-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·340 lines (283 loc) · 9.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import freenect
import cv2
import numpy as np
import time
# Color labeling
from scipy.spatial import distance as dist
from collections import OrderedDict
# Mask Download
import argparse
import imutils
# Mongo API
import pymongo
"""
Grabs a depth map from the Kinect sensor and creates an image from it.
"""
# Distance from border of upper table
lowerDepth = 929
upperDepth = 949
# Distance for border of lower table
# lowerDepth = 769
# upperDepth = 779
offset = 1
def getDepthMap():
depth, timestamp = freenect.sync_get_depth()
depth = 255 * np.logical_and(depth > lowerDepth, depth < upperDepth)
# np.clip(depth, 0, 2**10 - 1, depth)
# depth >>= 2
depth = depth.astype(np.uint8)
return depth
#function to get RGB image from kinect
def getVideo():
array, _ = freenect.sync_get_video()
array = cv2.cvtColor(array,cv2.COLOR_RGB2BGR)
return array
def getContours(thresh):
# print "finding contour"
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
return cnts
# Color Code
class ColorLabeler:
def __init__(self):
# initialize the colors dictionary, containing the color
# name as the key and the RGB tuple as the value
colors = OrderedDict({
"1-vert": (48, 71, 47), # taverne
"2-orange": (229, 206, 208), #Curie-plus
# "2-dark-orange": (96, 50, 12),
# "3-rose": (105, 39, 71),
"4-jaune": (237, 213, 123), # Curie
"5-bleu": (64, 98, 137), # Thermes
"6-rouge": (97, 0, 16), # Temple
"7-brown": (120, 73, 54), # Atelier
"8-mauve": (80, 63, 94), # Boucherie
"9-black": (50, 45, 40),
"10-black": (138, 120, 120),
"12-black": (104, 78, 87),
"13-black": (77, 52, 56)
# "0-red": (255, 0, 0),
# "0-green": (0, 255, 0), # Taverne
# "0-blue": (0, 0, 255)
})
# allocate memory for the L*a*b* image, then initialize
# the color names list
self.lab = np.zeros((len(colors), 1, 3), dtype="uint8")
self.colorNames = []
self.deltaMax = 50
# loop over the colors dictionary
for (i, (name, rgb)) in enumerate(colors.items()):
# update the L*a*b* array and the color names list
self.lab[i] = rgb
self.colorNames.append(name)
# convert the L*a*b* array from the RGB color space
# to L*a*b*
self.lab = cv2.cvtColor(self.lab, cv2.COLOR_RGB2LAB)
def label(self, image, c):
# construct a mask for the contour, then compute the
# average L*a*b* value for the masked region
mask = np.zeros(image.shape[:2], dtype="uint8")
cv2.drawContours(mask, [c], -1, 255, -1)
mask = cv2.erode(mask, None, iterations=2)
mean = cv2.mean(image, mask=mask)[:3]
# initialize the minimum distance found thus far
minDist = (np.inf, None)
# loop over the known L*a*b* color values
for (i, row) in enumerate(self.lab):
# compute the distance between the current L*a*b*
# color value and the mean of the image
d = dist.euclidean(row[0], mean)
# if the distance is smaller than the current distance,
# then update the bookkeeping variable
if d < minDist[0]:
minDist = (d, i, mean)
# return the name of the color with the smallest distance
# print "d:", self.deltaMax - minDist[0]
if (minDist[0] < self.deltaMax):
# print "delta for " + self.colorNames[minDist[1]] , minDist[0], " mean: ", minDist[2]
return self.colorNames[minDist[1]]
else:
return "none"
def getColorsInImage(image, thresh, name):
# image = cv2.imread(args["image"])
# resized = imutils.resize(image, width=300)
# ratio = image.shape[0] / float(resized.shape[0])
ratio = 1
# blur the resized image slightly, then convert it to both
# grayscale and the L*a*b* color spaces
# print "image", image.shape
blurred = cv2.GaussianBlur(image, (5, 5), 0)
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
lab = cv2.cvtColor(blurred, cv2.COLOR_BGR2LAB)
# thresh = cv2.threshold(gray, 60, 255, cv2.THRESH_BINARY)[1]
# find contours in the thresholded image
cnts = getContours(thresh);
# initialize the shape detector and color labeler
# sd = ShapeDetector()
cl = ColorLabeler()
# loop over the contours
# WE'VE GOT ONLY ONE
color = None
# print cnts
for c in cnts:
# print "in countours"
# compute the center of the contour
M = cv2.moments(c)
if M["m00"] != 0:
cX = int((M["m10"] / M["m00"]) * ratio)
cY = int((M["m01"] / M["m00"]) * ratio)
# detect the shape of the contour and label the color
# shape = sd.detect(c)
color = cl.label(lab, c)
# multiply the contour (x, y)-coordinates by the resize ratio,
# then draw the contours and the name of the shape and labeled
# color on the image
c = c.astype("float")
c *= ratio
c = c.astype("int")
text = "{}".format(color)
# imageCopy = image.copy()
imageCopy = image
cv2.drawContours(imageCopy, [c], -1, (0, 255, 0), 2)
if text != "none":
cv2.putText(imageCopy, text, (cX, cY),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 2)
return color
# show the output imageCopy # cv2.imshow("Label"+name, imageCopy)
# cv2.waitKey(0)
# else:
# print name, "error M00 = 0"
eras = []
# @app.route("/")
# def hello():
# return "Hello World!"
# @app.route("/stats")
# def stats():
# return eras
def getBuildingFromEra(colorValues):
# TODO: Mean
color = colorValues.pop()
if color == "1-vert":
return "taverne"
elif color == "2-orange":
return "curie-plus"
# elif color == "2-dark-orange":
# return "curie-plus"
# elif color == "3-rose":
# return "atelier"
elif color == "4-jaune":
return "curie"
elif color == "5-bleu":
return "thermes"
elif color == "6-rouge":
return "temple"
elif color == "7-brown":
return "atelier"
elif color == "8-mauve":
return "boucherie"
else:
return False
# ip: false, port: 3001
def insert_eras_in_mongodb(newEras, loopNumbers):
"Insert the mean result of a calculations cycle into mongo"
# Connects to Mongo DB and use the collection "components"
connection = pymongo.Connection('127.0.0.1', 3001)
database = connection["meteor"]
statesDb = database.states
erasToPushToDb = []
for index, era in enumerate(newEras):
eraName = era[0]
eraColorValues = era[1]
building = getBuildingFromEra(eraColorValues)
erasToPushToDb.append({"number": eraName, "building": building})
stateToPush = {"eras": erasToPushToDb, "number": loopNumbers}
print stateToPush
statesDb.insert(stateToPush)
"""
record structure
{
params,
n_components : 4,
components : {
1 : {
1 : {word, weight}
2 : {word, weight}
...
}
...
}}
"""
# same_record = components.find_one(params)
# record = params
# if same_record == None:
# components.insert(record)
# return
# else:
# components.update({"_id":same_record['_id']}, record)
# return
if __name__ == "__main__":
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--filters", action="append", nargs=2,
metavar=('path','era'), required=False,
help="path to the era filters image")
args = vars(ap.parse_args())
# Getting the frame from kinect
frame = getVideo()
print "Printing Context"
cv2.imwrite('context.jpg', frame)
# load the image, convert it to grayscale, blur it slightly,
# and threshold it
if (args["filters"]):
# print args["filters"]
threshs = []
for flter in args["filters"]:
image = cv2.imread(flter[0])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# print "filter", image.shape
blur = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(blur, 60, 255, cv2.THRESH_BINARY)[1]
threshs.append(thresh)
eras.append([flter[1], ["none"]])
loop = 0;
loopNumbers = 0;
while True:
frame = getVideo()
newFrame = frame.copy()
for idx, flter in enumerate(args["filters"]):
color = getColorsInImage(newFrame, threshs[idx], flter[0])
eras[idx][1].append(color)
if len(eras[idx][1]) > 100:
eras[idx][1].pop(0)
# print "era: " + flter[1], getColorsInImage(newFrame, threshs[idx], flter[0])
# print eras
cv2.imshow('View', newFrame)
loop = loop + 1
loop = loop % 200
if loop == 0:
loopNumbers = loopNumbers + 1
insert_eras_in_mongodb(eras, loopNumbers)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
# Showing filters after blur and stuff
# cv2.imshow('filter' + imagePath, thresh)
print "starting video"
while True:
frame = getVideo()
cv2.imshow('RGB image',frame)
# blur = cv2.GaussianBlur(depth, (5, 5), 0)
depth = getDepthMap()
cv2.imshow('image', depth)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
elif k == ord('a'):
lowerDepth = lowerDepth + offset
upperDepth = upperDepth + offset
print lowerDepth, upperDepth
elif k == ord('b'):
lowerDepth = lowerDepth - offset
upperDepth = upperDepth - offset
print lowerDepth, upperDepth