-
Notifications
You must be signed in to change notification settings - Fork 0
/
autocarto.html
387 lines (350 loc) · 14.7 KB
/
autocarto.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
<section>
<h3>GRASS GIS as an open source innovation platform:</h2>
<h4>from dynamic visualizations to collaborative tangible modeling</h3>
<p style="margin-top: 0.5em">
Helena Mitasova, Anna Petrasova, Vaclav Petras, and Brendan Harmon</p>
<p class="title-foot">
<a href="http://www.ncsu.edu/" title="North Carolina State University">NCSU</a>
<a href="http://geospatial.ncsu.edu/osgeorel/" title="NCSU GeoForAll Lab">GeoForAll Lab</a>
at
<a href="http://geospatial.ncsu.edu/" title="Center for Geospatial Analytics">Center for Geospatial Analytics</a>
<br>
</p>
<p>September 14-16, 2016</p>
</section>
<section>
<h3>Maps go digital with GRASS</h3>
<p>
Year 1987: Let William Shatner do the introduction
<br>
<video data-autoplay width="650" height="500" controls loop>
<source src="img/grassmovie_1min.mp4" type="video/mp4">
Your browser does not support the video tag.
<p><small>see full 15 min video here <a href="https://www.youtube.com/embed/U3Hf0qI4JLc">https://www.youtube.com/embed/U3Hf0qI4JLc</a></small>
<!-- FULL Video
<iframe width="650" height="500" src="https://www.youtube.com/embed/U3Hf0qI4JLc" frameborder="0" webkitallowfullscreen mozallow fullscreen allowfullscreen></iframe> -->
</section>
<section>
<h3>GRASS GIS for geospatial research </h3>
<h4 style="margin-bottom: 1em">grass.osgeo.org</h4>
<p>
<ul>
<p> <li>general purpose GIS with wxPython GUI and CLI</li>
<p> <li>backend processing for QGIS, R statistics, WebGIS </li>
<p> <li>powerful 2D/3D raster, imagery and vector processing</li>
<p> <li>single integrated software with 30 years of development </li>
</ul>
</section>
<section>
<h3>GRASS GIS and innovation</h3>
<p><img height="80" src="img/grass_startup_banner.png">
<ul>
<li>GRASS has long history - known as a reliable geospatial number cruncher (Neteler 2014)
<p><li>Developed as component of research projects - innovation through research
<p><li>Many historically innovative tools serve today: our examples are just a small subset
</ul>
</section>
<section>
<h3>Watersheds and stream extraction</h3>
<p>
<ul>
<p> <li>First worldwide map of watersheds derived from a global DEM</li>
<p> <li>Unique least cost path algorithm, no depression filling needed:
<b>r.watershed</b>
<p> <li>Updated for massive data sets (SRTM, lidar DEMs) </li>
</ul>
<p><small>
Ehlschlaeger C., 1989, Using the AT Search Algorithm to Develop Hydrologic Models from Digital Elevation Data,
Proc IGIS Symposium '89, 275-281.
<br>
Metz M., Mitasova H., and Harmon R.S., 2011, Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search, Hydrology and Earth System Sciences, 15, 667-678</small>
</section>
<section>
<h3>Multivariate splines </h3>
<p>
2D, 3D and 4D interpolation with tuneable tension </li>
<p><img width="50%" src="img/tension.gif">
<p><small>
Mitasova, H., L. Mitas, 1993, Interpolation by regularized spline with tension: I. Theory and implementation. Mathematical Geology 25, 641-655.</small></p>
</section>
<section>
<h3>Splines with geometry analysis </h3>
<p>
<ul>
<li>simultaneous topo analysis: gradients, curvatures</li>
<li>tuneable level of detail, geometry preserving smoothing </li>
</ul>
<p>
<img width="70%" src="img/lidar_tension_curv.gif">
<p><small>Mitasova, H., Mitas, L., Harmon, R.S., 2005, Simultaneous spline interpolation and topographic analysis for lidar elevation data: methods for Open source GIS, IEEE GRSL 2(4), 375-379.</small>
</section>
<section>
<h3>Dynamic volume modeling</h3>
Groundwater pollution plume interpolated from 10 years of well monitoring data
using 4D spline function
<p>
<img width=500 src="img/well456.gif">
<p><small>
WM Brown, M Astley, T Baker, H Mitasova, 1995, GRASS as an integrated GIS and visualization system for spatio-temporal modeling AUTOCARTO, 89-99
</small>
</section>
<section>
<h3>Dynamic water and sediment flow</h3>
Flow accumulation and sediment transport capacity visualized as dynamic surfaces
<p>
<!--
<img width="10%" src="img/nc1_f.gif">
-->
<img width="42%" src="img/water.gif">
<img width="42%" src="img/lsfac.gif">
<p><small>
Mitasova, H., L. Mitas, B.M. Brown, D.P. Gerdes, I. Kosinovsky, 1995, Modeling spatially and temporally distributed phenomena: New methods and tools for GRASS GIS. IJGIS, 9 (4), 443-446.</small>
<!--<br>
Mitas L., Brown W. M., Mitasova H., 1997, Role of dynamic cartography in simulations of landscape processes based on multi-variate fields. Computers and Geosciences, Vol. 23, No. 4, pp. 437-446 -->
</section>
<section>
<h3>Duality of particles and fields </h3>
<p>Path sampling method for flow continuity equations
<p>
<!-- <img height="300" src="img/balsam_sideimg.jpg"> -->
<img width="45%" src="img/fanimwalk.gif">
<img width="45%" src="img/fanimhhcolp.gif">
<p><small>Mitas, L., Mitasova, H., 1998, Distributed erosion modeling for effective erosion prevention. Water Resources Research 34(3), pp. 505-516</small>
</section>
<section>
<h2>GRASS 7 innovations</h2>
</section>
<section>
<h3 style="margin-bottom: 1em">Space-Time Framework </h3>
<ul>
<p><li>Space-time 2D, 3D raster and vector datatypes
<p><li>Time series datasets managed in temporal database
<p><li>New modules: query, aggregation, conversion, statistics, gap filling
<p><li>Temporal algebra: temporal relations, temporal buffer, spatio-temporal operators
</ul>
<p><small> Gebbert, S., Pebesma, E., 2014. TGRASS: A temporal GIS for field based environmental modeling.
Environmental Modelling & Software 53, 1-12. </small>
</section>
<section>
<h3>MODIS land surface temperature</h3>
<p>
<ul>
<li>14 years of 4/day (20K) maps, entire Europe, 250m res
<li>advanced statistics to fill no-data and enhance resolution,
multivariate regression includes elevation, solar angle, precipitation
</small>
</ul>
<p>
<img width="48%" src="img/MODIS_LST.jpg"> <img width="44%" src="img/MODIS_USA.jpg">
<p><small> EuroLST: http://gis.cri.fmach.it/eurolst/, Metz, Rocchini, Neteler, 2014: Rem Sens, 6(5): 3822-3840</small>
</section>
<section>
<h3>DEM time series visualization</h3>
<p>Jockey's Ridge migration 1974 - 2014, lidar time series</p>
<img height="350" src="img/jrseries.png">
<img width="60%" src="img/animation_without_contour.gif">
<p><small>Hardin, E., Mitasova, H., Tateosian, L., Overton, M., 2014, GIS-based Analysis of Coastal Lidar Time-Series, Springer Briefs in Computer Science, Springer, New York, 84 p.</small>
</section>
<section >
<h3>Space-Time Cube visualization</h3>
<p>Jockey's Ridge 16m, 20m contour evolution isosurfaces</p>
<img height="400" src="img/jr16/animation.gif">
<!--<img src="img/jr18/animation.gif"> -->
<img height="400" src="img/jr20/animation.gif">
</section>
<section>
<h3>Space time cube for TLS series</h3>
Stream bank erosion from terrestrial lidar
<p>
<img height="270" src="img/DEMs1stlast_vert.jpg">
<img height="270" src="img/Fig8isosurf_change.png">
<p><small>Starek, M.J., Mitasova H., Wegmann, K, Lyons, N., 2013,
Space-Time Cube Representation of Stream Bank Evolution Mapped by
Terrestrial Laser Scanning, IEEE GRSL 10(6), p. 1369-1373 </small>
</section>
<section>
<h3>Mapping with sUAS </h3>
<p>
Trimble UX5 UAS flight plan analysis
<p>
<img height=480 src="img/uav_flight_plan.jpg">
</section>
<section>
<h3>Surface water flow modeling </h3>
<p>
<ul>
<li>SfM in Agisoft or OpenDroneMap > point cloud
<li>DSM interpolation and path sampling-based surface runoff modeling in GRASS GIS
</ul>
<p>
<img width="40%" src="img/agisoft_jan.gif">
<img width="40%" src="img/agisoft_june.gif">
<p><small>Jeziorska, J; Mitasova, H; Petrasova, A; Petras, V; Divakaran, D; Zajkowski, T., 2016, Overland flow analysis using time series of sUAS-derived elevation models, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol III-8, pp.159-166</small>
</section>
<!--
<section>
<h3 style="margin-bottom: 1em">Lidar data processing </h3>
<p>
Solar radiation modeling: summer and winter solstice dynamics
<p>
<img height="400" src="img/summer_solstice_centennial.gif">
<img height="400" src="img/winter_solstice_centennial.gif">
</section>
-->
<section>
<h3>Geomorphons</h3>
<ul>
<li>Basic landforms extracted for the entire US
<li>Interactive search of similar landuse patterns
<li>On-line geospatial analytics: http://sil.uc.edu/
<li>Spatial Informatics Laboratory, University of Cincinnati
</ul>
<p>
<img width="85%" src="img/us_geom_26642.jpg">
</section>
<section>
<h3>Tangible Landscape</h3>
<p>
Tangible user interface for GRASS GIS
<p>
<img height="200" src="img/tanland_composit.png">
<p>
Book: Petrasova, A., Harmon, B., Petras, V., Mitasova, H., 2015, <a href="http://www.springer.com/us/book/9783319257730">
<em><b>Tangible Modeling with Open Source GIS,</b></em></a>
Springer International Publishing, 135 p.
</section>
<section>
<h3>Why tangible interfaces for GIS?</h3>
<ul>
<li>Interaction through mouse and display can be tedious</li>
<li>Manipulating 3D computer models requires specialized software and training, restricts creativity</li>
<li>Collaboration is limited as typically only one user at a time can navigate and modify models. </li>
</ul>
<p>
<img height="250px" src="img/collaboration_computer.JPG">
<img height="250px" src="img/art_rhino.jpg">
<!-- </br></br></br> -->
<!-- <h5>Tangible Landscape is designed to make scientific data,
models, and simulations exploratory, engaging, and fun</h5> -->
</section>
<section>
<h3>How does it work?</h3>
<iframe data-autoplay width="50%" height="330" src="https://www.youtube.com/embed/Cd3cCQTGer4?rel=0&showinfo=0&loop=1&playlist=Cd3cCQTGer4" frameborder="0" allowfullscreen></iframe>
<img height=330 src="img/system_schema.png">
<p>Tangible Landscape couples a digital and a physical model through a continuous cycle of 3D scanning, geospatial modeling, and projection</p>
</section>
<section>
<h3>Software</h3>
<img class="stretch" src="img/software-schema.png">
</section>
<section>
<h3>User Interfaces</h3>
Tangible Graphical Command Line
<img class="stretch" src="img/TUI_GUI_CLI_horizontal.jpg">
</section>
<section>
<h3>Interactions</h3>
<img class="stretch" src="img/interactions.png">
<table width="100%">
<col width="22%">
<col width="28%">
<col width="28%">
<col width="22%">
<tr>
<td style="vertical-align: middle; text-align:center; border-bottom: 0px; padding: 0;">surface
<td style="vertical-align: middle; text-align:center; border-bottom: 0px; padding: 0;">points
<td style="vertical-align: middle; text-align:center; border-bottom: 0px; padding: 0;">lines
<td style="vertical-align: middle; text-align:center; border-bottom: 0px; padding: 0;" >areas
</tr>
</table>
</section>
<section>
<h3>3D soil moisture exploration</h3>
<img height="150px" src="img/subsurface_1.jpg">
<img height="150px" src="img/subsurface_2.jpg">
<img height="150px" src="img/subsurface_3.jpg">
<img width="80%" src="img/cross_section.png">
</section>
<section>
<h3>Wildfire spread</h3>
<iframe data-autoplay width="853" height="480" src="https://www.youtube.com/embed/EJc57GFJeZI?rel=0&showinfo=0" frameborder="0" allowfullscreen></iframe>
</section>
<section>
<h3>Coupling with contributed modules</h3>
TL coupled with models in GRASS GIS addons, R
<p>
<img height="450" src="img/tl_apps_composit.jpg">
</section>
<section>
<h3>Tangible Landscape + Immersive Virtual Reality</h3>
<iframe data-autoplay width="853" height="480" src="https://www.youtube.com/embed/pYbpEMjME1Y?rel=0&showinfo=0" frameborder="0" allowfullscreen></iframe>
</section>
<section>
<h3>Resources for innovators</h3>
<p>Workshops
<ul>
<li>
<a href="http://ncsu-geoforall-lab.github.io/grass-intro-workshop/">Introduction to GRASS GIS</a>
<li>
<a href="https://github.com/wenzeslaus/python-grass-addon">How to write a Python GRASS GIS 7 addon</a>
<br>also available as a
<a href="https://www.youtube.com/watch?v=PX2UpMhp2hc">YouTube video</a>
<li>
<a href="https://grasswiki.osgeo.org/wiki/Using_GRASS_GIS_through_Python_and_tangible_interfaces_(workshop_at_FOSS4G_NA_2016)">
Using GRASS GIS through Python and tangible interfaces</a>
<li><a href="http://ncsu-geoforall-lab.github.io/grass-temporal-workshop/">
Spatio-temporal data handling and visualization</a>
<li>
<a href="https://grasswiki.osgeo.org/wiki/Workshop_on_urban_growth_modeling_with_FUTURES">
Urban growth modeling with FUTURES</a>
</section>
<section>
<h3>GRASS GIS as platform for sustainable Open Science</h3>
<ul>
<li><b>Reproducibility</b>: open source is the natural habitat for science and research
<li><b>Return of Investment</b>: many tools available since 80s, continuously developed
<li><b>Auto-documentation</b>: map and command history preserved “forever”
<li><b>Reliability</b>: testing and quality control system (in progress) integrated into the software itself
<li><b>Longevity for Open Science</b>: code integrated into GRASS “survives” even if original authors would not continue
</ul>
</section>
<section>
<h3>NCSU Geoforall lab</h3>
<h4><a href="geospatial.ncsu.edu/osgeorel/">geospatial.ncsu.edu/osgeorel/</a></h4>
<ul>
<p><li><a href="https://cnr.ncsu.edu/geospatial/">NCSU Center for Geospatial Analytics,</a>
PhD program in Geospatial Analytics coming in fall 2017
<li>Member of GeoForAll initiative and NA leading lab</li>
<li>GRASS GIS development, 3 members of GRASS PSC</li>
<li>Research: geocomputation and geovisualization</li>
<li>Courses on-campus and on-line with open source geospatial component</li>
</ul>
<p><small><em><a href="http://www.mdpi.com/2220-9964/4/2/942/pdf">
Integrating Free and Open Source Solutions into Geospatial Science Education.</a></em>
Petras, V., Petrasova, A., Harmon, B., Meentemeyer, R.K., Mitasova, H.
ISPRS IJGI. 2015.</small>
</section>
<section>
<h3>Geoforall initiative</h3>
<h4>http://www.geoforall.org/</h4>
Started in 2012
<p>
<img class="stretch" src="img/geo4allmap2012.png">
</section>
<section>
<h3>Geoforall initiative</h3>
<h4>http://www.geoforall.org/</h4>
network in 2016: we need better map!
<p>
<img class="stretch" src="img/geo4allmap2016.png">
</section>
<section>
<h2>Thank You!</h2>
<p>
<iframe data-autoplay width="700" height="350" src="https://www.youtube.com/embed/Uje8ORyhBaQ?rel=0&showinfo=0&loop=1&playlist=Uje8ORyhBaQ" frameborder="0" allowfullscreen></iframe>
<p>Tangible Landscape: <a href="https://tangible-landscape.github.io">tangible-landscape.github.io</a>
</section>