forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCross.cpp
54 lines (44 loc) · 2.39 KB
/
Cross.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/Cross.h>
namespace at { namespace native {
DEFINE_DISPATCH(cross_stub);
Tensor cross(const Tensor & input, const Tensor & other, const c10::optional<int64_t> dimension) {
Tensor out = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
native::cross_out(out, input, other, dimension);
return out;
}
Tensor & cross_out(Tensor & out, const Tensor & input, const Tensor & other, const c10::optional<int64_t> dimension) {
auto device_res = input.device().type();
TORCH_CHECK(device_res == kCPU || device_res == kCUDA, "cross only supports CPU and CUDA devices, out got: ", device_res);
auto device1 = input.device().type();
TORCH_CHECK(device1 == kCPU || device1 == kCUDA, "cross only supports CPU and CUDA devices, input got: ", device1);
auto device2 = other.device().type();
TORCH_CHECK(device2 == kCPU || device2 == kCUDA, "cross only supports CPU and CUDA devices, other got: ", device2);
TORCH_CHECK(device_res == device1, "out and input must have the same device type. out: ", device_res, " input: ", device1);
TORCH_CHECK(device1 == device2, "input and other must have the same device type. input: ", device1, " other: ", device2);
TORCH_CHECK(!out.is_cuda() || out.get_device() == input.get_device(), "device of out (", input.get_device(), ") must match device of input (", other.get_device(), ")");
TORCH_CHECK(!input.is_cuda() || input.get_device() == other.get_device(), "device of input (", input.get_device(), ") must match device of other (", other.get_device(), ")");
TORCH_CHECK(input.dim() == other.dim(), "inconsistent tensors dimensions input: ", input.dim(), " other: ", other.dim());
TORCH_CHECK(input.sizes() == other.sizes(), "inconsistent tensors sizes input: ", input.sizes(), " other: ", other.sizes());
int64_t dim = -1;
if(!dimension.has_value()) {
for(int64_t i = 0; i < input.dim(); i++) {
if(input.size(i) == 3) {
dim = i;
break;
}
}
TORCH_CHECK(dim >= 0, "no dimension of size 3 in input");
} else {
dim = maybe_wrap_dim(dimension.value(), input.dim());
TORCH_CHECK(input.size(dim) == 3, "dimension ", dimension.value(), " does not have size 3");
}
if (out.sizes() != input.sizes()) {
out.resize_as_(input);
}
cross_stub(device1, out, input, other, dim);
return out;
}
}} // namespace at::native