charts after every iteration * added option to log study object after every epoch --- neptunecontrib/monitoring/optuna.py | 112 +++++++++++++++++++++------- 1 file changed, 87 insertions(+), 25 deletions(-) diff --git a/neptunecontrib/monitoring/optuna.py b/neptunecontrib/monitoring/optuna.py index d111534..65265fa 100644 --- a/neptunecontrib/monitoring/optuna.py +++ b/neptunecontrib/monitoring/optuna.py @@ -13,16 +13,23 @@ # See the License for the specific language governing permissions and # limitations under the License. # +import warnings import neptune -from neptunecontrib.monitoring.utils import pickle_and_send_artifact +from neptunecontrib.api import log_chart, pickle_and_log_artifact -def NeptuneMonitor(experiment=None): + +class NeptuneCallback: """Logs hyperparameter optimization process to Neptune. + For each iteration it logs run metric and run parameters as well as the best score to date. + Args: experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. + log_charts('bool'): Whether optuna visualization charts should be logged. By default no charts are logged. + log_study('bool'): Whether optuna study object should be pickled and logged. By default it is not. + params(`list`): List of parameters to be visualized. Default is all parameters. Examples: Initialize neptune_monitor:: @@ -30,38 +37,69 @@ def NeptuneMonitor(experiment=None): import neptune import neptunecontrib.monitoring.optuna as opt_utils - neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') + neptune.init(api_token='ANONYMOUS', + project_qualified_name='shared/showroom') neptune.create_experiment(name='optuna sweep') - monitor = opt_utils.NeptuneMonitor() + neptune_callback = opt_utils.NeptuneCallback() - Run Optuna training passing monitor as callback:: + Run Optuna training passing neptune_callback as callback:: ... study = optuna.create_study(direction='maximize') - study.optimize(objective, n_trials=100, callbacks=[monitor]) + study.optimize(objective, n_trials=100, callbacks=[neptune_callback]) - You can explore an example experiment in Neptune https://ui.neptune.ai/jakub-czakon/blog-hpo/e/BLOG-404/charts - """ + You can explore an example experiment in Neptune: + https://ui.neptune.ai/o/shared/org/showroom/e/SHOW-1016/artifacts - _exp = experiment if experiment else neptune - - def monitor(study, trial): - _exp.log_metric('run_score', trial.value) - _exp.log_metric('best_so_far_run_score', study.best_value) - _exp.log_text('run_parameters', str(trial.params)) - - return monitor + You can also log optuna visualization charts and study object after every iteration:: + neptune_callback = opt_utils.NeptuneCallback(log_charts=True, log_study=True) + """ -def log_study(study, experiment=None): + def __init__(self, experiment=None, log_charts=False, log_study=False, params=None): # pylint: disable=W0621 + self.exp = experiment if experiment else neptune + self.log_charts = log_charts + self.log_study = log_study + self.params = params + + def __call__(self, study, trial): + import optuna.visualization as vis + + self.exp.log_metric('run_score', trial.value) + self.exp.log_metric('best_so_far_run_score', study.best_value) + self.exp.log_text('run_parameters', str(trial.params)) + + if self.log_charts: + log_chart(name='optimization_history', + chart=vis.plot_optimization_history(study), + experiment=self.exp) + log_chart(name='contour', + chart=vis.plot_contour(study, params=self.params), + experiment=self.exp) + log_chart(name='parallel_coordinate', + chart=vis.plot_parallel_coordinate(study, params=self.params), + experiment=self.exp) + log_chart(name='slice', + chart=vis.plot_slice(study, params=self.params), + experiment=self.exp) + + if self.log_study: + pickle_and_log_artifact(study, 'study.pkl', experiment=self.exp) + + +def log_study_info(study, experiment=None, log_charts=True, params=None): """Logs runs results and parameters to neptune. - Logs all hyperparameter optimization results to Neptune. Those include best score ('best_score' channel), - best parameters ('best_parameters' property), and the study object itself. + + Logs all hyperparameter optimization results to Neptune. Those include best score ('best_score' metric), + best parameters ('best_parameters' property), the study object itself as artifact, and interactive optuna charts + ('contour', 'parallel_coordinate', 'slice', 'optimization_history') as artifacts in 'charts' sub folder. Args: - results('optuna.study.Study'): Optuna study object after training is completed. + study('optuna.study.Study'): Optuna study object after training is completed. experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. + log_charts('bool'): Whether optuna visualization charts should be logged. By default all charts are logged. + params(`list`): List of parameters to be visualized. Default is all parameters. Examples: Initialize neptune_monitor:: @@ -72,19 +110,43 @@ def log_study(study, experiment=None): neptune.init(project_qualified_name='USER_NAME/PROJECT_NAME') neptune.create_experiment(name='optuna sweep') - monitor = opt_utils.NeptuneMonitor() + neptune_callback = opt_utils.NeptuneCallback() Run Optuna training passing monitor as callback:: ... study = optuna.create_study(direction='maximize') - study.optimize(objective, n_trials=100, callbacks=[monitor]) - opt_utils.log_study(study) + study.optimize(objective, n_trials=100, callbacks=[neptune_callback]) + opt_utils.log_study_info(study) - You can explore an example experiment in Neptune https://ui.neptune.ai/jakub-czakon/blog-hpo/e/BLOG-404/charts + You can explore an example experiment in Neptune: + https://ui.neptune.ai/o/shared/org/showroom/e/SHOW-1016/artifacts """ + import optuna.visualization as vis + _exp = experiment if experiment else neptune _exp.log_metric('best_score', study.best_value) _exp.set_property('best_parameters', study.best_params) - pickle_and_send_artifact(study, 'study.pkl', experiment=_exp) + + if log_charts: + log_chart(name='optimization_history', chart=vis.plot_optimization_history(study), experiment=_exp) + log_chart(name='contour', chart=vis.plot_contour(study, params=params), experiment=_exp) + log_chart(name='parallel_coordinate', chart=vis.plot_parallel_coordinate(study, params=params), experiment=_exp) + log_chart(name='slice', chart=vis.plot_slice(study, params=params), experiment=_exp) + + pickle_and_log_artifact(study, 'study.pkl', experiment=_exp) + + +def log_study(study, experiment=None, log_charts=True, params=None): + message = """log_study was renamed to log_study_info and will be removed in future releases. + """ + warnings.warn(message) + return log_study_info(study, experiment, log_charts, params) + + +def NeptuneMonitor(experiment=None): + message = """NeptuneMonitor was renamed to NeptuneCallback and will be removed in future releases. + """ + warnings.warn(message) + return NeptuneCallback(experiment=experiment)