We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
请问下主页的显存占用测试是在多少长度的length计算出来的?博客里写的DPO微调qwen2其中loss降到了0.05,请问这是训练多少个epoch跑出来的? 一些参数设置如下: num_train_epochs: int = field(default=10, metadata={"help": "训练轮次"}) per_device_train_batch_size: int = field(default=1, metadata={"help": "训练的batch size"}) gradient_checkpointing: bool = field(default=False, metadata={"help": "是否使用梯度累计"}) max_length: Optional[int] = 1024 max_prompt_length: Optional[int] = 512 max_target_length: Optional[int] = 1024
The text was updated successfully, but these errors were encountered:
请贴一下更详细的信息,主页的显存占用测试是SFT的测试,不过DPO也不应该是120G,很奇怪。
Sorry, something went wrong.
No branches or pull requests
请问下主页的显存占用测试是在多少长度的length计算出来的?博客里写的DPO微调qwen2其中loss降到了0.05,请问这是训练多少个epoch跑出来的?
一些参数设置如下:
num_train_epochs: int = field(default=10, metadata={"help": "训练轮次"})
per_device_train_batch_size: int = field(default=1, metadata={"help": "训练的batch size"})
gradient_checkpointing: bool = field(default=False, metadata={"help": "是否使用梯度累计"})
max_length: Optional[int] = 1024
max_prompt_length: Optional[int] = 512
max_target_length: Optional[int] = 1024
The text was updated successfully, but these errors were encountered: