forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 7
/
addrman.cpp
317 lines (279 loc) · 12.3 KB
/
addrman.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Copyright (c) 2020-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <addrdb.h>
#include <addrman.h>
#include <addrman_impl.h>
#include <chainparams.h>
#include <common/args.h>
#include <merkleblock.h>
#include <random.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/fuzz/util/net.h>
#include <test/util/setup_common.h>
#include <time.h>
#include <util/asmap.h>
#include <util/chaintype.h>
#include <cassert>
#include <cstdint>
#include <optional>
#include <string>
#include <vector>
namespace {
const BasicTestingSetup* g_setup;
int32_t GetCheckRatio()
{
return std::clamp<int32_t>(g_setup->m_node.args->GetIntArg("-checkaddrman", 0), 0, 1000000);
}
} // namespace
void initialize_addrman()
{
static const auto testing_setup = MakeNoLogFileContext<>(ChainType::REGTEST);
g_setup = testing_setup.get();
}
[[nodiscard]] inline NetGroupManager ConsumeNetGroupManager(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
std::vector<bool> asmap = ConsumeRandomLengthBitVector(fuzzed_data_provider);
if (!SanityCheckASMap(asmap, 128)) asmap.clear();
return NetGroupManager(asmap);
}
FUZZ_TARGET(data_stream_addr_man, .init = initialize_addrman)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
DataStream data_stream = ConsumeDataStream(fuzzed_data_provider);
NetGroupManager netgroupman{ConsumeNetGroupManager(fuzzed_data_provider)};
AddrMan addr_man(netgroupman, /*deterministic=*/false, GetCheckRatio());
try {
ReadFromStream(addr_man, data_stream);
} catch (const std::exception&) {
}
}
/**
* Generate a random address. Always returns a valid address.
*/
CNetAddr RandAddr(FuzzedDataProvider& fuzzed_data_provider, FastRandomContext& fast_random_context)
{
CNetAddr addr;
if (fuzzed_data_provider.remaining_bytes() > 1 && fuzzed_data_provider.ConsumeBool()) {
addr = ConsumeNetAddr(fuzzed_data_provider);
} else {
// The networks [1..6] correspond to CNetAddr::BIP155Network (private).
static const std::map<uint8_t, uint8_t> net_len_map = {{1, ADDR_IPV4_SIZE},
{2, ADDR_IPV6_SIZE},
{4, ADDR_TORV3_SIZE},
{5, ADDR_I2P_SIZE},
{6, ADDR_CJDNS_SIZE}};
uint8_t net = fast_random_context.randrange(5) + 1; // [1..5]
if (net == 3) {
net = 6;
}
DataStream s{};
s << net;
s << fast_random_context.randbytes(net_len_map.at(net));
s >> CAddress::V2_NETWORK(addr);
}
// Return a dummy IPv4 5.5.5.5 if we generated an invalid address.
if (!addr.IsValid()) {
in_addr v4_addr = {};
v4_addr.s_addr = 0x05050505;
addr = CNetAddr{v4_addr};
}
return addr;
}
/** Fill addrman with lots of addresses from lots of sources. */
void FillAddrman(AddrMan& addrman, FuzzedDataProvider& fuzzed_data_provider)
{
// Add a fraction of the addresses to the "tried" table.
// 0, 1, 2, 3 corresponding to 0%, 100%, 50%, 33%
const size_t n = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 3);
const size_t num_sources = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, 50);
CNetAddr prev_source;
// Generate a FastRandomContext seed to use inside the loops instead of
// fuzzed_data_provider. When fuzzed_data_provider is exhausted it
// just returns 0.
FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)};
for (size_t i = 0; i < num_sources; ++i) {
const auto source = RandAddr(fuzzed_data_provider, fast_random_context);
const size_t num_addresses = fast_random_context.randrange(500) + 1; // [1..500]
for (size_t j = 0; j < num_addresses; ++j) {
const auto addr = CAddress{CService{RandAddr(fuzzed_data_provider, fast_random_context), 8333}, NODE_NETWORK};
const std::chrono::seconds time_penalty{fast_random_context.randrange(100000001)};
addrman.Add({addr}, source, time_penalty);
if (n > 0 && addrman.Size() % n == 0) {
addrman.Good(addr, Now<NodeSeconds>());
}
// Add 10% of the addresses from more than one source.
if (fast_random_context.randrange(10) == 0 && prev_source.IsValid()) {
addrman.Add({addr}, prev_source, time_penalty);
}
}
prev_source = source;
}
}
class AddrManDeterministic : public AddrMan
{
public:
explicit AddrManDeterministic(const NetGroupManager& netgroupman, FuzzedDataProvider& fuzzed_data_provider)
: AddrMan(netgroupman, /*deterministic=*/true, GetCheckRatio())
{
WITH_LOCK(m_impl->cs, m_impl->insecure_rand = FastRandomContext{ConsumeUInt256(fuzzed_data_provider)});
}
/**
* Compare with another AddrMan.
* This compares:
* - the values in `mapInfo` (the keys aka ids are ignored)
* - vvNew entries refer to the same addresses
* - vvTried entries refer to the same addresses
*/
bool operator==(const AddrManDeterministic& other) const
{
LOCK2(m_impl->cs, other.m_impl->cs);
if (m_impl->mapInfo.size() != other.m_impl->mapInfo.size() || m_impl->nNew != other.m_impl->nNew ||
m_impl->nTried != other.m_impl->nTried) {
return false;
}
// Check that all values in `mapInfo` are equal to all values in `other.mapInfo`.
// Keys may be different.
auto addrinfo_hasher = [](const AddrInfo& a) {
CSipHasher hasher(0, 0);
auto addr_key = a.GetKey();
auto source_key = a.source.GetAddrBytes();
hasher.Write(TicksSinceEpoch<std::chrono::seconds>(a.m_last_success));
hasher.Write(a.nAttempts);
hasher.Write(a.nRefCount);
hasher.Write(a.fInTried);
hasher.Write(a.GetNetwork());
hasher.Write(a.source.GetNetwork());
hasher.Write(addr_key.size());
hasher.Write(source_key.size());
hasher.Write(addr_key);
hasher.Write(source_key);
return (size_t)hasher.Finalize();
};
auto addrinfo_eq = [](const AddrInfo& lhs, const AddrInfo& rhs) {
return std::tie(static_cast<const CService&>(lhs), lhs.source, lhs.m_last_success, lhs.nAttempts, lhs.nRefCount, lhs.fInTried) ==
std::tie(static_cast<const CService&>(rhs), rhs.source, rhs.m_last_success, rhs.nAttempts, rhs.nRefCount, rhs.fInTried);
};
using Addresses = std::unordered_set<AddrInfo, decltype(addrinfo_hasher), decltype(addrinfo_eq)>;
const size_t num_addresses{m_impl->mapInfo.size()};
Addresses addresses{num_addresses, addrinfo_hasher, addrinfo_eq};
for (const auto& [id, addr] : m_impl->mapInfo) {
addresses.insert(addr);
}
Addresses other_addresses{num_addresses, addrinfo_hasher, addrinfo_eq};
for (const auto& [id, addr] : other.m_impl->mapInfo) {
other_addresses.insert(addr);
}
if (addresses != other_addresses) {
return false;
}
auto IdsReferToSameAddress = [&](int id, int other_id) EXCLUSIVE_LOCKS_REQUIRED(m_impl->cs, other.m_impl->cs) {
if (id == -1 && other_id == -1) {
return true;
}
if ((id == -1 && other_id != -1) || (id != -1 && other_id == -1)) {
return false;
}
return m_impl->mapInfo.at(id) == other.m_impl->mapInfo.at(other_id);
};
// Check that `vvNew` contains the same addresses as `other.vvNew`. Notice - `vvNew[i][j]`
// contains just an id and the address is to be found in `mapInfo.at(id)`. The ids
// themselves may differ between `vvNew` and `other.vvNew`.
for (size_t i = 0; i < ADDRMAN_NEW_BUCKET_COUNT; ++i) {
for (size_t j = 0; j < ADDRMAN_BUCKET_SIZE; ++j) {
if (!IdsReferToSameAddress(m_impl->vvNew[i][j], other.m_impl->vvNew[i][j])) {
return false;
}
}
}
// Same for `vvTried`.
for (size_t i = 0; i < ADDRMAN_TRIED_BUCKET_COUNT; ++i) {
for (size_t j = 0; j < ADDRMAN_BUCKET_SIZE; ++j) {
if (!IdsReferToSameAddress(m_impl->vvTried[i][j], other.m_impl->vvTried[i][j])) {
return false;
}
}
}
return true;
}
};
FUZZ_TARGET(addrman, .init = initialize_addrman)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
SetMockTime(ConsumeTime(fuzzed_data_provider));
NetGroupManager netgroupman{ConsumeNetGroupManager(fuzzed_data_provider)};
auto addr_man_ptr = std::make_unique<AddrManDeterministic>(netgroupman, fuzzed_data_provider);
if (fuzzed_data_provider.ConsumeBool()) {
const std::vector<uint8_t> serialized_data{ConsumeRandomLengthByteVector(fuzzed_data_provider)};
DataStream ds{serialized_data};
try {
ds >> *addr_man_ptr;
} catch (const std::ios_base::failure&) {
addr_man_ptr = std::make_unique<AddrManDeterministic>(netgroupman, fuzzed_data_provider);
}
}
AddrManDeterministic& addr_man = *addr_man_ptr;
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) {
CallOneOf(
fuzzed_data_provider,
[&] {
addr_man.ResolveCollisions();
},
[&] {
(void)addr_man.SelectTriedCollision();
},
[&] {
std::vector<CAddress> addresses;
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) {
addresses.push_back(ConsumeAddress(fuzzed_data_provider));
}
addr_man.Add(addresses, ConsumeNetAddr(fuzzed_data_provider), std::chrono::seconds{ConsumeTime(fuzzed_data_provider, 0, 100000000)});
},
[&] {
addr_man.Good(ConsumeService(fuzzed_data_provider), NodeSeconds{std::chrono::seconds{ConsumeTime(fuzzed_data_provider)}});
},
[&] {
addr_man.Attempt(ConsumeService(fuzzed_data_provider), fuzzed_data_provider.ConsumeBool(), NodeSeconds{std::chrono::seconds{ConsumeTime(fuzzed_data_provider)}});
},
[&] {
addr_man.Connected(ConsumeService(fuzzed_data_provider), NodeSeconds{std::chrono::seconds{ConsumeTime(fuzzed_data_provider)}});
},
[&] {
addr_man.SetServices(ConsumeService(fuzzed_data_provider), ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS));
});
}
const AddrMan& const_addr_man{addr_man};
std::optional<Network> network;
if (fuzzed_data_provider.ConsumeBool()) {
network = fuzzed_data_provider.PickValueInArray(ALL_NETWORKS);
}
(void)const_addr_man.GetAddr(
/*max_addresses=*/fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096),
/*max_pct=*/fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096),
network,
/*filtered=*/fuzzed_data_provider.ConsumeBool());
(void)const_addr_man.Select(fuzzed_data_provider.ConsumeBool(), network);
std::optional<bool> in_new;
if (fuzzed_data_provider.ConsumeBool()) {
in_new = fuzzed_data_provider.ConsumeBool();
}
(void)const_addr_man.Size(network, in_new);
DataStream data_stream{};
data_stream << const_addr_man;
}
// Check that serialize followed by unserialize produces the same addrman.
FUZZ_TARGET(addrman_serdeser, .init = initialize_addrman)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
SetMockTime(ConsumeTime(fuzzed_data_provider));
NetGroupManager netgroupman{ConsumeNetGroupManager(fuzzed_data_provider)};
AddrManDeterministic addr_man1{netgroupman, fuzzed_data_provider};
AddrManDeterministic addr_man2{netgroupman, fuzzed_data_provider};
DataStream data_stream{};
FillAddrman(addr_man1, fuzzed_data_provider);
data_stream << addr_man1;
data_stream >> addr_man2;
assert(addr_man1 == addr_man2);
}