-
Notifications
You must be signed in to change notification settings - Fork 0
/
mobile.py
98 lines (77 loc) · 2.81 KB
/
mobile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/env python
from datetime import datetime
import cv2
from functions import *
from urllib import request
REMOTE_URL = "http://192.168.137.19:8080/shot.jpg"
class video_capture:
""" Class to connect to remote camera """
@staticmethod
def read():
try:
imgResp = request.urlopen(REMOTE_URL)
imgNp = np.array(bytearray(imgResp.read()), dtype=np.uint8)
img = cv2.imdecode(imgNp, -1)
# img = cv2.resize(img, (640, 480)) # use this if size recieve is very large
return None, img
except Exception as e:
print(e)
return False, np.array([])
@staticmethod
def release():
pass
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
_, frame = video_capture.read()
# Only process every other frame of video to save time
if process_this_frame:
times = 0.5
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=times, fy=times)
# small_frame = frame.copy()
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Find all the faces and face encodings in the current frame of video
face_locations = get_face_locations(rgb_small_frame)
face_encodings = get_face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
# if matches[best_match_index]:
if face_distances[best_match_index] <= threshold:
name = known_face_labels[best_match_index]
export_data.append((name, datetime.now()))
else:
name = "Unknown"
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
if times != 1:
top = int(top * (1/times))
right = int(right * (1/times))
bottom = int(bottom * (1/times))
left = int(left * (1/times))
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (255, 0, 0), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
save_export()