-
Notifications
You must be signed in to change notification settings - Fork 1
/
minirocket_multivariate.py
283 lines (187 loc) · 10.5 KB
/
minirocket_multivariate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Angus Dempster, Daniel F Schmidt, Geoffrey I Webb
# MiniRocket: A Very Fast (Almost) Deterministic Transform for Time Series
# Classification
# https://arxiv.org/abs/2012.08791
# ** This is a naive extension of MiniRocket to multivariate time series. **
from numba import njit, prange, vectorize
import numpy as np
@njit("float32[:](float32[:,:,:],int32[:],int32[:],int32[:],int32[:],float32[:])", fastmath = True, parallel = False, cache = True)
def _fit_biases(X, num_channels_per_combination, channel_indices, dilations, num_features_per_dilation, quantiles):
num_examples, num_channels, input_length = X.shape
# equivalent to:
# >>> from itertools import combinations
# >>> indices = np.array([_ for _ in combinations(np.arange(9), 3)], dtype = np.int32)
indices = np.array((
0,1,2,0,1,3,0,1,4,0,1,5,0,1,6,0,1,7,0,1,8,
0,2,3,0,2,4,0,2,5,0,2,6,0,2,7,0,2,8,0,3,4,
0,3,5,0,3,6,0,3,7,0,3,8,0,4,5,0,4,6,0,4,7,
0,4,8,0,5,6,0,5,7,0,5,8,0,6,7,0,6,8,0,7,8,
1,2,3,1,2,4,1,2,5,1,2,6,1,2,7,1,2,8,1,3,4,
1,3,5,1,3,6,1,3,7,1,3,8,1,4,5,1,4,6,1,4,7,
1,4,8,1,5,6,1,5,7,1,5,8,1,6,7,1,6,8,1,7,8,
2,3,4,2,3,5,2,3,6,2,3,7,2,3,8,2,4,5,2,4,6,
2,4,7,2,4,8,2,5,6,2,5,7,2,5,8,2,6,7,2,6,8,
2,7,8,3,4,5,3,4,6,3,4,7,3,4,8,3,5,6,3,5,7,
3,5,8,3,6,7,3,6,8,3,7,8,4,5,6,4,5,7,4,5,8,
4,6,7,4,6,8,4,7,8,5,6,7,5,6,8,5,7,8,6,7,8
), dtype = np.int32).reshape(84, 3)
num_kernels = len(indices)
num_dilations = len(dilations)
num_features = num_kernels * np.sum(num_features_per_dilation)
biases = np.zeros(num_features, dtype = np.float32)
feature_index_start = 0
combination_index = 0
num_channels_start = 0
for dilation_index in range(num_dilations):
dilation = dilations[dilation_index]
padding = ((9 - 1) * dilation) // 2
num_features_this_dilation = num_features_per_dilation[dilation_index]
for kernel_index in range(num_kernels):
feature_index_end = feature_index_start + num_features_this_dilation
num_channels_this_combination = num_channels_per_combination[combination_index]
num_channels_end = num_channels_start + num_channels_this_combination
channels_this_combination = channel_indices[num_channels_start:num_channels_end]
_X = X[np.random.randint(num_examples)][channels_this_combination]
A = -_X # A = alpha * X = -X
G = _X + _X + _X # G = gamma * X = 3X
C_alpha = np.zeros((num_channels_this_combination, input_length), dtype = np.float32)
C_alpha[:] = A
C_gamma = np.zeros((9, num_channels_this_combination, input_length), dtype = np.float32)
C_gamma[9 // 2] = G
start = dilation
end = input_length - padding
for gamma_index in range(9 // 2):
C_alpha[:, -end:] = C_alpha[:, -end:] + A[:, :end]
C_gamma[gamma_index, :, -end:] = G[:, :end]
end += dilation
for gamma_index in range(9 // 2 + 1, 9):
C_alpha[:, :-start] = C_alpha[:, :-start] + A[:, start:]
C_gamma[gamma_index, :, :-start] = G[:, start:]
start += dilation
index_0, index_1, index_2 = indices[kernel_index]
C = C_alpha + C_gamma[index_0] + C_gamma[index_1] + C_gamma[index_2]
C = np.sum(C, axis = 0)
biases[feature_index_start:feature_index_end] = np.quantile(C, quantiles[feature_index_start:feature_index_end])
feature_index_start = feature_index_end
combination_index += 1
num_channels_start = num_channels_end
return biases
def _fit_dilations(input_length, num_features, max_dilations_per_kernel):
num_kernels = 84
num_features_per_kernel = num_features // num_kernels
true_max_dilations_per_kernel = min(num_features_per_kernel, max_dilations_per_kernel)
multiplier = num_features_per_kernel / true_max_dilations_per_kernel
max_exponent = np.log2((input_length - 1) / (9 - 1))
dilations, num_features_per_dilation = \
np.unique(np.logspace(0, max_exponent, true_max_dilations_per_kernel, base = 2).astype(np.int32), return_counts = True)
num_features_per_dilation = (num_features_per_dilation * multiplier).astype(np.int32) # this is a vector
remainder = num_features_per_kernel - np.sum(num_features_per_dilation)
i = 0
while remainder > 0:
num_features_per_dilation[i] += 1
remainder -= 1
i = (i + 1) % len(num_features_per_dilation)
return dilations, num_features_per_dilation
# low-discrepancy sequence to assign quantiles to kernel/dilation combinations
def _quantiles(n):
return np.array([(_ * ((np.sqrt(5) + 1) / 2)) % 1 for _ in range(1, n + 1)], dtype = np.float32)
def fit(X, num_features = 10_000, max_dilations_per_kernel = 32):
_, num_channels, input_length = X.shape
num_kernels = 84
dilations, num_features_per_dilation = _fit_dilations(input_length, num_features, max_dilations_per_kernel)
num_features_per_kernel = np.sum(num_features_per_dilation)
quantiles = _quantiles(num_kernels * num_features_per_kernel)
num_dilations = len(dilations)
num_combinations = num_kernels * num_dilations
max_num_channels = min(num_channels, 9)
max_exponent = np.log2(max_num_channels + 1)
num_channels_per_combination = (2 ** np.random.uniform(0, max_exponent, num_combinations)).astype(np.int32)
channel_indices = np.zeros(num_channels_per_combination.sum(), dtype = np.int32)
num_channels_start = 0
for combination_index in range(num_combinations):
num_channels_this_combination = num_channels_per_combination[combination_index]
num_channels_end = num_channels_start + num_channels_this_combination
channel_indices[num_channels_start:num_channels_end] = np.random.choice(num_channels, num_channels_this_combination, replace = False)
num_channels_start = num_channels_end
biases = _fit_biases(X, num_channels_per_combination, channel_indices, dilations, num_features_per_dilation, quantiles)
return num_channels_per_combination, channel_indices, dilations, num_features_per_dilation, biases
# _PPV(C, b).mean() returns PPV for vector C (convolution output) and scalar b (bias)
@vectorize("float32(float32,float32)", nopython = True, cache = True)
def _PPV(a, b):
if a > b:
return 1
else:
return 0
@njit("float32[:,:](float32[:,:,:],Tuple((int32[:],int32[:],int32[:],int32[:],float32[:])))", fastmath = True, parallel = True, cache = True)
def transform(X, parameters):
num_examples, num_channels, input_length = X.shape
num_channels_per_combination, channel_indices, dilations, num_features_per_dilation, biases = parameters
# equivalent to:
# >>> from itertools import combinations
# >>> indices = np.array([_ for _ in combinations(np.arange(9), 3)], dtype = np.int32)
indices = np.array((
0,1,2,0,1,3,0,1,4,0,1,5,0,1,6,0,1,7,0,1,8,
0,2,3,0,2,4,0,2,5,0,2,6,0,2,7,0,2,8,0,3,4,
0,3,5,0,3,6,0,3,7,0,3,8,0,4,5,0,4,6,0,4,7,
0,4,8,0,5,6,0,5,7,0,5,8,0,6,7,0,6,8,0,7,8,
1,2,3,1,2,4,1,2,5,1,2,6,1,2,7,1,2,8,1,3,4,
1,3,5,1,3,6,1,3,7,1,3,8,1,4,5,1,4,6,1,4,7,
1,4,8,1,5,6,1,5,7,1,5,8,1,6,7,1,6,8,1,7,8,
2,3,4,2,3,5,2,3,6,2,3,7,2,3,8,2,4,5,2,4,6,
2,4,7,2,4,8,2,5,6,2,5,7,2,5,8,2,6,7,2,6,8,
2,7,8,3,4,5,3,4,6,3,4,7,3,4,8,3,5,6,3,5,7,
3,5,8,3,6,7,3,6,8,3,7,8,4,5,6,4,5,7,4,5,8,
4,6,7,4,6,8,4,7,8,5,6,7,5,6,8,5,7,8,6,7,8
), dtype = np.int32).reshape(84, 3)
num_kernels = len(indices)
num_dilations = len(dilations)
num_features = num_kernels * np.sum(num_features_per_dilation)
features = np.zeros((num_examples, num_features), dtype = np.float32)
for example_index in prange(num_examples):
_X = X[example_index]
A = -_X # A = alpha * X = -X
G = _X + _X + _X # G = gamma * X = 3X
feature_index_start = 0
combination_index = 0
num_channels_start = 0
for dilation_index in range(num_dilations):
_padding0 = dilation_index % 2
dilation = dilations[dilation_index]
padding = ((9 - 1) * dilation) // 2
num_features_this_dilation = num_features_per_dilation[dilation_index]
C_alpha = np.zeros((num_channels, input_length), dtype = np.float32)
C_alpha[:] = A
C_gamma = np.zeros((9, num_channels, input_length), dtype = np.float32)
C_gamma[9 // 2] = G
start = dilation
end = input_length - padding
for gamma_index in range(9 // 2):
C_alpha[:, -end:] = C_alpha[:, -end:] + A[:, :end]
C_gamma[gamma_index, :, -end:] = G[:, :end]
end += dilation
for gamma_index in range(9 // 2 + 1, 9):
C_alpha[:, :-start] = C_alpha[:, :-start] + A[:, start:]
C_gamma[gamma_index, :, :-start] = G[:, start:]
start += dilation
for kernel_index in range(num_kernels):
feature_index_end = feature_index_start + num_features_this_dilation
num_channels_this_combination = num_channels_per_combination[combination_index]
num_channels_end = num_channels_start + num_channels_this_combination
channels_this_combination = channel_indices[num_channels_start:num_channels_end]
_padding1 = (_padding0 + kernel_index) % 2
index_0, index_1, index_2 = indices[kernel_index]
C = C_alpha[channels_this_combination] + \
C_gamma[index_0][channels_this_combination] + \
C_gamma[index_1][channels_this_combination] + \
C_gamma[index_2][channels_this_combination]
C = np.sum(C, axis = 0)
if _padding1 == 0:
for feature_count in range(num_features_this_dilation):
features[example_index, feature_index_start + feature_count] = _PPV(C, biases[feature_index_start + feature_count]).mean()
else:
for feature_count in range(num_features_this_dilation):
features[example_index, feature_index_start + feature_count] = _PPV(C[padding:-padding], biases[feature_index_start + feature_count]).mean()
feature_index_start = feature_index_end
combination_index += 1
num_channels_start = num_channels_end
return features