forked from paulmach/go.geo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
path.go
607 lines (488 loc) · 15.7 KB
/
path.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
package geo
import (
"bytes"
"fmt"
"io"
"math"
"github.com/paulmach/go.geojson"
)
// Path represents a set of points to be thought of as a polyline.
type Path struct {
PointSet
}
// NewPath creates a new path.
func NewPath() *Path {
return NewPathPreallocate(0, 100)
}
// NewPathPreallocate creates a new path with points array of the given size.
func NewPathPreallocate(length, capacity int) *Path {
return &Path{PointSet(*NewPointSetPreallocate(length, capacity))}
}
// NewPathFromEncoding is the inverse of path.Encode. It takes a string encoding of a lat/lng path
// and returns the actual path it represents. Factor defaults to 1.0e5,
// the same used by Google for polyline encoding.
func NewPathFromEncoding(encoded string, factor ...int) *Path {
var count, index int
f := 1.0e5
if len(factor) != 0 {
f = float64(factor[0])
}
p := &Path{PointSet{}}
tempLatLng := [2]int{0, 0}
for index < len(encoded) {
var result int
var b = 0x20
var shift uint
for b >= 0x20 && index < len(encoded) {
b = int(encoded[index]) - 63
index++
result |= (b & 0x1f) << shift
shift += 5
}
// sign dection
if result&1 != 0 {
result = ^(result >> 1)
} else {
result = result >> 1
}
if count%2 == 0 {
result += tempLatLng[0]
tempLatLng[0] = result
} else {
result += tempLatLng[1]
tempLatLng[1] = result
p.PointSet = append(p.PointSet, Point{float64(tempLatLng[1]) / f, float64(tempLatLng[0]) / f})
}
count++
}
return p
}
// NewPathFromXYData creates a path from a slice of [2]float64 values
// representing [horizontal, vertical] type data, for example lng/lat values from geojson.
func NewPathFromXYData(data [][2]float64) *Path {
p := NewPathPreallocate(0, len(data))
for i := range data {
p.PointSet = append(p.PointSet, Point{data[i][0], data[i][1]})
}
return p
}
// NewPathFromFlatXYData creates a path from a slice of float64 values
// representing horizontal, vertical type data.
// Coordinates in even positions correspond to X values. Coordinates in odd positions correspond to Y values
func NewPathFromFlatXYData(data []float64) *Path {
if len(data)%2 != 0 {
panic("Flat path requires an even number of coordinates")
}
p := NewPathPreallocate(0, len(data)/2)
for i := 0; i < len(data)/2; i++ {
p.PointSet = append(p.PointSet, Point{data[2*i], data[2*i+1]})
}
return p
}
// NewPathFromYXData creates a path from a slice of [2]float64 values
// representing [vertical, horizontal] type data, for example typical lat/lng data.
func NewPathFromYXData(data [][2]float64) *Path {
p := NewPathPreallocate(0, len(data))
for i := range data {
p.PointSet = append(p.PointSet, Point{data[i][1], data[i][0]})
}
return p
}
// NewPathFromXYSlice creates a path from a slice of []float64 values.
// The first two elements are taken to be horizontal and vertical components of each point respectively.
// The rest of the elements of the slice are ignored. Nil slices are skipped.
func NewPathFromXYSlice(data [][]float64) *Path {
p := NewPathPreallocate(0, len(data))
for i := range data {
if data[i] != nil && len(data[i]) >= 2 {
p.PointSet = append(p.PointSet, Point{data[i][0], data[i][1]})
}
}
return p
}
// NewPathFromYXSlice creates a path from a slice of []float64 values.
// The first two elements are taken to be vertical and horizontal components of each point respectively.
// The rest of the elements of the slice are ignored. Nil slices are skipped.
func NewPathFromYXSlice(data [][]float64) *Path {
p := NewPathPreallocate(0, len(data))
for i := range data {
if data[i] != nil && len(data[i]) >= 2 {
p.PointSet = append(p.PointSet, Point{data[i][1], data[i][0]})
}
}
return p
}
// SetPoints allows you to set the complete pointset yourself.
// Note that the input is an array of Points (not pointers to points).
func (p *Path) SetPoints(points []Point) *Path {
(&p.PointSet).SetPoints(points)
return p
}
// Points returns the raw points storred with the path.
// Note the output is an array of Points (not pointers to points).
func (p *Path) Points() []Point {
return p.PointSet
}
// Transform applies a given projection or inverse projection to all
// the points in the path.
func (p *Path) Transform(projector Projector) *Path {
for i := range p.PointSet {
projector(&p.PointSet[i])
}
return p
}
// Decode is deprecated, use NewPathFromEncoding
func Decode(encoded string, factor ...int) *Path {
return NewPathFromEncoding(encoded, factor...)
}
// Encode converts the path to a string using the Google Maps Polyline Encoding method.
// Factor defaults to 1.0e5, the same used by Google for polyline encoding.
func (p *Path) Encode(factor ...int) string {
f := 1.0e5
if len(factor) != 0 {
f = float64(factor[0])
}
var pLat int
var pLng int
var result bytes.Buffer
scratch1 := make([]byte, 0, 50)
scratch2 := make([]byte, 0, 50)
for _, p := range p.PointSet {
lat5 := int(math.Floor(p.Lat()*f + 0.5))
lng5 := int(math.Floor(p.Lng()*f + 0.5))
deltaLat := lat5 - pLat
deltaLng := lng5 - pLng
pLat = lat5
pLng = lng5
result.Write(append(encodeSignedNumber(deltaLat, scratch1), encodeSignedNumber(deltaLng, scratch2)...))
scratch1 = scratch1[:0]
scratch2 = scratch2[:0]
}
return result.String()
}
func encodeSignedNumber(num int, result []byte) []byte {
shiftedNum := num << 1
if num < 0 {
shiftedNum = ^shiftedNum
}
for shiftedNum >= 0x20 {
result = append(result, byte(0x20|(shiftedNum&0x1f)+63))
shiftedNum >>= 5
}
return append(result, byte(shiftedNum+63))
}
// Distance computes the total distance in the units of the points.
func (p *Path) Distance() float64 {
sum := 0.0
loopTo := len(p.PointSet) - 1
for i := 0; i < loopTo; i++ {
sum += p.PointSet[i].DistanceFrom(&p.PointSet[i+1])
}
return sum
}
// GeoDistance computes the total distance using spherical geometry.
func (p *Path) GeoDistance(haversine ...bool) float64 {
yesgeo := yesHaversine(haversine)
sum := 0.0
loopTo := len(p.PointSet) - 1
for i := 0; i < loopTo; i++ {
sum += p.PointSet[i].GeoDistanceFrom(&p.PointSet[i+1], yesgeo)
}
return sum
}
// DistanceFrom computes an O(n) distance from the path. Loops over every
// subline to find the minimum distance.
func (p *Path) DistanceFrom(point *Point) float64 {
return math.Sqrt(p.SquaredDistanceFrom(point))
}
// SquaredDistanceFrom computes an O(n) minimum squared distance from the path.
// Loops over every subline to find the minimum distance.
func (p *Path) SquaredDistanceFrom(point *Point) float64 {
dist := math.Inf(1)
l := &Line{}
loopTo := len(p.PointSet) - 1
for i := 0; i < loopTo; i++ {
l.a = p.PointSet[i]
l.b = p.PointSet[i+1]
dist = math.Min(l.SquaredDistanceFrom(point), dist)
}
return dist
}
// DirectionAt computes the direction of the path at the given index.
// Uses the line between the two surrounding points to get the direction,
// or just the first two, or last two if at the start or end, respectively.
// Assumes the path is in a conformal projection.
// The units are radians from the positive x-axis. Range same as math.Atan2, [-Pi, Pi]
// Returns INF for single point paths.
func (p *Path) DirectionAt(index int) float64 {
if index >= len(p.PointSet) || index < 0 {
panic(fmt.Sprintf("geo: direction at index out of range, requested: %d, length: %d", index, len(p.PointSet)))
}
if len(p.PointSet) == 1 {
return math.Inf(1)
}
var diff *Point
if index == 0 {
diff = p.GetAt(1).Clone().Subtract(p.GetAt(0))
} else if index >= p.Length()-1 {
length := p.Length()
diff = p.GetAt(length - 1).Clone().Subtract(p.GetAt(length - 2))
} else {
diff = p.GetAt(index + 1).Clone().Subtract(p.GetAt(index - 1))
}
return math.Atan2(diff.Y(), diff.X())
}
// Measure computes the distance along this path to the point nearest the given point.
func (p *Path) Measure(point *Point) float64 {
minDistance := math.Inf(1)
measure := math.Inf(-1)
sum := 0.0
seg := &Line{}
for i := 0; i < len(p.PointSet)-1; i++ {
seg.a = p.PointSet[i]
seg.b = p.PointSet[i+1]
distanceToLine := seg.SquaredDistanceFrom(point)
if distanceToLine < minDistance {
minDistance = distanceToLine
measure = sum + seg.Measure(point)
}
sum += seg.Distance()
}
return measure
}
// Interpolate performs a linear interpolation along the path
func (p *Path) Interpolate(percent float64) *Point {
if percent <= 0 {
return p.First()
} else if percent >= 1 {
return p.Last()
}
destination := p.Distance() * percent
travelled := 0.0
for i := 0; i < len(p.PointSet)-1; i++ {
seg := NewLine(&p.PointSet[i], &p.PointSet[i+1])
segDistance := seg.Distance()
if (travelled + segDistance) > destination {
var remainder = destination - travelled
return seg.Interpolate(remainder / segDistance)
}
travelled += segDistance
}
return p.First()
}
// Project computes the measure along this path closest to the given point,
// normalized to the length of the path.
func (p *Path) Project(point *Point) float64 {
return p.Measure(point) / p.Distance()
}
// Intersection calls IntersectionPath or IntersectionLine depending on the
// type of the provided geometry.
// TODO: have this receive an Intersectable interface.
func (p *Path) Intersection(geometry interface{}) ([]*Point, [][2]int) {
var points []*Point
var segments [][2]int
switch g := geometry.(type) {
case Line:
points, segments = p.IntersectionLine(&g)
case *Line:
points, segments = p.IntersectionLine(g)
case Path:
points, segments = p.IntersectionPath(&g)
case *Path:
points, segments = p.IntersectionPath(g)
default:
panic("can only determine intersection with lines and paths")
}
return points, segments
}
// IntersectionPath returns a slice of points and a slice of tuples [i, j] where i is the segment
// in the parent path and j is the segment in the given path that intersect to form the given point.
// Slices will be empty if there is no intersection.
func (p *Path) IntersectionPath(path *Path) ([]*Point, [][2]int) {
// TODO: done some sort of line sweep here if p.Length() is big enough
var points []*Point
var indexes [][2]int
for i := 0; i < len(p.PointSet)-1; i++ {
pLine := NewLine(&p.PointSet[i], &p.PointSet[i+1])
for j := 0; j < len(path.PointSet)-1; j++ {
pathLine := NewLine(&path.PointSet[j], &path.PointSet[j+1])
if point := pLine.Intersection(pathLine); point != nil {
points = append(points, point)
indexes = append(indexes, [2]int{i, j})
}
}
}
return points, indexes
}
// IntersectionLine returns a slice of points and a slice of tuples [i, 0] where i is the segment
// in path that intersects with the line at the given point.
// Slices will be empty if there is no intersection.
func (p *Path) IntersectionLine(line *Line) ([]*Point, [][2]int) {
var points []*Point
var indexes [][2]int
for i := 0; i < len(p.PointSet)-1; i++ {
pTest := NewLine(&p.PointSet[i], &p.PointSet[i+1])
if point := pTest.Intersection(line); point != nil {
points = append(points, point)
indexes = append(indexes, [2]int{i, 0})
}
}
return points, indexes
}
// Intersects can take a line or a path to determine if there is an intersection.
// TODO: I would love this to accept an intersecter interface.
func (p *Path) Intersects(geometry interface{}) bool {
var result bool
switch g := geometry.(type) {
case Line:
result = p.IntersectsLine(&g)
case *Line:
result = p.IntersectsLine(g)
case Path:
result = p.IntersectsPath(&g)
case *Path:
result = p.IntersectsPath(g)
default:
panic("can only determine intersection with lines and paths")
}
return result
}
// IntersectsPath takes a Path and checks if it intersects with the path.
func (p *Path) IntersectsPath(path *Path) bool {
// TODO: done some sort of line sweep here if p.Length() is big enough
for i := 0; i < len(p.PointSet)-1; i++ {
pLine := NewLine(&p.PointSet[i], &p.PointSet[i+1])
for j := 0; j < len(path.PointSet)-1; j++ {
pathLine := NewLine(&path.PointSet[j], &path.PointSet[j+1])
if pLine.Intersects(pathLine) {
return true
}
}
}
return false
}
// IntersectsLine takes a Line and checks if it intersects with the path.
func (p *Path) IntersectsLine(line *Line) bool {
for i := 0; i < len(p.PointSet)-1; i++ {
pTest := NewLine(&p.PointSet[i], &p.PointSet[i+1])
if pTest.Intersects(line) {
return true
}
}
return false
}
// Bound returns a bound around the path. Uses rectangular coordinates.
func (p *Path) Bound() *Bound {
if len(p.PointSet) == 0 {
return NewBound(0, 0, 0, 0)
}
minX := math.Inf(1)
minY := math.Inf(1)
maxX := math.Inf(-1)
maxY := math.Inf(-1)
for _, v := range p.PointSet {
minX = math.Min(minX, v.X())
minY = math.Min(minY, v.Y())
maxX = math.Max(maxX, v.X())
maxY = math.Max(maxY, v.Y())
}
return NewBound(maxX, minX, maxY, minY)
}
// SetAt updates a position at i along the path.
// Panics if index is out of range.
func (p *Path) SetAt(index int, point *Point) *Path {
(&p.PointSet).SetAt(index, point)
return p
}
// GetAt returns the pointer to the Point in the path.
// This function is good for modifying values in place.
// Returns nil if index is out of range.
func (p *Path) GetAt(i int) *Point {
return p.PointSet.GetAt(i)
}
// InsertAt inserts a Point at i along the path.
// Panics if index is out of range.
func (p *Path) InsertAt(index int, point *Point) *Path {
(&p.PointSet).InsertAt(index, point)
return p
}
// RemoveAt removes a Point at i along the path.
// Panics if index is out of range.
func (p *Path) RemoveAt(index int) *Path {
(&p.PointSet).RemoveAt(index)
return p
}
// Push appends a point to the end of the path.
func (p *Path) Push(point *Point) *Path {
(&p.PointSet).Push(point)
return p
}
// Pop removes and returns the last point.
func (p *Path) Pop() *Point {
return (&p.PointSet).Pop()
}
// Length returns the number of points in the path.
func (p *Path) Length() int {
return p.PointSet.Length()
}
// Equals compares two paths. Returns true if lengths are the same
// and all points are Equal.
func (p *Path) Equals(path *Path) bool {
return (&p.PointSet).Equals(&path.PointSet)
}
// Clone returns a new copy of the path.
func (p *Path) Clone() *Path {
return &Path{*(&p.PointSet).Clone()}
}
// ToGeoJSON creates a new geojson feature with a linestring geometry
// containing all the points.
func (p *Path) ToGeoJSON() *geojson.Feature {
coords := make([][]float64, 0, len(p.PointSet))
for _, p := range p.PointSet {
coords = append(coords, []float64{p[0], p[1]})
}
return geojson.NewLineStringFeature(coords)
}
// ToWKT returns the path in WKT format, eg. LINESTRING(30 10,10 30,40 40)
// For empty paths the result will be 'EMPTY'.
func (p *Path) ToWKT() string {
return p.String()
}
// String returns a string representation of the path.
// The format is WKT, e.g. LINESTRING(30 10,10 30,40 40)
// For empty paths the result will be 'EMPTY'.
func (p *Path) String() string {
if len(p.PointSet) == 0 {
return "EMPTY"
}
buff := bytes.NewBuffer(nil)
fmt.Fprintf(buff, "LINESTRING(%g %g", p.PointSet[0][0], p.PointSet[0][1])
for i := 1; i < len(p.PointSet); i++ {
fmt.Fprintf(buff, ",%g %g", p.PointSet[i][0], p.PointSet[i][1])
}
buff.Write([]byte(")"))
return buff.String()
}
// WriteOffFile writes an Object File Format representation of
// the points of the path to the writer provided. This is for viewing
// in MeshLab or something like that. You should close the
// writer yourself after this function returns.
// http://segeval.cs.princeton.edu/public/off_format.html
func (p *Path) WriteOffFile(w io.Writer, rgb ...[3]int) {
r := 170
g := 170
b := 170
if len(rgb) != 0 {
r = rgb[0][0]
g = rgb[0][1]
b = rgb[0][2]
}
w.Write([]byte("OFF\n"))
w.Write([]byte(fmt.Sprintf("%d %d 0\n", p.Length(), p.Length()-2)))
for i := range p.PointSet {
w.Write([]byte(fmt.Sprintf("%f %f 0\n", p.PointSet[i][0], p.PointSet[i][1])))
}
for i := 0; i < len(p.PointSet)-2; i++ {
w.Write([]byte(fmt.Sprintf("3 %d %d %d %d %d %d\n", i, i+1, i+2, r, g, b)))
}
}