From 05f1e71bef9d1ea19d85988688525d247d3a269e Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Thu, 11 Jul 2024 18:05:50 +0800 Subject: [PATCH 01/15] add a feature for job-history, use delete params to delete task and result image in history --- fooocusapi/api.py | 30 +++++++++++++++++++++++++++--- fooocusapi/routes/query.py | 30 ++++++++++++++++++++++++++++-- fooocusapi/sql_client.py | 21 ++++++++++++++++++++- fooocusapi/utils/file_utils.py | 2 ++ fooocusapi/utils/img_utils.py | 20 ++++++++++++++++++++ 5 files changed, 97 insertions(+), 6 deletions(-) diff --git a/fooocusapi/api.py b/fooocusapi/api.py index a37bd0e..13a654c 100644 --- a/fooocusapi/api.py +++ b/fooocusapi/api.py @@ -1,8 +1,8 @@ """ Entry for startup fastapi server """ -from fastapi import FastAPI -from fastapi.staticfiles import StaticFiles +from fastapi import FastAPI, Header, Response +from fastapi.responses import FileResponse from fastapi.middleware.cors import CORSMiddleware import uvicorn @@ -11,6 +11,7 @@ from fooocusapi.routes.generate_v1 import secure_router as generate_v1 from fooocusapi.routes.generate_v2 import secure_router as generate_v2 from fooocusapi.routes.query import secure_router as query +from fooocusapi.utils.img_utils import convert_image app = FastAPI() @@ -24,7 +25,30 @@ ) -app.mount("/files", StaticFiles(directory=file_utils.output_dir), name="files") +@app.get("/files/{date}/{file_name}", tags=["Query"]) +async def get_output(date: str, file_name: str, accept: str = Header(None)): + """ + Get a specific output by its ID. + """ + accept_formats = ('png', 'jpg', 'jpeg', 'webp') + try: + _, ext = accept.lower().split("/") + if ext not in accept_formats: + ext = None + except ValueError: + ext = None + + if not file_name.endswith(accept_formats): + return Response(status_code=404) + + if ext is None: + try: + return FileResponse(f"{file_utils.output_dir}/{date}/{file_name}") + except FileNotFoundError: + return Response(status_code=404) + img = await convert_image(f"{file_utils.output_dir}/{date}/{file_name}", ext) + return Response(content=img, media_type=f"image/{ext}") + app.include_router(query) app.include_router(generate_v1) diff --git a/fooocusapi/routes/query.py b/fooocusapi/routes/query.py index a295b87..704b80f 100644 --- a/fooocusapi/routes/query.py +++ b/fooocusapi/routes/query.py @@ -16,8 +16,13 @@ from fooocusapi.utils.api_utils import generate_async_output, api_key_auth from fooocusapi.task_queue import TaskType +from fooocusapi.utils.file_utils import delete_output_file from fooocusapi.worker import worker_queue +if args.persistent: + from fooocusapi.sql_client import query_history, delete_item + + secure_router = APIRouter(dependencies=[Depends(api_key_auth)]) @@ -84,8 +89,30 @@ def job_queue(): response_model=JobHistoryResponse | dict, description="Query historical job data", tags=["Query"]) -def get_history(job_id: str = None, page: int = 0, page_size: int = 20): +def get_history(job_id: str = None, page: int = 0, page_size: int = 20, delete: bool = False): """Fetch and return the historical tasks""" + + if delete and job_id is not None: + for item in worker_queue.history: + if item.job_id == job_id: + files = [img.im for img in item.task_result] + if len(files) == 0: + break + for file in files: + delete_output_file(file) + worker_queue.history.remove(item) + + query = query_history(task_id=job_id) + if len(query) == 0: + return {"message": "Not found"} + delete_item(job_id) + urls = query[0]['task_info']['result_url'].split(',') + for url in urls: + r = delete_output_file('/'.join(url.split('/')[4:])) + if r: + return {"message": "Deleted"} + return {"message": "Not found"} + queue = [ JobHistoryInfo( job_id=item.job_id, @@ -101,7 +128,6 @@ def get_history(job_id: str = None, page: int = 0, page_size: int = 20): ] return JobHistoryResponse(history=history, queue=queue) - from fooocusapi.sql_client import query_history history = query_history(task_id=job_id, page=page, page_size=page_size) return { "history": history, diff --git a/fooocusapi/sql_client.py b/fooocusapi/sql_client.py index ca6f28c..615052e 100644 --- a/fooocusapi/sql_client.py +++ b/fooocusapi/sql_client.py @@ -156,7 +156,7 @@ def store_history(self, record: dict) -> None: def get_history( self, - task_id: str = None, + task_id: str | None = None, page: int = 0, page_size: int = 20, order_by: str = "date_time", @@ -190,6 +190,15 @@ def get_history( return [] return convert_to_dict_list(res) + def delete(self, task_id: str) -> None: + """ + Delete item from database + :param task_id: + :return: + """ + self.session.query(GenerateRecord).filter(GenerateRecord.task_id == task_id).delete() + self.session.commit() + db = MySQLAlchemy(uri=connection_uri) @@ -267,3 +276,13 @@ def query_history( return db.get_history( task_id=task_id, page=page, page_size=page_size, order_by=order_by ) + + +def delete_item(item_id: str) -> None: + """ + Delete item from database + Args: + item_id: + Returns: + """ + db.delete(item_id) diff --git a/fooocusapi/utils/file_utils.py b/fooocusapi/utils/file_utils.py index 8e10503..351e7c7 100644 --- a/fooocusapi/utils/file_utils.py +++ b/fooocusapi/utils/file_utils.py @@ -83,8 +83,10 @@ def delete_output_file(filename: str): try: os.remove(file_path) logger.std_info(f'[Fooocus API] Delete output file: {filename}') + return True except OSError: logger.std_error(f'[Fooocus API] Delete output file failed: {filename}') + return False def output_file_to_base64img(filename: str | None) -> str | None: diff --git a/fooocusapi/utils/img_utils.py b/fooocusapi/utils/img_utils.py index 7dedda1..602ffa9 100644 --- a/fooocusapi/utils/img_utils.py +++ b/fooocusapi/utils/img_utils.py @@ -14,6 +14,26 @@ import numpy as np +async def convert_image(image_path: str, image_format: str = 'png') -> BytesIO: + """ + Convert image to another format + Args: + image_path (str): Image path + image_format (str): Image format + Returns: + BytesIO: Image bytes + """ + try: + img = Image.open(image_path) + image_bytes = BytesIO() + img.save(image_bytes, format=image_format.upper()) + image_bytes.seek(0) + except Exception as e: + print(e) + return + return image_bytes.getvalue() + + def upload2base64(image: UploadFile) -> str | None: """ Convert UploadFile obj to base64 string From c29cdc8cee6077dd6b5fea98c633b39bc5ad0c8e Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Fri, 2 Aug 2024 10:26:18 +0800 Subject: [PATCH 02/15] update requirement skip download model on startup using --disable-preset-download --- main.py | 3 ++- requirements.txt | 46 +++++++++++++++++++++++++++------------------- 2 files changed, 29 insertions(+), 20 deletions(-) diff --git a/main.py b/main.py index 6ac52f2..8be9732 100644 --- a/main.py +++ b/main.py @@ -116,7 +116,8 @@ def prepare_environments(args) -> bool: default.get_aspect_ratio_value(a) for a in config.available_aspect_ratios ] - download_models() + if not args.disable_preset_download: + download_models() # Init task queue from fooocusapi import worker diff --git a/requirements.txt b/requirements.txt index 4c804a9..913d501 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,28 +1,36 @@ -torchsde==0.2.5 -einops==0.4.1 -transformers==4.30.2 -safetensors==0.3.1 -accelerate==0.21.0 -pyyaml==6.0 -Pillow==9.4.0 -scipy==1.9.3 -tqdm==4.64.1 -psutil==5.9.5 -pytorch_lightning==1.9.4 -omegaconf==2.2.3 -pygit2==1.12.2 -opencv-contrib-python==4.8.0.74 -onnxruntime==1.16.3 -timm==0.9.2 -fastapi>=0.103.1 +torchsde==0.2.6 +einops==0.8.0 +transformers==4.42.4 +safetensors==0.4.3 +accelerate==0.32.1 +pyyaml==6.0.1 +pillow==10.4.0 +scipy==1.14.0 +tqdm==4.66.4 +psutil==6.0.0 +pytorch_lightning==2.3.3 +omegaconf==2.3.0 +gradio==3.41.2 +pygit2==1.15.1 +opencv-contrib-python-headless==4.10.0.84 +httpx==0.27.0 +onnxruntime==1.18.1 +timm==1.0.7 +numpy==1.26.4 +tokenizers==0.19.1 +packaging==24.1 +rembg==2.0.57 +groundingdino-py==0.4.0 +segment_anything==1.0 +fastapi pydantic==2.4.2 pydantic_core==2.10.1 python-multipart==0.0.6 uvicorn[standard]==0.23.2 +chardet colorlog requests numpy sqlalchemy packaging -rich -chardet \ No newline at end of file +rich \ No newline at end of file From 60d21dd2d1c7ca29794fb2c3663f72f178f9c72f Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Sun, 4 Aug 2024 18:21:51 +0800 Subject: [PATCH 03/15] Fooocus v0.5.3 Add generate_mask endpoint --- fooocusapi/models/common/base.py | 47 + fooocusapi/routes/generate_v2.py | 17 +- fooocusapi/utils/call_worker.py | 30 + repositories/Fooocus/args_manager.py | 14 +- .../Fooocus/extras/BLIP/models/blip.py | 4 +- .../Fooocus/extras/BLIP/models/blip_nlvr.py | 4 +- .../config/GroundingDINO_SwinT_OGC.py | 43 + .../extras/GroundingDINO/util/inference.py | 100 + repositories/Fooocus/extras/censor.py | 2 +- .../extras/facexlib/detection/__init__.py | 2 +- .../extras/facexlib/parsing/__init__.py | 2 +- repositories/Fooocus/extras/inpaint_mask.py | 130 ++ repositories/Fooocus/extras/ip_adapter.py | 2 +- repositories/Fooocus/extras/sam/predictor.py | 288 +++ repositories/Fooocus/fooocus_version.py | 2 +- .../ldm_patched/k_diffusion/sampling.py | 70 + .../ldm/modules/encoders/noise_aug_modules.py | 2 +- .../Fooocus/ldm_patched/modules/samplers.py | 2 +- .../Fooocus/ldm_patched/modules/sd1_clip.py | 2 +- .../pfn/architecture/face/codeformer.py | 6 +- .../architecture/face/gfpgan_bilinear_arch.py | 4 +- .../pfn/architecture/face/gfpganv1_arch.py | 4 +- .../architecture/face/gfpganv1_clean_arch.py | 4 +- repositories/Fooocus/modules/async_worker.py | 1997 ++++++++++------- repositories/Fooocus/modules/config.py | 249 +- repositories/Fooocus/modules/core.py | 2 +- repositories/Fooocus/modules/flags.py | 32 +- repositories/Fooocus/modules/hash_cache.py | 83 + .../Fooocus/modules/inpaint_worker.py | 2 +- repositories/Fooocus/modules/meta_parser.py | 63 +- .../Fooocus/modules/private_logger.py | 4 +- repositories/Fooocus/modules/sdxl_styles.py | 2 +- repositories/Fooocus/modules/upscaler.py | 15 +- repositories/Fooocus/modules/util.py | 12 +- repositories/Fooocus/presets/.gitignore | 1 + repositories/Fooocus/presets/anime.json | 9 +- repositories/Fooocus/presets/default.json | 1 + repositories/Fooocus/presets/lcm.json | 1 + .../Fooocus/presets/playground_v2.5.json | 2 + repositories/Fooocus/presets/pony_v6.json | 54 + repositories/Fooocus/presets/realistic.json | 5 +- repositories/Fooocus/presets/sai.json | 1 + .../sdxl_styles/samples/fooocus_pony.jpg | Bin 0 -> 5200 bytes .../sdxl_styles/sdxl_styles_fooocus.json | 7 +- 44 files changed, 2469 insertions(+), 854 deletions(-) create mode 100644 repositories/Fooocus/extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py create mode 100644 repositories/Fooocus/extras/GroundingDINO/util/inference.py create mode 100644 repositories/Fooocus/extras/inpaint_mask.py create mode 100644 repositories/Fooocus/extras/sam/predictor.py create mode 100644 repositories/Fooocus/modules/hash_cache.py create mode 100644 repositories/Fooocus/presets/pony_v6.json create mode 100644 repositories/Fooocus/sdxl_styles/samples/fooocus_pony.jpg diff --git a/fooocusapi/models/common/base.py b/fooocusapi/models/common/base.py index 1bb6031..3809267 100644 --- a/fooocusapi/models/common/base.py +++ b/fooocusapi/models/common/base.py @@ -48,6 +48,53 @@ class Lora(BaseModel): default_loras_json = LoraList.dump_json(default_loras_model) +class MaskModel(str, Enum): + """Inpaint mask model""" + u2net = "u2net" + u2netp = "u2netp" + u2net_human_seg = "u2net_human_seg" + u2net_cloth_seg = "u2net_cloth_seg" + silueta = "silueta" + isnet_general_use = "isnet-general-use" + isnet_anime = "isnet-anime" + sam = "sam" + + +class EnhanceCtrlNets(BaseModel): + enhance_enabled: bool = Field(default=False, description="Enable enhance control nets") + enhance_mask_dino_prompt: str = Field(default="", description="Mask dino prompt") + enhance_prompt: str = Field(default="", description="Prompt") + enhance_negative_prompt: str = Field(default="", description="Negative prompt") + enhance_mask_model: MaskModel = Field(default=MaskModel.sam, description="Mask model") + enhance_mask_cloth_category: str = Field(default="full", description="Mask cloth category") + enhance_mask_sam_model: str = Field(default="vit_b", description="one of vit_b vit_h vit_l") + enhance_mask_text_threshold: float = Field(default=0.25, ge=0, le=1, description="Mask text threshold") + enhance_mask_box_threshold: float = Field(default=0.3, ge=0, le=1, description="Mask box threshold") + enhance_mask_sam_max_detections: int = Field(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all") + enhance_inpaint_disable_initial_latent: bool = Field(default=False, description="Inpaint disable initial latent") + enhance_inpaint_engine: str = Field(default="v2.6", description="Inpaint engine") + enhance_inpaint_strength: float = Field(default=1, ge=0, le=1, description="Inpaint strength") + enhance_inpaint_respective_field: float = Field(default=0.618, ge=0, le=1, description="Inpaint respective field") + enhance_inpaint_erode_or_dilate: float = Field(default=0, ge=-64, le=64, description="Inpaint erode or dilate") + enhance_mask_invert: bool = Field(default=False, description="Inpaint mask invert") + + +class GenerateMaskRequest(BaseModel): + """ + generate mask request + """ + image: str = Field(description="Image url or base64") + mask_model: MaskModel = Field(default=MaskModel.isnet_general_use, description="Mask model") + cloth_category: str = Field(default="full", description="Mask cloth category") + dino_prompt_text: str = Field(default="", description="Detection prompt, Use singular whenever possible") + sam_model: str = Field(default="vit_b", description="one of vit_b vit_h vit_l") + box_threshold: float = Field(default=0.3, ge=0, le=1, description="Mask box threshold") + text_threshold: float = Field(default=0.25, ge=0, le=1, description="Mask text threshold") + sam_max_detections: int = Field(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all") + dino_erode_or_dilate: float = Field(default=0, ge=-64, le=64, description="Mask dino erode or dilate") + dino_debug: bool = Field(default=False, description="Mask dino debug") + + class UpscaleOrVaryMethod(str, Enum): """Upscale or Vary method""" subtle_variation = 'Vary (Subtle)' diff --git a/fooocusapi/routes/generate_v2.py b/fooocusapi/routes/generate_v2.py index a6b69fe..0c512c1 100644 --- a/fooocusapi/routes/generate_v2.py +++ b/fooocusapi/routes/generate_v2.py @@ -4,6 +4,7 @@ from typing import List from fastapi import APIRouter, Depends, Header, Query +from fooocusapi.models.common.base import GenerateMaskRequest from fooocusapi.utils.api_utils import api_key_auth from fooocusapi.models.requests_v1 import ImagePrompt from fooocusapi.models.requests_v2 import ( @@ -16,7 +17,10 @@ AsyncJobResponse, GeneratedImageResult ) -from fooocusapi.utils.call_worker import call_worker +from fooocusapi.utils.call_worker import ( + call_worker, + generate_mask as gm +) from fooocusapi.utils.img_utils import base64_to_stream from fooocusapi.configs.default import img_generate_responses @@ -197,3 +201,14 @@ def img_prompt( req.image_prompts = image_prompts_files return call_worker(req, accept) + + +@secure_router.post( + path="/v1/tools/generate_mask", + summary="Generate mask endpoint", + tags=["GenerateV1"]) +async def generate_mask(mask_options: GenerateMaskRequest) -> str: + """ + Generate mask endpoint + """ + return await gm(request=mask_options) diff --git a/fooocusapi/utils/call_worker.py b/fooocusapi/utils/call_worker.py index 5de9f07..6992a4a 100644 --- a/fooocusapi/utils/call_worker.py +++ b/fooocusapi/utils/call_worker.py @@ -2,6 +2,7 @@ from typing import List from fastapi import Response +from fooocusapi.models.common.base import GenerateMaskRequest from fooocusapi.models.common.requests import ( CommonRequest as Text2ImgRequest ) @@ -31,8 +32,11 @@ ImgPromptRequestJson, ImgUpscaleOrVaryRequestJson ) +from fooocusapi.utils.img_utils import narray_to_base64img, read_input_image from fooocusapi.worker import worker_queue, blocking_get_task_result +from extras.inpaint_mask import generate_mask_from_image, SAMOptions + def get_task_type(req: Text2ImgRequest) -> TaskType: """return task type""" @@ -95,3 +99,29 @@ def call_worker(req: Text2ImgRequest, accept: str) -> Response | AsyncJobRespons if streaming_output: return generate_streaming_output(results) return generate_image_result_output(results, req.require_base64) + + +async def generate_mask(request: GenerateMaskRequest): + """ + Calls the worker with the given params. + :param request: The request object containing the params. + :return: The result of the task. + """ + extras = {} + sam_options = None + image = read_input_image(request.image) + if request.mask_model == 'u2net_cloth_seg': + extras['cloth_category'] = request.cloth_category + elif request.mask_model == 'sam': + sam_options = SAMOptions( + dino_prompt=request.dino_prompt_text, + dino_box_threshold=request.box_threshold, + dino_text_threshold=request.text_threshold, + dino_erode_or_dilate=request.dino_erode_or_dilate, + dino_debug=request.dino_debug, + max_detections=request.sam_max_detections, + model_type=request.sam_model + ) + + mask, _, _, _ = generate_mask_from_image(image, request.mask_model, extras, sam_options) + return narray_to_base64img(mask) diff --git a/repositories/Fooocus/args_manager.py b/repositories/Fooocus/args_manager.py index 5a2b37c..bb622c2 100644 --- a/repositories/Fooocus/args_manager.py +++ b/repositories/Fooocus/args_manager.py @@ -17,7 +17,7 @@ args_parser.parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None) args_parser.parser.add_argument("--disable-image-log", action='store_true', - help="Prevent writing images and logs to hard drive.") + help="Prevent writing images and logs to the outputs folder.") args_parser.parser.add_argument("--disable-analytics", action='store_true', help="Disables analytics for Gradio.") @@ -28,11 +28,17 @@ args_parser.parser.add_argument("--disable-preset-download", action='store_true', help="Disables downloading models for presets", default=False) -args_parser.parser.add_argument("--enable-describe-uov-image", action='store_true', - help="Disables automatic description of uov images when prompt is empty", default=False) +args_parser.parser.add_argument("--disable-enhance-output-sorting", action='store_true', + help="Disables enhance output sorting for final image gallery.") + +args_parser.parser.add_argument("--enable-auto-describe-image", action='store_true', + help="Enables automatic description of uov and enhance image when prompt is empty", default=False) args_parser.parser.add_argument("--always-download-new-model", action='store_true', - help="Always download newer models ", default=False) + help="Always download newer models", default=False) + +args_parser.parser.add_argument("--rebuild-hash-cache", help="Generates missing model and LoRA hashes.", + type=int, nargs="?", metavar="CPU_NUM_THREADS", const=-1) args_parser.parser.set_defaults( disable_cuda_malloc=True, diff --git a/repositories/Fooocus/extras/BLIP/models/blip.py b/repositories/Fooocus/extras/BLIP/models/blip.py index a256633..0f8c1d2 100644 --- a/repositories/Fooocus/extras/BLIP/models/blip.py +++ b/repositories/Fooocus/extras/BLIP/models/blip.py @@ -216,9 +216,9 @@ def is_url(url_or_filename): def load_checkpoint(model,url_or_filename): if is_url(url_or_filename): cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) - checkpoint = torch.load(cached_file, map_location='cpu') + checkpoint = torch.load(cached_file, map_location='cpu', weights_only=True) elif os.path.isfile(url_or_filename): - checkpoint = torch.load(url_or_filename, map_location='cpu') + checkpoint = torch.load(url_or_filename, map_location='cpu', weights_only=True) else: raise RuntimeError('checkpoint url or path is invalid') diff --git a/repositories/Fooocus/extras/BLIP/models/blip_nlvr.py b/repositories/Fooocus/extras/BLIP/models/blip_nlvr.py index 0eb9eaa..159d031 100644 --- a/repositories/Fooocus/extras/BLIP/models/blip_nlvr.py +++ b/repositories/Fooocus/extras/BLIP/models/blip_nlvr.py @@ -78,9 +78,9 @@ def blip_nlvr(pretrained='',**kwargs): def load_checkpoint(model,url_or_filename): if is_url(url_or_filename): cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) - checkpoint = torch.load(cached_file, map_location='cpu') + checkpoint = torch.load(cached_file, map_location='cpu', weights_only=True) elif os.path.isfile(url_or_filename): - checkpoint = torch.load(url_or_filename, map_location='cpu') + checkpoint = torch.load(url_or_filename, map_location='cpu', weights_only=True) else: raise RuntimeError('checkpoint url or path is invalid') state_dict = checkpoint['model'] diff --git a/repositories/Fooocus/extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py b/repositories/Fooocus/extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py new file mode 100644 index 0000000..c2e6468 --- /dev/null +++ b/repositories/Fooocus/extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py @@ -0,0 +1,43 @@ +batch_size = 1 +modelname = "groundingdino" +backbone = "swin_T_224_1k" +position_embedding = "sine" +pe_temperatureH = 20 +pe_temperatureW = 20 +return_interm_indices = [1, 2, 3] +backbone_freeze_keywords = None +enc_layers = 6 +dec_layers = 6 +pre_norm = False +dim_feedforward = 2048 +hidden_dim = 256 +dropout = 0.0 +nheads = 8 +num_queries = 900 +query_dim = 4 +num_patterns = 0 +num_feature_levels = 4 +enc_n_points = 4 +dec_n_points = 4 +two_stage_type = "standard" +two_stage_bbox_embed_share = False +two_stage_class_embed_share = False +transformer_activation = "relu" +dec_pred_bbox_embed_share = True +dn_box_noise_scale = 1.0 +dn_label_noise_ratio = 0.5 +dn_label_coef = 1.0 +dn_bbox_coef = 1.0 +embed_init_tgt = True +dn_labelbook_size = 2000 +max_text_len = 256 +text_encoder_type = "bert-base-uncased" +use_text_enhancer = True +use_fusion_layer = True +use_checkpoint = True +use_transformer_ckpt = True +use_text_cross_attention = True +text_dropout = 0.0 +fusion_dropout = 0.0 +fusion_droppath = 0.1 +sub_sentence_present = True \ No newline at end of file diff --git a/repositories/Fooocus/extras/GroundingDINO/util/inference.py b/repositories/Fooocus/extras/GroundingDINO/util/inference.py new file mode 100644 index 0000000..34ab8f0 --- /dev/null +++ b/repositories/Fooocus/extras/GroundingDINO/util/inference.py @@ -0,0 +1,100 @@ +from typing import Tuple, List + +import ldm_patched.modules.model_management as model_management +from ldm_patched.modules.model_patcher import ModelPatcher +from modules.config import path_inpaint +from modules.model_loader import load_file_from_url + +import numpy as np +import supervision as sv +import torch +from groundingdino.util.inference import Model +from groundingdino.util.inference import load_model, preprocess_caption, get_phrases_from_posmap + + +class GroundingDinoModel(Model): + def __init__(self): + self.config_file = 'extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py' + self.model = None + self.load_device = torch.device('cpu') + self.offload_device = torch.device('cpu') + + @torch.no_grad() + @torch.inference_mode() + def predict_with_caption( + self, + image: np.ndarray, + caption: str, + box_threshold: float = 0.35, + text_threshold: float = 0.25 + ) -> Tuple[sv.Detections, torch.Tensor, torch.Tensor, List[str]]: + if self.model is None: + filename = load_file_from_url( + url="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth", + file_name='groundingdino_swint_ogc.pth', + model_dir=path_inpaint) + model = load_model(model_config_path=self.config_file, model_checkpoint_path=filename) + + self.load_device = model_management.text_encoder_device() + self.offload_device = model_management.text_encoder_offload_device() + + model.to(self.offload_device) + + self.model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) + + model_management.load_model_gpu(self.model) + + processed_image = GroundingDinoModel.preprocess_image(image_bgr=image).to(self.load_device) + boxes, logits, phrases = predict( + model=self.model, + image=processed_image, + caption=caption, + box_threshold=box_threshold, + text_threshold=text_threshold, + device=self.load_device) + source_h, source_w, _ = image.shape + detections = GroundingDinoModel.post_process_result( + source_h=source_h, + source_w=source_w, + boxes=boxes, + logits=logits) + return detections, boxes, logits, phrases + + +def predict( + model, + image: torch.Tensor, + caption: str, + box_threshold: float, + text_threshold: float, + device: str = "cuda" +) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: + caption = preprocess_caption(caption=caption) + + # override to use model wrapped by patcher + model = model.model.to(device) + image = image.to(device) + + with torch.no_grad(): + outputs = model(image[None], captions=[caption]) + + prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256) + prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4) + + mask = prediction_logits.max(dim=1)[0] > box_threshold + logits = prediction_logits[mask] # logits.shape = (n, 256) + boxes = prediction_boxes[mask] # boxes.shape = (n, 4) + + tokenizer = model.tokenizer + tokenized = tokenizer(caption) + + phrases = [ + get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '') + for logit + in logits + ] + + return boxes, logits.max(dim=1)[0], phrases + + +default_groundingdino = GroundingDinoModel().predict_with_caption diff --git a/repositories/Fooocus/extras/censor.py b/repositories/Fooocus/extras/censor.py index 45617fd..c5dea3f 100644 --- a/repositories/Fooocus/extras/censor.py +++ b/repositories/Fooocus/extras/censor.py @@ -41,7 +41,7 @@ def censor(self, images: list | np.ndarray) -> list | np.ndarray: model_management.load_model_gpu(self.safety_checker_model) single = False - if not isinstance(images, list) or isinstance(images, np.ndarray): + if not isinstance(images, (list, np.ndarray)): images = [images] single = True diff --git a/repositories/Fooocus/extras/facexlib/detection/__init__.py b/repositories/Fooocus/extras/facexlib/detection/__init__.py index 4e52fd7..4391384 100644 --- a/repositories/Fooocus/extras/facexlib/detection/__init__.py +++ b/repositories/Fooocus/extras/facexlib/detection/__init__.py @@ -19,7 +19,7 @@ def init_detection_model(model_name, half=False, device='cuda', model_rootpath=N url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath) # TODO: clean pretrained model - load_net = torch.load(model_path, map_location=lambda storage, loc: storage) + load_net = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True) # remove unnecessary 'module.' for k, v in deepcopy(load_net).items(): if k.startswith('module.'): diff --git a/repositories/Fooocus/extras/facexlib/parsing/__init__.py b/repositories/Fooocus/extras/facexlib/parsing/__init__.py index 8b4758b..ed5009c 100644 --- a/repositories/Fooocus/extras/facexlib/parsing/__init__.py +++ b/repositories/Fooocus/extras/facexlib/parsing/__init__.py @@ -17,7 +17,7 @@ def init_parsing_model(model_name='bisenet', half=False, device='cuda', model_ro model_path = load_file_from_url( url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath) - load_net = torch.load(model_path, map_location=lambda storage, loc: storage) + load_net = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True) model.load_state_dict(load_net, strict=True) model.eval() model = model.to(device) diff --git a/repositories/Fooocus/extras/inpaint_mask.py b/repositories/Fooocus/extras/inpaint_mask.py new file mode 100644 index 0000000..086b7da --- /dev/null +++ b/repositories/Fooocus/extras/inpaint_mask.py @@ -0,0 +1,130 @@ +import sys + +import modules.config +import numpy as np +import torch +from extras.GroundingDINO.util.inference import default_groundingdino +from extras.sam.predictor import SamPredictor +from rembg import remove, new_session +from segment_anything import sam_model_registry +from segment_anything.utils.amg import remove_small_regions + + +class SAMOptions: + def __init__(self, + # GroundingDINO + dino_prompt: str = '', + dino_box_threshold=0.3, + dino_text_threshold=0.25, + dino_erode_or_dilate=0, + dino_debug=False, + + # SAM + max_detections=2, + model_type='vit_b' + ): + self.dino_prompt = dino_prompt + self.dino_box_threshold = dino_box_threshold + self.dino_text_threshold = dino_text_threshold + self.dino_erode_or_dilate = dino_erode_or_dilate + self.dino_debug = dino_debug + self.max_detections = max_detections + self.model_type = model_type + + +def optimize_masks(masks: torch.Tensor) -> torch.Tensor: + """ + removes small disconnected regions and holes + """ + fine_masks = [] + for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w] + fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0]) + masks = np.stack(fine_masks, axis=0)[:, np.newaxis] + return torch.from_numpy(masks) + + +def generate_mask_from_image(image: np.ndarray, mask_model: str = 'sam', extras=None, + sam_options: SAMOptions | None = SAMOptions) -> tuple[np.ndarray | None, int | None, int | None, int | None]: + dino_detection_count = 0 + sam_detection_count = 0 + sam_detection_on_mask_count = 0 + + if image is None: + return None, dino_detection_count, sam_detection_count, sam_detection_on_mask_count + + if extras is None: + extras = {} + + if 'image' in image: + image = image['image'] + + if mask_model != 'sam' or sam_options is None: + result = remove( + image, + session=new_session(mask_model, **extras), + only_mask=True, + **extras + ) + + return result, dino_detection_count, sam_detection_count, sam_detection_on_mask_count + + detections, boxes, logits, phrases = default_groundingdino( + image=image, + caption=sam_options.dino_prompt, + box_threshold=sam_options.dino_box_threshold, + text_threshold=sam_options.dino_text_threshold + ) + + H, W = image.shape[0], image.shape[1] + boxes = boxes * torch.Tensor([W, H, W, H]) + boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2 + boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2] + + sam_checkpoint = modules.config.download_sam_model(sam_options.model_type) + sam = sam_model_registry[sam_options.model_type](checkpoint=sam_checkpoint) + + sam_predictor = SamPredictor(sam) + final_mask_tensor = torch.zeros((image.shape[0], image.shape[1])) + dino_detection_count = boxes.size(0) + + if dino_detection_count > 0: + sam_predictor.set_image(image) + + if sam_options.dino_erode_or_dilate != 0: + for index in range(boxes.size(0)): + assert boxes.size(1) == 4 + boxes[index][0] -= sam_options.dino_erode_or_dilate + boxes[index][1] -= sam_options.dino_erode_or_dilate + boxes[index][2] += sam_options.dino_erode_or_dilate + boxes[index][3] += sam_options.dino_erode_or_dilate + + if sam_options.dino_debug: + from PIL import ImageDraw, Image + debug_dino_image = Image.new("RGB", (image.shape[1], image.shape[0]), color="black") + draw = ImageDraw.Draw(debug_dino_image) + for box in boxes.numpy(): + draw.rectangle(box.tolist(), fill="white") + return np.array(debug_dino_image), dino_detection_count, sam_detection_count, sam_detection_on_mask_count + + transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2]) + masks, _, _ = sam_predictor.predict_torch( + point_coords=None, + point_labels=None, + boxes=transformed_boxes, + multimask_output=False, + ) + + masks = optimize_masks(masks) + sam_detection_count = len(masks) + if sam_options.max_detections == 0: + sam_options.max_detections = sys.maxsize + sam_objects = min(len(logits), sam_options.max_detections) + for obj_ind in range(sam_objects): + mask_tensor = masks[obj_ind][0] + final_mask_tensor += mask_tensor + sam_detection_on_mask_count += 1 + + final_mask_tensor = (final_mask_tensor > 0).to('cpu').numpy() + mask_image = np.dstack((final_mask_tensor, final_mask_tensor, final_mask_tensor)) * 255 + mask_image = np.array(mask_image, dtype=np.uint8) + return mask_image, dino_detection_count, sam_detection_count, sam_detection_on_mask_count diff --git a/repositories/Fooocus/extras/ip_adapter.py b/repositories/Fooocus/extras/ip_adapter.py index 22527d2..d29f1de 100644 --- a/repositories/Fooocus/extras/ip_adapter.py +++ b/repositories/Fooocus/extras/ip_adapter.py @@ -104,7 +104,7 @@ def load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path): offload_device = torch.device('cpu') use_fp16 = model_management.should_use_fp16(device=load_device) - ip_state_dict = torch.load(ip_adapter_path, map_location="cpu") + ip_state_dict = torch.load(ip_adapter_path, map_location="cpu", weights_only=True) plus = "latents" in ip_state_dict["image_proj"] cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1] sdxl = cross_attention_dim == 2048 diff --git a/repositories/Fooocus/extras/sam/predictor.py b/repositories/Fooocus/extras/sam/predictor.py new file mode 100644 index 0000000..337c549 --- /dev/null +++ b/repositories/Fooocus/extras/sam/predictor.py @@ -0,0 +1,288 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch +from ldm_patched.modules import model_management +from ldm_patched.modules.model_patcher import ModelPatcher + +from segment_anything.modeling import Sam + +from typing import Optional, Tuple + +from segment_anything.utils.transforms import ResizeLongestSide + + +class SamPredictor: + def __init__( + self, + model: Sam, + load_device=model_management.text_encoder_device(), + offload_device=model_management.text_encoder_offload_device() + ) -> None: + """ + Uses SAM to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + model (Sam): The model to use for mask prediction. + """ + super().__init__() + + self.load_device = load_device + self.offload_device = offload_device + # can't use model.half() here as slow_conv2d_cpu is not implemented for half + model.to(self.offload_device) + + self.patcher = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) + + self.transform = ResizeLongestSide(model.image_encoder.img_size) + self.reset_image() + + def set_image( + self, + image: np.ndarray, + image_format: str = "RGB", + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray): The image for calculating masks. Expects an + image in HWC uint8 format, with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + assert image_format in [ + "RGB", + "BGR", + ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." + if image_format != self.patcher.model.image_format: + image = image[..., ::-1] + + # Transform the image to the form expected by the model + input_image = self.transform.apply_image(image) + input_image_torch = torch.as_tensor(input_image, device=self.load_device) + input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] + + self.set_torch_image(input_image_torch, image.shape[:2]) + + @torch.no_grad() + def set_torch_image( + self, + transformed_image: torch.Tensor, + original_image_size: Tuple[int, ...], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. Expects the input + image to be already transformed to the format expected by the model. + + Arguments: + transformed_image (torch.Tensor): The input image, with shape + 1x3xHxW, which has been transformed with ResizeLongestSide. + original_image_size (tuple(int, int)): The size of the image + before transformation, in (H, W) format. + """ + assert ( + len(transformed_image.shape) == 4 + and transformed_image.shape[1] == 3 + and max(*transformed_image.shape[2:]) == self.patcher.model.image_encoder.img_size + ), f"set_torch_image input must be BCHW with long side {self.patcher.model.image_encoder.img_size}." + self.reset_image() + + self.original_size = original_image_size + self.input_size = tuple(transformed_image.shape[-2:]) + model_management.load_model_gpu(self.patcher) + input_image = self.patcher.model.preprocess(transformed_image.to(self.load_device)) + self.features = self.patcher.model.image_encoder(input_image) + self.is_image_set = True + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") + + # Transform input prompts + coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = self.transform.apply_coords(point_coords, self.original_size) + coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.load_device) + labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.load_device) + coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] + if box is not None: + box = self.transform.apply_boxes(box, self.original_size) + box_torch = torch.as_tensor(box, dtype=torch.float, device=self.load_device) + box_torch = box_torch[None, :] + if mask_input is not None: + mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.load_device) + mask_input_torch = mask_input_torch[None, :, :, :] + + masks, iou_predictions, low_res_masks = self.predict_torch( + coords_torch, + labels_torch, + box_torch, + mask_input_torch, + multimask_output, + return_logits=return_logits, + ) + + masks = masks[0].detach().cpu().numpy() + iou_predictions = iou_predictions[0].detach().cpu().numpy() + low_res_masks = low_res_masks[0].detach().cpu().numpy() + return masks, iou_predictions, low_res_masks + + @torch.no_grad() + def predict_torch( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using ResizeLongestSide. + + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") + + if point_coords is not None: + points = (point_coords.to(self.load_device), point_labels.to(self.load_device)) + else: + points = None + + # load + if boxes is not None: + boxes = boxes.to(self.load_device) + if mask_input is not None: + mask_input = mask_input.to(self.load_device) + model_management.load_model_gpu(self.patcher) + + # Embed prompts + sparse_embeddings, dense_embeddings = self.patcher.model.prompt_encoder( + points=points, + boxes=boxes, + masks=mask_input, + ) + + # Predict masks + low_res_masks, iou_predictions = self.patcher.model.mask_decoder( + image_embeddings=self.features, + image_pe=self.patcher.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + + # Upscale the masks to the original image resolution + masks = self.patcher.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) + + if not return_logits: + masks = masks > self.patcher.model.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert self.features is not None, "Features must exist if an image has been set." + return self.features + + @property + def device(self) -> torch.device: + return self.patcher.model.device + + def reset_image(self) -> None: + """Resets the currently set image.""" + self.is_image_set = False + self.features = None + self.orig_h = None + self.orig_w = None + self.input_h = None + self.input_w = None diff --git a/repositories/Fooocus/fooocus_version.py b/repositories/Fooocus/fooocus_version.py index 84d1586..326513e 100644 --- a/repositories/Fooocus/fooocus_version.py +++ b/repositories/Fooocus/fooocus_version.py @@ -1 +1 @@ -version = '2.4.3' +version = '2.5.3' diff --git a/repositories/Fooocus/ldm_patched/k_diffusion/sampling.py b/repositories/Fooocus/ldm_patched/k_diffusion/sampling.py index ea5540a..4d9d4ea 100644 --- a/repositories/Fooocus/ldm_patched/k_diffusion/sampling.py +++ b/repositories/Fooocus/ldm_patched/k_diffusion/sampling.py @@ -835,4 +835,74 @@ def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, n else: x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2) + return x + + +@torch.no_grad() +def sample_restart(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None): + """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023) + Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]} + If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list + """ + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + step_id = 0 + + def heun_step(x, old_sigma, new_sigma, second_order=True): + nonlocal step_id + denoised = model(x, old_sigma * s_in, **extra_args) + d = to_d(x, old_sigma, denoised) + if callback is not None: + callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised}) + dt = new_sigma - old_sigma + if new_sigma == 0 or not second_order: + # Euler method + x = x + d * dt + else: + # Heun's method + x_2 = x + d * dt + denoised_2 = model(x_2, new_sigma * s_in, **extra_args) + d_2 = to_d(x_2, new_sigma, denoised_2) + d_prime = (d + d_2) / 2 + x = x + d_prime * dt + step_id += 1 + return x + + steps = sigmas.shape[0] - 1 + if restart_list is None: + if steps >= 20: + restart_steps = 9 + restart_times = 1 + if steps >= 36: + restart_steps = steps // 4 + restart_times = 2 + sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device) + restart_list = {0.1: [restart_steps + 1, restart_times, 2]} + else: + restart_list = {} + + restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()} + + step_list = [] + for i in range(len(sigmas) - 1): + step_list.append((sigmas[i], sigmas[i + 1])) + if i + 1 in restart_list: + restart_steps, restart_times, restart_max = restart_list[i + 1] + min_idx = i + 1 + max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0)) + if max_idx < min_idx: + sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1] + while restart_times > 0: + restart_times -= 1 + step_list.extend(zip(sigma_restart[:-1], sigma_restart[1:])) + + last_sigma = None + for old_sigma, new_sigma in tqdm(step_list, disable=disable): + if last_sigma is None: + last_sigma = old_sigma + elif last_sigma < old_sigma: + x = x + torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5 + x = heun_step(x, old_sigma, new_sigma) + last_sigma = new_sigma + return x \ No newline at end of file diff --git a/repositories/Fooocus/ldm_patched/ldm/modules/encoders/noise_aug_modules.py b/repositories/Fooocus/ldm_patched/ldm/modules/encoders/noise_aug_modules.py index a5d8660..d8588d4 100644 --- a/repositories/Fooocus/ldm_patched/ldm/modules/encoders/noise_aug_modules.py +++ b/repositories/Fooocus/ldm_patched/ldm/modules/encoders/noise_aug_modules.py @@ -8,7 +8,7 @@ def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs): if clip_stats_path is None: clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim) else: - clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu") + clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu", weights_only=True) self.register_buffer("data_mean", clip_mean[None, :], persistent=False) self.register_buffer("data_std", clip_std[None, :], persistent=False) self.time_embed = Timestep(timestep_dim) diff --git a/repositories/Fooocus/ldm_patched/modules/samplers.py b/repositories/Fooocus/ldm_patched/modules/samplers.py index 9ed1fcd..05b4b31 100644 --- a/repositories/Fooocus/ldm_patched/modules/samplers.py +++ b/repositories/Fooocus/ldm_patched/modules/samplers.py @@ -523,7 +523,7 @@ def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=N KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", - "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "tcd", "edm_playground_v2.5"] + "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "tcd", "edm_playground_v2.5", "restart"] class KSAMPLER(Sampler): def __init__(self, sampler_function, extra_options={}, inpaint_options={}): diff --git a/repositories/Fooocus/ldm_patched/modules/sd1_clip.py b/repositories/Fooocus/ldm_patched/modules/sd1_clip.py index 3727fb4..38579cf 100644 --- a/repositories/Fooocus/ldm_patched/modules/sd1_clip.py +++ b/repositories/Fooocus/ldm_patched/modules/sd1_clip.py @@ -326,7 +326,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No except: embed_out = safe_load_embed_zip(embed_path) else: - embed = torch.load(embed_path, map_location="cpu") + embed = torch.load(embed_path, map_location="cpu", weights_only=True) except Exception as e: print(traceback.format_exc()) print() diff --git a/repositories/Fooocus/ldm_patched/pfn/architecture/face/codeformer.py b/repositories/Fooocus/ldm_patched/pfn/architecture/face/codeformer.py index a0e2e98..1ed4602 100644 --- a/repositories/Fooocus/ldm_patched/pfn/architecture/face/codeformer.py +++ b/repositories/Fooocus/ldm_patched/pfn/architecture/face/codeformer.py @@ -377,15 +377,15 @@ def __init__( ) if model_path is not None: - chkpt = torch.load(model_path, map_location="cpu") + chkpt = torch.load(model_path, map_location="cpu", weights_only=True) if "params_ema" in chkpt: self.load_state_dict( - torch.load(model_path, map_location="cpu")["params_ema"] + torch.load(model_path, map_location="cpu", weights_only=True)["params_ema"] ) logger.info(f"vqgan is loaded from: {model_path} [params_ema]") elif "params" in chkpt: self.load_state_dict( - torch.load(model_path, map_location="cpu")["params"] + torch.load(model_path, map_location="cpu", weights_only=True)["params"] ) logger.info(f"vqgan is loaded from: {model_path} [params]") else: diff --git a/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpgan_bilinear_arch.py b/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpgan_bilinear_arch.py index b6e820e..4df2bc3 100644 --- a/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpgan_bilinear_arch.py +++ b/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpgan_bilinear_arch.py @@ -273,8 +273,8 @@ def __init__( if decoder_load_path: self.stylegan_decoder.load_state_dict( torch.load( - decoder_load_path, map_location=lambda storage, loc: storage - )["params_ema"] + decoder_load_path, map_location=lambda storage, loc: storage, + weights_only=True)["params_ema"] ) # fix decoder without updating params if fix_decoder: diff --git a/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpganv1_arch.py b/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpganv1_arch.py index 72d72fc..dcdeaf9 100644 --- a/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpganv1_arch.py +++ b/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpganv1_arch.py @@ -373,8 +373,8 @@ def __init__( if decoder_load_path: self.stylegan_decoder.load_state_dict( torch.load( - decoder_load_path, map_location=lambda storage, loc: storage - )["params_ema"] + decoder_load_path, map_location=lambda storage, loc: storage, + weights_only=True)["params_ema"] ) # fix decoder without updating params if fix_decoder: diff --git a/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpganv1_clean_arch.py b/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpganv1_clean_arch.py index 16470d6..475b982 100644 --- a/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpganv1_clean_arch.py +++ b/repositories/Fooocus/ldm_patched/pfn/architecture/face/gfpganv1_clean_arch.py @@ -284,8 +284,8 @@ def __init__( if decoder_load_path: self.stylegan_decoder.load_state_dict( torch.load( - decoder_load_path, map_location=lambda storage, loc: storage - )["params_ema"] + decoder_load_path, map_location=lambda storage, loc: storage, + weights_only=True)["params_ema"] ) # fix decoder without updating params if fix_decoder: diff --git a/repositories/Fooocus/modules/async_worker.py b/repositories/Fooocus/modules/async_worker.py index 76e10f9..f9e277d 100644 --- a/repositories/Fooocus/modules/async_worker.py +++ b/repositories/Fooocus/modules/async_worker.py @@ -1,22 +1,170 @@ import threading -import re + +from extras.inpaint_mask import generate_mask_from_image, SAMOptions from modules.patch import PatchSettings, patch_settings, patch_all +import modules.config patch_all() class AsyncTask: def __init__(self, args): - self.args = args + from modules.flags import Performance, MetadataScheme, ip_list, disabled + from modules.util import get_enabled_loras + from modules.config import default_max_lora_number + import args_manager + + self.args = args.copy() self.yields = [] self.results = [] self.last_stop = False self.processing = False + self.performance_loras = [] + + if len(args) == 0: + return + + args.reverse() + self.generate_image_grid = args.pop() + self.prompt = args.pop() + self.negative_prompt = args.pop() + self.style_selections = args.pop() + + self.performance_selection = Performance(args.pop()) + self.steps = self.performance_selection.steps() + self.original_steps = self.steps + + self.aspect_ratios_selection = args.pop() + self.image_number = args.pop() + self.output_format = args.pop() + self.seed = int(args.pop()) + self.read_wildcards_in_order = args.pop() + self.sharpness = args.pop() + self.cfg_scale = args.pop() + self.base_model_name = args.pop() + self.refiner_model_name = args.pop() + self.refiner_switch = args.pop() + self.loras = get_enabled_loras([(bool(args.pop()), str(args.pop()), float(args.pop())) for _ in + range(default_max_lora_number)]) + self.input_image_checkbox = args.pop() + self.current_tab = args.pop() + self.uov_method = args.pop() + self.uov_input_image = args.pop() + self.outpaint_selections = args.pop() + self.inpaint_input_image = args.pop() + self.inpaint_additional_prompt = args.pop() + self.inpaint_mask_image_upload = args.pop() + + self.disable_preview = args.pop() + self.disable_intermediate_results = args.pop() + self.disable_seed_increment = args.pop() + self.black_out_nsfw = args.pop() + self.adm_scaler_positive = args.pop() + self.adm_scaler_negative = args.pop() + self.adm_scaler_end = args.pop() + self.adaptive_cfg = args.pop() + self.clip_skip = args.pop() + self.sampler_name = args.pop() + self.scheduler_name = args.pop() + self.vae_name = args.pop() + self.overwrite_step = args.pop() + self.overwrite_switch = args.pop() + self.overwrite_width = args.pop() + self.overwrite_height = args.pop() + self.overwrite_vary_strength = args.pop() + self.overwrite_upscale_strength = args.pop() + self.mixing_image_prompt_and_vary_upscale = args.pop() + self.mixing_image_prompt_and_inpaint = args.pop() + self.debugging_cn_preprocessor = args.pop() + self.skipping_cn_preprocessor = args.pop() + self.canny_low_threshold = args.pop() + self.canny_high_threshold = args.pop() + self.refiner_swap_method = args.pop() + self.controlnet_softness = args.pop() + self.freeu_enabled = args.pop() + self.freeu_b1 = args.pop() + self.freeu_b2 = args.pop() + self.freeu_s1 = args.pop() + self.freeu_s2 = args.pop() + self.debugging_inpaint_preprocessor = args.pop() + self.inpaint_disable_initial_latent = args.pop() + self.inpaint_engine = args.pop() + self.inpaint_strength = args.pop() + self.inpaint_respective_field = args.pop() + self.inpaint_advanced_masking_checkbox = args.pop() + self.invert_mask_checkbox = args.pop() + self.inpaint_erode_or_dilate = args.pop() + self.save_final_enhanced_image_only = args.pop() if not args_manager.args.disable_image_log else False + self.save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False + self.metadata_scheme = MetadataScheme( + args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS + + self.cn_tasks = {x: [] for x in ip_list} + for _ in range(modules.config.default_controlnet_image_count): + cn_img = args.pop() + cn_stop = args.pop() + cn_weight = args.pop() + cn_type = args.pop() + if cn_img is not None: + self.cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) + + self.debugging_dino = args.pop() + self.dino_erode_or_dilate = args.pop() + self.debugging_enhance_masks_checkbox = args.pop() + + self.enhance_input_image = args.pop() + self.enhance_checkbox = args.pop() + self.enhance_uov_method = args.pop() + self.enhance_uov_processing_order = args.pop() + self.enhance_uov_prompt_type = args.pop() + self.enhance_ctrls = [] + for _ in range(modules.config.default_enhance_tabs): + enhance_enabled = args.pop() + enhance_mask_dino_prompt_text = args.pop() + enhance_prompt = args.pop() + enhance_negative_prompt = args.pop() + enhance_mask_model = args.pop() + enhance_mask_cloth_category = args.pop() + enhance_mask_sam_model = args.pop() + enhance_mask_text_threshold = args.pop() + enhance_mask_box_threshold = args.pop() + enhance_mask_sam_max_detections = args.pop() + enhance_inpaint_disable_initial_latent = args.pop() + enhance_inpaint_engine = args.pop() + enhance_inpaint_strength = args.pop() + enhance_inpaint_respective_field = args.pop() + enhance_inpaint_erode_or_dilate = args.pop() + enhance_mask_invert = args.pop() + if enhance_enabled: + self.enhance_ctrls.append([ + enhance_mask_dino_prompt_text, + enhance_prompt, + enhance_negative_prompt, + enhance_mask_model, + enhance_mask_cloth_category, + enhance_mask_sam_model, + enhance_mask_text_threshold, + enhance_mask_box_threshold, + enhance_mask_sam_max_detections, + enhance_inpaint_disable_initial_latent, + enhance_inpaint_engine, + enhance_inpaint_strength, + enhance_inpaint_respective_field, + enhance_inpaint_erode_or_dilate, + enhance_mask_invert + ]) + self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method != disabled.casefold() or len(self.enhance_ctrls) > 0) + self.images_to_enhance_count = 0 + self.enhance_stats = {} async_tasks = [] +class EarlyReturnException(BaseException): + pass + + def worker(): global async_tasks @@ -24,16 +172,15 @@ def worker(): import traceback import math import numpy as np - import cv2 import torch import time import shared import random import copy + import cv2 import modules.default_pipeline as pipeline import modules.core as core import modules.flags as flags - import modules.config import modules.patch import ldm_patched.modules.model_management import extras.preprocessors as preprocessors @@ -42,18 +189,17 @@ def worker(): import extras.ip_adapter as ip_adapter import extras.face_crop import fooocus_version - import args_manager from extras.censor import default_censor from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name from modules.private_logger import log from extras.expansion import safe_str from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil, - get_shape_ceil, resample_image, erode_or_dilate, get_enabled_loras, - parse_lora_references_from_prompt, apply_wildcards) + get_shape_ceil, resample_image, erode_or_dilate, parse_lora_references_from_prompt, + apply_wildcards) from modules.upscaler import perform_upscale from modules.flags import Performance - from modules.meta_parser import get_metadata_parser, MetadataScheme + from modules.meta_parser import get_metadata_parser pid = os.getpid() print(f'Started worker with PID {pid}') @@ -71,8 +217,7 @@ def progressbar(async_task, number, text): print(f'[Fooocus] {text}') async_task.yields.append(['preview', (number, text, None)]) - def yield_result(async_task, imgs, black_out_nsfw, censor=True, do_not_show_finished_images=False, - progressbar_index=flags.preparation_step_count): + def yield_result(async_task, imgs, progressbar_index, black_out_nsfw, censor=True, do_not_show_finished_images=False): if not isinstance(imgs, list): imgs = [imgs] @@ -132,203 +277,851 @@ def build_image_wall(async_task): async_task.results = async_task.results + [wall] return - @torch.no_grad() - @torch.inference_mode() - def handler(async_task): - execution_start_time = time.perf_counter() - async_task.processing = True + def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id, + denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond, + negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps, + total_count, show_intermediate_results, persist_image=True): + if async_task.last_stop is not False: + ldm_patched.modules.model_management.interrupt_current_processing() + if 'cn' in goals: + for cn_flag, cn_path in [ + (flags.cn_canny, controlnet_canny_path), + (flags.cn_cpds, controlnet_cpds_path) + ]: + for cn_img, cn_stop, cn_weight in async_task.cn_tasks[cn_flag]: + positive_cond, negative_cond = core.apply_controlnet( + positive_cond, negative_cond, + pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) + imgs = pipeline.process_diffusion( + positive_cond=positive_cond, + negative_cond=negative_cond, + steps=steps, + switch=switch, + width=width, + height=height, + image_seed=task['task_seed'], + callback=callback, + sampler_name=async_task.sampler_name, + scheduler_name=final_scheduler_name, + latent=initial_latent, + denoise=denoising_strength, + tiled=tiled, + cfg_scale=async_task.cfg_scale, + refiner_swap_method=async_task.refiner_swap_method, + disable_preview=async_task.disable_preview + ) + del positive_cond, negative_cond # Save memory + if inpaint_worker.current_task is not None: + imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * steps) + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: + progressbar(async_task, current_progress, 'Checking for NSFW content ...') + imgs = default_censor(imgs) + progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') + img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image) + yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False, + do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) - args = async_task.args - args.reverse() + return imgs, img_paths, current_progress - prompt = args.pop() - negative_prompt = args.pop() - style_selections = args.pop() - performance_selection = Performance(args.pop()) - aspect_ratios_selection = args.pop() - image_number = args.pop() - output_format = args.pop() - image_seed = args.pop() - read_wildcards_in_order = args.pop() - sharpness = args.pop() - guidance_scale = args.pop() - base_model_name = args.pop() - refiner_model_name = args.pop() - refiner_switch = args.pop() - loras = get_enabled_loras([(bool(args.pop()), str(args.pop()), float(args.pop())) for _ in - range(modules.config.default_max_lora_number)]) - input_image_checkbox = args.pop() - current_tab = args.pop() - uov_method = args.pop() - uov_input_image = args.pop() - outpaint_selections = args.pop() - inpaint_input_image = args.pop() - inpaint_additional_prompt = args.pop() - inpaint_mask_image_upload = args.pop() - - disable_preview = args.pop() - disable_intermediate_results = args.pop() - disable_seed_increment = args.pop() - black_out_nsfw = args.pop() - adm_scaler_positive = args.pop() - adm_scaler_negative = args.pop() - adm_scaler_end = args.pop() - adaptive_cfg = args.pop() - clip_skip = args.pop() - sampler_name = args.pop() - scheduler_name = args.pop() - vae_name = args.pop() - overwrite_step = args.pop() - overwrite_switch = args.pop() - overwrite_width = args.pop() - overwrite_height = args.pop() - overwrite_vary_strength = args.pop() - overwrite_upscale_strength = args.pop() - mixing_image_prompt_and_vary_upscale = args.pop() - mixing_image_prompt_and_inpaint = args.pop() - debugging_cn_preprocessor = args.pop() - skipping_cn_preprocessor = args.pop() - canny_low_threshold = args.pop() - canny_high_threshold = args.pop() - refiner_swap_method = args.pop() - controlnet_softness = args.pop() - freeu_enabled = args.pop() - freeu_b1 = args.pop() - freeu_b2 = args.pop() - freeu_s1 = args.pop() - freeu_s2 = args.pop() - debugging_inpaint_preprocessor = args.pop() - inpaint_disable_initial_latent = args.pop() - inpaint_engine = args.pop() - inpaint_strength = args.pop() - inpaint_respective_field = args.pop() - inpaint_mask_upload_checkbox = args.pop() - invert_mask_checkbox = args.pop() - inpaint_erode_or_dilate = args.pop() - - save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False - metadata_scheme = MetadataScheme( - args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS + def apply_patch_settings(async_task): + patch_settings[pid] = PatchSettings( + async_task.sharpness, + async_task.adm_scaler_end, + async_task.adm_scaler_positive, + async_task.adm_scaler_negative, + async_task.controlnet_softness, + async_task.adaptive_cfg + ) - cn_tasks = {x: [] for x in flags.ip_list} - for _ in range(flags.controlnet_image_count): - cn_img = args.pop() - cn_stop = args.pop() - cn_weight = args.pop() - cn_type = args.pop() - if cn_img is not None: - cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) + def save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image=True) -> list: + img_paths = [] + for x in imgs: + d = [('Prompt', 'prompt', task['log_positive_prompt']), + ('Negative Prompt', 'negative_prompt', task['log_negative_prompt']), + ('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']), + ('Styles', 'styles', + str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])), + ('Performance', 'performance', async_task.performance_selection.value), + ('Steps', 'steps', async_task.steps), + ('Resolution', 'resolution', str((width, height))), + ('Guidance Scale', 'guidance_scale', async_task.cfg_scale), + ('Sharpness', 'sharpness', async_task.sharpness), + ('ADM Guidance', 'adm_guidance', str(( + modules.patch.patch_settings[pid].positive_adm_scale, + modules.patch.patch_settings[pid].negative_adm_scale, + modules.patch.patch_settings[pid].adm_scaler_end))), + ('Base Model', 'base_model', async_task.base_model_name), + ('Refiner Model', 'refiner_model', async_task.refiner_model_name), + ('Refiner Switch', 'refiner_switch', async_task.refiner_switch)] + + if async_task.refiner_model_name != 'None': + if async_task.overwrite_switch > 0: + d.append(('Overwrite Switch', 'overwrite_switch', async_task.overwrite_switch)) + if async_task.refiner_swap_method != flags.refiner_swap_method: + d.append(('Refiner Swap Method', 'refiner_swap_method', async_task.refiner_swap_method)) + if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr: + d.append( + ('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg)) + + if async_task.clip_skip > 1: + d.append(('CLIP Skip', 'clip_skip', async_task.clip_skip)) + d.append(('Sampler', 'sampler', async_task.sampler_name)) + d.append(('Scheduler', 'scheduler', async_task.scheduler_name)) + d.append(('VAE', 'vae', async_task.vae_name)) + d.append(('Seed', 'seed', str(task['task_seed']))) + + if async_task.freeu_enabled: + d.append(('FreeU', 'freeu', + str((async_task.freeu_b1, async_task.freeu_b2, async_task.freeu_s1, async_task.freeu_s2)))) + + for li, (n, w) in enumerate(loras): + if n != 'None': + d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}')) + + metadata_parser = None + if async_task.save_metadata_to_images: + metadata_parser = modules.meta_parser.get_metadata_parser(async_task.metadata_scheme) + metadata_parser.set_data(task['log_positive_prompt'], task['positive'], + task['log_negative_prompt'], task['negative'], + async_task.steps, async_task.base_model_name, async_task.refiner_model_name, + loras, async_task.vae_name) + d.append(('Metadata Scheme', 'metadata_scheme', + async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images)) + d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version)) + img_paths.append(log(x, d, metadata_parser, async_task.output_format, task, persist_image)) + + return img_paths + + def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress): + for task in async_task.cn_tasks[flags.cn_canny]: + cn_img, cn_stop, cn_weight = task + cn_img = resize_image(HWC3(cn_img), width=width, height=height) + + if not async_task.skipping_cn_preprocessor: + cn_img = preprocessors.canny_pyramid(cn_img, async_task.canny_low_threshold, + async_task.canny_high_threshold) + + cn_img = HWC3(cn_img) + task[0] = core.numpy_to_pytorch(cn_img) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_cpds]: + cn_img, cn_stop, cn_weight = task + cn_img = resize_image(HWC3(cn_img), width=width, height=height) + + if not async_task.skipping_cn_preprocessor: + cn_img = preprocessors.cpds(cn_img) + + cn_img = HWC3(cn_img) + task[0] = core.numpy_to_pytorch(cn_img) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_ip]: + cn_img, cn_stop, cn_weight = task + cn_img = HWC3(cn_img) + + # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 + cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) + + task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_ip_face]: + cn_img, cn_stop, cn_weight = task + cn_img = HWC3(cn_img) + + if not async_task.skipping_cn_preprocessor: + cn_img = extras.face_crop.crop_image(cn_img) + + # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 + cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) + + task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face] + if len(all_ip_tasks) > 0: + pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) + + def apply_vary(async_task, uov_method, denoising_strength, uov_input_image, switch, current_progress, advance_progress=False): + if 'subtle' in uov_method: + denoising_strength = 0.5 + if 'strong' in uov_method: + denoising_strength = 0.85 + if async_task.overwrite_vary_strength > 0: + denoising_strength = async_task.overwrite_vary_strength + shape_ceil = get_image_shape_ceil(uov_input_image) + if shape_ceil < 1024: + print(f'[Vary] Image is resized because it is too small.') + shape_ceil = 1024 + elif shape_ceil > 2048: + print(f'[Vary] Image is resized because it is too big.') + shape_ceil = 2048 + uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) + initial_pixels = core.numpy_to_pytorch(uov_input_image) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + candidate_vae, _ = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) + B, C, H, W = initial_latent['samples'].shape + width = W * 8 + height = H * 8 + print(f'Final resolution is {str((width, height))}.') + return uov_input_image, denoising_strength, initial_latent, width, height, current_progress + + def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_image, + inpaint_mask, inpaint_parameterized, denoising_strength, inpaint_respective_field, switch, + inpaint_disable_initial_latent, current_progress, skip_apply_outpaint=False, + advance_progress=False): + if not skip_apply_outpaint: + inpaint_image, inpaint_mask = apply_outpaint(async_task, inpaint_image, inpaint_mask) + + inpaint_worker.current_task = inpaint_worker.InpaintWorker( + image=inpaint_image, + mask=inpaint_mask, + use_fill=denoising_strength > 0.99, + k=inpaint_respective_field + ) + if async_task.debugging_inpaint_preprocessor: + yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100, + async_task.black_out_nsfw, do_not_show_finished_images=True) + raise EarlyReturnException + + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE Inpaint encoding ...') + inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) + inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) + inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) + candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + latent_inpaint, latent_mask = core.encode_vae_inpaint( + mask=inpaint_pixel_mask, + vae=candidate_vae, + pixels=inpaint_pixel_image) + latent_swap = None + if candidate_vae_swap is not None: + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE SD15 encoding ...') + latent_swap = core.encode_vae( + vae=candidate_vae_swap, + pixels=inpaint_pixel_fill)['samples'] + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + latent_fill = core.encode_vae( + vae=candidate_vae, + pixels=inpaint_pixel_fill)['samples'] + inpaint_worker.current_task.load_latent( + latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) + if inpaint_parameterized: + pipeline.final_unet = inpaint_worker.current_task.patch( + inpaint_head_model_path=inpaint_head_model_path, + inpaint_latent=latent_inpaint, + inpaint_latent_mask=latent_mask, + model=pipeline.final_unet + ) + if not inpaint_disable_initial_latent: + initial_latent = {'samples': latent_fill} + B, C, H, W = latent_fill.shape + height, width = H * 8, W * 8 + final_height, final_width = inpaint_worker.current_task.image.shape[:2] + print(f'Final resolution is {str((final_width, final_height))}, latent is {str((width, height))}.') + + return denoising_strength, initial_latent, width, height, current_progress + + def apply_outpaint(async_task, inpaint_image, inpaint_mask): + if len(async_task.outpaint_selections) > 0: + H, W, C = inpaint_image.shape + if 'top' in async_task.outpaint_selections: + inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant', + constant_values=255) + if 'bottom' in async_task.outpaint_selections: + inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant', + constant_values=255) + + H, W, C = inpaint_image.shape + if 'left' in async_task.outpaint_selections: + inpaint_image = np.pad(inpaint_image, [[0, 0], [int(W * 0.3), 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(W * 0.3), 0]], mode='constant', + constant_values=255) + if 'right' in async_task.outpaint_selections: + inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(W * 0.3)], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(W * 0.3)]], mode='constant', + constant_values=255) + + inpaint_image = np.ascontiguousarray(inpaint_image.copy()) + inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) + async_task.inpaint_strength = 1.0 + async_task.inpaint_respective_field = 1.0 + return inpaint_image, inpaint_mask + + def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progress, advance_progress=False): + H, W, C = uov_input_image.shape + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...') + uov_input_image = perform_upscale(uov_input_image) + print(f'Image upscaled.') + if '1.5x' in uov_method: + f = 1.5 + elif '2x' in uov_method: + f = 2.0 + else: + f = 1.0 + shape_ceil = get_shape_ceil(H * f, W * f) + if shape_ceil < 1024: + print(f'[Upscale] Image is resized because it is too small.') + uov_input_image = set_image_shape_ceil(uov_input_image, 1024) + shape_ceil = 1024 + else: + uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) + image_is_super_large = shape_ceil > 2800 + if 'fast' in uov_method: + direct_return = True + elif image_is_super_large: + print('Image is too large. Directly returned the SR image. ' + 'Usually directly return SR image at 4K resolution ' + 'yields better results than SDXL diffusion.') + direct_return = True + else: + direct_return = False + if direct_return: + return direct_return, uov_input_image, None, None, None, None, None, current_progress + + tiled = True + denoising_strength = 0.382 + if async_task.overwrite_upscale_strength > 0: + denoising_strength = async_task.overwrite_upscale_strength + initial_pixels = core.numpy_to_pytorch(uov_input_image) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + candidate_vae, _ = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + initial_latent = core.encode_vae( + vae=candidate_vae, + pixels=initial_pixels, tiled=True) + B, C, H, W = initial_latent['samples'].shape + width = W * 8 + height = H * 8 + print(f'Final resolution is {str((width, height))}.') + return direct_return, uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress + + def apply_overrides(async_task, steps, height, width): + if async_task.overwrite_step > 0: + steps = async_task.overwrite_step + switch = int(round(async_task.steps * async_task.refiner_switch)) + if async_task.overwrite_switch > 0: + switch = async_task.overwrite_switch + if async_task.overwrite_width > 0: + width = async_task.overwrite_width + if async_task.overwrite_height > 0: + height = async_task.overwrite_height + return steps, switch, width, height + + def process_prompt(async_task, prompt, negative_prompt, base_model_additional_loras, image_number, disable_seed_increment, use_expansion, use_style, + use_synthetic_refiner, current_progress, advance_progress=False): + prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') + negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') + prompt = prompts[0] + negative_prompt = negative_prompts[0] + if prompt == '': + # disable expansion when empty since it is not meaningful and influences image prompt + use_expansion = False + extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] + extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Loading models ...') + lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames, + async_task.performance_selection) + loras, prompt = parse_lora_references_from_prompt(prompt, async_task.loras, + modules.config.default_max_lora_number, + lora_filenames=lora_filenames) + loras += async_task.performance_loras + pipeline.refresh_everything(refiner_model_name=async_task.refiner_model_name, + base_model_name=async_task.base_model_name, + loras=loras, base_model_additional_loras=base_model_additional_loras, + use_synthetic_refiner=use_synthetic_refiner, vae_name=async_task.vae_name) + pipeline.set_clip_skip(async_task.clip_skip) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Processing prompts ...') + tasks = [] + for i in range(image_number): + if disable_seed_increment: + task_seed = async_task.seed % (constants.MAX_SEED + 1) + else: + task_seed = (async_task.seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not + + task_rng = random.Random(task_seed) # may bind to inpaint noise in the future + task_prompt = apply_wildcards(prompt, task_rng, i, async_task.read_wildcards_in_order) + task_prompt = apply_arrays(task_prompt, i) + task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, async_task.read_wildcards_in_order) + task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt + in + extra_positive_prompts] + task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt + in + extra_negative_prompts] + + positive_basic_workloads = [] + negative_basic_workloads = [] + + task_styles = async_task.style_selections.copy() + if use_style: + placeholder_replaced = False + + for j, s in enumerate(task_styles): + if s == random_style_name: + s = get_random_style(task_rng) + task_styles[j] = s + p, n, style_has_placeholder = apply_style(s, positive=task_prompt) + if style_has_placeholder: + placeholder_replaced = True + positive_basic_workloads = positive_basic_workloads + p + negative_basic_workloads = negative_basic_workloads + n + + if not placeholder_replaced: + positive_basic_workloads = [task_prompt] + positive_basic_workloads + else: + positive_basic_workloads.append(task_prompt) + + negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative. + + positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts + negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts + + positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) + negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) + + tasks.append(dict( + task_seed=task_seed, + task_prompt=task_prompt, + task_negative_prompt=task_negative_prompt, + positive=positive_basic_workloads, + negative=negative_basic_workloads, + expansion='', + c=None, + uc=None, + positive_top_k=len(positive_basic_workloads), + negative_top_k=len(negative_basic_workloads), + log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), + log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), + styles=task_styles + )) + if use_expansion: + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + + progressbar(async_task, current_progress, f'Preparing Fooocus text #{i + 1} ...') + expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) + print(f'[Prompt Expansion] {expansion}') + t['expansion'] = expansion + t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy. + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + progressbar(async_task, current_progress, f'Encoding positive #{i + 1} ...') + t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + if abs(float(async_task.cfg_scale) - 1.0) < 1e-4: + t['uc'] = pipeline.clone_cond(t['c']) + else: + progressbar(async_task, current_progress, f'Encoding negative #{i + 1} ...') + t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) + return tasks, use_expansion, loras, current_progress + + def apply_freeu(async_task): + print(f'FreeU is enabled!') + pipeline.final_unet = core.apply_freeu( + pipeline.final_unet, + async_task.freeu_b1, + async_task.freeu_b2, + async_task.freeu_s1, + async_task.freeu_s2 + ) + + def patch_discrete(unet, scheduler_name): + return core.opModelSamplingDiscrete.patch(unet, scheduler_name, False)[0] + + def patch_edm(unet, scheduler_name): + return core.opModelSamplingContinuousEDM.patch(unet, scheduler_name, 120.0, 0.002)[0] + + def patch_samplers(async_task): + final_scheduler_name = async_task.scheduler_name + + if async_task.scheduler_name in ['lcm', 'tcd']: + final_scheduler_name = 'sgm_uniform' + if pipeline.final_unet is not None: + pipeline.final_unet = patch_discrete(pipeline.final_unet, async_task.scheduler_name) + if pipeline.final_refiner_unet is not None: + pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet, async_task.scheduler_name) + + elif async_task.scheduler_name == 'edm_playground_v2.5': + final_scheduler_name = 'karras' + if pipeline.final_unet is not None: + pipeline.final_unet = patch_edm(pipeline.final_unet, async_task.scheduler_name) + if pipeline.final_refiner_unet is not None: + pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet, async_task.scheduler_name) + + return final_scheduler_name + + def set_hyper_sd_defaults(async_task, current_progress, advance_progress=False): + print('Enter Hyper-SD mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Downloading Hyper-SD components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in Hyper-SD mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'dpmpp_sde_gpu' + async_task.scheduler_name = 'karras' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def set_lightning_defaults(async_task, current_progress, advance_progress=False): + print('Enter Lightning mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, 1, 'Downloading Lightning components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in Lightning mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'euler' + async_task.scheduler_name = 'sgm_uniform' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def set_lcm_defaults(async_task, current_progress, advance_progress=False): + print('Enter LCM mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, 1, 'Downloading LCM components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in LCM mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'lcm' + async_task.scheduler_name = 'lcm' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def apply_image_input(async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, + controlnet_cpds_path, goals, inpaint_head_model_path, inpaint_image, inpaint_mask, + inpaint_parameterized, ip_adapter_face_path, ip_adapter_path, ip_negative_path, + skip_prompt_processing, use_synthetic_refiner): + if (async_task.current_tab == 'uov' or ( + async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \ + and async_task.uov_method != flags.disabled.casefold() and async_task.uov_input_image is not None: + async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale( + async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection, + async_task.steps, 1, skip_prompt_processing=skip_prompt_processing) + if (async_task.current_tab == 'inpaint' or ( + async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_inpaint)) \ + and isinstance(async_task.inpaint_input_image, dict): + inpaint_image = async_task.inpaint_input_image['image'] + inpaint_mask = async_task.inpaint_input_image['mask'][:, :, 0] + + if async_task.inpaint_advanced_masking_checkbox: + if isinstance(async_task.inpaint_mask_image_upload, dict): + if (isinstance(async_task.inpaint_mask_image_upload['image'], np.ndarray) + and isinstance(async_task.inpaint_mask_image_upload['mask'], np.ndarray) + and async_task.inpaint_mask_image_upload['image'].ndim == 3): + async_task.inpaint_mask_image_upload = np.maximum( + async_task.inpaint_mask_image_upload['image'], + async_task.inpaint_mask_image_upload['mask']) + if isinstance(async_task.inpaint_mask_image_upload, + np.ndarray) and async_task.inpaint_mask_image_upload.ndim == 3: + H, W, C = inpaint_image.shape + async_task.inpaint_mask_image_upload = resample_image(async_task.inpaint_mask_image_upload, + width=W, height=H) + async_task.inpaint_mask_image_upload = np.mean(async_task.inpaint_mask_image_upload, axis=2) + async_task.inpaint_mask_image_upload = (async_task.inpaint_mask_image_upload > 127).astype( + np.uint8) * 255 + inpaint_mask = np.maximum(inpaint_mask, async_task.inpaint_mask_image_upload) + + if int(async_task.inpaint_erode_or_dilate) != 0: + inpaint_mask = erode_or_dilate(inpaint_mask, async_task.inpaint_erode_or_dilate) + + if async_task.invert_mask_checkbox: + inpaint_mask = 255 - inpaint_mask + + inpaint_image = HWC3(inpaint_image) + if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ + and (np.any(inpaint_mask > 127) or len(async_task.outpaint_selections) > 0): + progressbar(async_task, 1, 'Downloading upscale models ...') + modules.config.downloading_upscale_model() + if inpaint_parameterized: + progressbar(async_task, 1, 'Downloading inpainter ...') + inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( + async_task.inpaint_engine) + base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] + print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') + if async_task.refiner_model_name == 'None': + use_synthetic_refiner = True + async_task.refiner_switch = 0.8 + else: + inpaint_head_model_path, inpaint_patch_model_path = None, None + print(f'[Inpaint] Parameterized inpaint is disabled.') + if async_task.inpaint_additional_prompt != '': + if async_task.prompt == '': + async_task.prompt = async_task.inpaint_additional_prompt + else: + async_task.prompt = async_task.inpaint_additional_prompt + '\n' + async_task.prompt + goals.append('inpaint') + if async_task.current_tab == 'ip' or \ + async_task.mixing_image_prompt_and_vary_upscale or \ + async_task.mixing_image_prompt_and_inpaint: + goals.append('cn') + progressbar(async_task, 1, 'Downloading control models ...') + if len(async_task.cn_tasks[flags.cn_canny]) > 0: + controlnet_canny_path = modules.config.downloading_controlnet_canny() + if len(async_task.cn_tasks[flags.cn_cpds]) > 0: + controlnet_cpds_path = modules.config.downloading_controlnet_cpds() + if len(async_task.cn_tasks[flags.cn_ip]) > 0: + clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip') + if len(async_task.cn_tasks[flags.cn_ip_face]) > 0: + clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters( + 'face') + if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None: + goals.append('enhance') + skip_prompt_processing = True + async_task.enhance_input_image = HWC3(async_task.enhance_input_image) + return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner + + def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress, + advance_progress=False, skip_prompt_processing=False): + uov_input_image = HWC3(uov_input_image) + if 'vary' in uov_method: + goals.append('vary') + elif 'upscale' in uov_method: + goals.append('upscale') + if 'fast' in uov_method: + skip_prompt_processing = True + steps = 0 + else: + steps = performance.steps_uov() + + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Downloading upscale models ...') + modules.config.downloading_upscale_model() + return uov_input_image, skip_prompt_processing, steps + + def prepare_enhance_prompt(prompt: str, fallback_prompt: str): + if safe_str(prompt) == '' or len(remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')) == 0: + prompt = fallback_prompt + + return prompt + + def stop_processing(async_task, processing_start_time): + async_task.processing = False + processing_time = time.perf_counter() - processing_start_time + print(f'Processing time (total): {processing_time:.2f} seconds') + + def process_enhance(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, + current_progress, current_task_id, denoising_strength, inpaint_disable_initial_latent, + inpaint_engine, inpaint_respective_field, inpaint_strength, + prompt, negative_prompt, final_scheduler_name, goals, height, img, mask, + preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style, + use_synthetic_refiner, width, show_intermediate_results=True, persist_image=True): + base_model_additional_loras = [] + inpaint_head_model_path = None + inpaint_parameterized = inpaint_engine != 'None' # inpaint_engine = None, improve detail + initial_latent = None + + prompt = prepare_enhance_prompt(prompt, async_task.prompt) + negative_prompt = prepare_enhance_prompt(negative_prompt, async_task.negative_prompt) + + if 'vary' in goals: + img, denoising_strength, initial_latent, width, height, current_progress = apply_vary( + async_task, async_task.enhance_uov_method, denoising_strength, img, switch, current_progress) + if 'upscale' in goals: + direct_return, img, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( + async_task, img, async_task.enhance_uov_method, switch, current_progress) + if direct_return: + d = [('Upscale (Fast)', 'upscale_fast', '2x')] + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: + progressbar(async_task, current_progress, 'Checking for NSFW content ...') + img = default_censor(img) + progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') + uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image) + yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False, + do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) + return current_progress, img, prompt, negative_prompt + + if 'inpaint' in goals and inpaint_parameterized: + progressbar(async_task, current_progress, 'Downloading inpainter ...') + inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( + inpaint_engine) + if inpaint_patch_model_path not in base_model_additional_loras: + base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] + progressbar(async_task, current_progress, 'Preparing enhance prompts ...') + # positive and negative conditioning aren't available here anymore, process prompt again + tasks_enhance, use_expansion, loras, current_progress = process_prompt( + async_task, prompt, negative_prompt, base_model_additional_loras, 1, True, + use_expansion, use_style, use_synthetic_refiner, current_progress) + task_enhance = tasks_enhance[0] + # TODO could support vary, upscale and CN in the future + # if 'cn' in goals: + # apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width) + if async_task.freeu_enabled: + apply_freeu(async_task) + patch_samplers(async_task) + if 'inpaint' in goals: + denoising_strength, initial_latent, width, height, current_progress = apply_inpaint( + async_task, None, inpaint_head_model_path, img, mask, + inpaint_parameterized, inpaint_strength, + inpaint_respective_field, switch, inpaint_disable_initial_latent, + current_progress, True) + imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_task_id, denoising_strength, + final_scheduler_name, goals, initial_latent, steps, switch, + task_enhance['c'], task_enhance['uc'], task_enhance, loras, + tiled, use_expansion, width, height, current_progress, + preparation_steps, total_count, show_intermediate_results, + persist_image) + + del task_enhance['c'], task_enhance['uc'] # Save memory + return current_progress, imgs[0], prompt, negative_prompt + + def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled, + total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image=True): + # reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting + inpaint_worker.current_task = None + + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) + goals_enhance = [] + img, skip_prompt_processing, steps = prepare_upscale( + async_task, goals_enhance, img, async_task.enhance_uov_method, async_task.performance_selection, + enhance_steps, current_progress) + steps, _, _, _ = apply_overrides(async_task, steps, height, width) + exception_result = '' + if len(goals_enhance) > 0: + try: + current_progress, img, prompt, negative_prompt = process_enhance( + all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False, + 'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name, + goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count, + use_expansion, use_style, use_synthetic_refiner, width, persist_image=persist_image) + + except ldm_patched.modules.model_management.InterruptProcessingException: + if async_task.last_stop == 'skip': + print('User skipped') + async_task.last_stop = False + # also skip all enhance steps for this image, but add the steps to the progress bar + if async_task.enhance_uov_processing_order == flags.enhancement_uov_before: + done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps + exception_result = 'continue' + else: + print('User stopped') + exception_result = 'break' + finally: + done_steps_upscaling += steps + return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result + + @torch.no_grad() + @torch.inference_mode() + def handler(async_task: AsyncTask): + preparation_start_time = time.perf_counter() + async_task.processing = True - outpaint_selections = [o.lower() for o in outpaint_selections] + async_task.outpaint_selections = [o.lower() for o in async_task.outpaint_selections] base_model_additional_loras = [] - raw_style_selections = copy.deepcopy(style_selections) - uov_method = uov_method.lower() + async_task.uov_method = async_task.uov_method.casefold() + async_task.enhance_uov_method = async_task.enhance_uov_method.casefold() - if fooocus_expansion in style_selections: + if fooocus_expansion in async_task.style_selections: use_expansion = True - style_selections.remove(fooocus_expansion) + async_task.style_selections.remove(fooocus_expansion) else: use_expansion = False - use_style = len(style_selections) > 0 + use_style = len(async_task.style_selections) > 0 - if base_model_name == refiner_model_name: + if async_task.base_model_name == async_task.refiner_model_name: print(f'Refiner disabled because base model and refiner are same.') - refiner_model_name = 'None' - - steps = performance_selection.steps() - - performance_loras = [] - - if performance_selection == Performance.EXTREME_SPEED: - print('Enter LCM mode.') - progressbar(async_task, 1, 'Downloading LCM components ...') - performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)] - - if refiner_model_name != 'None': - print(f'Refiner disabled in LCM mode.') - - refiner_model_name = 'None' - sampler_name = 'lcm' - scheduler_name = 'lcm' - sharpness = 0.0 - guidance_scale = 1.0 - adaptive_cfg = 1.0 - refiner_switch = 1.0 - adm_scaler_positive = 1.0 - adm_scaler_negative = 1.0 - adm_scaler_end = 0.0 - - elif performance_selection == Performance.LIGHTNING: - print('Enter Lightning mode.') - progressbar(async_task, 1, 'Downloading Lightning components ...') - performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)] - - if refiner_model_name != 'None': - print(f'Refiner disabled in Lightning mode.') - - refiner_model_name = 'None' - sampler_name = 'euler' - scheduler_name = 'sgm_uniform' - sharpness = 0.0 - guidance_scale = 1.0 - adaptive_cfg = 1.0 - refiner_switch = 1.0 - adm_scaler_positive = 1.0 - adm_scaler_negative = 1.0 - adm_scaler_end = 0.0 - - elif performance_selection == Performance.HYPER_SD: - print('Enter Hyper-SD mode.') - progressbar(async_task, 1, 'Downloading Hyper-SD components ...') - performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)] - - if refiner_model_name != 'None': - print(f'Refiner disabled in Hyper-SD mode.') - - refiner_model_name = 'None' - sampler_name = 'dpmpp_sde_gpu' - scheduler_name = 'karras' - sharpness = 0.0 - guidance_scale = 1.0 - adaptive_cfg = 1.0 - refiner_switch = 1.0 - adm_scaler_positive = 1.0 - adm_scaler_negative = 1.0 - adm_scaler_end = 0.0 - - print(f'[Parameters] Adaptive CFG = {adaptive_cfg}') - print(f'[Parameters] CLIP Skip = {clip_skip}') - print(f'[Parameters] Sharpness = {sharpness}') - print(f'[Parameters] ControlNet Softness = {controlnet_softness}') + async_task.refiner_model_name = 'None' + + current_progress = 0 + if async_task.performance_selection == Performance.EXTREME_SPEED: + set_lcm_defaults(async_task, current_progress, advance_progress=True) + elif async_task.performance_selection == Performance.LIGHTNING: + set_lightning_defaults(async_task, current_progress, advance_progress=True) + elif async_task.performance_selection == Performance.HYPER_SD: + set_hyper_sd_defaults(async_task, current_progress, advance_progress=True) + + print(f'[Parameters] Adaptive CFG = {async_task.adaptive_cfg}') + print(f'[Parameters] CLIP Skip = {async_task.clip_skip}') + print(f'[Parameters] Sharpness = {async_task.sharpness}') + print(f'[Parameters] ControlNet Softness = {async_task.controlnet_softness}') print(f'[Parameters] ADM Scale = ' - f'{adm_scaler_positive} : ' - f'{adm_scaler_negative} : ' - f'{adm_scaler_end}') + f'{async_task.adm_scaler_positive} : ' + f'{async_task.adm_scaler_negative} : ' + f'{async_task.adm_scaler_end}') + print(f'[Parameters] Seed = {async_task.seed}') - patch_settings[pid] = PatchSettings( - sharpness, - adm_scaler_end, - adm_scaler_positive, - adm_scaler_negative, - controlnet_softness, - adaptive_cfg - ) + apply_patch_settings(async_task) - cfg_scale = float(guidance_scale) - print(f'[Parameters] CFG = {cfg_scale}') + print(f'[Parameters] CFG = {async_task.cfg_scale}') initial_latent = None denoising_strength = 1.0 tiled = False - width, height = aspect_ratios_selection.replace('×', ' ').split(' ')[:2] + width, height = async_task.aspect_ratios_selection.replace('×', ' ').split(' ')[:2] width, height = int(width), int(height) skip_prompt_processing = False inpaint_worker.current_task = None - inpaint_parameterized = inpaint_engine != 'None' + inpaint_parameterized = async_task.inpaint_engine != 'None' inpaint_image = None inpaint_mask = None inpaint_head_model_path = None @@ -339,477 +1132,116 @@ def handler(async_task): controlnet_cpds_path = None clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None - seed = int(image_seed) - print(f'[Parameters] Seed = {seed}') - goals = [] tasks = [] + current_progress = 1 - if input_image_checkbox: - if (current_tab == 'uov' or ( - current_tab == 'ip' and mixing_image_prompt_and_vary_upscale)) \ - and uov_method != flags.disabled and uov_input_image is not None: - uov_input_image = HWC3(uov_input_image) - if 'vary' in uov_method: - goals.append('vary') - elif 'upscale' in uov_method: - goals.append('upscale') - if 'fast' in uov_method: - skip_prompt_processing = True - else: - steps = performance_selection.steps_uov() - - progressbar(async_task, 1, 'Downloading upscale models ...') - modules.config.downloading_upscale_model() - if (current_tab == 'inpaint' or ( - current_tab == 'ip' and mixing_image_prompt_and_inpaint)) \ - and isinstance(inpaint_input_image, dict): - inpaint_image = inpaint_input_image['image'] - inpaint_mask = inpaint_input_image['mask'][:, :, 0] - - if inpaint_mask_upload_checkbox: - if isinstance(inpaint_mask_image_upload, np.ndarray): - if inpaint_mask_image_upload.ndim == 3: - H, W, C = inpaint_image.shape - inpaint_mask_image_upload = resample_image(inpaint_mask_image_upload, width=W, height=H) - inpaint_mask_image_upload = np.mean(inpaint_mask_image_upload, axis=2) - inpaint_mask_image_upload = (inpaint_mask_image_upload > 127).astype(np.uint8) * 255 - inpaint_mask = np.maximum(inpaint_mask, inpaint_mask_image_upload) - - if int(inpaint_erode_or_dilate) != 0: - inpaint_mask = erode_or_dilate(inpaint_mask, inpaint_erode_or_dilate) - - if invert_mask_checkbox: - inpaint_mask = 255 - inpaint_mask - - inpaint_image = HWC3(inpaint_image) - if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ - and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0): - progressbar(async_task, 1, 'Downloading upscale models ...') - modules.config.downloading_upscale_model() - if inpaint_parameterized: - progressbar(async_task, 1, 'Downloading inpainter ...') - inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( - inpaint_engine) - base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] - print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') - if refiner_model_name == 'None': - use_synthetic_refiner = True - refiner_switch = 0.8 - else: - inpaint_head_model_path, inpaint_patch_model_path = None, None - print(f'[Inpaint] Parameterized inpaint is disabled.') - if inpaint_additional_prompt != '': - if prompt == '': - prompt = inpaint_additional_prompt - else: - prompt = inpaint_additional_prompt + '\n' + prompt - goals.append('inpaint') - if current_tab == 'ip' or \ - mixing_image_prompt_and_vary_upscale or \ - mixing_image_prompt_and_inpaint: - goals.append('cn') - progressbar(async_task, 1, 'Downloading control models ...') - if len(cn_tasks[flags.cn_canny]) > 0: - controlnet_canny_path = modules.config.downloading_controlnet_canny() - if len(cn_tasks[flags.cn_cpds]) > 0: - controlnet_cpds_path = modules.config.downloading_controlnet_cpds() - if len(cn_tasks[flags.cn_ip]) > 0: - clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip') - if len(cn_tasks[flags.cn_ip_face]) > 0: - clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters( - 'face') - progressbar(async_task, 1, 'Loading control models ...') + if async_task.input_image_checkbox: + base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner = apply_image_input( + async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, + goals, inpaint_head_model_path, inpaint_image, inpaint_mask, inpaint_parameterized, ip_adapter_face_path, + ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner) # Load or unload CNs + progressbar(async_task, current_progress, 'Loading control models ...') pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path]) ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path) ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path) - if overwrite_step > 0: - steps = overwrite_step - - switch = int(round(steps * refiner_switch)) - - if overwrite_switch > 0: - switch = overwrite_switch + async_task.steps, switch, width, height = apply_overrides(async_task, async_task.steps, height, width) - if overwrite_width > 0: - width = overwrite_width + print(f'[Parameters] Sampler = {async_task.sampler_name} - {async_task.scheduler_name}') + print(f'[Parameters] Steps = {async_task.steps} - {switch}') - if overwrite_height > 0: - height = overwrite_height - - print(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}') - print(f'[Parameters] Steps = {steps} - {switch}') - - progressbar(async_task, 1, 'Initializing ...') + progressbar(async_task, current_progress, 'Initializing ...') + loras = async_task.loras if not skip_prompt_processing: - - prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') - negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') - - prompt = prompts[0] - negative_prompt = negative_prompts[0] - - if prompt == '': - # disable expansion when empty since it is not meaningful and influences image prompt - use_expansion = False - - extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] - extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] - - progressbar(async_task, 2, 'Loading models ...') - - lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames, performance_selection) - loras, prompt = parse_lora_references_from_prompt(prompt, loras, modules.config.default_max_lora_number, lora_filenames=lora_filenames) - loras += performance_loras - - pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name, - loras=loras, base_model_additional_loras=base_model_additional_loras, - use_synthetic_refiner=use_synthetic_refiner, vae_name=vae_name) - - pipeline.set_clip_skip(clip_skip) - - progressbar(async_task, 3, 'Processing prompts ...') - tasks = [] - - for i in range(image_number): - if disable_seed_increment: - task_seed = seed % (constants.MAX_SEED + 1) - else: - task_seed = (seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not - - task_rng = random.Random(task_seed) # may bind to inpaint noise in the future - task_prompt = apply_wildcards(prompt, task_rng, i, read_wildcards_in_order) - task_prompt = apply_arrays(task_prompt, i) - task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, read_wildcards_in_order) - task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in - extra_positive_prompts] - task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in - extra_negative_prompts] - - positive_basic_workloads = [] - negative_basic_workloads = [] - - task_styles = style_selections.copy() - if use_style: - for i, s in enumerate(task_styles): - if s == random_style_name: - s = get_random_style(task_rng) - task_styles[i] = s - p, n = apply_style(s, positive=task_prompt) - positive_basic_workloads = positive_basic_workloads + p - negative_basic_workloads = negative_basic_workloads + n - else: - positive_basic_workloads.append(task_prompt) - - negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative. - - positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts - negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts - - positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) - negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) - - tasks.append(dict( - task_seed=task_seed, - task_prompt=task_prompt, - task_negative_prompt=task_negative_prompt, - positive=positive_basic_workloads, - negative=negative_basic_workloads, - expansion='', - c=None, - uc=None, - positive_top_k=len(positive_basic_workloads), - negative_top_k=len(negative_basic_workloads), - log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), - log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), - styles=task_styles - )) - - if use_expansion: - for i, t in enumerate(tasks): - progressbar(async_task, 4, f'Preparing Fooocus text #{i + 1} ...') - expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) - print(f'[Prompt Expansion] {expansion}') - t['expansion'] = expansion - t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy. - - for i, t in enumerate(tasks): - progressbar(async_task, 5, f'Encoding positive #{i + 1} ...') - t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) - - for i, t in enumerate(tasks): - if abs(float(cfg_scale) - 1.0) < 1e-4: - t['uc'] = pipeline.clone_cond(t['c']) - else: - progressbar(async_task, 6, f'Encoding negative #{i + 1} ...') - t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) + tasks, use_expansion, loras, current_progress = process_prompt(async_task, async_task.prompt, async_task.negative_prompt, + base_model_additional_loras, async_task.image_number, + async_task.disable_seed_increment, use_expansion, use_style, + use_synthetic_refiner, current_progress, advance_progress=True) if len(goals) > 0: - progressbar(async_task, 7, 'Image processing ...') + current_progress += 1 + progressbar(async_task, current_progress, 'Image processing ...') - if 'vary' in goals: - if 'subtle' in uov_method: - denoising_strength = 0.5 - if 'strong' in uov_method: - denoising_strength = 0.85 - if overwrite_vary_strength > 0: - denoising_strength = overwrite_vary_strength - - shape_ceil = get_image_shape_ceil(uov_input_image) - if shape_ceil < 1024: - print(f'[Vary] Image is resized because it is too small.') - shape_ceil = 1024 - elif shape_ceil > 2048: - print(f'[Vary] Image is resized because it is too big.') - shape_ceil = 2048 - - uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) - - initial_pixels = core.numpy_to_pytorch(uov_input_image) - progressbar(async_task, 8, 'VAE encoding ...') - - candidate_vae, _ = pipeline.get_candidate_vae( - steps=steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=refiner_swap_method - ) + should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0) - initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) - B, C, H, W = initial_latent['samples'].shape - width = W * 8 - height = H * 8 - print(f'Final resolution is {str((height, width))}.') + if 'vary' in goals: + async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary( + async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch, + current_progress) if 'upscale' in goals: - H, W, C = uov_input_image.shape - progressbar(async_task, 9, f'Upscaling image from {str((H, W))} ...') - uov_input_image = perform_upscale(uov_input_image) - print(f'Image upscaled.') - - if '1.5x' in uov_method: - f = 1.5 - elif '2x' in uov_method: - f = 2.0 - else: - f = 1.0 - - shape_ceil = get_shape_ceil(H * f, W * f) - - if shape_ceil < 1024: - print(f'[Upscale] Image is resized because it is too small.') - uov_input_image = set_image_shape_ceil(uov_input_image, 1024) - shape_ceil = 1024 - else: - uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) - - image_is_super_large = shape_ceil > 2800 - - if 'fast' in uov_method: - direct_return = True - elif image_is_super_large: - print('Image is too large. Directly returned the SR image. ' - 'Usually directly return SR image at 4K resolution ' - 'yields better results than SDXL diffusion.') - direct_return = True - else: - direct_return = False - + direct_return, async_task.uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( + async_task, async_task.uov_input_image, async_task.uov_method, switch, current_progress, + advance_progress=True) if direct_return: d = [('Upscale (Fast)', 'upscale_fast', '2x')] - if modules.config.default_black_out_nsfw or black_out_nsfw: + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: progressbar(async_task, 100, 'Checking for NSFW content ...') - uov_input_image = default_censor(uov_input_image) + async_task.uov_input_image = default_censor(async_task.uov_input_image) progressbar(async_task, 100, 'Saving image to system ...') - uov_input_image_path = log(uov_input_image, d, output_format=output_format) - yield_result(async_task, uov_input_image_path, black_out_nsfw, False, do_not_show_finished_images=True) + uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format) + yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False, + do_not_show_finished_images=True) return - tiled = True - denoising_strength = 0.382 - - if overwrite_upscale_strength > 0: - denoising_strength = overwrite_upscale_strength - - initial_pixels = core.numpy_to_pytorch(uov_input_image) - progressbar(async_task, 10, 'VAE encoding ...') - - candidate_vae, _ = pipeline.get_candidate_vae( - steps=steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=refiner_swap_method - ) - - initial_latent = core.encode_vae( - vae=candidate_vae, - pixels=initial_pixels, tiled=True) - B, C, H, W = initial_latent['samples'].shape - width = W * 8 - height = H * 8 - print(f'Final resolution is {str((height, width))}.') - if 'inpaint' in goals: - if len(outpaint_selections) > 0: - H, W, C = inpaint_image.shape - if 'top' in outpaint_selections: - inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant', - constant_values=255) - if 'bottom' in outpaint_selections: - inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant', - constant_values=255) - - H, W, C = inpaint_image.shape - if 'left' in outpaint_selections: - inpaint_image = np.pad(inpaint_image, [[0, 0], [int(W * 0.3), 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(W * 0.3), 0]], mode='constant', - constant_values=255) - if 'right' in outpaint_selections: - inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(W * 0.3)], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(W * 0.3)]], mode='constant', - constant_values=255) - - inpaint_image = np.ascontiguousarray(inpaint_image.copy()) - inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) - inpaint_strength = 1.0 - inpaint_respective_field = 1.0 - - denoising_strength = inpaint_strength - - inpaint_worker.current_task = inpaint_worker.InpaintWorker( - image=inpaint_image, - mask=inpaint_mask, - use_fill=denoising_strength > 0.99, - k=inpaint_respective_field - ) - - if debugging_inpaint_preprocessor: - yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), black_out_nsfw, - do_not_show_finished_images=True) + try: + denoising_strength, initial_latent, width, height, current_progress = apply_inpaint(async_task, + initial_latent, + inpaint_head_model_path, + inpaint_image, + inpaint_mask, + inpaint_parameterized, + async_task.inpaint_strength, + async_task.inpaint_respective_field, + switch, + async_task.inpaint_disable_initial_latent, + current_progress, + advance_progress=True) + except EarlyReturnException: return - progressbar(async_task, 11, 'VAE Inpaint encoding ...') - - inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) - inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) - inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) - - candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( - steps=steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=refiner_swap_method - ) + if 'cn' in goals: + apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress) + if async_task.debugging_cn_preprocessor: + return - latent_inpaint, latent_mask = core.encode_vae_inpaint( - mask=inpaint_pixel_mask, - vae=candidate_vae, - pixels=inpaint_pixel_image) - - latent_swap = None - if candidate_vae_swap is not None: - progressbar(async_task, 12, 'VAE SD15 encoding ...') - latent_swap = core.encode_vae( - vae=candidate_vae_swap, - pixels=inpaint_pixel_fill)['samples'] - - progressbar(async_task, 13, 'VAE encoding ...') - latent_fill = core.encode_vae( - vae=candidate_vae, - pixels=inpaint_pixel_fill)['samples'] + if async_task.freeu_enabled: + apply_freeu(async_task) - inpaint_worker.current_task.load_latent( - latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) + # async_task.steps can have value of uov steps here when upscale has been applied + steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width) - if inpaint_parameterized: - pipeline.final_unet = inpaint_worker.current_task.patch( - inpaint_head_model_path=inpaint_head_model_path, - inpaint_latent=latent_inpaint, - inpaint_latent_mask=latent_mask, - model=pipeline.final_unet - ) + images_to_enhance = [] + if 'enhance' in goals: + async_task.image_number = 1 + images_to_enhance += [async_task.enhance_input_image] + height, width, _ = async_task.enhance_input_image.shape + # input image already provided, processing is skipped + steps = 0 - if not inpaint_disable_initial_latent: - initial_latent = {'samples': latent_fill} + all_steps = steps * async_task.image_number - B, C, H, W = latent_fill.shape - height, width = H * 8, W * 8 - final_height, final_width = inpaint_worker.current_task.image.shape[:2] - print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.') + if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.casefold(): + enhance_upscale_steps = async_task.performance_selection.steps() + if 'upscale' in async_task.enhance_uov_method: + if 'fast' in async_task.enhance_uov_method: + enhance_upscale_steps = 0 + else: + enhance_upscale_steps = async_task.performance_selection.steps_uov() + enhance_upscale_steps, _, _, _ = apply_overrides(async_task, enhance_upscale_steps, height, width) + enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps + all_steps += enhance_upscale_steps_total - if 'cn' in goals: - for task in cn_tasks[flags.cn_canny]: - cn_img, cn_stop, cn_weight = task - cn_img = resize_image(HWC3(cn_img), width=width, height=height) - - if not skipping_cn_preprocessor: - cn_img = preprocessors.canny_pyramid(cn_img, canny_low_threshold, canny_high_threshold) - - cn_img = HWC3(cn_img) - task[0] = core.numpy_to_pytorch(cn_img) - if debugging_cn_preprocessor: - yield_result(async_task, cn_img, black_out_nsfw, do_not_show_finished_images=True) - return - for task in cn_tasks[flags.cn_cpds]: - cn_img, cn_stop, cn_weight = task - cn_img = resize_image(HWC3(cn_img), width=width, height=height) - - if not skipping_cn_preprocessor: - cn_img = preprocessors.cpds(cn_img) - - cn_img = HWC3(cn_img) - task[0] = core.numpy_to_pytorch(cn_img) - if debugging_cn_preprocessor: - yield_result(async_task, cn_img, black_out_nsfw, do_not_show_finished_images=True) - return - for task in cn_tasks[flags.cn_ip]: - cn_img, cn_stop, cn_weight = task - cn_img = HWC3(cn_img) - - # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 - cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) - - task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) - if debugging_cn_preprocessor: - yield_result(async_task, cn_img, black_out_nsfw, do_not_show_finished_images=True) - return - for task in cn_tasks[flags.cn_ip_face]: - cn_img, cn_stop, cn_weight = task - cn_img = HWC3(cn_img) - - if not skipping_cn_preprocessor: - cn_img = extras.face_crop.crop_image(cn_img) - - # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 - cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) - - task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) - if debugging_cn_preprocessor: - yield_result(async_task, cn_img, black_out_nsfw, do_not_show_finished_images=True) - return - - all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face] - - if len(all_ip_tasks) > 0: - pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) - - if freeu_enabled: - print(f'FreeU is enabled!') - pipeline.final_unet = core.apply_freeu( - pipeline.final_unet, - freeu_b1, - freeu_b2, - freeu_s1, - freeu_s2 - ) + if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0: + enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) + all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps - all_steps = steps * image_number + all_steps = max(all_steps, 1) print(f'[Parameters] Denoising Strength = {denoising_strength}') @@ -820,161 +1252,48 @@ def handler(async_task): print(f'[Parameters] Initial Latent shape: {log_shape}') - preparation_time = time.perf_counter() - execution_start_time + preparation_time = time.perf_counter() - preparation_start_time print(f'Preparation time: {preparation_time:.2f} seconds') - final_sampler_name = sampler_name - final_scheduler_name = scheduler_name - - if scheduler_name in ['lcm', 'tcd']: - final_scheduler_name = 'sgm_uniform' - - def patch_discrete(unet): - return core.opModelSamplingDiscrete.patch( - pipeline.final_unet, - sampling=scheduler_name, - zsnr=False)[0] - - if pipeline.final_unet is not None: - pipeline.final_unet = patch_discrete(pipeline.final_unet) - if pipeline.final_refiner_unet is not None: - pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet) - print(f'Using {scheduler_name} scheduler.') - elif scheduler_name == 'edm_playground_v2.5': - final_scheduler_name = 'karras' + final_scheduler_name = patch_samplers(async_task) + print(f'Using {final_scheduler_name} scheduler.') - def patch_edm(unet): - return core.opModelSamplingContinuousEDM.patch( - unet, - sampling=scheduler_name, - sigma_max=120.0, - sigma_min=0.002)[0] - - if pipeline.final_unet is not None: - pipeline.final_unet = patch_edm(pipeline.final_unet) - if pipeline.final_refiner_unet is not None: - pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet) + async_task.yields.append(['preview', (current_progress, 'Moving model to GPU ...', None)]) - print(f'Using {scheduler_name} scheduler.') + processing_start_time = time.perf_counter() - async_task.yields.append(['preview', (flags.preparation_step_count, 'Moving model to GPU ...', None)]) + preparation_steps = current_progress + total_count = async_task.image_number def callback(step, x0, x, total_steps, y): - done_steps = current_task_id * steps + step + if step == 0: + async_task.callback_steps = 0 + async_task.callback_steps += (100 - preparation_steps) / float(all_steps) async_task.yields.append(['preview', ( - int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float(done_steps) / float(all_steps)), - f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{image_number} ...', y)]) + int(current_progress + async_task.callback_steps), + f'Sampling step {step + 1}/{total_steps}, image {current_task_id + 1}/{total_count} ...', y)]) + + show_intermediate_results = len(tasks) > 1 or async_task.should_enhance + persist_image = not async_task.should_enhance or not async_task.save_final_enhanced_image_only for current_task_id, task in enumerate(tasks): - current_progress = int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float(current_task_id * steps) / float(all_steps)) - progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{image_number} ...') + progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...') execution_start_time = time.perf_counter() try: - if async_task.last_stop is not False: - ldm_patched.modules.model_management.interrupt_current_processing() - positive_cond, negative_cond = task['c'], task['uc'] - - if 'cn' in goals: - for cn_flag, cn_path in [ - (flags.cn_canny, controlnet_canny_path), - (flags.cn_cpds, controlnet_cpds_path) - ]: - for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]: - positive_cond, negative_cond = core.apply_controlnet( - positive_cond, negative_cond, - pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) - - imgs = pipeline.process_diffusion( - positive_cond=positive_cond, - negative_cond=negative_cond, - steps=steps, - switch=switch, - width=width, - height=height, - image_seed=task['task_seed'], - callback=callback, - sampler_name=final_sampler_name, - scheduler_name=final_scheduler_name, - latent=initial_latent, - denoise=denoising_strength, - tiled=tiled, - cfg_scale=cfg_scale, - refiner_swap_method=refiner_swap_method, - disable_preview=disable_preview - ) - - del task['c'], task['uc'], positive_cond, negative_cond # Save memory - - if inpaint_worker.current_task is not None: - imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] - - img_paths = [] - current_progress = int(flags.preparation_step_count + (100 - flags.preparation_step_count) * float((current_task_id + 1) * steps) / float(all_steps)) - if modules.config.default_black_out_nsfw or black_out_nsfw: - progressbar(async_task, current_progress, 'Checking for NSFW content ...') - imgs = default_censor(imgs) - - progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{image_number} to system ...') - for x in imgs: - d = [('Prompt', 'prompt', task['log_positive_prompt']), - ('Negative Prompt', 'negative_prompt', task['log_negative_prompt']), - ('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']), - ('Styles', 'styles', - str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])), - ('Performance', 'performance', performance_selection.value)] - - if performance_selection.steps() != steps: - d.append(('Steps', 'steps', steps)) - - d += [('Resolution', 'resolution', str((width, height))), - ('Guidance Scale', 'guidance_scale', guidance_scale), - ('Sharpness', 'sharpness', sharpness), - ('ADM Guidance', 'adm_guidance', str(( - modules.patch.patch_settings[pid].positive_adm_scale, - modules.patch.patch_settings[pid].negative_adm_scale, - modules.patch.patch_settings[pid].adm_scaler_end))), - ('Base Model', 'base_model', base_model_name), - ('Refiner Model', 'refiner_model', refiner_model_name), - ('Refiner Switch', 'refiner_switch', refiner_switch)] - - if refiner_model_name != 'None': - if overwrite_switch > 0: - d.append(('Overwrite Switch', 'overwrite_switch', overwrite_switch)) - if refiner_swap_method != flags.refiner_swap_method: - d.append(('Refiner Swap Method', 'refiner_swap_method', refiner_swap_method)) - if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr: - d.append( - ('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg)) - - if clip_skip > 1: - d.append(('CLIP Skip', 'clip_skip', clip_skip)) - d.append(('Sampler', 'sampler', sampler_name)) - d.append(('Scheduler', 'scheduler', scheduler_name)) - d.append(('VAE', 'vae', vae_name)) - d.append(('Seed', 'seed', str(task['task_seed']))) - - if freeu_enabled: - d.append(('FreeU', 'freeu', str((freeu_b1, freeu_b2, freeu_s1, freeu_s2)))) - - for li, (n, w) in enumerate(loras): - if n != 'None': - d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}')) - - metadata_parser = None - if save_metadata_to_images: - metadata_parser = modules.meta_parser.get_metadata_parser(metadata_scheme) - metadata_parser.set_data(task['log_positive_prompt'], task['positive'], - task['log_negative_prompt'], task['negative'], - steps, base_model_name, refiner_model_name, loras, vae_name) - d.append(('Metadata Scheme', 'metadata_scheme', - metadata_scheme.value if save_metadata_to_images else save_metadata_to_images)) - d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version)) - img_paths.append(log(x, d, metadata_parser, output_format, task)) - - yield_result(async_task, img_paths, black_out_nsfw, False, - do_not_show_finished_images=len(tasks) == 1 or disable_intermediate_results) - except ldm_patched.modules.model_management.InterruptProcessingException as e: + imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_task_id, + denoising_strength, final_scheduler_name, goals, + initial_latent, async_task.steps, switch, task['c'], + task['uc'], task, loras, tiled, use_expansion, width, + height, current_progress, preparation_steps, + async_task.image_number, show_intermediate_results, + persist_image) + + current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1)) + images_to_enhance += imgs + + except ldm_patched.modules.model_management.InterruptProcessingException: if async_task.last_stop == 'skip': print('User skipped') async_task.last_stop = False @@ -983,20 +1302,172 @@ def callback(step, x0, x, total_steps, y): print('User stopped') break + del task['c'], task['uc'] # Save memory execution_time = time.perf_counter() - execution_start_time print(f'Generating and saving time: {execution_time:.2f} seconds') - async_task.processing = False + + if not async_task.should_enhance: + print(f'[Enhance] Skipping, preconditions aren\'t met') + stop_processing(async_task, processing_start_time) + return + + progressbar(async_task, current_progress, 'Processing enhance ...') + + active_enhance_tabs = len(async_task.enhance_ctrls) + should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold() + enhance_uov_before = False + enhance_uov_after = False + if should_process_enhance_uov: + active_enhance_tabs += 1 + enhance_uov_before = async_task.enhance_uov_processing_order == flags.enhancement_uov_before + enhance_uov_after = async_task.enhance_uov_processing_order == flags.enhancement_uov_after + total_count = len(images_to_enhance) * active_enhance_tabs + async_task.images_to_enhance_count = len(images_to_enhance) + + base_progress = current_progress + current_task_id = -1 + done_steps_upscaling = 0 + done_steps_inpainting = 0 + enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) + exception_result = None + for index, img in enumerate(images_to_enhance): + async_task.enhance_stats[index] = 0 + enhancement_image_start_time = time.perf_counter() + + last_enhance_prompt = async_task.prompt + last_enhance_negative_prompt = async_task.negative_prompt + + if enhance_uov_before: + current_task_id += 1 + persist_image = not async_task.save_final_enhanced_image_only or active_enhance_tabs == 0 + current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( + all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps, + switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image) + async_task.enhance_stats[index] += 1 + + if exception_result == 'continue': + continue + elif exception_result == 'break': + break + + # inpaint for all other tabs + for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_cloth_category, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls: + current_task_id += 1 + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) + progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...') + enhancement_task_start_time = time.perf_counter() + is_last_enhance_for_image = (current_task_id + 1) % active_enhance_tabs == 0 and not enhance_uov_after + persist_image = not async_task.save_final_enhanced_image_only or is_last_enhance_for_image + + extras = {} + if enhance_mask_model == 'sam': + print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"') + elif enhance_mask_model == 'u2net_cloth_seg': + extras['cloth_category'] = enhance_mask_cloth_category + + mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image( + img, mask_model=enhance_mask_model, extras=extras, sam_options=SAMOptions( + dino_prompt=enhance_mask_dino_prompt_text, + dino_box_threshold=enhance_mask_box_threshold, + dino_text_threshold=enhance_mask_text_threshold, + dino_erode_or_dilate=async_task.dino_erode_or_dilate, + dino_debug=async_task.debugging_dino, + max_detections=enhance_mask_sam_max_detections, + model_type=enhance_mask_sam_model, + )) + if len(mask.shape) == 3: + mask = mask[:, :, 0] + + if int(enhance_inpaint_erode_or_dilate) != 0: + mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate) + + if enhance_mask_invert: + mask = 255 - mask + + if async_task.debugging_enhance_masks_checkbox: + async_task.yields.append(['preview', (current_progress, 'Loading ...', mask)]) + yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False, + async_task.disable_intermediate_results) + async_task.enhance_stats[index] += 1 + + print(f'[Enhance] {dino_detection_count} boxes detected') + print(f'[Enhance] {sam_detection_count} segments detected in boxes') + print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask') + + if enhance_mask_model == 'sam' and (dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0): + print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping') + continue + + goals_enhance = ['inpaint'] + + try: + current_progress, img, enhance_prompt_processed, enhance_negative_prompt_processed = process_enhance( + all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, + current_progress, current_task_id, denoising_strength, enhance_inpaint_disable_initial_latent, + enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength, + enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask, + preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style, + use_synthetic_refiner, width, persist_image=persist_image) + async_task.enhance_stats[index] += 1 + + if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after + and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled): + if enhance_prompt_processed != '': + last_enhance_prompt = enhance_prompt_processed + if enhance_negative_prompt_processed != '': + last_enhance_negative_prompt = enhance_negative_prompt_processed + + except ldm_patched.modules.model_management.InterruptProcessingException: + if async_task.last_stop == 'skip': + print('User skipped') + async_task.last_stop = False + continue + else: + print('User stopped') + exception_result = 'break' + break + finally: + done_steps_inpainting += enhance_steps + + enhancement_task_time = time.perf_counter() - enhancement_task_start_time + print(f'Enhancement time: {enhancement_task_time:.2f} seconds') + + if exception_result == 'break': + break + + if enhance_uov_after: + current_task_id += 1 + # last step in enhance, always save + persist_image = True + current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( + all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img, + preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, + width, persist_image) + async_task.enhance_stats[index] += 1 + + if exception_result == 'continue': + continue + elif exception_result == 'break': + break + + enhancement_image_time = time.perf_counter() - enhancement_image_start_time + print(f'Enhancement image time: {enhancement_image_time:.2f} seconds') + + stop_processing(async_task, processing_start_time) return while True: time.sleep(0.01) if len(async_tasks) > 0: task = async_tasks.pop(0) - generate_image_grid = task.args.pop(0) try: handler(task) - if generate_image_grid: + if task.generate_image_grid: build_image_wall(task) task.yields.append(['finish', task.results]) pipeline.prepare_text_encoder(async_call=True) diff --git a/repositories/Fooocus/modules/config.py b/repositories/Fooocus/modules/config.py index e3c427d..001cf94 100644 --- a/repositories/Fooocus/modules/config.py +++ b/repositories/Fooocus/modules/config.py @@ -98,7 +98,6 @@ def replace_config(old_key, new_key): try_load_deprecated_user_path_config() - def get_presets(): preset_folder = 'presets' presets = ['initial'] @@ -106,8 +105,11 @@ def get_presets(): print('No presets found.') return presets - return presets + [f[:f.index('.json')] for f in os.listdir(preset_folder) if f.endswith('.json')] + return presets + [f[:f.index(".json")] for f in os.listdir(preset_folder) if f.endswith('.json')] +def update_presets(): + global available_presets + available_presets = get_presets() def try_get_preset_content(preset): if isinstance(preset, str): @@ -198,6 +200,7 @@ def get_dir_or_set_default(key, default_value, as_array=False, make_directory=Fa path_fooocus_expansion = get_dir_or_set_default('path_fooocus_expansion', '../models/prompt_expansion/fooocus_expansion') path_wildcards = get_dir_or_set_default('path_wildcards', '../wildcards/') path_safety_checker = get_dir_or_set_default('path_safety_checker', '../models/safety_checker/') +path_sam = get_dir_or_set_default('path_sam', '../models/sam/') path_outputs = get_path_output() @@ -397,15 +400,39 @@ def init_temp_path(path: str | None, default_path: str) -> str: default_performance = get_config_item_or_set_default( key='default_performance', default_value=Performance.SPEED.value, - validator=lambda x: x in Performance.list(), + validator=lambda x: x in Performance.values(), expected_type=str ) +default_image_prompt_checkbox = get_config_item_or_set_default( + key='default_image_prompt_checkbox', + default_value=False, + validator=lambda x: isinstance(x, bool), + expected_type=bool +) +default_enhance_checkbox = get_config_item_or_set_default( + key='default_enhance_checkbox', + default_value=False, + validator=lambda x: isinstance(x, bool), + expected_type=bool +) default_advanced_checkbox = get_config_item_or_set_default( key='default_advanced_checkbox', default_value=False, validator=lambda x: isinstance(x, bool), expected_type=bool ) +default_developer_debug_mode_checkbox = get_config_item_or_set_default( + key='default_developer_debug_mode_checkbox', + default_value=False, + validator=lambda x: isinstance(x, bool), + expected_type=bool +) +default_image_prompt_advanced_checkbox = get_config_item_or_set_default( + key='default_image_prompt_advanced_checkbox', + default_value=False, + validator=lambda x: isinstance(x, bool), + expected_type=bool +) default_max_image_number = get_config_item_or_set_default( key='default_max_image_number', default_value=32, @@ -442,6 +469,12 @@ def init_temp_path(path: str | None, default_path: str) -> str: validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items()), expected_type=dict ) +vae_downloads = get_config_item_or_set_default( + key='vae_downloads', + default_value={}, + validator=lambda x: isinstance(x, dict) and all(isinstance(k, str) and isinstance(v, str) for k, v in x.items()), + expected_type=dict +) available_aspect_ratios = get_config_item_or_set_default( key='available_aspect_ratios', default_value=modules.flags.sdxl_aspect_ratios, @@ -460,6 +493,71 @@ def init_temp_path(path: str | None, default_path: str) -> str: validator=lambda x: x in modules.flags.inpaint_engine_versions, expected_type=str ) +default_selected_image_input_tab_id = get_config_item_or_set_default( + key='default_selected_image_input_tab_id', + default_value=modules.flags.default_input_image_tab, + validator=lambda x: x in modules.flags.input_image_tab_ids, + expected_type=str +) +default_uov_method = get_config_item_or_set_default( + key='default_uov_method', + default_value=modules.flags.disabled, + validator=lambda x: x in modules.flags.uov_list, + expected_type=str +) +default_controlnet_image_count = get_config_item_or_set_default( + key='default_controlnet_image_count', + default_value=4, + validator=lambda x: isinstance(x, int) and x > 0, + expected_type=int +) +default_ip_images = {} +default_ip_stop_ats = {} +default_ip_weights = {} +default_ip_types = {} + +for image_count in range(default_controlnet_image_count): + image_count += 1 + default_ip_images[image_count] = get_config_item_or_set_default( + key=f'default_ip_image_{image_count}', + default_value=None, + validator=lambda x: x is None or isinstance(x, str) and os.path.exists(x), + expected_type=str + ) + default_ip_types[image_count] = get_config_item_or_set_default( + key=f'default_ip_type_{image_count}', + default_value=modules.flags.default_ip, + validator=lambda x: x in modules.flags.ip_list, + expected_type=str + ) + + default_end, default_weight = modules.flags.default_parameters[default_ip_types[image_count]] + + default_ip_stop_ats[image_count] = get_config_item_or_set_default( + key=f'default_ip_stop_at_{image_count}', + default_value=default_end, + validator=lambda x: isinstance(x, float) and 0 <= x <= 1, + expected_type=float + ) + default_ip_weights[image_count] = get_config_item_or_set_default( + key=f'default_ip_weight_{image_count}', + default_value=default_weight, + validator=lambda x: isinstance(x, float) and 0 <= x <= 2, + expected_type=float + ) + +default_inpaint_advanced_masking_checkbox = get_config_item_or_set_default( + key='default_inpaint_advanced_masking_checkbox', + default_value=False, + validator=lambda x: isinstance(x, bool), + expected_type=bool +) +default_inpaint_method = get_config_item_or_set_default( + key='default_inpaint_method', + default_value=modules.flags.inpaint_option_default, + validator=lambda x: x in modules.flags.inpaint_options, + expected_type=str +) default_cfg_tsnr = get_config_item_or_set_default( key='default_cfg_tsnr', default_value=7.0, @@ -484,6 +582,11 @@ def init_temp_path(path: str | None, default_path: str) -> str: validator=lambda x: isinstance(x, int), expected_type=int ) +default_overwrite_upscale = get_config_item_or_set_default( + key='default_overwrite_upscale', + default_value=-1, + validator=lambda x: isinstance(x, numbers.Number) +) example_inpaint_prompts = get_config_item_or_set_default( key='example_inpaint_prompts', default_value=[ @@ -492,12 +595,56 @@ def init_temp_path(path: str | None, default_path: str) -> str: validator=lambda x: isinstance(x, list) and all(isinstance(v, str) for v in x), expected_type=list ) +example_enhance_detection_prompts = get_config_item_or_set_default( + key='example_enhance_detection_prompts', + default_value=[ + 'face', 'eye', 'mouth', 'hair', 'hand', 'body' + ], + validator=lambda x: isinstance(x, list) and all(isinstance(v, str) for v in x), + expected_type=list +) +default_enhance_tabs = get_config_item_or_set_default( + key='default_enhance_tabs', + default_value=3, + validator=lambda x: isinstance(x, int) and 1 <= x <= 5, + expected_type=int +) +default_enhance_uov_method = get_config_item_or_set_default( + key='default_enhance_uov_method', + default_value=modules.flags.disabled, + validator=lambda x: x in modules.flags.uov_list, + expected_type=int +) +default_enhance_uov_processing_order = get_config_item_or_set_default( + key='default_enhance_uov_processing_order', + default_value=modules.flags.enhancement_uov_before, + validator=lambda x: x in modules.flags.enhancement_uov_processing_order, + expected_type=int +) +default_enhance_uov_prompt_type = get_config_item_or_set_default( + key='default_enhance_uov_prompt_type', + default_value=modules.flags.enhancement_uov_prompt_type_original, + validator=lambda x: x in modules.flags.enhancement_uov_prompt_types, + expected_type=int +) +default_sam_max_detections = get_config_item_or_set_default( + key='default_sam_max_detections', + default_value=0, + validator=lambda x: isinstance(x, int) and 0 <= x <= 10, + expected_type=int +) default_black_out_nsfw = get_config_item_or_set_default( key='default_black_out_nsfw', default_value=False, validator=lambda x: isinstance(x, bool), expected_type=bool ) +default_save_only_final_enhanced_image = get_config_item_or_set_default( + key='default_save_only_final_enhanced_image', + default_value=False, + validator=lambda x: isinstance(x, bool), + expected_type=bool +) default_save_metadata_to_images = get_config_item_or_set_default( key='default_save_metadata_to_images', default_value=False, @@ -518,10 +665,59 @@ def init_temp_path(path: str | None, default_path: str) -> str: ) example_inpaint_prompts = [[x] for x in example_inpaint_prompts] +example_enhance_detection_prompts = [[x] for x in example_enhance_detection_prompts] + +default_invert_mask_checkbox = get_config_item_or_set_default( + key='default_invert_mask_checkbox', + default_value=False, + validator=lambda x: isinstance(x, bool), + expected_type=bool +) + +default_inpaint_mask_model = get_config_item_or_set_default( + key='default_inpaint_mask_model', + default_value='isnet-general-use', + validator=lambda x: x in modules.flags.inpaint_mask_models, + expected_type=str +) + +default_enhance_inpaint_mask_model = get_config_item_or_set_default( + key='default_enhance_inpaint_mask_model', + default_value='sam', + validator=lambda x: x in modules.flags.inpaint_mask_models, + expected_type=str +) + +default_inpaint_mask_cloth_category = get_config_item_or_set_default( + key='default_inpaint_mask_cloth_category', + default_value='full', + validator=lambda x: x in modules.flags.inpaint_mask_cloth_category, + expected_type=str +) + +default_inpaint_mask_sam_model = get_config_item_or_set_default( + key='default_inpaint_mask_sam_model', + default_value='vit_b', + validator=lambda x: x in [y[1] for y in modules.flags.inpaint_mask_sam_model if y[1] == x], + expected_type=str +) + +default_describe_apply_prompts_checkbox = get_config_item_or_set_default( + key='default_describe_apply_prompts_checkbox', + default_value=True, + validator=lambda x: isinstance(x, bool), + expected_type=bool +) +default_describe_content_type = get_config_item_or_set_default( + key='default_describe_content_type', + default_value=[modules.flags.describe_type_photo], + validator=lambda x: all(k in modules.flags.describe_types for k in x), + expected_type=list +) config_dict["default_loras"] = default_loras = default_loras[:default_max_lora_number] + [[True, 'None', 1.0] for _ in range(default_max_lora_number - len(default_loras))] -# mapping config to meta parameter +# mapping config to meta parameter possible_preset_keys = { "default_model": "base_model", "default_refiner": "refiner_model", @@ -537,6 +733,7 @@ def init_temp_path(path: str | None, default_path: str) -> str: "default_sampler": "sampler", "default_scheduler": "scheduler", "default_overwrite_step": "steps", + "default_overwrite_switch": "overwrite_switch", "default_performance": "performance", "default_image_number": "image_number", "default_prompt": "prompt", @@ -546,7 +743,11 @@ def init_temp_path(path: str | None, default_path: str) -> str: "default_save_metadata_to_images": "default_save_metadata_to_images", "checkpoint_downloads": "checkpoint_downloads", "embeddings_downloads": "embeddings_downloads", - "lora_downloads": "lora_downloads" + "lora_downloads": "lora_downloads", + "vae_downloads": "vae_downloads", + "default_vae": "vae", + # "default_inpaint_method": "inpaint_method", # disabled so inpaint mode doesn't refresh after every preset change + "default_inpaint_engine_version": "inpaint_engine_version", } REWRITE_PRESET = False @@ -753,4 +954,40 @@ def downloading_safety_checker_model(): return os.path.join(path_safety_checker, 'stable-diffusion-safety-checker.bin') -update_files() +def download_sam_model(sam_model: str) -> str: + match sam_model: + case 'vit_b': + return downloading_sam_vit_b() + case 'vit_l': + return downloading_sam_vit_l() + case 'vit_h': + return downloading_sam_vit_h() + case _: + raise ValueError(f"sam model {sam_model} does not exist.") + + +def downloading_sam_vit_b(): + load_file_from_url( + url='https://huggingface.co/mashb1t/misc/resolve/main/sam_vit_b_01ec64.pth', + model_dir=path_sam, + file_name='sam_vit_b_01ec64.pth' + ) + return os.path.join(path_sam, 'sam_vit_b_01ec64.pth') + + +def downloading_sam_vit_l(): + load_file_from_url( + url='https://huggingface.co/mashb1t/misc/resolve/main/sam_vit_l_0b3195.pth', + model_dir=path_sam, + file_name='sam_vit_l_0b3195.pth' + ) + return os.path.join(path_sam, 'sam_vit_l_0b3195.pth') + + +def downloading_sam_vit_h(): + load_file_from_url( + url='https://huggingface.co/mashb1t/misc/resolve/main/sam_vit_h_4b8939.pth', + model_dir=path_sam, + file_name='sam_vit_h_4b8939.pth' + ) + return os.path.join(path_sam, 'sam_vit_h_4b8939.pth') diff --git a/repositories/Fooocus/modules/core.py b/repositories/Fooocus/modules/core.py index 78c8975..1c3dacb 100644 --- a/repositories/Fooocus/modules/core.py +++ b/repositories/Fooocus/modules/core.py @@ -231,7 +231,7 @@ def get_previewer(model): if vae_approx_filename in VAE_approx_models: VAE_approx_model = VAE_approx_models[vae_approx_filename] else: - sd = torch.load(vae_approx_filename, map_location='cpu') + sd = torch.load(vae_approx_filename, map_location='cpu', weights_only=True) VAE_approx_model = VAEApprox() VAE_approx_model.load_state_dict(sd) del sd diff --git a/repositories/Fooocus/modules/flags.py b/repositories/Fooocus/modules/flags.py index 29ac461..05c29a2 100644 --- a/repositories/Fooocus/modules/flags.py +++ b/repositories/Fooocus/modules/flags.py @@ -8,9 +8,15 @@ upscale_2 = 'Upscale (2x)' upscale_fast = 'Upscale (Fast 2x)' -uov_list = [ - disabled, subtle_variation, strong_variation, upscale_15, upscale_2, upscale_fast -] +uov_list = [disabled, subtle_variation, strong_variation, upscale_15, upscale_2, upscale_fast] + +enhancement_uov_before = "Before First Enhancement" +enhancement_uov_after = "After Last Enhancement" +enhancement_uov_processing_order = [enhancement_uov_before, enhancement_uov_after] + +enhancement_uov_prompt_type_original = 'Original Prompts' +enhancement_uov_prompt_type_last_filled = 'Last Filled Enhancement Prompts' +enhancement_uov_prompt_types = [enhancement_uov_prompt_type_original, enhancement_uov_prompt_type_last_filled] CIVITAI_NO_KARRAS = ["euler", "euler_ancestral", "heun", "dpm_fast", "dpm_adaptive", "ddim", "uni_pc"] @@ -35,7 +41,8 @@ "dpmpp_3m_sde_gpu": "", "ddpm": "", "lcm": "LCM", - "tcd": "TCD" + "tcd": "TCD", + "restart": "Restart" } SAMPLER_EXTRA = { @@ -60,6 +67,9 @@ refiner_swap_method = 'joint' +default_input_image_tab = 'uov_tab' +input_image_tab_ids = ['uov_tab', 'ip_tab', 'inpaint_tab', 'describe_tab', 'enhance_tab', 'metadata_tab'] + cn_ip = "ImagePrompt" cn_ip_face = "FaceSwap" cn_canny = "PyraCanny" @@ -74,14 +84,19 @@ output_formats = ['png', 'jpeg', 'webp'] +inpaint_mask_models = ['u2net', 'u2netp', 'u2net_human_seg', 'u2net_cloth_seg', 'silueta', 'isnet-general-use', 'isnet-anime', 'sam'] +inpaint_mask_cloth_category = ['full', 'upper', 'lower'] +inpaint_mask_sam_model = ['vit_b', 'vit_l', 'vit_h'] + inpaint_engine_versions = ['None', 'v1', 'v2.5', 'v2.6'] inpaint_option_default = 'Inpaint or Outpaint (default)' inpaint_option_detail = 'Improve Detail (face, hand, eyes, etc.)' inpaint_option_modify = 'Modify Content (add objects, change background, etc.)' inpaint_options = [inpaint_option_default, inpaint_option_detail, inpaint_option_modify] -desc_type_photo = 'Photograph' -desc_type_anime = 'Art/Anime' +describe_type_photo = 'Photograph' +describe_type_anime = 'Art/Anime' +describe_types = [describe_type_photo, describe_type_anime] sdxl_aspect_ratios = [ '704*1408', '704*1344', '768*1344', '768*1280', '832*1216', '832*1152', @@ -102,9 +117,6 @@ class MetadataScheme(Enum): (f'{MetadataScheme.A1111.value} (plain text)', MetadataScheme.A1111.value), ] -controlnet_image_count = 4 -preparation_step_count = 13 - class OutputFormat(Enum): PNG = 'png' @@ -153,7 +165,7 @@ class Performance(Enum): @classmethod def list(cls) -> list: - return list(map(lambda c: c.value, cls)) + return list(map(lambda c: (c.name, c.value), cls)) @classmethod def values(cls) -> list: diff --git a/repositories/Fooocus/modules/hash_cache.py b/repositories/Fooocus/modules/hash_cache.py new file mode 100644 index 0000000..e857b00 --- /dev/null +++ b/repositories/Fooocus/modules/hash_cache.py @@ -0,0 +1,83 @@ +import json +import os +from concurrent.futures import ThreadPoolExecutor +from multiprocessing import cpu_count + +import args_manager +from modules.util import sha256, HASH_SHA256_LENGTH, get_file_from_folder_list + +hash_cache_filename = 'hash_cache.txt' +hash_cache = {} + + +def sha256_from_cache(filepath): + global hash_cache + if filepath not in hash_cache: + print(f"[Cache] Calculating sha256 for {filepath}") + hash_value = sha256(filepath) + print(f"[Cache] sha256 for {filepath}: {hash_value}") + hash_cache[filepath] = hash_value + save_cache_to_file(filepath, hash_value) + + return hash_cache[filepath] + + +def load_cache_from_file(): + global hash_cache + + try: + if os.path.exists(hash_cache_filename): + with open(hash_cache_filename, 'rt', encoding='utf-8') as fp: + for line in fp: + entry = json.loads(line) + for filepath, hash_value in entry.items(): + if not os.path.exists(filepath) or not isinstance(hash_value, str) and len(hash_value) != HASH_SHA256_LENGTH: + print(f'[Cache] Skipping invalid cache entry: {filepath}') + continue + hash_cache[filepath] = hash_value + except Exception as e: + print(f'[Cache] Loading failed: {e}') + + +def save_cache_to_file(filename=None, hash_value=None): + global hash_cache + + if filename is not None and hash_value is not None: + items = [(filename, hash_value)] + mode = 'at' + else: + items = sorted(hash_cache.items()) + mode = 'wt' + + try: + with open(hash_cache_filename, mode, encoding='utf-8') as fp: + for filepath, hash_value in items: + json.dump({filepath: hash_value}, fp) + fp.write('\n') + except Exception as e: + print(f'[Cache] Saving failed: {e}') + + +def init_cache(model_filenames, paths_checkpoints, lora_filenames, paths_loras): + load_cache_from_file() + + if args_manager.args.rebuild_hash_cache: + max_workers = args_manager.args.rebuild_hash_cache if args_manager.args.rebuild_hash_cache > 0 else cpu_count() + rebuild_cache(lora_filenames, model_filenames, paths_checkpoints, paths_loras, max_workers) + + # write cache to file again for sorting and cleanup of invalid cache entries + save_cache_to_file() + + +def rebuild_cache(lora_filenames, model_filenames, paths_checkpoints, paths_loras, max_workers=cpu_count()): + def thread(filename, paths): + filepath = get_file_from_folder_list(filename, paths) + sha256_from_cache(filepath) + + print('[Cache] Rebuilding hash cache') + with ThreadPoolExecutor(max_workers=max_workers) as executor: + for model_filename in model_filenames: + executor.submit(thread, model_filename, paths_checkpoints) + for lora_filename in lora_filenames: + executor.submit(thread, lora_filename, paths_loras) + print('[Cache] Done') diff --git a/repositories/Fooocus/modules/inpaint_worker.py b/repositories/Fooocus/modules/inpaint_worker.py index 43a7ae2..88a78a6 100644 --- a/repositories/Fooocus/modules/inpaint_worker.py +++ b/repositories/Fooocus/modules/inpaint_worker.py @@ -196,7 +196,7 @@ def patch(self, inpaint_head_model_path, inpaint_latent, inpaint_latent_mask, mo if inpaint_head_model is None: inpaint_head_model = InpaintHead() - sd = torch.load(inpaint_head_model_path, map_location='cpu') + sd = torch.load(inpaint_head_model_path, map_location='cpu', weights_only=True) inpaint_head_model.load_state_dict(sd) feed = torch.cat([ diff --git a/repositories/Fooocus/modules/meta_parser.py b/repositories/Fooocus/modules/meta_parser.py index ff930cc..31dfdad 100644 --- a/repositories/Fooocus/modules/meta_parser.py +++ b/repositories/Fooocus/modules/meta_parser.py @@ -11,16 +11,15 @@ import modules.sdxl_styles from modules.flags import MetadataScheme, Performance, Steps from modules.flags import SAMPLERS, CIVITAI_NO_KARRAS -from modules.util import quote, unquote, extract_styles_from_prompt, is_json, get_file_from_folder_list, sha256 +from modules.hash_cache import sha256_from_cache +from modules.util import quote, unquote, extract_styles_from_prompt, is_json, get_file_from_folder_list re_param_code = r'\s*(\w[\w \-/]+):\s*("(?:\\.|[^\\"])+"|[^,]*)(?:,|$)' re_param = re.compile(re_param_code) re_imagesize = re.compile(r"^(\d+)x(\d+)$") -hash_cache = {} - -def load_parameter_button_click(raw_metadata: dict | str, is_generating: bool): +def load_parameter_button_click(raw_metadata: dict | str, is_generating: bool, inpaint_mode: str): loaded_parameter_dict = raw_metadata if isinstance(raw_metadata, str): loaded_parameter_dict = json.loads(raw_metadata) @@ -49,6 +48,8 @@ def load_parameter_button_click(raw_metadata: dict | str, is_generating: bool): get_str('scheduler', 'Scheduler', loaded_parameter_dict, results) get_str('vae', 'VAE', loaded_parameter_dict, results) get_seed('seed', 'Seed', loaded_parameter_dict, results) + get_inpaint_engine_version('inpaint_engine_version', 'Inpaint Engine Version', loaded_parameter_dict, results, inpaint_mode) + get_inpaint_method('inpaint_method', 'Inpaint Mode', loaded_parameter_dict, results) if is_generating: results.append(gr.update()) @@ -160,6 +161,36 @@ def get_seed(key: str, fallback: str | None, source_dict: dict, results: list, d results.append(gr.update()) +def get_inpaint_engine_version(key: str, fallback: str | None, source_dict: dict, results: list, inpaint_mode: str, default=None) -> str | None: + try: + h = source_dict.get(key, source_dict.get(fallback, default)) + assert isinstance(h, str) and h in modules.flags.inpaint_engine_versions + if inpaint_mode != modules.flags.inpaint_option_detail: + results.append(h) + else: + results.append(gr.update()) + results.append(h) + return h + except: + results.append(gr.update()) + results.append('empty') + return None + + +def get_inpaint_method(key: str, fallback: str | None, source_dict: dict, results: list, default=None) -> str | None: + try: + h = source_dict.get(key, source_dict.get(fallback, default)) + assert isinstance(h, str) and h in modules.flags.inpaint_options + results.append(h) + for i in range(modules.config.default_enhance_tabs): + results.append(h) + return h + except: + results.append(gr.update()) + for i in range(modules.config.default_enhance_tabs): + results.append(gr.update()) + + def get_adm_guidance(key: str, fallback: str | None, source_dict: dict, results: list, default=None): try: h = source_dict.get(key, source_dict.get(fallback, default)) @@ -215,14 +246,6 @@ def get_lora(key: str, fallback: str | None, source_dict: dict, results: list, p results.append(1) -def get_sha256(filepath): - global hash_cache - if filepath not in hash_cache: - hash_cache[filepath] = sha256(filepath) - - return hash_cache[filepath] - - def parse_meta_from_preset(preset_content): assert isinstance(preset_content, dict) preset_prepared = {} @@ -245,8 +268,7 @@ def parse_meta_from_preset(preset_content): height = height[:height.index(" ")] preset_prepared[meta_key] = (width, height) else: - preset_prepared[meta_key] = items[settings_key] if settings_key in items and items[ - settings_key] is not None else getattr(modules.config, settings_key) + preset_prepared[meta_key] = items[settings_key] if settings_key in items and items[settings_key] is not None else getattr(modules.config, settings_key) if settings_key == "default_styles" or settings_key == "default_aspect_ratio": preset_prepared[meta_key] = str(preset_prepared[meta_key]) @@ -290,18 +312,18 @@ def set_data(self, raw_prompt, full_prompt, raw_negative_prompt, full_negative_p self.base_model_name = Path(base_model_name).stem base_model_path = get_file_from_folder_list(base_model_name, modules.config.paths_checkpoints) - self.base_model_hash = get_sha256(base_model_path) + self.base_model_hash = sha256_from_cache(base_model_path) if refiner_model_name not in ['', 'None']: self.refiner_model_name = Path(refiner_model_name).stem refiner_model_path = get_file_from_folder_list(refiner_model_name, modules.config.paths_checkpoints) - self.refiner_model_hash = get_sha256(refiner_model_path) + self.refiner_model_hash = sha256_from_cache(refiner_model_path) self.loras = [] for (lora_name, lora_weight) in loras: if lora_name != 'None': lora_path = get_file_from_folder_list(lora_name, modules.config.paths_loras) - lora_hash = get_sha256(lora_path) + lora_hash = sha256_from_cache(lora_path) self.loras.append((Path(lora_name).stem, lora_weight, lora_hash)) self.vae_name = Path(vae_name).stem @@ -582,9 +604,8 @@ def get_metadata_parser(metadata_scheme: MetadataScheme) -> MetadataParser: raise NotImplementedError -def read_info_from_image(filepath) -> tuple[str | None, MetadataScheme | None]: - with Image.open(filepath) as image: - items = (image.info or {}).copy() +def read_info_from_image(file) -> tuple[str | None, MetadataScheme | None]: + items = (file.info or {}).copy() parameters = items.pop('parameters', None) metadata_scheme = items.pop('fooocus_scheme', None) @@ -593,7 +614,7 @@ def read_info_from_image(filepath) -> tuple[str | None, MetadataScheme | None]: if parameters is not None and is_json(parameters): parameters = json.loads(parameters) elif exif is not None: - exif = image.getexif() + exif = file.getexif() # 0x9286 = UserComment parameters = exif.get(0x9286, None) # 0x927C = MakerNote diff --git a/repositories/Fooocus/modules/private_logger.py b/repositories/Fooocus/modules/private_logger.py index 6fdb680..f758272 100644 --- a/repositories/Fooocus/modules/private_logger.py +++ b/repositories/Fooocus/modules/private_logger.py @@ -21,8 +21,8 @@ def get_current_html_path(output_format=None): return html_name -def log(img, metadata, metadata_parser: MetadataParser | None = None, output_format=None, task=None) -> str: - path_outputs = modules.config.temp_path if args_manager.args.disable_image_log else modules.config.path_outputs +def log(img, metadata, metadata_parser: MetadataParser | None = None, output_format=None, task=None, persist_image=True) -> str: + path_outputs = modules.config.temp_path if args_manager.args.disable_image_log or not persist_image else modules.config.path_outputs output_format = output_format if output_format else modules.config.default_output_format date_string, local_temp_filename, only_name = generate_temp_filename(folder=path_outputs, extension=output_format) os.makedirs(os.path.dirname(local_temp_filename), exist_ok=True) diff --git a/repositories/Fooocus/modules/sdxl_styles.py b/repositories/Fooocus/modules/sdxl_styles.py index 12ab6c5..3feb886 100644 --- a/repositories/Fooocus/modules/sdxl_styles.py +++ b/repositories/Fooocus/modules/sdxl_styles.py @@ -59,7 +59,7 @@ def get_random_style(rng: Random) -> str: def apply_style(style, positive): p, n = styles[style] - return p.replace('{prompt}', positive).splitlines(), n.splitlines() + return p.replace('{prompt}', positive).splitlines(), n.splitlines(), '{prompt}' in p def get_words(arrays, total_mult, index): diff --git a/repositories/Fooocus/modules/upscaler.py b/repositories/Fooocus/modules/upscaler.py index 974e4f3..222da1e 100644 --- a/repositories/Fooocus/modules/upscaler.py +++ b/repositories/Fooocus/modules/upscaler.py @@ -1,13 +1,11 @@ -import os -import torch -import modules.core as core +from collections import OrderedDict -from ldm_patched.pfn.architecture.RRDB import RRDBNet as ESRGAN +import modules.core as core +import torch from ldm_patched.contrib.external_upscale_model import ImageUpscaleWithModel -from collections import OrderedDict -from modules.config import path_upscale_models +from ldm_patched.pfn.architecture.RRDB import RRDBNet as ESRGAN +from modules.config import downloading_upscale_model -model_filename = os.path.join(path_upscale_models, 'fooocus_upscaler_s409985e5.bin') opImageUpscaleWithModel = ImageUpscaleWithModel() model = None @@ -18,7 +16,8 @@ def perform_upscale(img): print(f'Upscaling image with shape {str(img.shape)} ...') if model is None: - sd = torch.load(model_filename) + model_filename = downloading_upscale_model() + sd = torch.load(model_filename, weights_only=True) sdo = OrderedDict() for k, v in sd.items(): sdo[k.replace('residual_block_', 'RDB')] = v diff --git a/repositories/Fooocus/modules/util.py b/repositories/Fooocus/modules/util.py index 5003f79..30b9f4d 100644 --- a/repositories/Fooocus/modules/util.py +++ b/repositories/Fooocus/modules/util.py @@ -176,13 +176,11 @@ def generate_temp_filename(folder='./outputs/', extension='png'): def sha256(filename, use_addnet_hash=False, length=HASH_SHA256_LENGTH): - print(f"Calculating sha256 for {filename}: ", end='') if use_addnet_hash: with open(filename, "rb") as file: sha256_value = addnet_hash_safetensors(file) else: sha256_value = calculate_sha256(filename) - print(f"{sha256_value}") return sha256_value[:length] if length is not None else sha256_value @@ -383,13 +381,6 @@ def get_file_from_folder_list(name, folders): return os.path.abspath(os.path.realpath(os.path.join(folders[0], name))) -def makedirs_with_log(path): - try: - os.makedirs(path, exist_ok=True) - except OSError as error: - print(f'Directory {path} could not be created, reason: {error}') - - def get_enabled_loras(loras: list, remove_none=True) -> list: return [(lora[1], lora[2]) for lora in loras if lora[0] and (lora[1] != 'None' if remove_none else True)] @@ -397,6 +388,9 @@ def get_enabled_loras(loras: list, remove_none=True) -> list: def parse_lora_references_from_prompt(prompt: str, loras: List[Tuple[AnyStr, float]], loras_limit: int = 5, skip_file_check=False, prompt_cleanup=True, deduplicate_loras=True, lora_filenames=None) -> tuple[List[Tuple[AnyStr, float]], str]: + # prevent unintended side effects when returning without detection + loras = loras.copy() + if lora_filenames is None: lora_filenames = [] diff --git a/repositories/Fooocus/presets/.gitignore b/repositories/Fooocus/presets/.gitignore index 27e7413..e39511a 100644 --- a/repositories/Fooocus/presets/.gitignore +++ b/repositories/Fooocus/presets/.gitignore @@ -3,5 +3,6 @@ !default.json !lcm.json !playground_v2.5.json +!pony_v6.json !realistic.json !sai.json \ No newline at end of file diff --git a/repositories/Fooocus/presets/anime.json b/repositories/Fooocus/presets/anime.json index 78607ed..bf735c9 100644 --- a/repositories/Fooocus/presets/anime.json +++ b/repositories/Fooocus/presets/anime.json @@ -1,5 +1,5 @@ { - "default_model": "animaPencilXL_v310.safetensors", + "default_model": "animaPencilXL_v500.safetensors", "default_refiner": "None", "default_refiner_switch": 0.5, "default_loras": [ @@ -42,16 +42,19 @@ "Fooocus Masterpiece" ], "default_aspect_ratio": "896*1152", + "default_overwrite_step": -1, "checkpoint_downloads": { - "animaPencilXL_v310.safetensors": "https://huggingface.co/mashb1t/fav_models/resolve/main/fav/animaPencilXL_v310.safetensors" + "animaPencilXL_v500.safetensors": "https://huggingface.co/mashb1t/fav_models/resolve/main/fav/animaPencilXL_v500.safetensors" }, "embeddings_downloads": {}, "lora_downloads": {}, "previous_default_models": [ + "animaPencilXL_v400.safetensors", + "animaPencilXL_v310.safetensors", "animaPencilXL_v300.safetensors", "animaPencilXL_v260.safetensors", "animaPencilXL_v210.safetensors", "animaPencilXL_v200.safetensors", "animaPencilXL_v100.safetensors" ] -} \ No newline at end of file +} diff --git a/repositories/Fooocus/presets/default.json b/repositories/Fooocus/presets/default.json index d02bb8a..e9aa2b6 100644 --- a/repositories/Fooocus/presets/default.json +++ b/repositories/Fooocus/presets/default.json @@ -42,6 +42,7 @@ "Fooocus Sharp" ], "default_aspect_ratio": "1152*896", + "default_overwrite_step": -1, "checkpoint_downloads": { "juggernautXL_v8Rundiffusion.safetensors": "https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/juggernautXL_v8Rundiffusion.safetensors" }, diff --git a/repositories/Fooocus/presets/lcm.json b/repositories/Fooocus/presets/lcm.json index 6713fdd..441cbdc 100644 --- a/repositories/Fooocus/presets/lcm.json +++ b/repositories/Fooocus/presets/lcm.json @@ -42,6 +42,7 @@ "Fooocus Sharp" ], "default_aspect_ratio": "1152*896", + "default_overwrite_step": -1, "checkpoint_downloads": { "juggernautXL_v8Rundiffusion.safetensors": "https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/juggernautXL_v8Rundiffusion.safetensors" }, diff --git a/repositories/Fooocus/presets/playground_v2.5.json b/repositories/Fooocus/presets/playground_v2.5.json index 5bc6059..ac28c26 100644 --- a/repositories/Fooocus/presets/playground_v2.5.json +++ b/repositories/Fooocus/presets/playground_v2.5.json @@ -40,6 +40,8 @@ "Fooocus V2" ], "default_aspect_ratio": "1024*1024", + "default_overwrite_step": -1, + "default_inpaint_engine_version": "None", "checkpoint_downloads": { "playground-v2.5-1024px-aesthetic.fp16.safetensors": "https://huggingface.co/mashb1t/fav_models/resolve/main/fav/playground-v2.5-1024px-aesthetic.fp16.safetensors" }, diff --git a/repositories/Fooocus/presets/pony_v6.json b/repositories/Fooocus/presets/pony_v6.json new file mode 100644 index 0000000..549d7c5 --- /dev/null +++ b/repositories/Fooocus/presets/pony_v6.json @@ -0,0 +1,54 @@ +{ + "default_model": "ponyDiffusionV6XL.safetensors", + "default_refiner": "None", + "default_refiner_switch": 0.5, + "default_vae": "ponyDiffusionV6XL_vae.safetensors", + "default_loras": [ + [ + true, + "None", + 1.0 + ], + [ + true, + "None", + 1.0 + ], + [ + true, + "None", + 1.0 + ], + [ + true, + "None", + 1.0 + ], + [ + true, + "None", + 1.0 + ] + ], + "default_cfg_scale": 7.0, + "default_sample_sharpness": 2.0, + "default_sampler": "dpmpp_2m_sde_gpu", + "default_scheduler": "karras", + "default_performance": "Speed", + "default_prompt": "", + "default_prompt_negative": "", + "default_styles": [ + "Fooocus Pony" + ], + "default_aspect_ratio": "896*1152", + "default_overwrite_step": -1, + "default_inpaint_engine_version": "None", + "checkpoint_downloads": { + "ponyDiffusionV6XL.safetensors": "https://huggingface.co/mashb1t/fav_models/resolve/main/fav/ponyDiffusionV6XL.safetensors" + }, + "embeddings_downloads": {}, + "lora_downloads": {}, + "vae_downloads": { + "ponyDiffusionV6XL_vae.safetensors": "https://huggingface.co/mashb1t/fav_models/resolve/main/fav/ponyDiffusionV6XL_vae.safetensors" + } +} diff --git a/repositories/Fooocus/presets/realistic.json b/repositories/Fooocus/presets/realistic.json index 6db6d0b..8402bbc 100644 --- a/repositories/Fooocus/presets/realistic.json +++ b/repositories/Fooocus/presets/realistic.json @@ -5,7 +5,7 @@ "default_loras": [ [ true, - "SDXL_FILM_PHOTOGRAPHY_STYLE_BetaV0.4.safetensors", + "SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors", 0.25 ], [ @@ -42,12 +42,13 @@ "Fooocus Negative" ], "default_aspect_ratio": "896*1152", + "default_overwrite_step": -1, "checkpoint_downloads": { "realisticStockPhoto_v20.safetensors": "https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/realisticStockPhoto_v20.safetensors" }, "embeddings_downloads": {}, "lora_downloads": { - "SDXL_FILM_PHOTOGRAPHY_STYLE_BetaV0.4.safetensors": "https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/SDXL_FILM_PHOTOGRAPHY_STYLE_BetaV0.4.safetensors" + "SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors": "https://huggingface.co/mashb1t/fav_models/resolve/main/fav/SDXL_FILM_PHOTOGRAPHY_STYLE_V1.safetensors" }, "previous_default_models": ["realisticStockPhoto_v10.safetensors"] } \ No newline at end of file diff --git a/repositories/Fooocus/presets/sai.json b/repositories/Fooocus/presets/sai.json index 918028f..2114631 100644 --- a/repositories/Fooocus/presets/sai.json +++ b/repositories/Fooocus/presets/sai.json @@ -41,6 +41,7 @@ "Fooocus Cinematic" ], "default_aspect_ratio": "1152*896", + "default_overwrite_step": -1, "checkpoint_downloads": { "sd_xl_base_1.0_0.9vae.safetensors": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors", "sd_xl_refiner_1.0_0.9vae.safetensors": "https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors" diff --git a/repositories/Fooocus/sdxl_styles/samples/fooocus_pony.jpg b/repositories/Fooocus/sdxl_styles/samples/fooocus_pony.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b34e5c76d3ada385487fe4af0f01a9b03b3191d2 GIT binary patch literal 5200 zcmbW(XHXMbn+NcO4svPIyCl>ALIe!b1SCKNq?b^XBE6T;M2d(?Zvl-IA#~|2bfq_G zp-3005_-RY!0X-Jd3R<%?e25td^*pZ`TypbGjndHZn#m~de0pet4<`v}y2?z>{ z2($5sNr(wa@CykG{c{PBoSdABg6cLE)omemW_F?fbKQIe&{F`y0Aa*HJ^&FtkeD8L z(*@uG0Dz=_(*6_pzY0i1{3kCt1trz3KMi$s03skUF%bzdDJcobpYD)9=KvCVQieN{ z%4E0otjYPj7@^@wITRq3s&*#*v3>A88}A58DrOc|HgYp8b7(@sA4# zApTF*zh(c!MgPY|L_$JLLjI2nNaX)#6VsEB-jO6@P}U>2_PWgn4X0pKNy@2erv%;8 z-)FM%9;0FgOa0_O_=ol%vi}_{;{PT4H|)P%vjA#h;Gf|U(*u+Mg6|4(>9H^Jqe4n3 zHj*6;hR|;T)a;Fg1evDpys1+bk>|RKXCx710l&M=8^&zw#uriOcWUziUvp1Q)V0~v zk(5_z^Y%#6jaj#MFOU!N$xJNBUy08r9sHAUWMFQnh)j&a`ELSDE3vchrL#k$j6EwIhCIqWO!@zE1{8(S*IROb-pm| z*Pg$w%WlEZ+79h!G;JP9{W#bG!GmCIY$x3&PiZ0>&{@I~HvmbJjE(8+GXHwdwV4I4 zS7EfyRnpZ%Y@B4VQnj4+{6rK zG~u}miT7#9She*C8vR}x>8&%zEf-5;xZepIvekAH!&Cee)d}QvA2OH{!PtwO`6SoK zWxr`-9uu!!c<8)*tD<%;q|q%$zov)9vs3f;o%YS|N%)o#L_;IK#e_Tm=ay7t->Rxx z+$G(KuDKxC&Y@o0^~Y1f{hCMac@9|=YL#<`iJxp!eza+BVLo~QUB7bn6}tRsF5E7}x=784%f};NvTVB)o3qVa;^xht zHO1=8eMmdRdm#gD>Wc>B`#V+|FDy&vb;hr%HL@MG;5l$|<%@|o-46(#A&YV#aeQ^y zT=?16Is256bqIZOpjXqR$@;&T|2Lt<_v7$DkcR%*fiKqMGpNs3?TU&A` zt?J#fvc*2_4E0D>nHN6K?FFDfvw6+o6b^95rv`d}lai*_ldbjgGe(rZQBrV=UX7(1HS>lSETV~+MGTR7=wW4V21riDZRn76%&K;pmmH} zCPV@;;3dmtB~;;N=@29G3H@x^`nYs~Y?y;I!U<_}X_l;z9a_PAwufxvjq|;1SQO{; zcrUza=f`B;Q!_Wn->gw1n#*e@W6k6>8Ok}SZes6b+UQOuOzkoebUAq&_=)(s$z{dJ`|(HL%zCD|uTy-rzv+E6!8LEATr6CXKM zHR5~gt|5H$djQm&%Y?gj%mwbN+oH2d6Zl3 zl`>l;`t#Cm(KT5P0e@Ugq;xTnV3Yhj%QtmH&XV@zGqY!8!&3--^@-k@X$WMn?46%z zT5nBMdnYaPnQKNj7&Lg!F<-7+%=eBy*>QzprN}C(wDy4caG4_;CX%tEg!B<#eBjSB zRW*re1lRL7Jv|QCsHKP4Ie_+PR*Kf&+AkJ@Nc_l)K1=jvsgwZP)nO-FSI%UHPw2aksjRx!zh3O{5su8GgJ^ z69P%9+OHc-XYsDJHcb$hOoQ!)KpG8W(aXcI4#V--3szTsW~0QHTW#$Fe}-W3K%r$o zu(n0>6>Tc(K+*}*lz9MR7$!g3<~yIv?}5+6TAFG5RkLb94jFCom5+I@OX`Nc)$$o6 zKwNVA16Zu~7ZVCf4WyD5w7YO{Vw~cK)uop_i0>296eq0cPt&6js0a1lBG=7s)}I1G zx9d@T#XbTuoRw^xN!g#ut%h#}@QFDWQ(7O1>{DL&4zWa|D@vqSGjev=$EwxpZ(DX{ zB=_!Kngoq^+d3B50}X*+hhIiCw%*o3*IRrUyu!mZ&#s@MEhlnQB1YDkVDE1|CxHxp$l9Pch}9Jq&-b#`e5>0x=y`_8 z)B#$OSqaME33qDqQ9j&eM13lLbf!M``QoZR; zyYR_dJ=>-Zh5S_s9TlM+GT;XK+VOb?<=NFlr$be+p2l1i-?ka8<-FgOk0n_;xN^3O zt^(7?_C7Z4w+rlY7%yI?sdB$yz`*HX=3AnQZXl$gh_!#ujD4=3-Y7Ec+eXT!Xj z#bTzq`9P;h?2$hYy4gDzv+U;*(^;$ud5FYQ%3~8+6rbICiLR*eHi;_GE!u4@T={-s z@BY!FSPdd|-%T{;h^~`ub@KH4uD-_9b;r-!yetVcv|HV%vnDNO6f-VuhI-Ce^=kY0 zDl`*%+U~wHL-CMJgUw>)H>4b9s`KF2um#Yr554W)A>-zzY$%- zBAkaNF@!G$wJiyK0pZU&)aDCG7?k>pRuVxO)DFoZ&hHzYBxN6XzDaV&bG=YA}18FQYU9z-x$3t ztK|XWWU+_{ZBj2FeL8LxVj_9#gIK<<;aeut`&hE}mAO|Z73?h*_T!3CG|;@fF9ktl zg*Kqp#cxEKxD|PNHd+FPVU4JXI+u{VEhVlxH_(CjFS(ACJi<& z2c|c&I^|a~>~W>OF;4u!sgIoKQ8luw-sbx|D0e1IP()DBo2Z- zIr#*IwkahBGVz~wY!{1*RA!6 z>#}ZODi!0RaUS=nf!$^2+Y1EsrPwPIXCz$Xm}t;zfj6ZMlk0=WDg|MFu`E_RKGQ;HY`4>AeJt- zcxG4-7uSBOgv^Hhaxve`Nf&R5DK5Aakla1Oo{tu{_uT*#AY^|TS*bls9FSRp!hzCF z)q5%i*|rvbC$%X5Gext2X-T_T%AUZL#YRcr(+|Jaj&zQH6#qi{;^=4F`f|{0-Ynl{ zzh2l;2N_4D@Q+N-a_ofldH>YezOcJecy0Gfr+_t=nsG^J1VM1C9Zz#I^K1=Vt}Bcx zsDrsI7dkKxJ6{N2&*p<2f39$thEbFcswI`Xp6#M^Jxf=TgC`QFXLt1Z^eL{zl|M%_ zOH+jjaRD|}3b6NuYS3FO5GaG}y4cA@L*ehI~lqVv(soL^{94LjfT7 zNQo8M@)1vgD(OqL506TKyf0?B9MLRD6P<4u*7suxqLa%$w+Yc{qu+kCG{%|k4Qq@L zpHD@l`=7Ros_{TIx)I^=3Zcld=LPLPzCW=XaHyP5*5m{dspdwfVWg*SLDj=*Hi0gL zt-l*GZxzd@Y(efcKhRK;v02T5CIO}J>OJ(@-J(|(@^*1z-hdr9o< zP|GDQ{g!V`XN4V?mU(pQ&1;Kde0WLhlxqONCaP|A`!anN2mKuCU&@fC)PYADPvIjxE6B-0 zL{KZ+IHDEdftJG#fZ`wD1ADo@O*s+|;wf})bSW0%lTD4G^GXIO8dh&s=B101?!c)`S-DnPRm|;(`m){T&<`UWK;CxG<|nXW=cp=I z?ni;f8Zq%JY~3iN1s>d?%7Q#XHHf1tFr-7{a8?p!jVpBQK}oa_mZ{z?ZD;uL!^jO0I*7n z;N&sLo)O%yscDFOg;;ZjUOUJRCef+zhxT^f+vdY&${9g+XIrXR&J?>_v1_Z&tq>`Sh}EH=$DqLuDhuB)yMy*eiz4*^pk)b^j@ zT^eDAdWL6|%KYwEeGHh%*YA&;CYF1xU&lB5YeALMb+_T! z%zBxoe7fn8j;CboOLVtR@f`bHglG8($a{lS7wv}7c5$EalhT>;SI%T(Scaa? zFCNI~Jzb3Ki`6LOx*m=o^hn!ZhHlTUirIyXYzPlGWcTnj#j%?C!7gW+QWCe5J<`rB zPea!oWiZ)?Lo@1FAEUG`1ZDg)l?(<_cQe;7DQ>M@Q0`Kub`gcI1@lff02|cRZ1|nE z^qlfZJ;W4@eYGiVoqDvR)cBE(>_V2BVY+^Ow1=4GF!>^++dU);oRp`l8WKiy_?P0sddlZ-Ddu0gZf5=khZy4q literal 0 HcmV?d00001 diff --git a/repositories/Fooocus/sdxl_styles/sdxl_styles_fooocus.json b/repositories/Fooocus/sdxl_styles/sdxl_styles_fooocus.json index cf64eab..c589f68 100644 --- a/repositories/Fooocus/sdxl_styles/sdxl_styles_fooocus.json +++ b/repositories/Fooocus/sdxl_styles/sdxl_styles_fooocus.json @@ -14,7 +14,7 @@ }, { "name": "Fooocus Masterpiece", - "prompt": "(masterpiece), (best quality), (ultra-detailed), {prompt}, illustration, disheveled hair, detailed eyes, perfect composition, moist skin, intricate details, earrings, by wlop", + "prompt": "(masterpiece), (best quality), (ultra-detailed), {prompt}, illustration, disheveled hair, detailed eyes, perfect composition, moist skin, intricate details, earrings", "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality" }, { @@ -30,5 +30,10 @@ "name": "Fooocus Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured" + }, + { + "name": "Fooocus Pony", + "prompt": "score_9, score_8_up, score_7_up, {prompt}", + "negative_prompt": "score_6, score_5, score_4" } ] From 113aa24ec8a484c3af5ba07f011cf87845187b96 Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Sun, 4 Aug 2024 18:43:04 +0800 Subject: [PATCH 04/15] read input image upgrade --- fooocusapi/utils/img_utils.py | 24 ++++++++++++++++++++---- 1 file changed, 20 insertions(+), 4 deletions(-) diff --git a/fooocusapi/utils/img_utils.py b/fooocusapi/utils/img_utils.py index 602ffa9..d65fee6 100644 --- a/fooocusapi/utils/img_utils.py +++ b/fooocusapi/utils/img_utils.py @@ -94,14 +94,30 @@ def read_input_image(input_image: UploadFile | str | None) -> np.ndarray | None: Returns: numpy array of image """ - if input_image is None or input_image == '': - return None + headers = { + 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:128.0) Gecko/20100101 Firefox/128.0' + } if isinstance(input_image, str): - input_image_bytes = base64.b64decode(input_image) - else: + if input_image is None or input_image in ('', 'None', 'null', 'string', 'none'): + return None + if input_image.startswith("http"): + try: + response = requests.get(input_image, headers=headers, timeout=20) + input_image_bytes = response.content + except Exception: + return None + else: + if input_image.startswith('data:image'): + input_image = input_image.split(sep=',', maxsplit=1)[1] + input_image_bytes = base64.b64decode(input_image) + + if isinstance(input_image, UploadFile): input_image_bytes = input_image.file.read() + pil_image = Image.open(BytesIO(input_image_bytes)) image = np.array(pil_image) + if image.ndim == 2: + image = np.stack((image, image, image), axis=-1) return image From 29f766b2f6e50ff706226ef9a501890aa53d358f Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Wed, 7 Aug 2024 23:59:57 +0800 Subject: [PATCH 05/15] nothing here, Just to show that I am working hard for 2.5 :sob: --- fooocusapi/models/common/requests.py | 6 +- fooocusapi/models/common/task.py | 1 + fooocusapi/models/requests_v1.py | 188 ++- fooocusapi/models/requests_v2.py | 14 +- fooocusapi/parameters.py | 34 +- fooocusapi/utils/api_utils.py | 40 +- fooocusapi/utils/call_worker.py | 6 +- fooocusapi/worker.py | 2201 ++++++++++++++++---------- fooocusapi/worker_merge.py | 1593 +++++++++++++++++++ requirements.txt | 2 +- 10 files changed, 3222 insertions(+), 863 deletions(-) create mode 100644 fooocusapi/worker_merge.py diff --git a/fooocusapi/models/common/requests.py b/fooocusapi/models/common/requests.py index a7e5821..b5687b5 100644 --- a/fooocusapi/models/common/requests.py +++ b/fooocusapi/models/common/requests.py @@ -81,11 +81,15 @@ class AdvancedParams(BaseModel): inpaint_engine: str = Field(default_inpaint_engine_version, description="Inpaint Engine") inpaint_strength: float = Field(1.0, description="Inpaint Denoising Strength", ge=0.0, le=1.0) inpaint_respective_field: float = Field(1.0, description="Inpaint Respective Field", ge=0.0, le=1.0) - inpaint_mask_upload_checkbox: bool = Field(False, description="Upload Mask") + inpaint_mask_upload_checkbox: bool = Field(True, description="Upload Mask") invert_mask_checkbox: bool = Field(False, description="Invert Mask") inpaint_erode_or_dilate: int = Field(0, description="Mask Erode or Dilate", ge=-64, le=64) black_out_nsfw: bool = Field(False, description="Block out NSFW") vae_name: str = Field(default_vae, description="VAE name") + save_final_enhanced_image_only: bool = Field(True, description="Save Final Enhanced Image Only") + debugging_dino: bool = Field(False, description="Debug DINO") + dino_erode_or_dilate: int = Field(0, description="Mask Erode or Dilate", ge=-64, le=64) + debugging_enhance_masks_checkbox: bool = Field(False, description="Debug Enhance Masks") class CommonRequest(BaseModel): diff --git a/fooocusapi/models/common/task.py b/fooocusapi/models/common/task.py index 2bac4c3..2840a33 100644 --- a/fooocusapi/models/common/task.py +++ b/fooocusapi/models/common/task.py @@ -16,6 +16,7 @@ class TaskType(str, Enum): img_uov = 'Image Upscale or Variation' img_inpaint_outpaint = 'Image Inpaint or Outpaint' img_prompt = 'Image Prompt' + img_enhance = 'Image Enhancement' not_found = 'Not Found' diff --git a/fooocusapi/models/requests_v1.py b/fooocusapi/models/requests_v1.py index 25660c7..fe580a7 100644 --- a/fooocusapi/models/requests_v1.py +++ b/fooocusapi/models/requests_v1.py @@ -12,9 +12,9 @@ advanced_params_parser ) from fooocusapi.models.common.base import ( - ImagePrompt, + EnhanceCtrlNets, ImagePrompt, ControlNetType, - OutpaintExpansion, + MaskModel, OutpaintExpansion, UpscaleOrVaryMethod, PerformanceSelection ) @@ -212,14 +212,13 @@ def as_form( default=None, ge=0, le=2, description="Weight for image prompt, None for default value"), cn_type4: ControlNetType = Form( default=ControlNetType.cn_ip, description="ControlNet type for image prompt"), + prompt: str = Form(''), negative_prompt: str = Form(default_prompt_negative), style_selections: List[str] = Form(default_styles, description="Fooocus style selections, separated by comma"), - performance_selection: PerformanceSelection = Form( - PerformanceSelection.speed), + performance_selection: PerformanceSelection = Form(PerformanceSelection.speed), aspect_ratios_selection: str = Form(default_aspect_ratio), - image_number: int = Form( - default=1, description="Image number", ge=1, le=32), + image_number: int = Form(default=1, description="Image number", ge=1, le=32), image_seed: int = Form(default=-1, description="Seed to generate image, -1 for random"), sharpness: float = Form(default=2.0, ge=0.0, le=30.0), guidance_scale: float = Form(default=default_cfg_scale, ge=1.0, le=30.0), @@ -272,3 +271,180 @@ def as_form( loras=loras_model, advanced_params=advanced_params_obj, save_meta=save_meta, meta_scheme=meta_scheme, save_extension=save_extension, save_name=save_name, require_base64=require_base64, read_wildcards_in_order=read_wildcards_in_order, async_process=async_process, webhook_url=webhook_url) + + +class ImageEnhanceRequest(CommonRequest): + """ + Image Enhance Request + """ + enhance_input_image: UploadFile = Form(File(None), description="Input image for enhance") + enhance_checkbox: bool = Form(default=True, description="Enhance checkbox") + enhance_uov_method: UpscaleOrVaryMethod = Form(default=UpscaleOrVaryMethod.strong_variation, description="Upscale or vary method") + enhance_uov_processing_order: str = Form(default="Before First Enhancement", description="Upscale or vary processing order") + enhance_uov_prompt_type: str = Form(default="Original Prompts", description="Upscale or vary prompt type") + enhance_ctrlnets: List[EnhanceCtrlNets] + + @classmethod + def as_form( + cls, + enhance_input_image: UploadFile = Form(File(None), description="Input image for enhance"), + enhance_checkbox: bool = Form(default=True, description="Enhance checkbox"), + enhance_uov_method: UpscaleOrVaryMethod = Form(default=UpscaleOrVaryMethod.strong_variation, description="Upscale or vary method"), + enhance_uov_processing_order: str = Form(default="Before First Enhancement", description="Upscale or vary processing order"), + enhance_uov_prompt_type: str = Form(default="Original Prompts", description="Upscale or vary prompt type"), + + enhance_enabled_1: bool = Form(default=True, description="Enhance checkbox 1"), + enhance_mask_dino_prompt_1: str = Form(default="", description="Mask dino prompt"), + enhance_prompt_1: str = Form(default="", description="Prompt"), + enhance_negative_prompt_1: str = Form(default="", description="Negative prompt"), + enhance_mask_model_1: MaskModel = Form(default=MaskModel.sam, description="Mask model"), + enhance_mask_cloth_category_1: str = Form(default="full", description="Mask cloth category"), + enhance_mask_sam_model_1: str = Form(default="vit_b", description="one of vit_b vit_h vit_l"), + enhance_mask_text_threshold_1: float = Form(default=0.25, ge=0, le=1, description="Mask text threshold"), + enhance_mask_box_threshold_1: float = Form(default=0.3, ge=0, le=1, description="Mask box threshold"), + enhance_mask_sam_max_detections_1: int = Form(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all"), + enhance_inpaint_disable_initial_latent_1: bool = Form(default=False, description="Inpaint disable initial latent"), + enhance_inpaint_engine_1: str = Form(default="v2.6", description="Inpaint engine"), + enhance_inpaint_strength_1: float = Form(default=1, ge=0, le=1, description="Inpaint strength"), + enhance_inpaint_respective_field_1: float = Form(default=0.618, ge=0, le=1, description="Inpaint respective field"), + enhance_inpaint_erode_or_dilate_1: float = Form(default=0, ge=-64, le=64, description="Inpaint erode or dilate"), + enhance_mask_invert_1: bool = Form(default=False, description="Inpaint mask invert"), + + enhance_enabled_2: bool = Form(default=True, description="Enhance checkbox 1"), + enhance_mask_dino_prompt_2: str = Form(default="", description="Mask dino prompt"), + enhance_prompt_2: str = Form(default="", description="Prompt"), + enhance_negative_prompt_2: str = Form(default="", description="Negative prompt"), + enhance_mask_model_2: MaskModel = Form(default=MaskModel.sam, description="Mask model"), + enhance_mask_cloth_category_2: str = Form(default="full", description="Mask cloth category"), + enhance_mask_sam_model_2: str = Form(default="vit_b", description="one of vit_b vit_h vit_l"), + enhance_mask_text_threshold_2: float = Form(default=0.25, ge=0, le=1, description="Mask text threshold"), + enhance_mask_box_threshold_2: float = Form(default=0.3, ge=0, le=1, description="Mask box threshold"), + enhance_mask_sam_max_detections_2: int = Form(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all"), + enhance_inpaint_disable_initial_latent_2: bool = Form(default=False, description="Inpaint disable initial latent"), + enhance_inpaint_engine_2: str = Form(default="v2.6", description="Inpaint engine"), + enhance_inpaint_strength_2: float = Form(default=1, ge=0, le=1, description="Inpaint strength"), + enhance_inpaint_respective_field_2: float = Form(default=0.618, ge=0, le=1, description="Inpaint respective field"), + enhance_inpaint_erode_or_dilate_2: float = Form(default=0, ge=-64, le=64, description="Inpaint erode or dilate"), + enhance_mask_invert_2: bool = Form(default=False, description="Inpaint mask invert"), + + enhance_enabled_3: bool = Form(default=True, description="Enhance checkbox 1"), + enhance_mask_dino_prompt_3: str = Form(default="", description="Mask dino prompt"), + enhance_prompt_3: str = Form(default="", description="Prompt"), + enhance_negative_prompt_3: str = Form(default="", description="Negative prompt"), + enhance_mask_model_3: MaskModel = Form(default=MaskModel.sam, description="Mask model"), + enhance_mask_cloth_category_3: str = Form(default="full", description="Mask cloth category"), + enhance_mask_sam_model_3: str = Form(default="vit_b", description="one of vit_b vit_h vit_l"), + enhance_mask_text_threshold_3: float = Form(default=0.25, ge=0, le=1, description="Mask text threshold"), + enhance_mask_box_threshold_3: float = Form(default=0.3, ge=0, le=1, description="Mask box threshold"), + enhance_mask_sam_max_detections_3: int = Form(default=0, ge=0, le=10, description="Mask sam max detections, Set to 0 to detect all"), + enhance_inpaint_disable_initial_latent_3: bool = Form(default=False, description="Inpaint disable initial latent"), + enhance_inpaint_engine_3: str = Form(default="v2.6", description="Inpaint engine"), + enhance_inpaint_strength_3: float = Form(default=1, ge=0, le=1, description="Inpaint strength"), + enhance_inpaint_respective_field_3: float = Form(default=0.618, ge=0, le=1, description="Inpaint respective field"), + enhance_inpaint_erode_or_dilate_3: float = Form(default=0, ge=-64, le=64, description="Inpaint erode or dilate"), + enhance_mask_invert_3: bool = Form(default=False, description="Inpaint mask invert"), + + prompt: str = Form(''), + negative_prompt: str = Form(default_prompt_negative), + style_selections: List[str] = Form(default_styles, description="Fooocus style selections, separated by comma"), + performance_selection: PerformanceSelection = Form(PerformanceSelection.speed), + aspect_ratios_selection: str = Form(default_aspect_ratio), + image_number: int = Form(default=1, description="Image number", ge=1, le=32), + image_seed: int = Form(default=-1, description="Seed to generate image, -1 for random"), + sharpness: float = Form(default=2.0, ge=0.0, le=30.0), + guidance_scale: float = Form(default=default_cfg_scale, ge=1.0, le=30.0), + base_model_name: str = Form(default_base_model_name), + refiner_model_name: str = Form(default_refiner_model_name), + refiner_switch: float = Form(default=default_refiner_switch, description="Refiner Switch At", ge=0.1, le=1.0), + loras: str | None = Form(default=default_loras_json, description='Lora config in JSON. Format as [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}]'), + advanced_params: str | None = Form(default=None, description="Advanced parameters in JSON"), + save_meta: bool = Form(default=False, description="Save metadata to image"), + meta_scheme: str = Form(default='fooocus', description="Metadata scheme, one of 'fooocus', 'a111'"), + save_extension: str = Form(default="png", description="Save extension, png, jpg or webp"), + save_name: str = Form(default="", description="Save name, empty for auto generate"), + require_base64: bool = Form(default=False, description="Return base64 data of generated image"), + read_wildcards_in_order: bool = Form(default=False, description="Read wildcards in order"), + async_process: bool = Form(default=False, description="Set to true will run async and return job info for retrieve generation result later"), + webhook_url: str = Form(default="", description="Webhook url for generation result") + ): + style_selection_arr = style_selection_parser(style_selections) + loras_model = lora_parser(loras) + advanced_params_obj = advanced_params_parser(advanced_params) + enhance_ctrlnets = [ + EnhanceCtrlNets( + enhance_enabled=enhance_enabled_1, + enhance_mask_dino_prompt=enhance_mask_dino_prompt_1, + enhance_prompt=enhance_prompt_1, + enhance_negative_prompt=enhance_negative_prompt_1, + enhance_mask_model=enhance_mask_model_1, + enhance_mask_cloth_category=enhance_mask_cloth_category_1, + enhance_mask_sam_model=enhance_mask_sam_model_1, + enhance_mask_text_threshold=enhance_mask_text_threshold_1, + enhance_mask_box_threshold=enhance_mask_box_threshold_1, + enhance_mask_sam_max_detections=enhance_mask_sam_max_detections_1, + enhance_inpaint_disable_initial_latent=enhance_inpaint_disable_initial_latent_1, + enhance_inpaint_engine=enhance_inpaint_engine_1, + enhance_inpaint_strength=enhance_inpaint_strength_1, + enhance_inpaint_respective_field=enhance_inpaint_respective_field_1, + enhance_inpaint_erode_or_dilate=enhance_inpaint_erode_or_dilate_1, + enhance_mask_invert=enhance_mask_invert_1), + EnhanceCtrlNets( + enhance_enabled=enhance_enabled_2, + enhance_mask_dino_prompt=enhance_mask_dino_prompt_2, + enhance_prompt=enhance_prompt_2, + enhance_negative_prompt=enhance_negative_prompt_2, + enhance_mask_model=enhance_mask_model_2, + enhance_mask_cloth_category=enhance_mask_cloth_category_2, + enhance_mask_sam_model=enhance_mask_sam_model_2, + enhance_mask_text_threshold=enhance_mask_text_threshold_2, + enhance_mask_box_threshold=enhance_mask_box_threshold_2, + enhance_mask_sam_max_detections=enhance_mask_sam_max_detections_2, + enhance_inpaint_disable_initial_latent=enhance_inpaint_disable_initial_latent_2, + enhance_inpaint_engine=enhance_inpaint_engine_2, + enhance_inpaint_strength=enhance_inpaint_strength_2, + enhance_inpaint_respective_field=enhance_inpaint_respective_field_2, + enhance_inpaint_erode_or_dilate=enhance_inpaint_erode_or_dilate_2, + enhance_mask_invert=enhance_mask_invert_2), + EnhanceCtrlNets( + enhance_enabled=enhance_enabled_3, + enhance_mask_dino_prompt=enhance_mask_dino_prompt_3, + enhance_prompt=enhance_prompt_3, + enhance_negative_prompt=enhance_negative_prompt_3, + enhance_mask_model=enhance_mask_model_3, + enhance_mask_cloth_category=enhance_mask_cloth_category_3, + enhance_mask_sam_model=enhance_mask_sam_model_3, + enhance_mask_text_threshold=enhance_mask_text_threshold_3, + enhance_mask_box_threshold=enhance_mask_box_threshold_3, + enhance_mask_sam_max_detections=enhance_mask_sam_max_detections_3, + enhance_inpaint_disable_initial_latent=enhance_inpaint_disable_initial_latent_3, + enhance_inpaint_engine=enhance_inpaint_engine_3, + enhance_inpaint_strength=enhance_inpaint_strength_3, + enhance_inpaint_respective_field=enhance_inpaint_respective_field_3, + enhance_inpaint_erode_or_dilate=enhance_inpaint_erode_or_dilate_3, + enhance_mask_invert=enhance_mask_invert_3 + ), + ] + return cls( + enhance_input_image=enhance_input_image, + enhance_checkbox=enhance_checkbox, + enhance_uov_method=enhance_uov_method, + enhance_uov_processing_order=enhance_uov_processing_order, + enhance_uov_prompt_type=enhance_uov_prompt_type, + enhance_ctrlnets=enhance_ctrlnets, + prompt=prompt, negative_prompt=negative_prompt, + style_selections=style_selection_arr, + performance_selection=performance_selection, + aspect_ratios_selection=aspect_ratios_selection, + image_number=image_number, + image_seed=image_seed, + sharpness=sharpness, + guidance_scale=guidance_scale, + base_model_name=base_model_name, + refiner_model_name=refiner_model_name, + refiner_switch=refiner_switch, + loras=loras_model, advanced_params=advanced_params_obj, + save_meta=save_meta, meta_scheme=meta_scheme, + save_extension=save_extension, save_name=save_name, + require_base64=require_base64, + read_wildcards_in_order=read_wildcards_in_order, + async_process=async_process, webhook_url=webhook_url) diff --git a/fooocusapi/models/requests_v2.py b/fooocusapi/models/requests_v2.py index 3b3c6de..2e52e74 100644 --- a/fooocusapi/models/requests_v2.py +++ b/fooocusapi/models/requests_v2.py @@ -4,7 +4,7 @@ from fooocusapi.models.common.requests import CommonRequest from fooocusapi.models.common.base import ( ControlNetType, - OutpaintExpansion, + EnhanceCtrlNets, OutpaintExpansion, ImagePrompt, UpscaleOrVaryMethod ) @@ -48,3 +48,15 @@ class ImgUpscaleOrVaryRequestJson(CommonRequest): upscale_value: float | None = Field(1.0, ge=1.0, le=5.0, description="Upscale custom value, 1.0 for default value") input_image: str = Field(description="Init image for upscale or outpaint as base64") image_prompts: List[ImagePromptJson | ImagePrompt] = [] + + +class ImageEnhanceRequestJson(CommonRequest): + """ + Image Enhance Request + """ + enhance_input_image: str = Field(default='', description="Input image for enhance") + enhance_checkbox: bool = Field(default=True, description="Enhance checkbox") + enhance_uov_method: UpscaleOrVaryMethod = Field(default=UpscaleOrVaryMethod.strong_variation, description="Upscale or vary method") + enhance_uov_processing_order: str = Field(default="Before First Enhancement", description="Upscale or vary processing order") + enhance_uov_prompt_type: str = Field(default="Original Prompts", description="Upscale or vary prompt type") + enhance_ctrlnets: List[EnhanceCtrlNets] diff --git a/fooocusapi/parameters.py b/fooocusapi/parameters.py index 1f7b358..9ff36c0 100644 --- a/fooocusapi/parameters.py +++ b/fooocusapi/parameters.py @@ -2,7 +2,9 @@ import numpy as np import copy +from fooocusapi.models.common.base import EnhanceCtrlNets from fooocusapi.models.common.requests import AdvancedParams +from modules import config class ImageGenerationParams: @@ -20,7 +22,7 @@ def __init__( base_model_name: str, refiner_model_name: str, refiner_switch: float, - loras: List[Tuple[str, float]], + loras: List[Tuple[bool, str, float]], uov_input_image: np.ndarray | None, uov_method: str, upscale_value: float | None, @@ -31,8 +33,15 @@ def __init__( outpaint_distance_bottom: int, inpaint_input_image: Dict[str, np.ndarray] | None, inpaint_additional_prompt: str | None, + enhance_input_image: np.ndarray | None, + enhance_checkbox: bool, + enhance_uov_method: str, + enhance_uov_processing_order, + enhance_uov_prompt_type, + enhance_ctrlnets: List[EnhanceCtrlNets], image_prompts: List[Tuple[np.ndarray, float, float, str]], - advanced_params: List[any] | None, + read_wildcards_in_order: bool, + advanced_params: AdvancedParams | None, save_extension: str, save_meta: bool, meta_scheme: str, @@ -51,7 +60,7 @@ def __init__( self.base_model_name = base_model_name self.refiner_model_name = refiner_model_name self.refiner_switch = refiner_switch - self.loras = loras + self.loras = loras[:config.default_max_lora_number] if len(loras) > config.default_max_lora_number else loras self.uov_input_image = uov_input_image self.uov_method = uov_method self.upscale_value = upscale_value @@ -62,7 +71,15 @@ def __init__( self.outpaint_distance_bottom = outpaint_distance_bottom self.inpaint_input_image = inpaint_input_image self.inpaint_additional_prompt = inpaint_additional_prompt - self.image_prompts = image_prompts + self.image_prompts = image_prompts[:config.default_controlnet_image_count] if len(image_prompts) > config.default_controlnet_image_count else image_prompts + self.enhance_input_image = enhance_input_image + self.enhance_checkbox = enhance_checkbox + self.enhance_uov_method = enhance_uov_method + self.enhance_uov_processing_order = enhance_uov_processing_order + self.enhance_uov_prompt_type = enhance_uov_prompt_type + self.enhance_ctrlnets = enhance_ctrlnets[:config.default_enhance_tabs] if len(enhance_ctrlnets) > config.default_enhance_tabs else enhance_ctrlnets + self.current_tab = None + self.read_wildcards_in_order = read_wildcards_in_order self.save_extension = save_extension self.save_meta = save_meta self.meta_scheme = meta_scheme @@ -70,6 +87,15 @@ def __init__( self.require_base64 = require_base64 self.advanced_params = advanced_params + if self.enhance_input_image is not None: + self.current_tab = 'enhance' + elif self.image_prompts[0][0] is not None: + self.current_tab = 'ip' + elif self.uov_input_image is not None: + self.current_tab = 'uov' + elif self.inpaint_input_image is not None: + self.current_tab = 'inpaint' + if self.advanced_params is None: self.advanced_params = AdvancedParams() diff --git a/fooocusapi/utils/api_utils.py b/fooocusapi/utils/api_utils.py index ccf9c25..fc38499 100644 --- a/fooocusapi/utils/api_utils.py +++ b/fooocusapi/utils/api_utils.py @@ -55,6 +55,22 @@ api_key_header = APIKeyHeader(name="X-API-KEY", auto_error=False) +def check_models_exist(file_name: str, model_type: str) -> str: + """ + Check if all models exist + """ + config.update_files() + + if file_name not in (config.model_filenames, config.lora_filenames): + logger.std_warn(f"[Warning] Wrong {model_type} model input: {file_name}, using default") + if model_type == 'base': + return default_base_model_name + if model_type == 'refiner': + return default_refiner_model_name + return 'None' + return file_name + + def api_key_auth(apikey: str = Security(api_key_header)): """ Check if the API key is valid, API key is not required if no API key is set @@ -77,22 +93,6 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: returns: ImageGenerationParams """ - config.update_files() - if req.base_model_name is not None: - if req.base_model_name not in config.model_filenames: - logger.std_warn(f"[Warning] Wrong base_model_name input: {req.base_model_name}, using default") - req.base_model_name = default_base_model_name - - if req.refiner_model_name is not None and req.refiner_model_name != 'None': - if req.refiner_model_name not in config.model_filenames: - logger.std_warn(f"[Warning] Wrong refiner_model_name input: {req.refiner_model_name}, using default") - req.refiner_model_name = default_refiner_model_name - - for lora in req.loras: - if lora.model_name != 'None' and lora.model_name not in config.lora_filenames: - logger.std_warn(f"[Warning] Wrong lora model_name input: {lora.model_name}, using 'None'") - lora.model_name = 'None' - prompt = req.prompt negative_prompt = req.negative_prompt style_selections = [ @@ -103,10 +103,10 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: image_seed = None if req.image_seed == -1 else req.image_seed sharpness = req.sharpness guidance_scale = req.guidance_scale - base_model_name = req.base_model_name - refiner_model_name = req.refiner_model_name + base_model_name = check_models_exist(req.base_model_name, 'base') + refiner_model_name = check_models_exist(req.refiner_model_name, 'refiner') refiner_switch = req.refiner_switch - loras = [(lora.model_name, lora.weight) for lora in req.loras] + loras = [(lora.enabled, check_models_exist(lora.model_name, 'lora'), lora.weight) for lora in req.loras] uov_input_image = None if not isinstance(req, Text2ImgRequestWithPrompt): if isinstance(req, (ImgUpscaleOrVaryRequest, ImgUpscaleOrVaryRequestJson)): @@ -202,6 +202,8 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: outpaint_distance_bottom=outpaint_distance_bottom, inpaint_input_image=inpaint_input_image, inpaint_additional_prompt=inpaint_additional_prompt, + enhance_ctrlnets=req.enhance_ctrlnets, + read_wildcards_in_order=req.read_wildcards_in_order, image_prompts=image_prompts, advanced_params=advanced_params, save_meta=req.save_meta, diff --git a/fooocusapi/utils/call_worker.py b/fooocusapi/utils/call_worker.py index 6992a4a..948268f 100644 --- a/fooocusapi/utils/call_worker.py +++ b/fooocusapi/utils/call_worker.py @@ -23,12 +23,12 @@ generate_image_result_output ) from fooocusapi.models.requests_v1 import ( - ImgUpscaleOrVaryRequest, + ImageEnhanceRequest, ImgUpscaleOrVaryRequest, ImgPromptRequest, ImgInpaintOrOutpaintRequest ) from fooocusapi.models.requests_v2 import ( - ImgInpaintOrOutpaintRequestJson, + ImageEnhanceRequestJson, ImgInpaintOrOutpaintRequestJson, ImgPromptRequestJson, ImgUpscaleOrVaryRequestJson ) @@ -46,6 +46,8 @@ def get_task_type(req: Text2ImgRequest) -> TaskType: return TaskType.img_prompt if isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)): return TaskType.img_inpaint_outpaint + if isinstance(req, (ImageEnhanceRequestJson, ImageEnhanceRequest)): + return TaskType.img_enhance return TaskType.text_2_img diff --git a/fooocusapi/worker.py b/fooocusapi/worker.py index 4bab45c..12c1526 100644 --- a/fooocusapi/worker.py +++ b/fooocusapi/worker.py @@ -1,30 +1,37 @@ """ Worker, modify from https://github.com/lllyasviel/Fooocus/blob/main/modules/async_worker.py """ -import copy -import os -import random +import logging import time from typing import List -import logging -import numpy as np -import torch -from fooocusapi.models.common.image_meta import image_parse -from modules.patch import PatchSettings, patch_settings, patch_all -from modules.flags import Performance +import torch -from fooocusapi.utils.file_utils import save_output_file +import ldm_patched.modules.model_management +import modules.patch +import modules.config +from extras.inpaint_mask import SAMOptions, generate_mask_from_image from fooocusapi.models.common.task import ( - GenerationFinishReason, - ImageGenerationResult + GenerationFinishReason, ImageGenerationResult ) -from fooocusapi.utils.logger import logger +from fooocusapi.parameters import ImageGenerationParams from fooocusapi.task_queue import ( QueueTask, - TaskQueue, - TaskOutputs + TaskOutputs, TaskQueue ) +from fooocusapi.utils.logger import logger + +from modules.flags import Performance +from modules.patch import patch_all +from modules.private_logger import log +from modules.sdxl_styles import fooocus_expansion +from modules.util import erode_or_dilate +import fooocus_version + + +class EarlyReturnException(BaseException): + pass + patch_all() @@ -32,6 +39,164 @@ last_model_name = None +class AsyncTask: + def __init__(self, args: ImageGenerationParams): + from modules.flags import Performance, MetadataScheme, ip_list, disabled + from modules.util import get_enabled_loras + from modules.config import default_max_lora_number + import args_manager + + adp = args.advanced_params + + self.yields = [] + self.results = [] + self.last_stop = False + self.processing = False + + self.performance_loras = [] + + self.generate_image_grid = False + self.prompt = args.prompt + self.negative_prompt = args.negative_prompt + self.style_selections = args.style_selections + + self.performance_selection = Performance(args.performance_selection) + self.steps = self.performance_selection.steps() + self.original_steps = self.steps + + self.aspect_ratios_selection = args.aspect_ratios_selection + self.image_number = args.image_number + self.output_format = args.save_extension + self.seed = int(args.image_seed) + self.read_wildcards_in_order = args.read_wildcards_in_order + self.sharpness = args.sharpness + self.cfg_scale = args.guidance_scale + self.base_model_name = args.base_model_name + self.refiner_model_name = args.refiner_model_name + self.refiner_switch = args.refiner_switch + self.loras = get_enabled_loras(args.loras) + self.input_image_checkbox = True + self.current_tab = args.current_tab + self.uov_method = args.uov_method + self.uov_input_image = args.uov_input_image + self.outpaint_selections = args.outpaint_selections + self.inpaint_input_image = args.inpaint_input_image + self.inpaint_additional_prompt = args.inpaint_additional_prompt + self.inpaint_mask_image_upload = args.inpaint_input_image['mask'] + + self.disable_preview = adp.disable_preview + self.disable_intermediate_results = adp.disable_intermediate_results + self.disable_seed_increment = adp.disable_seed_increment + self.black_out_nsfw = adp.black_out_nsfw + self.adm_scaler_positive = adp.adm_scaler_positive + self.adm_scaler_negative = adp.adm_scaler_negative + self.adm_scaler_end = adp.scaler_end + self.adaptive_cfg = adp.adaptive_cfg + self.clip_skip = adp.clip_skip + self.sampler_name = adp.sampler_name + self.scheduler_name = adp.scheduler_name + self.vae_name = adp.vae_name + self.overwrite_step = adp.overwrite_step + self.overwrite_switch = adp.overwrite_switch + self.overwrite_width = adp.overwrite_width + self.overwrite_height = adp.overwrite_height + self.overwrite_vary_strength = adp.overwrite_vary_strength + self.overwrite_upscale_strength = adp.overwrite_upscale_strength + self.mixing_image_prompt_and_vary_upscale = adp.mixing_image_prompt_and_vary_upscale + self.mixing_image_prompt_and_inpaint = adp.mixing_image_prompt_and_inpaint + self.debugging_cn_preprocessor = adp.debugging_cn_preprocessor + self.skipping_cn_preprocessor = adp.skipping_cn_preprocessor + self.canny_low_threshold = adp.canny_low_threshold + self.canny_high_threshold = adp.canny_high_threshold + self.refiner_swap_method = adp.refiner_swap_method + self.controlnet_softness = adp.controlnet_softness + self.freeu_enabled = adp.freeu_enabled + self.freeu_b1 = adp.freeu_b1 + self.freeu_b2 = adp.freeu_b2 + self.freeu_s1 = adp.freeu_s1 + self.freeu_s2 = adp.freeu_s2 + self.debugging_inpaint_preprocessor = adp.debugging_inpaint_preprocessor + self.inpaint_disable_initial_latent = adp.inpaint_disable_initial_latent + self.inpaint_engine = adp.inpaint_engine + self.inpaint_strength = adp.inpaint_strength + self.inpaint_respective_field = adp.inpaint_respective_field + self.inpaint_advanced_masking_checkbox = adp.inpaint_advanced_masking_checkbox + self.invert_mask_checkbox = adp.invert_mask_checkbox + self.inpaint_erode_or_dilate = adp.inpaint_erode_or_dilate + self.save_final_enhanced_image_only = adp.save_final_enhanced_image_only if not args_manager.args.disable_image_log else False + self.save_metadata_to_images = args.save_meta + self.metadata_scheme = MetadataScheme( + args.meta_scheme) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS + + self.cn_tasks = {x: [] for x in ip_list} + for image_prompt in args.image_prompts: + cn_img = image_prompt[0] + cn_stop = image_prompt[1] + cn_weight = image_prompt[2] + cn_type = image_prompt[3] + if cn_img is not None: + self.cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) + + self.debugging_dino = adp.debugging_dino + self.dino_erode_or_dilate = adp.dino_erode_or_dilate + self.debugging_enhance_masks_checkbox = adp.debugging_enhance_masks_checkbox + + self.enhance_input_image = args.enhance_input_image + self.enhance_checkbox = args.enhance_checkbox + self.enhance_uov_method = args.enhance_uov_method + self.enhance_uov_processing_order = args.enhance_uov_processing_order + self.enhance_uov_prompt_type = args.enhance_uov_prompt_type + self.enhance_ctrls = [] + for enhance in args.enhance_ctrlnets: + enhance_enabled = enhance.enhance_enabled + enhance_mask_dino_prompt_text = enhance.enhance_mask_dino_prompt + enhance_prompt = enhance.enhance_prompt + enhance_negative_prompt = enhance.enhance_negative_prompt + enhance_mask_model = enhance.enhance_mask_model + enhance_mask_cloth_category = enhance.enhance_mask_cloth_category + enhance_mask_sam_model = enhance.enhance_mask_sam_model + enhance_mask_text_threshold = enhance.enhance_mask_text_threshold + enhance_mask_box_threshold = enhance.enhance_mask_box_threshold + enhance_mask_sam_max_detections = enhance.enhance_mask_sam_max_detections + enhance_inpaint_disable_initial_latent = enhance.enhance_inpaint_disable_initial_latent + enhance_inpaint_engine = enhance.enhance_inpaint_engine + enhance_inpaint_strength = enhance.enhance_inpaint_strength + enhance_inpaint_respective_field = enhance.enhance_inpaint_respective_field + enhance_inpaint_erode_or_dilate = enhance.enhance_inpaint_erode_or_dilate + enhance_mask_invert = enhance.enhance_mask_invert + if enhance_enabled: + self.enhance_ctrls.append([ + enhance_mask_dino_prompt_text, + enhance_prompt, + enhance_negative_prompt, + enhance_mask_model, + enhance_mask_cloth_category, + enhance_mask_sam_model, + enhance_mask_text_threshold, + enhance_mask_box_threshold, + enhance_mask_sam_max_detections, + enhance_inpaint_disable_initial_latent, + enhance_inpaint_engine, + enhance_inpaint_strength, + enhance_inpaint_respective_field, + enhance_inpaint_erode_or_dilate, + enhance_mask_invert + ]) + self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method != disabled.casefold() or len(self.enhance_ctrls) > 0) + self.images_to_enhance_count = 0 + self.enhance_stats = {} + + try: + self.outpaint_distance = [ + args.outpaint_distance_left, + args.outpaint_distance_top, + args.outpaint_distance_right, + args.outpaint_distance_bottom + ] + except IndexError: + self.outpaint_distance = [0, 0, 0, 0] + + def process_stop(): """Stop process""" import ldm_patched.modules.model_management @@ -76,66 +241,65 @@ def blocking_get_task_result(job_id: str) -> List[ImageGenerationResult]: return task.task_result +global async_tasks + + @torch.no_grad() @torch.inference_mode() -def process_generate(async_task: QueueTask): +def process_generate(task: QueueTask): """Generate image""" - try: - import modules.default_pipeline as pipeline - except Exception as e: - logger.std_error(f'[Task Queue] Import default pipeline error: {e}') - if not async_task.is_finished: - worker_queue.finish_task(async_task.job_id) - async_task.set_result([], True, str(e)) - logger.std_error(f"[Task Queue] Finish task with error, seq={async_task.job_id}") - return [] + import copy + import os + import random + import re + import time + import numpy as np + import extras.face_crop + from extras import ( + ip_adapter, + preprocessors + ) + from extras.censor import default_censor + from extras.expansion import safe_str - import modules.flags as flags - import modules.core as core - import modules.inpaint_worker as inpaint_worker - import modules.config as config - import modules.constants as constants - import extras.preprocessors as preprocessors - import extras.ip_adapter as ip_adapter - import extras.face_crop as face_crop - import ldm_patched.modules.model_management as model_management + import ldm_patched.modules.model_management + import modules.config + from modules import ( + constants, + core, + flags, + patch, + inpaint_worker, + default_pipeline as pipeline + ) + from modules.sdxl_styles import ( + apply_arrays, + apply_style, + fooocus_expansion, + get_random_style, + random_style_name + ) from modules.util import ( - remove_empty_str, HWC3, resize_image, - get_image_shape_ceil, set_image_shape_ceil, - get_shape_ceil, resample_image, erode_or_dilate, - get_enabled_loras, parse_lora_references_from_prompt, apply_wildcards, - remove_performance_lora + HWC3, apply_wildcards, + erode_or_dilate, + get_image_shape_ceil, + get_shape_ceil, + parse_lora_references_from_prompt, + remove_empty_str, resample_image, + resize_image, set_image_shape_ceil ) + from modules.meta_parser import get_metadata_parser + from modules.patch import PatchSettings, patch_settings + from modules.private_logger import log from modules.upscaler import perform_upscale - from extras.expansion import safe_str - from extras.censor import default_censor - from modules.sdxl_styles import ( - apply_style, get_random_style, - fooocus_expansion, apply_arrays, random_style_name - ) pid = os.getpid() - outputs = TaskOutputs(async_task) + outputs = TaskOutputs(task) results = [] - def refresh_seed(seed_string: int | str | None) -> int: - """ - Refresh and check seed number. - :params seed_string: seed, str or int. None means random - :return: seed number - """ - if seed_string is None or seed_string == -1: - return random.randint(constants.MIN_SEED, constants.MAX_SEED) - - try: - seed_value = int(seed_string) - if constants.MIN_SEED <= seed_value <= constants.MAX_SEED: - return seed_value - except ValueError: - pass - return random.randint(constants.MIN_SEED, constants.MAX_SEED) + async_task = AsyncTask(task.req_param) def progressbar(_, number, text): """progress bar""" @@ -157,24 +321,23 @@ def yield_result(_, images, tasks, extension='png', if not isinstance(images, list): images = [images] - if censor and (config.default_black_out_nsfw or black_out_nsfw): + if censor and (modules.config.default_black_out_nsfw or async_task.black_out_nsfw): images = default_censor(images) - results = [] - for index, im in enumerate(images): - if async_task.req_param.save_name == '': - image_name = f"{async_task.job_id}-{str(index)}" + for ind, im in enumerate(images): + if task.req_param.save_name == '': + image_name = f"{task.job_id}-{str(index)}" else: - image_name = f"{async_task.req_param.save_name}-{str(index)}" + image_name = f"{task.req_param.save_name}-{str(index)}" if len(tasks) == 0: img_seed = -1 img_meta = {} else: img_seed = tasks[index]['task_seed'] - img_meta = image_parse( + img_meta = task.image_parse( async_tak=async_task, task=tasks[index]) - img_filename = save_output_file( + img_filename = task.save_output_file( img=im, image_name=image_name, image_meta=img_meta, @@ -183,232 +346,895 @@ def yield_result(_, images, tasks, extension='png', im=img_filename, seed=str(img_seed), finish_reason=GenerationFinishReason.success)) - async_task.set_result(results, False) - worker_queue.finish_task(async_task.job_id) - logger.std_info(f"[Task Queue] Finish task, job_id={async_task.job_id}") + task.set_result(results, False) + worker_queue.finish_task(task.job_id) + logger.std_info(f"[Task Queue] Finish task, job_id={task.job_id}") outputs.append(['results', images]) pipeline.prepare_text_encoder(async_call=True) - try: - logger.std_info(f"[Task Queue] Task queue start task, job_id={async_task.job_id}") - # clear memory - global last_model_name - - if last_model_name is None: - last_model_name = async_task.req_param.base_model_name - if last_model_name != async_task.req_param.base_model_name: - model_management.cleanup_models() # key1 - model_management.unload_all_models() - model_management.soft_empty_cache() # key2 - last_model_name = async_task.req_param.base_model_name - - worker_queue.start_task(async_task.job_id) - - execution_start_time = time.perf_counter() - - # Transform parameters - params = async_task.req_param - prompt = params.prompt - negative_prompt = params.negative_prompt - style_selections = params.style_selections - performance_selection = Performance(params.performance_selection) - aspect_ratios_selection = params.aspect_ratios_selection - image_number = params.image_number - save_metadata_to_images = params.save_meta - metadata_scheme = params.meta_scheme - save_extension = params.save_extension - save_name = params.save_name - image_seed = refresh_seed(params.image_seed) - read_wildcards_in_order = False - sharpness = params.sharpness - guidance_scale = params.guidance_scale - base_model_name = params.base_model_name - refiner_model_name = params.refiner_model_name - refiner_switch = params.refiner_switch - loras = params.loras - input_image_checkbox = params.uov_input_image is not None or params.inpaint_input_image is not None or len(params.image_prompts) > 0 - current_tab = 'uov' if params.uov_method != flags.disabled else 'ip' if len(params.image_prompts) > 0 else 'inpaint' if params.inpaint_input_image is not None else None - uov_method = params.uov_method - upscale_value = params.upscale_value - uov_input_image = params.uov_input_image - outpaint_selections = params.outpaint_selections - outpaint_distance_left = params.outpaint_distance_left - outpaint_distance_top = params.outpaint_distance_top - outpaint_distance_right = params.outpaint_distance_right - outpaint_distance_bottom = params.outpaint_distance_bottom - inpaint_input_image = params.inpaint_input_image - inpaint_additional_prompt = '' if params.inpaint_additional_prompt is None else params.inpaint_additional_prompt - inpaint_mask_image_upload = None - - adp = params.advanced_params - disable_preview = adp.disable_preview - disable_intermediate_results = adp.disable_intermediate_results - disable_seed_increment = adp.disable_seed_increment - adm_scaler_positive = adp.adm_scaler_positive - adm_scaler_negative = adp.adm_scaler_negative - adm_scaler_end = adp.adm_scaler_end - adaptive_cfg = adp.adaptive_cfg - sampler_name = adp.sampler_name - scheduler_name = adp.scheduler_name - overwrite_step = adp.overwrite_step - overwrite_switch = adp.overwrite_switch - overwrite_width = adp.overwrite_width - overwrite_height = adp.overwrite_height - overwrite_vary_strength = adp.overwrite_vary_strength - overwrite_upscale_strength = adp.overwrite_upscale_strength - mixing_image_prompt_and_vary_upscale = adp.mixing_image_prompt_and_vary_upscale - mixing_image_prompt_and_inpaint = adp.mixing_image_prompt_and_inpaint - debugging_cn_preprocessor = adp.debugging_cn_preprocessor - skipping_cn_preprocessor = adp.skipping_cn_preprocessor - canny_low_threshold = adp.canny_low_threshold - canny_high_threshold = adp.canny_high_threshold - refiner_swap_method = adp.refiner_swap_method - controlnet_softness = adp.controlnet_softness - freeu_enabled = adp.freeu_enabled - freeu_b1 = adp.freeu_b1 - freeu_b2 = adp.freeu_b2 - freeu_s1 = adp.freeu_s1 - freeu_s2 = adp.freeu_s2 - debugging_inpaint_preprocessor = adp.debugging_inpaint_preprocessor - inpaint_disable_initial_latent = adp.inpaint_disable_initial_latent - inpaint_engine = adp.inpaint_engine - inpaint_strength = adp.inpaint_strength - inpaint_respective_field = adp.inpaint_respective_field - inpaint_mask_upload_checkbox = adp.inpaint_mask_upload_checkbox - invert_mask_checkbox = adp.invert_mask_checkbox - inpaint_erode_or_dilate = adp.inpaint_erode_or_dilate - black_out_nsfw = adp.black_out_nsfw - vae_name = adp.vae_name - clip_skip = adp.clip_skip - - cn_tasks = {x: [] for x in flags.ip_list} - for img_prompt in params.image_prompts: - cn_img, cn_stop, cn_weight, cn_type = img_prompt - cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) - - if inpaint_input_image is not None and inpaint_input_image['image'] is not None: - inpaint_image_size = inpaint_input_image['image'].shape[:2] - if inpaint_input_image['mask'] is None: - inpaint_input_image['mask'] = np.zeros(inpaint_image_size, dtype=np.uint8) + def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id, + denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond, + negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps, + total_count, show_intermediate_results, persist_image=True): + if async_task.last_stop is not False: + ldm_patched.modules.model_management.interrupt_current_processing() + if 'cn' in goals: + for cn_flag, cn_path in [ + (flags.cn_canny, controlnet_canny_path), + (flags.cn_cpds, controlnet_cpds_path) + ]: + for cn_img, cn_stop, cn_weight in async_task.cn_tasks[cn_flag]: + positive_cond, negative_cond = core.apply_controlnet( + positive_cond, negative_cond, + pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) + imgs = pipeline.process_diffusion( + positive_cond=positive_cond, + negative_cond=negative_cond, + steps=steps, + switch=switch, + width=width, + height=height, + image_seed=task['task_seed'], + callback=callback, + sampler_name=async_task.sampler_name, + scheduler_name=final_scheduler_name, + latent=initial_latent, + denoise=denoising_strength, + tiled=tiled, + cfg_scale=async_task.cfg_scale, + refiner_swap_method=async_task.refiner_swap_method, + disable_preview=async_task.disable_preview + ) + del positive_cond, negative_cond # Save memory + if inpaint_worker.current_task is not None: + imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * steps) + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: + progressbar(async_task, current_progress, 'Checking for NSFW content ...') + imgs = default_censor(imgs) + progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') + img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image) + yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False, + do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) + + return imgs, img_paths, current_progress + + def apply_patch_settings(async_task): + patch_settings[pid] = PatchSettings( + async_task.sharpness, + async_task.adm_scaler_end, + async_task.adm_scaler_positive, + async_task.adm_scaler_negative, + async_task.controlnet_softness, + async_task.adaptive_cfg + ) + + def save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image=True) -> list: + img_paths = [] + for x in imgs: + d = [('Prompt', 'prompt', task['log_positive_prompt']), + ('Negative Prompt', 'negative_prompt', task['log_negative_prompt']), + ('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']), + ('Styles', 'styles', + str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])), + ('Performance', 'performance', async_task.performance_selection.value), + ('Steps', 'steps', async_task.steps), + ('Resolution', 'resolution', str((width, height))), + ('Guidance Scale', 'guidance_scale', async_task.cfg_scale), + ('Sharpness', 'sharpness', async_task.sharpness), + ('ADM Guidance', 'adm_guidance', str(( + modules.patch.patch_settings[pid].positive_adm_scale, + modules.patch.patch_settings[pid].negative_adm_scale, + modules.patch.patch_settings[pid].adm_scaler_end))), + ('Base Model', 'base_model', async_task.base_model_name), + ('Refiner Model', 'refiner_model', async_task.refiner_model_name), + ('Refiner Switch', 'refiner_switch', async_task.refiner_switch)] + + if async_task.refiner_model_name != 'None': + if async_task.overwrite_switch > 0: + d.append(('Overwrite Switch', 'overwrite_switch', async_task.overwrite_switch)) + if async_task.refiner_swap_method != flags.refiner_swap_method: + d.append(('Refiner Swap Method', 'refiner_swap_method', async_task.refiner_swap_method)) + if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr: + d.append( + ('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg)) + + if async_task.clip_skip > 1: + d.append(('CLIP Skip', 'clip_skip', async_task.clip_skip)) + d.append(('Sampler', 'sampler', async_task.sampler_name)) + d.append(('Scheduler', 'scheduler', async_task.scheduler_name)) + d.append(('VAE', 'vae', async_task.vae_name)) + d.append(('Seed', 'seed', str(task['task_seed']))) + + if async_task.freeu_enabled: + d.append(('FreeU', 'freeu', + str((async_task.freeu_b1, async_task.freeu_b2, async_task.freeu_s1, async_task.freeu_s2)))) + + for li, (n, w) in enumerate(loras): + if n != 'None': + d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}')) + + metadata_parser = None + if async_task.save_metadata_to_images: + metadata_parser = modules.meta_parser.get_metadata_parser(async_task.metadata_scheme) + metadata_parser.set_data(task['log_positive_prompt'], task['positive'], + task['log_negative_prompt'], task['negative'], + async_task.steps, async_task.base_model_name, async_task.refiner_model_name, + loras, async_task.vae_name) + d.append(('Metadata Scheme', 'metadata_scheme', + async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images)) + d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version)) + img_paths.append(log(x, d, metadata_parser, async_task.output_format, task, persist_image)) + + return img_paths + + def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress): + for task in async_task.cn_tasks[flags.cn_canny]: + cn_img, cn_stop, cn_weight = task + cn_img = resize_image(HWC3(cn_img), width=width, height=height) + + if not async_task.skipping_cn_preprocessor: + cn_img = preprocessors.canny_pyramid(cn_img, async_task.canny_low_threshold, + async_task.canny_high_threshold) + + cn_img = HWC3(cn_img) + task[0] = core.numpy_to_pytorch(cn_img) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_cpds]: + cn_img, cn_stop, cn_weight = task + cn_img = resize_image(HWC3(cn_img), width=width, height=height) + + if not async_task.skipping_cn_preprocessor: + cn_img = preprocessors.cpds(cn_img) + + cn_img = HWC3(cn_img) + task[0] = core.numpy_to_pytorch(cn_img) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_ip]: + cn_img, cn_stop, cn_weight = task + cn_img = HWC3(cn_img) + + # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 + cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) + + task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_ip_face]: + cn_img, cn_stop, cn_weight = task + cn_img = HWC3(cn_img) + + if not async_task.skipping_cn_preprocessor: + cn_img = extras.face_crop.crop_image(cn_img) + + # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 + cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) + + task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face] + if len(all_ip_tasks) > 0: + pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) + + def apply_vary(async_task, uov_method, denoising_strength, uov_input_image, switch, current_progress, advance_progress=False): + if 'subtle' in uov_method: + denoising_strength = 0.5 + if 'strong' in uov_method: + denoising_strength = 0.85 + if async_task.overwrite_vary_strength > 0: + denoising_strength = async_task.overwrite_vary_strength + shape_ceil = get_image_shape_ceil(uov_input_image) + if shape_ceil < 1024: + print(f'[Vary] Image is resized because it is too small.') + shape_ceil = 1024 + elif shape_ceil > 2048: + print(f'[Vary] Image is resized because it is too big.') + shape_ceil = 2048 + uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) + initial_pixels = core.numpy_to_pytorch(uov_input_image) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + candidate_vae, _ = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) + B, C, H, W = initial_latent['samples'].shape + width = W * 8 + height = H * 8 + print(f'Final resolution is {str((width, height))}.') + return uov_input_image, denoising_strength, initial_latent, width, height, current_progress + + def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_image, + inpaint_mask, inpaint_parameterized, denoising_strength, inpaint_respective_field, switch, + inpaint_disable_initial_latent, current_progress, skip_apply_outpaint=False, + advance_progress=False): + if not skip_apply_outpaint: + inpaint_image, inpaint_mask = apply_outpaint(async_task, inpaint_image, inpaint_mask) + + inpaint_worker.current_task = inpaint_worker.InpaintWorker( + image=inpaint_image, + mask=inpaint_mask, + use_fill=denoising_strength > 0.99, + k=inpaint_respective_field + ) + if async_task.debugging_inpaint_preprocessor: + yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100, + async_task.black_out_nsfw, do_not_show_finished_images=True) + raise EarlyReturnException + + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE Inpaint encoding ...') + inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) + inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) + inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) + candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + latent_inpaint, latent_mask = core.encode_vae_inpaint( + mask=inpaint_pixel_mask, + vae=candidate_vae, + pixels=inpaint_pixel_image) + latent_swap = None + if candidate_vae_swap is not None: + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE SD15 encoding ...') + latent_swap = core.encode_vae( + vae=candidate_vae_swap, + pixels=inpaint_pixel_fill)['samples'] + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + latent_fill = core.encode_vae( + vae=candidate_vae, + pixels=inpaint_pixel_fill)['samples'] + inpaint_worker.current_task.load_latent( + latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) + if inpaint_parameterized: + pipeline.final_unet = inpaint_worker.current_task.patch( + inpaint_head_model_path=inpaint_head_model_path, + inpaint_latent=latent_inpaint, + inpaint_latent_mask=latent_mask, + model=pipeline.final_unet + ) + if not inpaint_disable_initial_latent: + initial_latent = {'samples': latent_fill} + B, C, H, W = latent_fill.shape + height, width = H * 8, W * 8 + final_height, final_width = inpaint_worker.current_task.image.shape[:2] + print(f'Final resolution is {str((final_width, final_height))}, latent is {str((width, height))}.') + + return denoising_strength, initial_latent, width, height, current_progress + + def apply_outpaint(async_task, inpaint_image, inpaint_mask): + try: + dt_left, dt_top, dt_right, dt_bottom = async_task.outpaint_distance[:4] + except Exception: + dt_left, dt_top, dt_right, dt_bottom = 0, 0, 0, 0 + if len(async_task.outpaint_selections) > 0: + H, W, C = inpaint_image.shape + if 'top' in async_task.outpaint_selections: + distance_top = int(H * 0.3) + if dt_top > 0: + distance_top = dt_top + + inpaint_image = np.pad(inpaint_image, [[distance_top, 0], [0, 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[distance_top, 0], [0, 0]], mode='constant', + constant_values=255) + if 'bottom' in async_task.outpaint_selections: + distance_bottom = int(H * 0.3) + if dt_bottom > 0: + distance_bottom = dt_bottom + + inpaint_image = np.pad(inpaint_image, [[0, distance_bottom], [0, 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, distance_bottom], [0, 0]], mode='constant', + constant_values=255) + + H, W, C = inpaint_image.shape + if 'left' in async_task.outpaint_selections: + distance_left = int(W * 0.3) + if dt_left > 0: + distance_left = dt_left + + inpaint_image = np.pad(inpaint_image, [[0, 0], [distance_left, 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, 0], [distance_left, 0]], mode='constant', + constant_values=255) + if 'right' in async_task.outpaint_selections: + distance_right = int(W * 0.3) + if dt_right > 0: + distance_right = dt_right + + inpaint_image = np.pad(inpaint_image, [[0, 0], [0, distance_right], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, distance_right]], mode='constant', + constant_values=255) + + inpaint_image = np.ascontiguousarray(inpaint_image.copy()) + inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) + async_task.inpaint_strength = 1.0 + async_task.inpaint_respective_field = 1.0 + return inpaint_image, inpaint_mask + + def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progress, advance_progress=False): + H, W, C = uov_input_image.shape + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...') + uov_input_image = perform_upscale(uov_input_image) + print(f'Image upscaled.') + if '1.5x' in uov_method: + f = 1.5 + elif '2x' in uov_method: + f = 2.0 + else: + # @freek99 + pattern = r"([0-9]+(?:\.[0-9]+)?)x" + matches = re.findall(pattern, uov_method) + try: + f = float(matches[0]) + if f < 1.0: + f = 1.0 + if f > 5.0: + f = 5.0 + except Exception: + f = 1.0 + shape_ceil = get_shape_ceil(H * f, W * f) + if shape_ceil < 1024: + print(f'[Upscale] Image is resized because it is too small.') + uov_input_image = set_image_shape_ceil(uov_input_image, 1024) + shape_ceil = 1024 + else: + uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) + image_is_super_large = shape_ceil > 2800 + if 'fast' in uov_method: + direct_return = True + elif image_is_super_large: + print('Image is too large. Directly returned the SR image. ' + 'Usually directly return SR image at 4K resolution ' + 'yields better results than SDXL diffusion.') + direct_return = True + else: + direct_return = False + if direct_return: + return direct_return, uov_input_image, None, None, None, None, None, current_progress + + tiled = True + denoising_strength = 0.382 + if async_task.overwrite_upscale_strength > 0: + denoising_strength = async_task.overwrite_upscale_strength + initial_pixels = core.numpy_to_pytorch(uov_input_image) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + candidate_vae, _ = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + initial_latent = core.encode_vae( + vae=candidate_vae, + pixels=initial_pixels, tiled=True) + B, C, H, W = initial_latent['samples'].shape + width = W * 8 + height = H * 8 + print(f'Final resolution is {str((width, height))}.') + return direct_return, uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress + + def apply_overrides(async_task, steps, height, width): + if async_task.overwrite_step > 0: + steps = async_task.overwrite_step + switch = int(round(async_task.steps * async_task.refiner_switch)) + if async_task.overwrite_switch > 0: + switch = async_task.overwrite_switch + if async_task.overwrite_width > 0: + width = async_task.overwrite_width + if async_task.overwrite_height > 0: + height = async_task.overwrite_height + return steps, switch, width, height + + def process_prompt(async_task, prompt, negative_prompt, base_model_additional_loras, image_number, disable_seed_increment, use_expansion, use_style, + use_synthetic_refiner, current_progress, advance_progress=False): + prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') + negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') + prompt = prompts[0] + negative_prompt = negative_prompts[0] + if prompt == '': + # disable expansion when empty since it is not meaningful and influences image prompt + use_expansion = False + extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] + extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Loading models ...') + lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames, + async_task.performance_selection) + loras, prompt = parse_lora_references_from_prompt(prompt, async_task.loras, + modules.config.default_max_lora_number, + lora_filenames=lora_filenames) + loras += async_task.performance_loras + pipeline.refresh_everything(refiner_model_name=async_task.refiner_model_name, + base_model_name=async_task.base_model_name, + loras=loras, base_model_additional_loras=base_model_additional_loras, + use_synthetic_refiner=use_synthetic_refiner, vae_name=async_task.vae_name) + pipeline.set_clip_skip(async_task.clip_skip) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Processing prompts ...') + tasks = [] + for i in range(image_number): + if disable_seed_increment: + task_seed = async_task.seed % (constants.MAX_SEED + 1) + else: + task_seed = (async_task.seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not + + task_rng = random.Random(task_seed) # may bind to inpaint noise in the future + task_prompt = apply_wildcards(prompt, task_rng, i, async_task.read_wildcards_in_order) + task_prompt = apply_arrays(task_prompt, i) + task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, async_task.read_wildcards_in_order) + task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt + in + extra_positive_prompts] + task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt + in + extra_negative_prompts] + + positive_basic_workloads = [] + negative_basic_workloads = [] + + task_styles = async_task.style_selections.copy() + if use_style: + placeholder_replaced = False + + for j, s in enumerate(task_styles): + if s == random_style_name: + s = get_random_style(task_rng) + task_styles[j] = s + p, n, style_has_placeholder = apply_style(s, positive=task_prompt) + if style_has_placeholder: + placeholder_replaced = True + positive_basic_workloads = positive_basic_workloads + p + negative_basic_workloads = negative_basic_workloads + n + + if not placeholder_replaced: + positive_basic_workloads = [task_prompt] + positive_basic_workloads else: - inpaint_mask_upload_checkbox = True + positive_basic_workloads.append(task_prompt) + + negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative. + + positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts + negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts + + positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) + negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) + + tasks.append(dict( + task_seed=task_seed, + task_prompt=task_prompt, + task_negative_prompt=task_negative_prompt, + positive=positive_basic_workloads, + negative=negative_basic_workloads, + expansion='', + c=None, + uc=None, + positive_top_k=len(positive_basic_workloads), + negative_top_k=len(negative_basic_workloads), + log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), + log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), + styles=task_styles + )) + if use_expansion: + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + progressbar(async_task, current_progress, f'Preparing Fooocus text #{i + 1} ...') + expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) + print(f'[Prompt Expansion] {expansion}') + t['expansion'] = expansion + t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy. + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + progressbar(async_task, current_progress, f'Encoding positive #{i + 1} ...') + t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + if abs(float(async_task.cfg_scale) - 1.0) < 1e-4: + t['uc'] = pipeline.clone_cond(t['c']) + else: + progressbar(async_task, current_progress, f'Encoding negative #{i + 1} ...') + t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) + return tasks, use_expansion, loras, current_progress + + def apply_freeu(async_task): + print(f'FreeU is enabled!') + pipeline.final_unet = core.apply_freeu( + pipeline.final_unet, + async_task.freeu_b1, + async_task.freeu_b2, + async_task.freeu_s1, + async_task.freeu_s2 + ) + + def patch_discrete(unet, scheduler_name): + return core.opModelSamplingDiscrete.patch(unet, scheduler_name, False)[0] - inpaint_input_image['mask'] = HWC3(inpaint_input_image['mask']) - inpaint_mask_image_upload = inpaint_input_image['mask'] + def patch_edm(unet, scheduler_name): + return core.opModelSamplingContinuousEDM.patch(unet, scheduler_name, 120.0, 0.002)[0] - # Fooocus async_worker.py code start + def patch_samplers(async_task): + final_scheduler_name = async_task.scheduler_name + + if async_task.scheduler_name in ['lcm', 'tcd']: + final_scheduler_name = 'sgm_uniform' + if pipeline.final_unet is not None: + pipeline.final_unet = patch_discrete(pipeline.final_unet, async_task.scheduler_name) + if pipeline.final_refiner_unet is not None: + pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet, async_task.scheduler_name) - outpaint_selections = [o.lower() for o in outpaint_selections] + elif async_task.scheduler_name == 'edm_playground_v2.5': + final_scheduler_name = 'karras' + if pipeline.final_unet is not None: + pipeline.final_unet = patch_edm(pipeline.final_unet, async_task.scheduler_name) + if pipeline.final_refiner_unet is not None: + pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet, async_task.scheduler_name) + + return final_scheduler_name + + def set_hyper_sd_defaults(async_task, current_progress, advance_progress=False): + print('Enter Hyper-SD mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Downloading Hyper-SD components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in Hyper-SD mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'dpmpp_sde_gpu' + async_task.scheduler_name = 'karras' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def set_lightning_defaults(async_task, current_progress, advance_progress=False): + print('Enter Lightning mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, 1, 'Downloading Lightning components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in Lightning mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'euler' + async_task.scheduler_name = 'sgm_uniform' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def set_lcm_defaults(async_task, current_progress, advance_progress=False): + print('Enter LCM mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, 1, 'Downloading LCM components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in LCM mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'lcm' + async_task.scheduler_name = 'lcm' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def apply_image_input(async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, + controlnet_cpds_path, goals, inpaint_head_model_path, inpaint_image, inpaint_mask, + inpaint_parameterized, ip_adapter_face_path, ip_adapter_path, ip_negative_path, + skip_prompt_processing, use_synthetic_refiner): + if (async_task.current_tab == 'uov' or ( + async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \ + and async_task.uov_method != flags.disabled.casefold() and async_task.uov_input_image is not None: + async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale( + async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection, + async_task.steps, 1, skip_prompt_processing=skip_prompt_processing) + if (async_task.current_tab == 'inpaint' or ( + async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_inpaint)) \ + and isinstance(async_task.inpaint_input_image, dict): + inpaint_image = async_task.inpaint_input_image['image'] + inpaint_mask = async_task.inpaint_input_image['mask'][:, :, 0] + + if async_task.inpaint_advanced_masking_checkbox: + if isinstance(async_task.inpaint_mask_image_upload, dict): + if (isinstance(async_task.inpaint_mask_image_upload['image'], np.ndarray) + and isinstance(async_task.inpaint_mask_image_upload['mask'], np.ndarray) + and async_task.inpaint_mask_image_upload['image'].ndim == 3): + async_task.inpaint_mask_image_upload = np.maximum( + async_task.inpaint_mask_image_upload['image'], + async_task.inpaint_mask_image_upload['mask']) + if isinstance(async_task.inpaint_mask_image_upload, + np.ndarray) and async_task.inpaint_mask_image_upload.ndim == 3: + H, W, C = inpaint_image.shape + async_task.inpaint_mask_image_upload = resample_image(async_task.inpaint_mask_image_upload, + width=W, height=H) + async_task.inpaint_mask_image_upload = np.mean(async_task.inpaint_mask_image_upload, axis=2) + async_task.inpaint_mask_image_upload = (async_task.inpaint_mask_image_upload > 127).astype( + np.uint8) * 255 + inpaint_mask = np.maximum(inpaint_mask, async_task.inpaint_mask_image_upload) + + if int(async_task.inpaint_erode_or_dilate) != 0: + inpaint_mask = erode_or_dilate(inpaint_mask, async_task.inpaint_erode_or_dilate) + + if async_task.invert_mask_checkbox: + inpaint_mask = 255 - inpaint_mask + + inpaint_image = HWC3(inpaint_image) + if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ + and (np.any(inpaint_mask > 127) or len(async_task.outpaint_selections) > 0): + progressbar(async_task, 1, 'Downloading upscale models ...') + modules.config.downloading_upscale_model() + if inpaint_parameterized: + progressbar(async_task, 1, 'Downloading inpainter ...') + inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( + async_task.inpaint_engine) + base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] + print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') + if async_task.refiner_model_name == 'None': + use_synthetic_refiner = True + async_task.refiner_switch = 0.8 + else: + inpaint_head_model_path, inpaint_patch_model_path = None, None + print(f'[Inpaint] Parameterized inpaint is disabled.') + if async_task.inpaint_additional_prompt != '': + if async_task.prompt == '': + async_task.prompt = async_task.inpaint_additional_prompt + else: + async_task.prompt = async_task.inpaint_additional_prompt + '\n' + async_task.prompt + goals.append('inpaint') + if async_task.current_tab == 'ip' or \ + async_task.mixing_image_prompt_and_vary_upscale or \ + async_task.mixing_image_prompt_and_inpaint: + goals.append('cn') + progressbar(async_task, 1, 'Downloading control models ...') + if len(async_task.cn_tasks[flags.cn_canny]) > 0: + controlnet_canny_path = modules.config.downloading_controlnet_canny() + if len(async_task.cn_tasks[flags.cn_cpds]) > 0: + controlnet_cpds_path = modules.config.downloading_controlnet_cpds() + if len(async_task.cn_tasks[flags.cn_ip]) > 0: + clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip') + if len(async_task.cn_tasks[flags.cn_ip_face]) > 0: + clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters( + 'face') + if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None: + goals.append('enhance') + skip_prompt_processing = True + async_task.enhance_input_image = HWC3(async_task.enhance_input_image) + return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner + + def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress, + advance_progress=False, skip_prompt_processing=False): + uov_input_image = HWC3(uov_input_image) + if 'vary' in uov_method: + goals.append('vary') + elif 'upscale' in uov_method: + goals.append('upscale') + if 'fast' in uov_method: + skip_prompt_processing = True + steps = 0 + else: + steps = performance.steps_uov() + + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Downloading upscale models ...') + modules.config.downloading_upscale_model() + return uov_input_image, skip_prompt_processing, steps + + def prepare_enhance_prompt(prompt: str, fallback_prompt: str): + if safe_str(prompt) == '' or len(remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')) == 0: + prompt = fallback_prompt + + return prompt + + def stop_processing(async_task, processing_start_time): + async_task.processing = False + processing_time = time.perf_counter() - processing_start_time + print(f'Processing time (total): {processing_time:.2f} seconds') + + def process_enhance(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, + current_progress, current_task_id, denoising_strength, inpaint_disable_initial_latent, + inpaint_engine, inpaint_respective_field, inpaint_strength, + prompt, negative_prompt, final_scheduler_name, goals, height, img, mask, + preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style, + use_synthetic_refiner, width, show_intermediate_results=True, persist_image=True): base_model_additional_loras = [] - raw_style_selections = copy.deepcopy(style_selections) - uov_method = uov_method.lower() + inpaint_head_model_path = None + inpaint_parameterized = inpaint_engine != 'None' # inpaint_engine = None, improve detail + initial_latent = None - if fooocus_expansion in style_selections: + prompt = prepare_enhance_prompt(prompt, async_task.prompt) + negative_prompt = prepare_enhance_prompt(negative_prompt, async_task.negative_prompt) + + if 'vary' in goals: + img, denoising_strength, initial_latent, width, height, current_progress = apply_vary( + async_task, async_task.enhance_uov_method, denoising_strength, img, switch, current_progress) + if 'upscale' in goals: + direct_return, img, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( + async_task, img, async_task.enhance_uov_method, switch, current_progress) + if direct_return: + d = [('Upscale (Fast)', 'upscale_fast', '2x')] + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: + progressbar(async_task, current_progress, 'Checking for NSFW content ...') + img = default_censor(img) + progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') + uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image) + yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False, + do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) + return current_progress, img, prompt, negative_prompt + + if 'inpaint' in goals and inpaint_parameterized: + progressbar(async_task, current_progress, 'Downloading inpainter ...') + inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( + inpaint_engine) + if inpaint_patch_model_path not in base_model_additional_loras: + base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] + progressbar(async_task, current_progress, 'Preparing enhance prompts ...') + # positive and negative conditioning aren't available here anymore, process prompt again + tasks_enhance, use_expansion, loras, current_progress = process_prompt( + async_task, prompt, negative_prompt, base_model_additional_loras, 1, True, + use_expansion, use_style, use_synthetic_refiner, current_progress) + task_enhance = tasks_enhance[0] + # TODO could support vary, upscale and CN in the future + # if 'cn' in goals: + # apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width) + if async_task.freeu_enabled: + apply_freeu(async_task) + patch_samplers(async_task) + if 'inpaint' in goals: + denoising_strength, initial_latent, width, height, current_progress = apply_inpaint( + async_task, None, inpaint_head_model_path, img, mask, + inpaint_parameterized, inpaint_strength, + inpaint_respective_field, switch, inpaint_disable_initial_latent, + current_progress, True) + imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_task_id, denoising_strength, + final_scheduler_name, goals, initial_latent, steps, switch, + task_enhance['c'], task_enhance['uc'], task_enhance, loras, + tiled, use_expansion, width, height, current_progress, + preparation_steps, total_count, show_intermediate_results, + persist_image) + + del task_enhance['c'], task_enhance['uc'] # Save memory + return current_progress, imgs[0], prompt, negative_prompt + + def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled, + total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image=True): + # reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting + inpaint_worker.current_task = None + + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) + goals_enhance = [] + img, skip_prompt_processing, steps = prepare_upscale( + async_task, goals_enhance, img, async_task.enhance_uov_method, async_task.performance_selection, + enhance_steps, current_progress) + steps, _, _, _ = apply_overrides(async_task, steps, height, width) + exception_result = '' + if len(goals_enhance) > 0: + try: + current_progress, img, prompt, negative_prompt = process_enhance( + all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False, + 'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name, + goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count, + use_expansion, use_style, use_synthetic_refiner, width, persist_image=persist_image) + + except ldm_patched.modules.model_management.InterruptProcessingException: + if async_task.last_stop == 'skip': + print('User skipped') + async_task.last_stop = False + # also skip all enhance steps for this image, but add the steps to the progress bar + if async_task.enhance_uov_processing_order == flags.enhancement_uov_before: + done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps + exception_result = 'continue' + else: + print('User stopped') + exception_result = 'break' + finally: + done_steps_upscaling += steps + return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result + + try: + import modules.default_pipeline as pipeline + except Exception as e: + logger.std_error(f'[Task Queue] Import default pipeline error: {e}') + if not task.is_finished: + worker_queue.finish_task(task.job_id) + task.set_result([], True, str(e)) + logger.std_error(f"[Task Queue] Finish task with error, seq={task.job_id}") + return [] + + try: + preparation_start_time = time.perf_counter() + async_task.processing = True + + async_task.outpaint_selections = [o.lower() for o in async_task.outpaint_selections] + base_model_additional_loras = [] + async_task.uov_method = async_task.uov_method.casefold() + async_task.enhance_uov_method = async_task.enhance_uov_method.casefold() + + if fooocus_expansion in async_task.style_selections: use_expansion = True - style_selections.remove(fooocus_expansion) + async_task.style_selections.remove(fooocus_expansion) else: use_expansion = False - use_style = len(style_selections) > 0 - - if base_model_name == refiner_model_name: - logger.std_warn('[Fooocus] Refiner disabled because base model and refiner are same.') - refiner_model_name = 'None' - - steps = performance_selection.steps() - - performance_loras = [] - - if performance_selection == Performance.EXTREME_SPEED: - logger.std_warn('[Fooocus] Enter LCM mode.') - progressbar(async_task, 1, 'Downloading LCM components ...') - performance_loras += [(config.downloading_sdxl_lcm_lora(), 1.0)] - - if refiner_model_name != 'None': - logger.std_info('[Fooocus] Refiner disabled in LCM mode.') - - refiner_model_name = 'None' - sampler_name = 'lcm' - scheduler_name = 'lcm' - sharpness = 0.0 - guidance_scale = 1.0 - adaptive_cfg = 1.0 - refiner_switch = 1.0 - adm_scaler_positive = 1.0 - adm_scaler_negative = 1.0 - adm_scaler_end = 0.0 - - elif performance_selection == Performance.LIGHTNING: - logger.std_info('[Fooocus] Enter Lightning mode.') - progressbar(async_task, 1, 'Downloading Lightning components ...') - performance_loras += [(config.downloading_sdxl_lightning_lora(), 1.0)] - - if refiner_model_name != 'None': - logger.std_info('[Fooocus] Refiner disabled in Lightning mode.') - - refiner_model_name = 'None' - sampler_name = 'euler' - scheduler_name = 'sgm_uniform' - sharpness = 0.0 - guidance_scale = 1.0 - adaptive_cfg = 1.0 - refiner_switch = 1.0 - adm_scaler_positive = 1.0 - adm_scaler_negative = 1.0 - adm_scaler_end = 0.0 - - elif performance_selection == Performance.HYPER_SD: - print('Enter Hyper-SD mode.') - progressbar(async_task, 1, 'Downloading Hyper-SD components ...') - performance_loras += [(config.downloading_sdxl_hyper_sd_lora(), 0.8)] - - if refiner_model_name != 'None': - logger.std_info('[Fooocus] Refiner disabled in Hyper-SD mode.') - - refiner_model_name = 'None' - sampler_name = 'dpmpp_sde_gpu' - scheduler_name = 'karras' - sharpness = 0.0 - guidance_scale = 1.0 - adaptive_cfg = 1.0 - refiner_switch = 1.0 - adm_scaler_positive = 1.0 - adm_scaler_negative = 1.0 - adm_scaler_end = 0.0 - - logger.std_info(f'[Parameters] Adaptive CFG = {adaptive_cfg}') - logger.std_info(f'[Parameters] CLIP Skip = {clip_skip}') - logger.std_info(f'[Parameters] Sharpness = {sharpness}') - logger.std_info(f'[Parameters] ControlNet Softness = {controlnet_softness}') - logger.std_info(f'[Parameters] ADM Scale = ' - f'{adm_scaler_positive} : ' - f'{adm_scaler_negative} : ' - f'{adm_scaler_end}') + use_style = len(async_task.style_selections) > 0 - patch_settings[pid] = PatchSettings( - sharpness, - adm_scaler_end, - adm_scaler_positive, - adm_scaler_negative, - controlnet_softness, - adaptive_cfg - ) + if async_task.base_model_name == async_task.refiner_model_name: + print(f'Refiner disabled because base model and refiner are same.') + async_task.refiner_model_name = 'None' - cfg_scale = float(guidance_scale) - logger.std_info(f'[Parameters] CFG = {cfg_scale}') + current_progress = 0 + if async_task.performance_selection == Performance.EXTREME_SPEED: + set_lcm_defaults(async_task, current_progress, advance_progress=True) + elif async_task.performance_selection == Performance.LIGHTNING: + set_lightning_defaults(async_task, current_progress, advance_progress=True) + elif async_task.performance_selection == Performance.HYPER_SD: + set_hyper_sd_defaults(async_task, current_progress, advance_progress=True) + + print(f'[Parameters] Adaptive CFG = {async_task.adaptive_cfg}') + print(f'[Parameters] CLIP Skip = {async_task.clip_skip}') + print(f'[Parameters] Sharpness = {async_task.sharpness}') + print(f'[Parameters] ControlNet Softness = {async_task.controlnet_softness}') + print(f'[Parameters] ADM Scale = ' + f'{async_task.adm_scaler_positive} : ' + f'{async_task.adm_scaler_negative} : ' + f'{async_task.adm_scaler_end}') + print(f'[Parameters] Seed = {async_task.seed}') + + apply_patch_settings(async_task) + + print(f'[Parameters] CFG = {async_task.cfg_scale}') initial_latent = None denoising_strength = 1.0 tiled = False - width, height = aspect_ratios_selection.replace('×', ' ').replace('*', ' ').split(' ')[:2] + width, height = async_task.aspect_ratios_selection.replace('×', ' ').split(' ')[:2] width, height = int(width), int(height) skip_prompt_processing = False inpaint_worker.current_task = None - inpaint_parameterized = inpaint_engine != 'None' + inpaint_parameterized = async_task.inpaint_engine != 'None' inpaint_image = None inpaint_mask = None inpaint_head_model_path = None @@ -419,546 +1245,139 @@ def yield_result(_, images, tasks, extension='png', controlnet_cpds_path = None clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None - seed = int(image_seed) - logger.std_info(f'[Parameters] Seed = {seed}') - goals = [] tasks = [] + current_progress = 1 - if input_image_checkbox: - if (current_tab == 'uov' or ( - current_tab == 'ip' and mixing_image_prompt_and_vary_upscale)) \ - and uov_method != flags.disabled and uov_input_image is not None: - uov_input_image = HWC3(uov_input_image) - if 'vary' in uov_method: - goals.append('vary') - elif 'upscale' in uov_method: - goals.append('upscale') - if 'fast' in uov_method: - skip_prompt_processing = True - else: - steps = performance_selection.steps_uov() - - progressbar(async_task, 1, 'Downloading upscale models ...') - config.downloading_upscale_model() - if (current_tab == 'inpaint' or ( - current_tab == 'ip' and mixing_image_prompt_and_inpaint)) \ - and isinstance(inpaint_input_image, dict): - inpaint_image = inpaint_input_image['image'] - inpaint_mask = inpaint_input_image['mask'][:, :, 0] - - if inpaint_mask_upload_checkbox: - if isinstance(inpaint_mask_image_upload, np.ndarray): - if inpaint_mask_image_upload.ndim == 3: - H, W, C = inpaint_image.shape - inpaint_mask_image_upload = resample_image(inpaint_mask_image_upload, width=W, height=H) - inpaint_mask_image_upload = np.mean(inpaint_mask_image_upload, axis=2) - inpaint_mask_image_upload = (inpaint_mask_image_upload > 127).astype(np.uint8) * 255 - inpaint_mask = np.maximum(np.zeros(shape=(H, W), dtype=np.uint8), inpaint_mask_image_upload) - - if int(inpaint_erode_or_dilate) != 0: - inpaint_mask = erode_or_dilate(inpaint_mask, inpaint_erode_or_dilate) - - if invert_mask_checkbox: - inpaint_mask = 255 - inpaint_mask - - inpaint_image = HWC3(inpaint_image) - if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ - and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0): - progressbar(async_task, 1, 'Downloading upscale models ...') - config.downloading_upscale_model() - if inpaint_parameterized: - progressbar(async_task, 1, 'Downloading inpainter ...') - inpaint_head_model_path, inpaint_patch_model_path = config.downloading_inpaint_models( - inpaint_engine) - base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] - logger.std_info(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') - if refiner_model_name == 'None': - use_synthetic_refiner = True - refiner_switch = 0.8 - else: - inpaint_head_model_path, inpaint_patch_model_path = None, None - logger.std_info('[Inpaint] Parameterized inpaint is disabled.') - if inpaint_additional_prompt != '': - if prompt == '': - prompt = inpaint_additional_prompt - else: - prompt = inpaint_additional_prompt + '\n' + prompt - goals.append('inpaint') - if current_tab == 'ip' or \ - mixing_image_prompt_and_vary_upscale or \ - mixing_image_prompt_and_inpaint: - goals.append('cn') - progressbar(async_task, 1, 'Downloading control models ...') - if len(cn_tasks[flags.cn_canny]) > 0: - controlnet_canny_path = config.downloading_controlnet_canny() - if len(cn_tasks[flags.cn_cpds]) > 0: - controlnet_cpds_path = config.downloading_controlnet_cpds() - if len(cn_tasks[flags.cn_ip]) > 0: - clip_vision_path, ip_negative_path, ip_adapter_path = config.downloading_ip_adapters('ip') - if len(cn_tasks[flags.cn_ip_face]) > 0: - clip_vision_path, ip_negative_path, ip_adapter_face_path = config.downloading_ip_adapters( - 'face') - progressbar(async_task, 1, 'Loading control models ...') + if async_task.input_image_checkbox: + base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner = apply_image_input( + async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, + goals, inpaint_head_model_path, inpaint_image, inpaint_mask, inpaint_parameterized, ip_adapter_face_path, + ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner) # Load or unload CNs + progressbar(async_task, current_progress, 'Loading control models ...') pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path]) ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path) ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path) - if overwrite_step > 0: - steps = overwrite_step + async_task.steps, switch, width, height = apply_overrides(async_task, async_task.steps, height, width) - switch = int(round(steps * refiner_switch)) + print(f'[Parameters] Sampler = {async_task.sampler_name} - {async_task.scheduler_name}') + print(f'[Parameters] Steps = {async_task.steps} - {switch}') - if overwrite_switch > 0: - switch = overwrite_switch - - if overwrite_width > 0: - width = overwrite_width - - if overwrite_height > 0: - height = overwrite_height - - logger.std_info(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}') - logger.std_info(f'[Parameters] Steps = {steps} - {switch}') - - progressbar(async_task, 1, 'Initializing ...') + progressbar(async_task, current_progress, 'Initializing ...') + loras = async_task.loras if not skip_prompt_processing: - - prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') - negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') - - prompt = prompts[0] - negative_prompt = negative_prompts[0] - - if prompt == '': - # disable expansion when empty since it is not meaningful and influences image prompt - use_expansion = False - - extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] - extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] - - progressbar(async_task, 3, 'Loading models ...') - lora_filenames = remove_performance_lora(config.lora_filenames, performance_selection) - loras, prompt = parse_lora_references_from_prompt(prompt, loras, config.default_max_lora_number, lora_filenames=lora_filenames) - loras += performance_loras - - pipeline.refresh_everything( - refiner_model_name=refiner_model_name, - base_model_name=base_model_name, - loras=loras, - base_model_additional_loras=base_model_additional_loras, - use_synthetic_refiner=use_synthetic_refiner) - - pipeline.set_clip_skip(clip_skip) - - progressbar(async_task, 3, 'Processing prompts ...') - tasks = [] - - for i in range(image_number): - if disable_seed_increment: - task_seed = seed % (constants.MAX_SEED + 1) - else: - task_seed = (seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not - - task_rng = random.Random(task_seed) # may bind to inpaint noise in the future - task_prompt = apply_wildcards(prompt, task_rng, i, read_wildcards_in_order) - task_prompt = apply_arrays(task_prompt, i) - task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, read_wildcards_in_order) - task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in - extra_positive_prompts] - task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in - extra_negative_prompts] - - positive_basic_workloads = [] - negative_basic_workloads = [] - - task_styles = style_selections.copy() - if use_style: - for index, style in enumerate(task_styles): - if style == random_style_name: - style = get_random_style(task_rng) - task_styles[index] = style - p, n = apply_style(style, positive=task_prompt) - positive_basic_workloads = positive_basic_workloads + p - negative_basic_workloads = negative_basic_workloads + n - else: - positive_basic_workloads.append(task_prompt) - - negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative. - - positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts - negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts - - positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) - negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) - - tasks.append(dict( - task_seed=task_seed, - task_prompt=task_prompt, - task_negative_prompt=task_negative_prompt, - positive=positive_basic_workloads, - negative=negative_basic_workloads, - expansion='', - c=None, - uc=None, - positive_top_k=len(positive_basic_workloads), - negative_top_k=len(negative_basic_workloads), - log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), - log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), - styles=task_styles - )) - - if use_expansion: - for i, t in enumerate(tasks): - progressbar(async_task, 4, f'Preparing Fooocus text #{i + 1} ...') - expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) - logger.std_info(f'[Prompt Expansion] {expansion}') - t['expansion'] = expansion - t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy. - - for i, t in enumerate(tasks): - progressbar(async_task, 5, f'Encoding positive #{i + 1} ...') - t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) - - for i, t in enumerate(tasks): - if abs(float(cfg_scale) - 1.0) < 1e-4: - t['uc'] = pipeline.clone_cond(t['c']) - else: - progressbar(async_task, 6, f'Encoding negative #{i + 1} ...') - t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) + tasks, use_expansion, loras, current_progress = process_prompt(async_task, async_task.prompt, async_task.negative_prompt, + base_model_additional_loras, async_task.image_number, + async_task.disable_seed_increment, use_expansion, use_style, + use_synthetic_refiner, current_progress, advance_progress=True) if len(goals) > 0: - progressbar(async_task, 7, 'Image processing ...') + current_progress += 1 + progressbar(async_task, current_progress, 'Image processing ...') - if 'vary' in goals: - if 'subtle' in uov_method: - denoising_strength = 0.5 - if 'strong' in uov_method: - denoising_strength = 0.85 - if overwrite_vary_strength > 0: - denoising_strength = overwrite_vary_strength - - shape_ceil = get_image_shape_ceil(uov_input_image) - if shape_ceil < 1024: - logger.std_warn('[Vary] Image is resized because it is too small.') - shape_ceil = 1024 - elif shape_ceil > 2048: - logger.std_warn('[Vary] Image is resized because it is too big.') - shape_ceil = 2048 - - uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) - - initial_pixels = core.numpy_to_pytorch(uov_input_image) - progressbar(async_task, 8, 'VAE encoding ...') - - candidate_vae, _ = pipeline.get_candidate_vae( - steps=steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=refiner_swap_method - ) + should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0) - initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) - B, C, H, W = initial_latent['samples'].shape - width = W * 8 - height = H * 8 - logger.std_info(f'[Vary] Final resolution is {str((height, width))}.') + if 'vary' in goals: + async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary( + async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch, + current_progress) if 'upscale' in goals: - H, W, C = uov_input_image.shape - progressbar(async_task, 9, f'Upscaling image from {str((H, W))} ...') - uov_input_image = perform_upscale(uov_input_image) - logger.std_info('[Upscale] Image upscale.') - - if upscale_value is not None and upscale_value > 1.0: - f = upscale_value - else: - if '1.5x' in uov_method: - f = 1.5 - elif '2x' in uov_method: - f = 2.0 - else: - f = 1.0 - - shape_ceil = get_shape_ceil(H * f, W * f) - - if shape_ceil < 1024: - logger.std_info('[Upscale] Image is resized because it is too small.') - uov_input_image = set_image_shape_ceil(uov_input_image, 1024) - shape_ceil = 1024 - else: - uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) - - image_is_super_large = shape_ceil > 2800 - - if 'fast' in uov_method: - direct_return = True - elif image_is_super_large: - logger.std_info('[Upscale] Image is too large. Directly returned the SR image. ' - 'Usually directly return SR image at 4K resolution ' - 'yields better results than SDXL diffusion.') - direct_return = True - else: - direct_return = False - + direct_return, async_task.uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( + async_task, async_task.uov_input_image, async_task.uov_method, switch, current_progress, + advance_progress=True) if direct_return: - # d = [('Upscale (Fast)', '2x')] - # log(uov_input_image, d, output_format=save_extension) - if config.default_black_out_nsfw or black_out_nsfw: - uov_input_image = default_censor(uov_input_image) - yield_result(async_task, uov_input_image, tasks, save_extension, False, False) + d = [('Upscale (Fast)', 'upscale_fast', '2x')] + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: + progressbar(async_task, 100, 'Checking for NSFW content ...') + async_task.uov_input_image = default_censor(async_task.uov_input_image) + progressbar(async_task, 100, 'Saving image to system ...') + uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format) + yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False, + do_not_show_finished_images=True) return - tiled = True - denoising_strength = 0.382 - - if overwrite_upscale_strength > 0: - denoising_strength = overwrite_upscale_strength - - initial_pixels = core.numpy_to_pytorch(uov_input_image) - progressbar(async_task, 10, 'VAE encoding ...') - - candidate_vae, _ = pipeline.get_candidate_vae( - steps=steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=refiner_swap_method - ) - - initial_latent = core.encode_vae( - vae=candidate_vae, - pixels=initial_pixels, tiled=True) - B, C, H, W = initial_latent['samples'].shape - width = W * 8 - height = H * 8 - logger.std_info(f'[Upscale] Final resolution is {str((height, width))}.') - if 'inpaint' in goals: - if len(outpaint_selections) > 0: - H, W, C = inpaint_image.shape - if 'top' in outpaint_selections: - distance_top = int(H * 0.3) - if outpaint_distance_top > 0: - distance_top = outpaint_distance_top - - inpaint_image = np.pad(inpaint_image, [[distance_top, 0], [0, 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[distance_top, 0], [0, 0]], mode='constant', - constant_values=255) - - if 'bottom' in outpaint_selections: - distance_bottom = int(H * 0.3) - if outpaint_distance_bottom > 0: - distance_bottom = outpaint_distance_bottom - - inpaint_image = np.pad(inpaint_image, [[0, distance_bottom], [0, 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, distance_bottom], [0, 0]], mode='constant', - constant_values=255) - - H, W, C = inpaint_image.shape - if 'left' in outpaint_selections: - distance_left = int(W * 0.3) - if outpaint_distance_left > 0: - distance_left = outpaint_distance_left - - inpaint_image = np.pad(inpaint_image, [[0, 0], [distance_left, 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, 0], [distance_left, 0]], mode='constant', - constant_values=255) - - if 'right' in outpaint_selections: - distance_right = int(W * 0.3) - if outpaint_distance_right > 0: - distance_right = outpaint_distance_right - - inpaint_image = np.pad(inpaint_image, [[0, 0], [0, distance_right], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, distance_right]], mode='constant', - constant_values=255) - - inpaint_image = np.ascontiguousarray(inpaint_image.copy()) - inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) - inpaint_strength = 1.0 - inpaint_respective_field = 1.0 - - denoising_strength = inpaint_strength - - inpaint_worker.current_task = inpaint_worker.InpaintWorker( - image=inpaint_image, - mask=inpaint_mask, - use_fill=denoising_strength > 0.99, - k=inpaint_respective_field - ) - - if debugging_inpaint_preprocessor: - yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), tasks, - black_out_nsfw) + try: + denoising_strength, initial_latent, width, height, current_progress = apply_inpaint( + async_task, + initial_latent, + inpaint_head_model_path, + inpaint_image, + inpaint_mask, + inpaint_parameterized, + async_task.inpaint_strength, + async_task.inpaint_respective_field, + switch, + async_task.inpaint_disable_initial_latent, + current_progress, + advance_progress=True) + except EarlyReturnException: return - progressbar(async_task, 11, 'VAE Inpaint encoding ...') - - inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) - inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) - inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) - - candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( - steps=steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=refiner_swap_method - ) + if 'cn' in goals: + apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress) + if async_task.debugging_cn_preprocessor: + return - latent_inpaint, latent_mask = core.encode_vae_inpaint( - mask=inpaint_pixel_mask, - vae=candidate_vae, - pixels=inpaint_pixel_image) - - latent_swap = None - if candidate_vae_swap is not None: - progressbar(async_task, 12, 'VAE SD15 encoding ...') - latent_swap = core.encode_vae( - vae=candidate_vae_swap, - pixels=inpaint_pixel_fill)['samples'] - - progressbar(async_task, 13, 'VAE encoding ...') - latent_fill = core.encode_vae( - vae=candidate_vae, - pixels=inpaint_pixel_fill)['samples'] + if async_task.freeu_enabled: + apply_freeu(async_task) - inpaint_worker.current_task.load_latent( - latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) + # async_task.steps can have value of uov steps here when upscale has been applied + steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width) - if inpaint_parameterized: - pipeline.final_unet = inpaint_worker.current_task.patch( - inpaint_head_model_path=inpaint_head_model_path, - inpaint_latent=latent_inpaint, - inpaint_latent_mask=latent_mask, - model=pipeline.final_unet - ) + images_to_enhance = [] + if 'enhance' in goals: + async_task.image_number = 1 + images_to_enhance += [async_task.enhance_input_image] + height, width, _ = async_task.enhance_input_image.shape + # input image already provided, processing is skipped + steps = 0 - if not inpaint_disable_initial_latent: - initial_latent = {'samples': latent_fill} + all_steps = steps * async_task.image_number - B, C, H, W = latent_fill.shape - height, width = H * 8, W * 8 - final_height, final_width = inpaint_worker.current_task.image.shape[:2] - logger.std_info(f'[Inpaint] Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.') + if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.casefold(): + enhance_upscale_steps = async_task.performance_selection.steps() + if 'upscale' in async_task.enhance_uov_method: + if 'fast' in async_task.enhance_uov_method: + enhance_upscale_steps = 0 + else: + enhance_upscale_steps = async_task.performance_selection.steps_uov() + enhance_upscale_steps, _, _, _ = apply_overrides(async_task, enhance_upscale_steps, height, width) + enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps + all_steps += enhance_upscale_steps_total - if 'cn' in goals: - for task in cn_tasks[flags.cn_canny]: - cn_img, cn_stop, cn_weight = task - cn_img = resize_image(HWC3(cn_img), width=width, height=height) - - if not skipping_cn_preprocessor: - cn_img = preprocessors.canny_pyramid(cn_img, canny_low_threshold, canny_high_threshold) - - cn_img = HWC3(cn_img) - task[0] = core.numpy_to_pytorch(cn_img) - if debugging_cn_preprocessor: - yield_result(async_task, cn_img, tasks, save_extension, black_out_nsfw) - return - for task in cn_tasks[flags.cn_cpds]: - cn_img, cn_stop, cn_weight = task - cn_img = resize_image(HWC3(cn_img), width=width, height=height) - - if not skipping_cn_preprocessor: - cn_img = preprocessors.cpds(cn_img) - - cn_img = HWC3(cn_img) - task[0] = core.numpy_to_pytorch(cn_img) - if debugging_cn_preprocessor: - yield_result(async_task, cn_img, tasks, save_extension, black_out_nsfw) - return - for task in cn_tasks[flags.cn_ip]: - cn_img, cn_stop, cn_weight = task - cn_img = HWC3(cn_img) - - # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 - cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) - - task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) - if debugging_cn_preprocessor: - yield_result(async_task, cn_img, tasks, save_extension, black_out_nsfw) - return - for task in cn_tasks[flags.cn_ip_face]: - cn_img, cn_stop, cn_weight = task - cn_img = HWC3(cn_img) - - if not skipping_cn_preprocessor: - cn_img = face_crop.crop_image(cn_img) - - # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 - cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) - - task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) - if debugging_cn_preprocessor: - yield_result(async_task, cn_img, tasks, save_extension, black_out_nsfw) - return - - all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face] - - if len(all_ip_tasks) > 0: - pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) - - if freeu_enabled: - logger.std_info('[Fooocus] FreeU is enabled!') - pipeline.final_unet = core.apply_freeu( - pipeline.final_unet, - freeu_b1, - freeu_b2, - freeu_s1, - freeu_s2 - ) + if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0: + enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) + all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps - all_steps = steps * image_number + all_steps = max(all_steps, 1) - logger.std_info(f'[Parameters] Denoising Strength = {denoising_strength}') + print(f'[Parameters] Denoising Strength = {denoising_strength}') if isinstance(initial_latent, dict) and 'samples' in initial_latent: log_shape = initial_latent['samples'].shape else: log_shape = f'Image Space {(height, width)}' - logger.std_info(f'[Parameters] Initial Latent shape: {log_shape}') - - preparation_time = time.perf_counter() - execution_start_time - logger.std_info(f'[Fooocus] Preparation time: {preparation_time:.2f} seconds') - - final_sampler_name = sampler_name - final_scheduler_name = scheduler_name + print(f'[Parameters] Initial Latent shape: {log_shape}') - if scheduler_name in ['lcm', 'tcd']: - final_scheduler_name = 'sgm_uniform' - - def patch_discrete(unet): - return core.opModelSamplingDiscrete.patch( - pipeline.final_unet, - sampling=scheduler_name, - zsnr=False)[0] - - if pipeline.final_unet is not None: - pipeline.final_unet = patch_discrete(pipeline.final_unet) - if pipeline.final_refiner_unet is not None: - pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet) - logger.std_info(f'[Fooocus] Using {scheduler_name} scheduler.') - elif scheduler_name == 'edm_playground_v2.5': - final_scheduler_name = 'karras' + preparation_time = time.perf_counter() - preparation_start_time + print(f'Preparation time: {preparation_time:.2f} seconds') - def patch_edm(unet): - return core.opModelSamplingContinuousEDM.patch( - unet, - sampling=scheduler_name, - sigma_max=120.0, - sigma_min=0.002)[0] + final_scheduler_name = patch_samplers(async_task) + print(f'Using {final_scheduler_name} scheduler.') - if pipeline.final_unet is not None: - pipeline.final_unet = patch_edm(pipeline.final_unet) - if pipeline.final_refiner_unet is not None: - pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet) + outputs.append(['preview', (current_progress, 'Moving model to GPU ...', None)]) - logger.std_info(f'[Fooocus] Using {scheduler_name} scheduler.') + processing_start_time = time.perf_counter() - outputs.append(['preview', (13, 'Moving model to GPU ...', None)]) + preparation_steps = current_progress + total_count = async_task.image_number def callback(step, x0, x, total_steps, y): """callback, used for progress and preview""" @@ -968,77 +1387,201 @@ def callback(step, x0, x, total_steps, y): f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling', y)]) + show_intermediate_results = len(tasks) > 1 or async_task.should_enhance + persist_image = not async_task.should_enhance or not async_task.save_final_enhanced_image_only + for current_task_id, task in enumerate(tasks): + progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...') execution_start_time = time.perf_counter() try: - positive_cond, negative_cond = task['c'], task['uc'] - - if 'cn' in goals: - for cn_flag, cn_path in [ - (flags.cn_canny, controlnet_canny_path), - (flags.cn_cpds, controlnet_cpds_path) - ]: - for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]: - positive_cond, negative_cond = core.apply_controlnet( - positive_cond, negative_cond, - pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) - - imgs = pipeline.process_diffusion( - positive_cond=positive_cond, - negative_cond=negative_cond, - steps=steps, - switch=switch, - width=width, - height=height, - image_seed=task['task_seed'], - callback=callback, - sampler_name=final_sampler_name, - scheduler_name=final_scheduler_name, - latent=initial_latent, - denoise=denoising_strength, - tiled=tiled, - cfg_scale=cfg_scale, - refiner_swap_method=refiner_swap_method, - disable_preview=disable_preview - ) - - del task['c'], task['uc'], positive_cond, negative_cond # Save memory - - if inpaint_worker.current_task is not None: - imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] - - # Fooocus async_worker.py code end - - results += imgs - except model_management.InterruptProcessingException as e: - logger.std_warn("[Fooocus] User stopped") - results = [] - results.append(ImageGenerationResult( - im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.user_cancel)) - async_task.set_result(results, True, str(e)) - break - except Exception as e: - logger.std_error(f'[Fooocus] Process error: {e}') - logging.exception(e) - results = [] - results.append(ImageGenerationResult( - im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.error)) - async_task.set_result(results, True, str(e)) - break + imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_task_id, + denoising_strength, final_scheduler_name, goals, + initial_latent, async_task.steps, switch, task['c'], + task['uc'], task, loras, tiled, use_expansion, width, + height, current_progress, preparation_steps, + async_task.image_number, show_intermediate_results, + persist_image) + + current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1)) + images_to_enhance += imgs + + except ldm_patched.modules.model_management.InterruptProcessingException: + if async_task.last_stop == 'skip': + print('User skipped') + async_task.last_stop = False + continue + else: + print('User stopped') + break + del task['c'], task['uc'] # Save memory execution_time = time.perf_counter() - execution_start_time - logger.std_info(f'[Fooocus] Generating and saving time: {execution_time:.2f} seconds') + print(f'Generating and saving time: {execution_time:.2f} seconds') + + if not async_task.should_enhance: + print(f'[Enhance] Skipping, preconditions aren\'t met') + stop_processing(async_task, processing_start_time) + return + + progressbar(async_task, current_progress, 'Processing enhance ...') + + active_enhance_tabs = len(async_task.enhance_ctrls) + should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold() + enhance_uov_before = False + enhance_uov_after = False + if should_process_enhance_uov: + active_enhance_tabs += 1 + enhance_uov_before = async_task.enhance_uov_processing_order == flags.enhancement_uov_before + enhance_uov_after = async_task.enhance_uov_processing_order == flags.enhancement_uov_after + total_count = len(images_to_enhance) * active_enhance_tabs + async_task.images_to_enhance_count = len(images_to_enhance) + + base_progress = current_progress + current_task_id = -1 + done_steps_upscaling = 0 + done_steps_inpainting = 0 + enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) + exception_result = None + for index, img in enumerate(images_to_enhance): + async_task.enhance_stats[index] = 0 + enhancement_image_start_time = time.perf_counter() + + last_enhance_prompt = async_task.prompt + last_enhance_negative_prompt = async_task.negative_prompt + + if enhance_uov_before: + current_task_id += 1 + persist_image = not async_task.save_final_enhanced_image_only or active_enhance_tabs == 0 + current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( + all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps, + switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image) + async_task.enhance_stats[index] += 1 + + if exception_result == 'continue': + continue + elif exception_result == 'break': + break + + # inpaint for all other tabs + for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_cloth_category, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls: + current_task_id += 1 + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) + progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...') + enhancement_task_start_time = time.perf_counter() + is_last_enhance_for_image = (current_task_id + 1) % active_enhance_tabs == 0 and not enhance_uov_after + persist_image = not async_task.save_final_enhanced_image_only or is_last_enhance_for_image + + extras = {} + if enhance_mask_model == 'sam': + print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"') + elif enhance_mask_model == 'u2net_cloth_seg': + extras['cloth_category'] = enhance_mask_cloth_category + + mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image( + img, mask_model=enhance_mask_model, extras=extras, sam_options=SAMOptions( + dino_prompt=enhance_mask_dino_prompt_text, + dino_box_threshold=enhance_mask_box_threshold, + dino_text_threshold=enhance_mask_text_threshold, + dino_erode_or_dilate=async_task.dino_erode_or_dilate, + dino_debug=async_task.debugging_dino, + max_detections=enhance_mask_sam_max_detections, + model_type=enhance_mask_sam_model, + )) + if len(mask.shape) == 3: + mask = mask[:, :, 0] + + if int(enhance_inpaint_erode_or_dilate) != 0: + mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate) + + if enhance_mask_invert: + mask = 255 - mask + + if async_task.debugging_enhance_masks_checkbox: + outputs.append(['preview', (current_progress, 'Loading ...', mask)]) + yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False, + async_task.disable_intermediate_results) + async_task.enhance_stats[index] += 1 + + print(f'[Enhance] {dino_detection_count} boxes detected') + print(f'[Enhance] {sam_detection_count} segments detected in boxes') + print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask') + + if enhance_mask_model == 'sam' and (dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0): + print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping') + continue + + goals_enhance = ['inpaint'] + + try: + current_progress, img, enhance_prompt_processed, enhance_negative_prompt_processed = process_enhance( + all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, + current_progress, current_task_id, denoising_strength, enhance_inpaint_disable_initial_latent, + enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength, + enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask, + preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style, + use_synthetic_refiner, width, persist_image=persist_image) + async_task.enhance_stats[index] += 1 + + if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after + and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled): + if enhance_prompt_processed != '': + last_enhance_prompt = enhance_prompt_processed + if enhance_negative_prompt_processed != '': + last_enhance_negative_prompt = enhance_negative_prompt_processed + + except ldm_patched.modules.model_management.InterruptProcessingException: + if async_task.last_stop == 'skip': + print('User skipped') + async_task.last_stop = False + continue + else: + print('User stopped') + exception_result = 'break' + break + finally: + done_steps_inpainting += enhance_steps + + enhancement_task_time = time.perf_counter() - enhancement_task_start_time + print(f'Enhancement time: {enhancement_task_time:.2f} seconds') + + if exception_result == 'break': + break - if async_task.finish_with_error: - worker_queue.finish_task(async_task.job_id) - return async_task.task_result - yield_result(None, results, tasks, save_extension, black_out_nsfw) + if enhance_uov_after: + current_task_id += 1 + # last step in enhance, always save + persist_image = True + current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( + all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img, + preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, + width, persist_image) + async_task.enhance_stats[index] += 1 + + if exception_result == 'continue': + continue + elif exception_result == 'break': + break + + enhancement_image_time = time.perf_counter() - enhancement_image_start_time + print(f'Enhancement image time: {enhancement_image_time:.2f} seconds') + + stop_processing(async_task, processing_start_time) + + if task.finish_with_error: + worker_queue.finish_task(task.job_id) + return task.task_result + yield_result(None, results, tasks, async_task.output_format, async_task.black_out_nsfw) return except Exception as e: logger.std_error(f'[Fooocus] Worker error: {e}') - if not async_task.is_finished: - async_task.set_result([], True, str(e)) - worker_queue.finish_task(async_task.job_id) - logger.std_info(f"[Task Queue] Finish task with error, job_id={async_task.job_id}") + if not task.is_finished: + task.set_result([], True, str(e)) + worker_queue.finish_task(task.job_id) + logger.std_info(f"[Task Queue] Finish task with error, job_id={task.job_id}") diff --git a/fooocusapi/worker_merge.py b/fooocusapi/worker_merge.py new file mode 100644 index 0000000..c4f9a98 --- /dev/null +++ b/fooocusapi/worker_merge.py @@ -0,0 +1,1593 @@ +""" +Worker, modify from https://github.com/lllyasviel/Fooocus/blob/main/modules/async_worker.py +""" +import re +import threading +import uuid +import logging +import time +from typing import List + +import torch + +import ldm_patched.modules.model_management +import modules.patch +import modules.config +from extras.inpaint_mask import SAMOptions, generate_mask_from_image +from fooocusapi.models.common.image_meta import image_parse +from fooocusapi.models.common.task import ( + GenerationFinishReason, + ImageGenerationResult +) +from fooocusapi.parameters import ImageGenerationParams +from fooocusapi.task_queue import ( + QueueTask, + TaskOutputs, + TaskQueue +) +from fooocusapi.utils.file_utils import save_output_file +from fooocusapi.utils.logger import logger + +from modules.flags import Performance +from modules.patch import PatchSettings, patch_all, patch_settings +from modules.private_logger import log +from modules.sdxl_styles import fooocus_expansion +from modules.util import erode_or_dilate +import fooocus_version + + +patch_all() + + +class AsyncTask: + def __init__(self, args: ImageGenerationParams): + from modules.flags import Performance, MetadataScheme, ip_list, disabled + from modules.util import get_enabled_loras + from modules.config import default_max_lora_number + import args_manager + + adp = args.advanced_params + + self.yields = [] + self.results = [] + self.last_stop = False + self.processing = False + + self.performance_loras = [] + + self.generate_image_grid = False + self.prompt = args.prompt + self.negative_prompt = args.negative_prompt + self.style_selections = args.style_selections + + self.performance_selection = Performance(args.performance_selection) + self.steps = self.performance_selection.steps() + self.original_steps = self.steps + + self.aspect_ratios_selection = args.aspect_ratios_selection + self.image_number = args.image_number + self.output_format = args.save_extension + self.seed = int(args.image_seed) + self.read_wildcards_in_order = args.read_wildcards_in_order + self.sharpness = args.sharpness + self.cfg_scale = args.guidance_scale + self.base_model_name = args.base_model_name + self.refiner_model_name = args.refiner_model_name + self.refiner_switch = args.refiner_switch + self.loras = get_enabled_loras(args.loras) + self.input_image_checkbox = True + self.current_tab = args.current_tab + self.uov_method = args.uov_method + self.uov_input_image = args.uov_input_image + self.outpaint_selections = args.outpaint_selections + self.inpaint_input_image = args.inpaint_input_image + self.inpaint_additional_prompt = args.inpaint_additional_prompt + self.inpaint_mask_image_upload = args.inpaint_input_image['mask'] + + self.disable_preview = adp.disable_preview + self.disable_intermediate_results = adp.disable_intermediate_results + self.disable_seed_increment = adp.disable_seed_increment + self.black_out_nsfw = adp.black_out_nsfw + self.adm_scaler_positive = adp.adm_scaler_positive + self.adm_scaler_negative = adp.adm_scaler_negative + self.adm_scaler_end = adp.scaler_end + self.adaptive_cfg = adp.adaptive_cfg + self.clip_skip = adp.clip_skip + self.sampler_name = adp.sampler_name + self.scheduler_name = adp.scheduler_name + self.vae_name = adp.vae_name + self.overwrite_step = adp.overwrite_step + self.overwrite_switch = adp.overwrite_switch + self.overwrite_width = adp.overwrite_width + self.overwrite_height = adp.overwrite_height + self.overwrite_vary_strength = adp.overwrite_vary_strength + self.overwrite_upscale_strength = adp.overwrite_upscale_strength + self.mixing_image_prompt_and_vary_upscale = adp.mixing_image_prompt_and_vary_upscale + self.mixing_image_prompt_and_inpaint = adp.mixing_image_prompt_and_inpaint + self.debugging_cn_preprocessor = adp.debugging_cn_preprocessor + self.skipping_cn_preprocessor = adp.skipping_cn_preprocessor + self.canny_low_threshold = adp.canny_low_threshold + self.canny_high_threshold = adp.canny_high_threshold + self.refiner_swap_method = adp.refiner_swap_method + self.controlnet_softness = adp.controlnet_softness + self.freeu_enabled = adp.freeu_enabled + self.freeu_b1 = adp.freeu_b1 + self.freeu_b2 = adp.freeu_b2 + self.freeu_s1 = adp.freeu_s1 + self.freeu_s2 = adp.freeu_s2 + self.debugging_inpaint_preprocessor = adp.debugging_inpaint_preprocessor + self.inpaint_disable_initial_latent = adp.inpaint_disable_initial_latent + self.inpaint_engine = adp.inpaint_engine + self.inpaint_strength = adp.inpaint_strength + self.inpaint_respective_field = adp.inpaint_respective_field + self.inpaint_advanced_masking_checkbox = adp.inpaint_advanced_masking_checkbox + self.invert_mask_checkbox = adp.invert_mask_checkbox + self.inpaint_erode_or_dilate = adp.inpaint_erode_or_dilate + self.save_final_enhanced_image_only = adp.save_final_enhanced_image_only if not args_manager.args.disable_image_log else False + self.save_metadata_to_images = args.save_meta + self.metadata_scheme = MetadataScheme( + args.meta_scheme) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS + + self.cn_tasks = {x: [] for x in ip_list} + for image_prompt in args.image_prompts: + cn_img = image_prompt[0] + cn_stop = image_prompt[1] + cn_weight = image_prompt[2] + cn_type = image_prompt[3] + if cn_img is not None: + self.cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) + + self.debugging_dino = adp.debugging_dino + self.dino_erode_or_dilate = adp.dino_erode_or_dilate + self.debugging_enhance_masks_checkbox = adp.debugging_enhance_masks_checkbox + + self.enhance_input_image = args.enhance_input_image + self.enhance_checkbox = args.enhance_checkbox + self.enhance_uov_method = args.enhance_uov_method + self.enhance_uov_processing_order = args.enhance_uov_processing_order + self.enhance_uov_prompt_type = args.enhance_uov_prompt_type + self.enhance_ctrls = [] + for enhance in args.enhance_ctrlnets: + enhance_enabled = enhance.enhance_enabled + enhance_mask_dino_prompt_text = enhance.enhance_mask_dino_prompt + enhance_prompt = enhance.enhance_prompt + enhance_negative_prompt = enhance.enhance_negative_prompt + enhance_mask_model = enhance.enhance_mask_model + enhance_mask_cloth_category = enhance.enhance_mask_cloth_category + enhance_mask_sam_model = enhance.enhance_mask_sam_model + enhance_mask_text_threshold = enhance.enhance_mask_text_threshold + enhance_mask_box_threshold = enhance.enhance_mask_box_threshold + enhance_mask_sam_max_detections = enhance.enhance_mask_sam_max_detections + enhance_inpaint_disable_initial_latent = enhance.enhance_inpaint_disable_initial_latent + enhance_inpaint_engine = enhance.enhance_inpaint_engine + enhance_inpaint_strength = enhance.enhance_inpaint_strength + enhance_inpaint_respective_field = enhance.enhance_inpaint_respective_field + enhance_inpaint_erode_or_dilate = enhance.enhance_inpaint_erode_or_dilate + enhance_mask_invert = enhance.enhance_mask_invert + if enhance_enabled: + self.enhance_ctrls.append([ + enhance_mask_dino_prompt_text, + enhance_prompt, + enhance_negative_prompt, + enhance_mask_model, + enhance_mask_cloth_category, + enhance_mask_sam_model, + enhance_mask_text_threshold, + enhance_mask_box_threshold, + enhance_mask_sam_max_detections, + enhance_inpaint_disable_initial_latent, + enhance_inpaint_engine, + enhance_inpaint_strength, + enhance_inpaint_respective_field, + enhance_inpaint_erode_or_dilate, + enhance_mask_invert + ]) + self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method != disabled.casefold() or len(self.enhance_ctrls) > 0) + self.images_to_enhance_count = 0 + self.enhance_stats = {} + + try: + self.outpaint_distance = [ + args.outpaint_distance_left, + args.outpaint_distance_top, + args.outpaint_distance_right, + args.outpaint_distance_bottom + ] + except IndexError: + self.outpaint_distance = [0, 0, 0, 0] + + +async_tasks = [] + + +class EarlyReturnException(BaseException): + pass + + +worker_queue: TaskQueue | None = None +last_model_name = None + + +def process_stop(): + """Stop process""" + import ldm_patched.modules.model_management + ldm_patched.modules.model_management.interrupt_current_processing() + + +def task_schedule_loop(): + """Task schedule loop""" + while True: + if len(worker_queue.queue) == 0: + time.sleep(0.05) + continue + + current_task = worker_queue.queue[0] + if current_task.start_mills == 0: + process_generate(current_task) + + +def blocking_get_task_result(job_id: str) -> List[ImageGenerationResult]: + """ + Get task result, when async_task is false + :param job_id: + :return: + """ + waiting_sleep_steps: int = 0 + waiting_start_time = time.perf_counter() + while not worker_queue.is_task_finished(job_id): + if waiting_sleep_steps == 0: + logger.std_info(f"[Task Queue] Waiting for task finished, job_id={job_id}") + delay = 0.05 + time.sleep(delay) + waiting_sleep_steps += 1 + if waiting_sleep_steps % int(10 / delay) == 0: + waiting_time = time.perf_counter() - waiting_start_time + logger.std_info(f"[Task Queue] Already waiting for {round(waiting_time, 1)} seconds, job_id={job_id}") + + task = worker_queue.get_task(job_id, True) + return task.task_result + + +@torch.no_grad() +@torch.inference_mode() +def process_generate(async_job: QueueTask): + """Generate image""" + try: + import modules.default_pipeline as pipeline + except Exception as e: + logger.std_error(f'[Task Queue] Import default pipeline error: {e}') + if not async_job.is_finished: + worker_queue.finish_task(async_job.job_id) + async_job.set_result(task_result=[], finish_with_error=True, error_message=str(e)) + logger.std_error(f"[Task Queue] Finish task with error, seq={async_job.job_id}") + return [] + + async_task = AsyncTask(async_job.req_param) + global async_tasks + + import os + import traceback + import math + import numpy as np + import torch + import time + import random + import copy + import modules.core as core + import modules.flags as flags + import modules.patch + import ldm_patched.modules.model_management + import extras.preprocessors as preprocessors + import modules.inpaint_worker as inpaint_worker + import modules.constants as constants + import extras.ip_adapter as ip_adapter + import extras.face_crop + import fooocus_version + + from extras.censor import default_censor + from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name + from modules.private_logger import log + from extras.expansion import safe_str + from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil, + get_shape_ceil, resample_image, erode_or_dilate, parse_lora_references_from_prompt, + apply_wildcards) + from modules.upscaler import perform_upscale + from modules.flags import Performance + from modules.meta_parser import get_metadata_parser + + pid = os.getpid() + logger.std_info(f"[Task Queue] Start task, job_id={async_job.job_id}, pid={pid}") + + outputs = TaskOutputs(async_job) + results = [] + + async_task = AsyncTask(async_job.req_param) + + def progressbar(_, number, text): + """progress bar""" + logger.std_info(f'[Fooocus] {text}') + outputs.append(['preview', (number, text, None)]) + + def yield_result(_, images, tasks, extension='png', + black_out_nsfw=False, censor=True): + """ + Yield result + :param _: async task object + :param images: list for generated image + :param tasks: the image was generated one by one, when image number is not one, it will be a task list + :param extension: extension for saved image + :param black_out_nsfw: blockout nsfw image + :param censor: censor image + :return: + """ + if not isinstance(images, list): + images = [images] + + if censor and (modules.config.default_black_out_nsfw or async_task.black_out_nsfw): + images = default_censor(images) + + for ind, im in enumerate(images): + if async_job.req_param.save_name == '': + image_name = f"{async_job.job_id}-{str(index)}" + else: + image_name = f"{async_job.req_param.save_name}-{str(index)}" + if len(tasks) == 0: + img_seed = -1 + img_meta = {} + else: + img_seed = tasks[index]['task_seed'] + img_meta = image_parse( + async_tak=async_task, + task=tasks[index]) + img_filename = save_output_file( + img=im, + image_name=image_name, + image_meta=img_meta, + extension=extension) + results.append(ImageGenerationResult( + im=img_filename, + seed=str(img_seed), + finish_reason=GenerationFinishReason.success)) + async_job.set_result(results, False) + worker_queue.finish_task(async_job.job_id) + logger.std_info(f"[Task Queue] Finish task, job_id={async_job.job_id}") + + outputs.append(['results', images]) + pipeline.prepare_text_encoder(async_call=True) + + def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id, + denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond, + negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps, + total_count, show_intermediate_results, persist_image=True): + if async_task.last_stop is not False: + ldm_patched.modules.model_management.interrupt_current_processing() + + if 'cn' in goals: + for cn_flag, cn_path in [ + (flags.cn_canny, controlnet_canny_path), + (flags.cn_cpds, controlnet_cpds_path) + ]: + for cn_img, cn_stop, cn_weight in async_task.cn_tasks[cn_flag]: + positive_cond, negative_cond = core.apply_controlnet( + positive_cond, negative_cond, + pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) + imgs = pipeline.process_diffusion( + positive_cond=positive_cond, + negative_cond=negative_cond, + steps=steps, + switch=switch, + width=width, + height=height, + image_seed=task['task_seed'], + callback=callback, + sampler_name=async_task.sampler_name, + scheduler_name=final_scheduler_name, + latent=initial_latent, + denoise=denoising_strength, + tiled=tiled, + cfg_scale=async_task.cfg_scale, + refiner_swap_method=async_task.refiner_swap_method, + disable_preview=async_task.disable_preview + ) + del positive_cond, negative_cond # Save memory + if inpaint_worker.current_task is not None: + imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * steps) + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: + progressbar(async_task, current_progress, 'Checking for NSFW content ...') + imgs = default_censor(imgs) + progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') + img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image) + yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False, + do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) + + return imgs, img_paths, current_progress + + def apply_patch_settings(async_task): + patch_settings[pid] = PatchSettings( + async_task.sharpness, + async_task.adm_scaler_end, + async_task.adm_scaler_positive, + async_task.adm_scaler_negative, + async_task.controlnet_softness, + async_task.adaptive_cfg + ) + + def save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image=True) -> list: + img_paths = [] + for x in imgs: + d = [('Prompt', 'prompt', task['log_positive_prompt']), + ('Negative Prompt', 'negative_prompt', task['log_negative_prompt']), + ('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']), + ('Styles', 'styles', + str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])), + ('Performance', 'performance', async_task.performance_selection.value), + ('Steps', 'steps', async_task.steps), + ('Resolution', 'resolution', str((width, height))), + ('Guidance Scale', 'guidance_scale', async_task.cfg_scale), + ('Sharpness', 'sharpness', async_task.sharpness), + ('ADM Guidance', 'adm_guidance', str(( + modules.patch.patch_settings[pid].positive_adm_scale, + modules.patch.patch_settings[pid].negative_adm_scale, + modules.patch.patch_settings[pid].adm_scaler_end))), + ('Base Model', 'base_model', async_task.base_model_name), + ('Refiner Model', 'refiner_model', async_task.refiner_model_name), + ('Refiner Switch', 'refiner_switch', async_task.refiner_switch)] + + if async_task.refiner_model_name != 'None': + if async_task.overwrite_switch > 0: + d.append(('Overwrite Switch', 'overwrite_switch', async_task.overwrite_switch)) + if async_task.refiner_swap_method != flags.refiner_swap_method: + d.append(('Refiner Swap Method', 'refiner_swap_method', async_task.refiner_swap_method)) + if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr: + d.append( + ('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg)) + + if async_task.clip_skip > 1: + d.append(('CLIP Skip', 'clip_skip', async_task.clip_skip)) + d.append(('Sampler', 'sampler', async_task.sampler_name)) + d.append(('Scheduler', 'scheduler', async_task.scheduler_name)) + d.append(('VAE', 'vae', async_task.vae_name)) + d.append(('Seed', 'seed', str(task['task_seed']))) + + if async_task.freeu_enabled: + d.append(('FreeU', 'freeu', + str((async_task.freeu_b1, async_task.freeu_b2, async_task.freeu_s1, async_task.freeu_s2)))) + + for li, (n, w) in enumerate(loras): + if n != 'None': + d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}')) + + metadata_parser = None + if async_task.save_metadata_to_images: + metadata_parser = modules.meta_parser.get_metadata_parser(async_task.metadata_scheme) + metadata_parser.set_data(task['log_positive_prompt'], task['positive'], + task['log_negative_prompt'], task['negative'], + async_task.steps, async_task.base_model_name, async_task.refiner_model_name, + loras, async_task.vae_name) + d.append(('Metadata Scheme', 'metadata_scheme', + async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images)) + d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version)) + img_paths.append(log(x, d, metadata_parser, async_task.output_format, task, persist_image)) + + return img_paths + + def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress): + for task in async_task.cn_tasks[flags.cn_canny]: + cn_img, cn_stop, cn_weight = task + cn_img = resize_image(HWC3(cn_img), width=width, height=height) + + if not async_task.skipping_cn_preprocessor: + cn_img = preprocessors.canny_pyramid(cn_img, async_task.canny_low_threshold, + async_task.canny_high_threshold) + + cn_img = HWC3(cn_img) + task[0] = core.numpy_to_pytorch(cn_img) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_cpds]: + cn_img, cn_stop, cn_weight = task + cn_img = resize_image(HWC3(cn_img), width=width, height=height) + + if not async_task.skipping_cn_preprocessor: + cn_img = preprocessors.cpds(cn_img) + + cn_img = HWC3(cn_img) + task[0] = core.numpy_to_pytorch(cn_img) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_ip]: + cn_img, cn_stop, cn_weight = task + cn_img = HWC3(cn_img) + + # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 + cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) + + task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + for task in async_task.cn_tasks[flags.cn_ip_face]: + cn_img, cn_stop, cn_weight = task + cn_img = HWC3(cn_img) + + if not async_task.skipping_cn_preprocessor: + cn_img = extras.face_crop.crop_image(cn_img) + + # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 + cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) + + task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) + if async_task.debugging_cn_preprocessor: + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face] + if len(all_ip_tasks) > 0: + pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) + + def apply_vary(async_task, uov_method, denoising_strength, uov_input_image, switch, current_progress, advance_progress=False): + if 'subtle' in uov_method: + denoising_strength = 0.5 + if 'strong' in uov_method: + denoising_strength = 0.85 + if async_task.overwrite_vary_strength > 0: + denoising_strength = async_task.overwrite_vary_strength + shape_ceil = get_image_shape_ceil(uov_input_image) + if shape_ceil < 1024: + print(f'[Vary] Image is resized because it is too small.') + shape_ceil = 1024 + elif shape_ceil > 2048: + print(f'[Vary] Image is resized because it is too big.') + shape_ceil = 2048 + uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) + initial_pixels = core.numpy_to_pytorch(uov_input_image) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + candidate_vae, _ = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) + B, C, H, W = initial_latent['samples'].shape + width = W * 8 + height = H * 8 + print(f'Final resolution is {str((width, height))}.') + return uov_input_image, denoising_strength, initial_latent, width, height, current_progress + + def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_image, + inpaint_mask, inpaint_parameterized, denoising_strength, inpaint_respective_field, switch, + inpaint_disable_initial_latent, current_progress, skip_apply_outpaint=False, + advance_progress=False): + if not skip_apply_outpaint: + inpaint_image, inpaint_mask = apply_outpaint(async_task, inpaint_image, inpaint_mask) + + inpaint_worker.current_task = inpaint_worker.InpaintWorker( + image=inpaint_image, + mask=inpaint_mask, + use_fill=denoising_strength > 0.99, + k=inpaint_respective_field + ) + if async_task.debugging_inpaint_preprocessor: + yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100, + async_task.black_out_nsfw, do_not_show_finished_images=True) + raise EarlyReturnException + + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE Inpaint encoding ...') + inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) + inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) + inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) + candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + latent_inpaint, latent_mask = core.encode_vae_inpaint( + mask=inpaint_pixel_mask, + vae=candidate_vae, + pixels=inpaint_pixel_image) + latent_swap = None + if candidate_vae_swap is not None: + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE SD15 encoding ...') + latent_swap = core.encode_vae( + vae=candidate_vae_swap, + pixels=inpaint_pixel_fill)['samples'] + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + latent_fill = core.encode_vae( + vae=candidate_vae, + pixels=inpaint_pixel_fill)['samples'] + inpaint_worker.current_task.load_latent( + latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) + if inpaint_parameterized: + pipeline.final_unet = inpaint_worker.current_task.patch( + inpaint_head_model_path=inpaint_head_model_path, + inpaint_latent=latent_inpaint, + inpaint_latent_mask=latent_mask, + model=pipeline.final_unet + ) + if not inpaint_disable_initial_latent: + initial_latent = {'samples': latent_fill} + B, C, H, W = latent_fill.shape + height, width = H * 8, W * 8 + final_height, final_width = inpaint_worker.current_task.image.shape[:2] + print(f'Final resolution is {str((final_width, final_height))}, latent is {str((width, height))}.') + + return denoising_strength, initial_latent, width, height, current_progress + + def apply_outpaint(async_task, inpaint_image, inpaint_mask): + try: + dt_left, dt_top, dt_right, dt_bottom = async_task.outpaint_distance[:4] + except Exception: + dt_left, dt_top, dt_right, dt_bottom = 0, 0, 0, 0 + if len(async_task.outpaint_selections) > 0: + H, W, C = inpaint_image.shape + if 'top' in async_task.outpaint_selections: + distance_top = int(H * 0.3) + if dt_top > 0: + distance_top = dt_top + + inpaint_image = np.pad(inpaint_image, [[distance_top, 0], [0, 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[distance_top, 0], [0, 0]], mode='constant', + constant_values=255) + if 'bottom' in async_task.outpaint_selections: + distance_bottom = int(H * 0.3) + if dt_bottom > 0: + distance_bottom = dt_bottom + + inpaint_image = np.pad(inpaint_image, [[0, distance_bottom], [0, 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, distance_bottom], [0, 0]], mode='constant', + constant_values=255) + + H, W, C = inpaint_image.shape + if 'left' in async_task.outpaint_selections: + distance_left = int(W * 0.3) + if dt_left > 0: + distance_left = dt_left + + inpaint_image = np.pad(inpaint_image, [[0, 0], [distance_left, 0], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, 0], [distance_left, 0]], mode='constant', + constant_values=255) + if 'right' in async_task.outpaint_selections: + distance_right = int(W * 0.3) + if dt_right > 0: + distance_right = dt_right + + inpaint_image = np.pad(inpaint_image, [[0, 0], [0, distance_right], [0, 0]], mode='edge') + inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, distance_right]], mode='constant', + constant_values=255) + + inpaint_image = np.ascontiguousarray(inpaint_image.copy()) + inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) + async_task.inpaint_strength = 1.0 + async_task.inpaint_respective_field = 1.0 + return inpaint_image, inpaint_mask + + def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progress, advance_progress=False): + H, W, C = uov_input_image.shape + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...') + uov_input_image = perform_upscale(uov_input_image) + print(f'Image upscaled.') + if '1.5x' in uov_method: + f = 1.5 + elif '2x' in uov_method: + f = 2.0 + else: + # @freek99 + pattern = r"([0-9]+(?:\.[0-9]+)?)x" + matches = re.findall(pattern, uov_method) + try: + f = float(matches[0]) + if f < 1.0: + f = 1.0 + if f > 5.0: + f = 5.0 + except Exception: + f = 1.0 + shape_ceil = get_shape_ceil(H * f, W * f) + if shape_ceil < 1024: + print(f'[Upscale] Image is resized because it is too small.') + uov_input_image = set_image_shape_ceil(uov_input_image, 1024) + shape_ceil = 1024 + else: + uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) + image_is_super_large = shape_ceil > 2800 + if 'fast' in uov_method: + direct_return = True + elif image_is_super_large: + print('Image is too large. Directly returned the SR image. ' + 'Usually directly return SR image at 4K resolution ' + 'yields better results than SDXL diffusion.') + direct_return = True + else: + direct_return = False + if direct_return: + return direct_return, uov_input_image, None, None, None, None, None, current_progress + + tiled = True + denoising_strength = 0.382 + if async_task.overwrite_upscale_strength > 0: + denoising_strength = async_task.overwrite_upscale_strength + initial_pixels = core.numpy_to_pytorch(uov_input_image) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'VAE encoding ...') + candidate_vae, _ = pipeline.get_candidate_vae( + steps=async_task.steps, + switch=switch, + denoise=denoising_strength, + refiner_swap_method=async_task.refiner_swap_method + ) + initial_latent = core.encode_vae( + vae=candidate_vae, + pixels=initial_pixels, tiled=True) + B, C, H, W = initial_latent['samples'].shape + width = W * 8 + height = H * 8 + print(f'Final resolution is {str((width, height))}.') + return direct_return, uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress + + def apply_overrides(async_task, steps, height, width): + if async_task.overwrite_step > 0: + steps = async_task.overwrite_step + switch = int(round(async_task.steps * async_task.refiner_switch)) + if async_task.overwrite_switch > 0: + switch = async_task.overwrite_switch + if async_task.overwrite_width > 0: + width = async_task.overwrite_width + if async_task.overwrite_height > 0: + height = async_task.overwrite_height + return steps, switch, width, height + + def process_prompt(async_task, prompt, negative_prompt, base_model_additional_loras, image_number, disable_seed_increment, use_expansion, use_style, + use_synthetic_refiner, current_progress, advance_progress=False): + prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') + negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') + prompt = prompts[0] + negative_prompt = negative_prompts[0] + if prompt == '': + # disable expansion when empty since it is not meaningful and influences image prompt + use_expansion = False + extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] + extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Loading models ...') + lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames, + async_task.performance_selection) + loras, prompt = parse_lora_references_from_prompt(prompt, async_task.loras, + modules.config.default_max_lora_number, + lora_filenames=lora_filenames) + loras += async_task.performance_loras + pipeline.refresh_everything(refiner_model_name=async_task.refiner_model_name, + base_model_name=async_task.base_model_name, + loras=loras, base_model_additional_loras=base_model_additional_loras, + use_synthetic_refiner=use_synthetic_refiner, vae_name=async_task.vae_name) + pipeline.set_clip_skip(async_task.clip_skip) + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Processing prompts ...') + tasks = [] + for i in range(image_number): + if disable_seed_increment: + task_seed = async_task.seed % (constants.MAX_SEED + 1) + else: + task_seed = (async_task.seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not + + task_rng = random.Random(task_seed) # may bind to inpaint noise in the future + task_prompt = apply_wildcards(prompt, task_rng, i, async_task.read_wildcards_in_order) + task_prompt = apply_arrays(task_prompt, i) + task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, async_task.read_wildcards_in_order) + task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt + in + extra_positive_prompts] + task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt + in + extra_negative_prompts] + + positive_basic_workloads = [] + negative_basic_workloads = [] + + task_styles = async_task.style_selections.copy() + if use_style: + placeholder_replaced = False + + for j, s in enumerate(task_styles): + if s == random_style_name: + s = get_random_style(task_rng) + task_styles[j] = s + p, n, style_has_placeholder = apply_style(s, positive=task_prompt) + if style_has_placeholder: + placeholder_replaced = True + positive_basic_workloads = positive_basic_workloads + p + negative_basic_workloads = negative_basic_workloads + n + + if not placeholder_replaced: + positive_basic_workloads = [task_prompt] + positive_basic_workloads + else: + positive_basic_workloads.append(task_prompt) + + negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative. + + positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts + negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts + + positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) + negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) + + tasks.append(dict( + task_seed=task_seed, + task_prompt=task_prompt, + task_negative_prompt=task_negative_prompt, + positive=positive_basic_workloads, + negative=negative_basic_workloads, + expansion='', + c=None, + uc=None, + positive_top_k=len(positive_basic_workloads), + negative_top_k=len(negative_basic_workloads), + log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), + log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), + styles=task_styles + )) + if use_expansion: + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + progressbar(async_task, current_progress, f'Preparing Fooocus text #{i + 1} ...') + expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) + print(f'[Prompt Expansion] {expansion}') + t['expansion'] = expansion + t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy. + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + progressbar(async_task, current_progress, f'Encoding positive #{i + 1} ...') + t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) + if advance_progress: + current_progress += 1 + for i, t in enumerate(tasks): + if abs(float(async_task.cfg_scale) - 1.0) < 1e-4: + t['uc'] = pipeline.clone_cond(t['c']) + else: + progressbar(async_task, current_progress, f'Encoding negative #{i + 1} ...') + t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) + return tasks, use_expansion, loras, current_progress + + def apply_freeu(async_task): + print(f'FreeU is enabled!') + pipeline.final_unet = core.apply_freeu( + pipeline.final_unet, + async_task.freeu_b1, + async_task.freeu_b2, + async_task.freeu_s1, + async_task.freeu_s2 + ) + + def patch_discrete(unet, scheduler_name): + return core.opModelSamplingDiscrete.patch(unet, scheduler_name, False)[0] + + def patch_edm(unet, scheduler_name): + return core.opModelSamplingContinuousEDM.patch(unet, scheduler_name, 120.0, 0.002)[0] + + def patch_samplers(async_task): + final_scheduler_name = async_task.scheduler_name + + if async_task.scheduler_name in ['lcm', 'tcd']: + final_scheduler_name = 'sgm_uniform' + if pipeline.final_unet is not None: + pipeline.final_unet = patch_discrete(pipeline.final_unet, async_task.scheduler_name) + if pipeline.final_refiner_unet is not None: + pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet, async_task.scheduler_name) + + elif async_task.scheduler_name == 'edm_playground_v2.5': + final_scheduler_name = 'karras' + if pipeline.final_unet is not None: + pipeline.final_unet = patch_edm(pipeline.final_unet, async_task.scheduler_name) + if pipeline.final_refiner_unet is not None: + pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet, async_task.scheduler_name) + + return final_scheduler_name + + def set_hyper_sd_defaults(async_task, current_progress, advance_progress=False): + print('Enter Hyper-SD mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Downloading Hyper-SD components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in Hyper-SD mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'dpmpp_sde_gpu' + async_task.scheduler_name = 'karras' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def set_lightning_defaults(async_task, current_progress, advance_progress=False): + print('Enter Lightning mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, 1, 'Downloading Lightning components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in Lightning mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'euler' + async_task.scheduler_name = 'sgm_uniform' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def set_lcm_defaults(async_task, current_progress, advance_progress=False): + print('Enter LCM mode.') + if advance_progress: + current_progress += 1 + progressbar(async_task, 1, 'Downloading LCM components ...') + async_task.performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)] + if async_task.refiner_model_name != 'None': + print(f'Refiner disabled in LCM mode.') + async_task.refiner_model_name = 'None' + async_task.sampler_name = 'lcm' + async_task.scheduler_name = 'lcm' + async_task.sharpness = 0.0 + async_task.cfg_scale = 1.0 + async_task.adaptive_cfg = 1.0 + async_task.refiner_switch = 1.0 + async_task.adm_scaler_positive = 1.0 + async_task.adm_scaler_negative = 1.0 + async_task.adm_scaler_end = 0.0 + return current_progress + + def apply_image_input(async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, + controlnet_cpds_path, goals, inpaint_head_model_path, inpaint_image, inpaint_mask, + inpaint_parameterized, ip_adapter_face_path, ip_adapter_path, ip_negative_path, + skip_prompt_processing, use_synthetic_refiner): + if (async_task.current_tab == 'uov' or ( + async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \ + and async_task.uov_method != flags.disabled.casefold() and async_task.uov_input_image is not None: + async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale( + async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection, + async_task.steps, 1, skip_prompt_processing=skip_prompt_processing) + if (async_task.current_tab == 'inpaint' or ( + async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_inpaint)) \ + and isinstance(async_task.inpaint_input_image, dict): + inpaint_image = async_task.inpaint_input_image['image'] + inpaint_mask = async_task.inpaint_input_image['mask'][:, :, 0] + + if async_task.inpaint_advanced_masking_checkbox: + if isinstance(async_task.inpaint_mask_image_upload, dict): + if (isinstance(async_task.inpaint_mask_image_upload['image'], np.ndarray) + and isinstance(async_task.inpaint_mask_image_upload['mask'], np.ndarray) + and async_task.inpaint_mask_image_upload['image'].ndim == 3): + async_task.inpaint_mask_image_upload = np.maximum( + async_task.inpaint_mask_image_upload['image'], + async_task.inpaint_mask_image_upload['mask']) + if isinstance(async_task.inpaint_mask_image_upload, + np.ndarray) and async_task.inpaint_mask_image_upload.ndim == 3: + H, W, C = inpaint_image.shape + async_task.inpaint_mask_image_upload = resample_image(async_task.inpaint_mask_image_upload, + width=W, height=H) + async_task.inpaint_mask_image_upload = np.mean(async_task.inpaint_mask_image_upload, axis=2) + async_task.inpaint_mask_image_upload = (async_task.inpaint_mask_image_upload > 127).astype( + np.uint8) * 255 + inpaint_mask = np.maximum(inpaint_mask, async_task.inpaint_mask_image_upload) + + if int(async_task.inpaint_erode_or_dilate) != 0: + inpaint_mask = erode_or_dilate(inpaint_mask, async_task.inpaint_erode_or_dilate) + + if async_task.invert_mask_checkbox: + inpaint_mask = 255 - inpaint_mask + + inpaint_image = HWC3(inpaint_image) + if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ + and (np.any(inpaint_mask > 127) or len(async_task.outpaint_selections) > 0): + progressbar(async_task, 1, 'Downloading upscale models ...') + modules.config.downloading_upscale_model() + if inpaint_parameterized: + progressbar(async_task, 1, 'Downloading inpainter ...') + inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( + async_task.inpaint_engine) + base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] + print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') + if async_task.refiner_model_name == 'None': + use_synthetic_refiner = True + async_task.refiner_switch = 0.8 + else: + inpaint_head_model_path, inpaint_patch_model_path = None, None + print(f'[Inpaint] Parameterized inpaint is disabled.') + if async_task.inpaint_additional_prompt != '': + if async_task.prompt == '': + async_task.prompt = async_task.inpaint_additional_prompt + else: + async_task.prompt = async_task.inpaint_additional_prompt + '\n' + async_task.prompt + goals.append('inpaint') + if async_task.current_tab == 'ip' or \ + async_task.mixing_image_prompt_and_vary_upscale or \ + async_task.mixing_image_prompt_and_inpaint: + goals.append('cn') + progressbar(async_task, 1, 'Downloading control models ...') + if len(async_task.cn_tasks[flags.cn_canny]) > 0: + controlnet_canny_path = modules.config.downloading_controlnet_canny() + if len(async_task.cn_tasks[flags.cn_cpds]) > 0: + controlnet_cpds_path = modules.config.downloading_controlnet_cpds() + if len(async_task.cn_tasks[flags.cn_ip]) > 0: + clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip') + if len(async_task.cn_tasks[flags.cn_ip_face]) > 0: + clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters( + 'face') + if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None: + goals.append('enhance') + skip_prompt_processing = True + async_task.enhance_input_image = HWC3(async_task.enhance_input_image) + return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner + + def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress, + advance_progress=False, skip_prompt_processing=False): + uov_input_image = HWC3(uov_input_image) + if 'vary' in uov_method: + goals.append('vary') + elif 'upscale' in uov_method: + goals.append('upscale') + if 'fast' in uov_method: + skip_prompt_processing = True + steps = 0 + else: + steps = performance.steps_uov() + + if advance_progress: + current_progress += 1 + progressbar(async_task, current_progress, 'Downloading upscale models ...') + modules.config.downloading_upscale_model() + return uov_input_image, skip_prompt_processing, steps + + def prepare_enhance_prompt(prompt: str, fallback_prompt: str): + if safe_str(prompt) == '' or len(remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')) == 0: + prompt = fallback_prompt + + return prompt + + def stop_processing(async_task, processing_start_time): + async_task.processing = False + processing_time = time.perf_counter() - processing_start_time + print(f'Processing time (total): {processing_time:.2f} seconds') + + def process_enhance(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, + current_progress, current_task_id, denoising_strength, inpaint_disable_initial_latent, + inpaint_engine, inpaint_respective_field, inpaint_strength, + prompt, negative_prompt, final_scheduler_name, goals, height, img, mask, + preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style, + use_synthetic_refiner, width, show_intermediate_results=True, persist_image=True): + base_model_additional_loras = [] + inpaint_head_model_path = None + inpaint_parameterized = inpaint_engine != 'None' # inpaint_engine = None, improve detail + initial_latent = None + + prompt = prepare_enhance_prompt(prompt, async_task.prompt) + negative_prompt = prepare_enhance_prompt(negative_prompt, async_task.negative_prompt) + + if 'vary' in goals: + img, denoising_strength, initial_latent, width, height, current_progress = apply_vary( + async_task, async_task.enhance_uov_method, denoising_strength, img, switch, current_progress) + if 'upscale' in goals: + direct_return, img, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( + async_task, img, async_task.enhance_uov_method, switch, current_progress) + if direct_return: + d = [('Upscale (Fast)', 'upscale_fast', '2x')] + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: + progressbar(async_task, current_progress, 'Checking for NSFW content ...') + img = default_censor(img) + progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') + uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image) + yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False, + do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) + return current_progress, img, prompt, negative_prompt + + if 'inpaint' in goals and inpaint_parameterized: + progressbar(async_task, current_progress, 'Downloading inpainter ...') + inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( + inpaint_engine) + if inpaint_patch_model_path not in base_model_additional_loras: + base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] + progressbar(async_task, current_progress, 'Preparing enhance prompts ...') + # positive and negative conditioning aren't available here anymore, process prompt again + tasks_enhance, use_expansion, loras, current_progress = process_prompt( + async_task, prompt, negative_prompt, base_model_additional_loras, 1, True, + use_expansion, use_style, use_synthetic_refiner, current_progress) + task_enhance = tasks_enhance[0] + # TODO could support vary, upscale and CN in the future + # if 'cn' in goals: + # apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width) + if async_task.freeu_enabled: + apply_freeu(async_task) + patch_samplers(async_task) + if 'inpaint' in goals: + denoising_strength, initial_latent, width, height, current_progress = apply_inpaint( + async_task, None, inpaint_head_model_path, img, mask, + inpaint_parameterized, inpaint_strength, + inpaint_respective_field, switch, inpaint_disable_initial_latent, + current_progress, True) + imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_task_id, denoising_strength, + final_scheduler_name, goals, initial_latent, steps, switch, + task_enhance['c'], task_enhance['uc'], task_enhance, loras, + tiled, use_expansion, width, height, current_progress, + preparation_steps, total_count, show_intermediate_results, + persist_image) + + del task_enhance['c'], task_enhance['uc'] # Save memory + return current_progress, imgs[0], prompt, negative_prompt + + def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled, + total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image=True): + # reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting + inpaint_worker.current_task = None + + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) + goals_enhance = [] + img, skip_prompt_processing, steps = prepare_upscale( + async_task, goals_enhance, img, async_task.enhance_uov_method, async_task.performance_selection, + enhance_steps, current_progress) + steps, _, _, _ = apply_overrides(async_task, steps, height, width) + exception_result = '' + if len(goals_enhance) > 0: + try: + current_progress, img, prompt, negative_prompt = process_enhance( + all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False, + 'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name, + goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count, + use_expansion, use_style, use_synthetic_refiner, width, persist_image=persist_image) + + except ldm_patched.modules.model_management.InterruptProcessingException: + if async_task.last_stop == 'skip': + print('User skipped') + async_task.last_stop = False + # also skip all enhance steps for this image, but add the steps to the progress bar + if async_task.enhance_uov_processing_order == flags.enhancement_uov_before: + done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps + exception_result = 'continue' + else: + print('User stopped') + exception_result = 'break' + finally: + done_steps_upscaling += steps + return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result + + try: + preparation_start_time = time.perf_counter() + async_task.processing = True + + async_task.outpaint_selections = [o.lower() for o in async_task.outpaint_selections] + base_model_additional_loras = [] + async_task.uov_method = async_task.uov_method.casefold() + async_task.enhance_uov_method = async_task.enhance_uov_method.casefold() + + if fooocus_expansion in async_task.style_selections: + use_expansion = True + async_task.style_selections.remove(fooocus_expansion) + else: + use_expansion = False + + use_style = len(async_task.style_selections) > 0 + + if async_task.base_model_name == async_task.refiner_model_name: + print(f'Refiner disabled because base model and refiner are same.') + async_task.refiner_model_name = 'None' + + current_progress = 0 + if async_task.performance_selection == Performance.EXTREME_SPEED: + set_lcm_defaults(async_task, current_progress, advance_progress=True) + elif async_task.performance_selection == Performance.LIGHTNING: + set_lightning_defaults(async_task, current_progress, advance_progress=True) + elif async_task.performance_selection == Performance.HYPER_SD: + set_hyper_sd_defaults(async_task, current_progress, advance_progress=True) + + print(f'[Parameters] Adaptive CFG = {async_task.adaptive_cfg}') + print(f'[Parameters] CLIP Skip = {async_task.clip_skip}') + print(f'[Parameters] Sharpness = {async_task.sharpness}') + print(f'[Parameters] ControlNet Softness = {async_task.controlnet_softness}') + print(f'[Parameters] ADM Scale = ' + f'{async_task.adm_scaler_positive} : ' + f'{async_task.adm_scaler_negative} : ' + f'{async_task.adm_scaler_end}') + print(f'[Parameters] Seed = {async_task.seed}') + + apply_patch_settings(async_task) + + print(f'[Parameters] CFG = {async_task.cfg_scale}') + + initial_latent = None + denoising_strength = 1.0 + tiled = False + + width, height = async_task.aspect_ratios_selection.replace('×', ' ').split(' ')[:2] + width, height = int(width), int(height) + + skip_prompt_processing = False + + inpaint_worker.current_task = None + inpaint_parameterized = async_task.inpaint_engine != 'None' + inpaint_image = None + inpaint_mask = None + inpaint_head_model_path = None + + use_synthetic_refiner = False + + controlnet_canny_path = None + controlnet_cpds_path = None + clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None + + goals = [] + tasks = [] + current_progress = 1 + + if async_task.input_image_checkbox: + base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner = apply_image_input( + async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, + goals, inpaint_head_model_path, inpaint_image, inpaint_mask, inpaint_parameterized, ip_adapter_face_path, + ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner) + + # Load or unload CNs + progressbar(async_task, current_progress, 'Loading control models ...') + pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path]) + ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path) + ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path) + + async_task.steps, switch, width, height = apply_overrides(async_task, async_task.steps, height, width) + + print(f'[Parameters] Sampler = {async_task.sampler_name} - {async_task.scheduler_name}') + print(f'[Parameters] Steps = {async_task.steps} - {switch}') + + progressbar(async_task, current_progress, 'Initializing ...') + + loras = async_task.loras + if not skip_prompt_processing: + tasks, use_expansion, loras, current_progress = process_prompt(async_task, async_task.prompt, async_task.negative_prompt, + base_model_additional_loras, async_task.image_number, + async_task.disable_seed_increment, use_expansion, use_style, + use_synthetic_refiner, current_progress, advance_progress=True) + + if len(goals) > 0: + current_progress += 1 + progressbar(async_task, current_progress, 'Image processing ...') + + should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0) + + if 'vary' in goals: + async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary( + async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch, + current_progress) + + if 'upscale' in goals: + direct_return, async_task.uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( + async_task, async_task.uov_input_image, async_task.uov_method, switch, current_progress, + advance_progress=True) + if direct_return: + d = [('Upscale (Fast)', 'upscale_fast', '2x')] + if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: + progressbar(async_task, 100, 'Checking for NSFW content ...') + async_task.uov_input_image = default_censor(async_task.uov_input_image) + progressbar(async_task, 100, 'Saving image to system ...') + uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format) + yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False, + do_not_show_finished_images=True) + return + + if 'inpaint' in goals: + try: + denoising_strength, initial_latent, width, height, current_progress = apply_inpaint( + async_task, + initial_latent, + inpaint_head_model_path, + inpaint_image, + inpaint_mask, + inpaint_parameterized, + async_task.inpaint_strength, + async_task.inpaint_respective_field, + switch, + async_task.inpaint_disable_initial_latent, + current_progress, + advance_progress=True) + except EarlyReturnException: + return + + if 'cn' in goals: + apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress) + if async_task.debugging_cn_preprocessor: + return + + if async_task.freeu_enabled: + apply_freeu(async_task) + + # async_task.steps can have value of uov steps here when upscale has been applied + steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width) + + images_to_enhance = [] + if 'enhance' in goals: + async_task.image_number = 1 + images_to_enhance += [async_task.enhance_input_image] + height, width, _ = async_task.enhance_input_image.shape + # input image already provided, processing is skipped + steps = 0 + + all_steps = steps * async_task.image_number + + if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.casefold(): + enhance_upscale_steps = async_task.performance_selection.steps() + if 'upscale' in async_task.enhance_uov_method: + if 'fast' in async_task.enhance_uov_method: + enhance_upscale_steps = 0 + else: + enhance_upscale_steps = async_task.performance_selection.steps_uov() + enhance_upscale_steps, _, _, _ = apply_overrides(async_task, enhance_upscale_steps, height, width) + enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps + all_steps += enhance_upscale_steps_total + + if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0: + enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) + all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps + + all_steps = max(all_steps, 1) + + print(f'[Parameters] Denoising Strength = {denoising_strength}') + + if isinstance(initial_latent, dict) and 'samples' in initial_latent: + log_shape = initial_latent['samples'].shape + else: + log_shape = f'Image Space {(height, width)}' + + print(f'[Parameters] Initial Latent shape: {log_shape}') + + preparation_time = time.perf_counter() - preparation_start_time + print(f'Preparation time: {preparation_time:.2f} seconds') + + final_scheduler_name = patch_samplers(async_task) + print(f'Using {final_scheduler_name} scheduler.') + + outputs.append(['preview', (current_progress, 'Moving model to GPU ...', None)]) + + processing_start_time = time.perf_counter() + + preparation_steps = current_progress + total_count = async_task.image_number + + def callback(step, x0, x, total_steps, y): + """callback, used for progress and preview""" + done_steps = current_task_id * steps + step + outputs.append(['preview', ( + int(15.0 + 85.0 * float(done_steps) / float(all_steps)), + f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling', + y)]) + + show_intermediate_results = len(tasks) > 1 or async_task.should_enhance + persist_image = not async_task.should_enhance or not async_task.save_final_enhanced_image_only + + for current_task_id, task in enumerate(tasks): + progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...') + execution_start_time = time.perf_counter() + + try: + imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, + controlnet_cpds_path, current_task_id, + denoising_strength, final_scheduler_name, goals, + initial_latent, async_task.steps, switch, task['c'], + task['uc'], task, loras, tiled, use_expansion, width, + height, current_progress, preparation_steps, + async_task.image_number, show_intermediate_results, + persist_image) + + current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1)) + images_to_enhance += imgs + + except ldm_patched.modules.model_management.InterruptProcessingException as e: + logger.std_warn("[Fooocus] User stopped") + results.append(ImageGenerationResult( + im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.user_cancel)) + async_job.set_result([], True, str(e)) + break + # break + # if async_task.last_stop == 'skip': + # print('User skipped') + # async_task.last_stop = False + # continue + # else: + # print('User stopped') + # break + except Exception as e: + logger.std_error(f'[Fooocus] Process error: {e}') + logging.exception(e) + results.append(ImageGenerationResult( + im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.error)) + async_job.set_result([], True, str(e)) + break + + del task['c'], task['uc'] # Save memory + execution_time = time.perf_counter() - execution_start_time + print(f'Generating and saving time: {execution_time:.2f} seconds') + + if not async_task.should_enhance: + print(f'[Enhance] Skipping, preconditions aren\'t met') + stop_processing(async_task, processing_start_time) + return + + progressbar(async_task, current_progress, 'Processing enhance ...') + + active_enhance_tabs = len(async_task.enhance_ctrls) + should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold() + enhance_uov_before = False + enhance_uov_after = False + if should_process_enhance_uov: + active_enhance_tabs += 1 + enhance_uov_before = async_task.enhance_uov_processing_order == flags.enhancement_uov_before + enhance_uov_after = async_task.enhance_uov_processing_order == flags.enhancement_uov_after + total_count = len(images_to_enhance) * active_enhance_tabs + async_task.images_to_enhance_count = len(images_to_enhance) + + base_progress = current_progress + current_task_id = -1 + done_steps_upscaling = 0 + done_steps_inpainting = 0 + enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) + exception_result = None + for index, img in enumerate(images_to_enhance): + async_task.enhance_stats[index] = 0 + enhancement_image_start_time = time.perf_counter() + + last_enhance_prompt = async_task.prompt + last_enhance_negative_prompt = async_task.negative_prompt + + if enhance_uov_before: + current_task_id += 1 + persist_image = not async_task.save_final_enhanced_image_only or active_enhance_tabs == 0 + current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( + all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps, + switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image) + async_task.enhance_stats[index] += 1 + + if exception_result == 'continue': + continue + elif exception_result == 'break': + break + + # inpaint for all other tabs + for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_cloth_category, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls: + current_task_id += 1 + current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) + progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...') + enhancement_task_start_time = time.perf_counter() + is_last_enhance_for_image = (current_task_id + 1) % active_enhance_tabs == 0 and not enhance_uov_after + persist_image = not async_task.save_final_enhanced_image_only or is_last_enhance_for_image + + extras = {} + if enhance_mask_model == 'sam': + print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"') + elif enhance_mask_model == 'u2net_cloth_seg': + extras['cloth_category'] = enhance_mask_cloth_category + + mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image( + img, mask_model=enhance_mask_model, extras=extras, sam_options=SAMOptions( + dino_prompt=enhance_mask_dino_prompt_text, + dino_box_threshold=enhance_mask_box_threshold, + dino_text_threshold=enhance_mask_text_threshold, + dino_erode_or_dilate=async_task.dino_erode_or_dilate, + dino_debug=async_task.debugging_dino, + max_detections=enhance_mask_sam_max_detections, + model_type=enhance_mask_sam_model, + )) + if len(mask.shape) == 3: + mask = mask[:, :, 0] + + if int(enhance_inpaint_erode_or_dilate) != 0: + mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate) + + if enhance_mask_invert: + mask = 255 - mask + + if async_task.debugging_enhance_masks_checkbox: + outputs.append(['preview', (current_progress, 'Loading ...', mask)]) + yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False, + async_task.disable_intermediate_results) + async_task.enhance_stats[index] += 1 + + print(f'[Enhance] {dino_detection_count} boxes detected') + print(f'[Enhance] {sam_detection_count} segments detected in boxes') + print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask') + + if enhance_mask_model == 'sam' and (dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0): + print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping') + continue + + goals_enhance = ['inpaint'] + + try: + current_progress, img, enhance_prompt_processed, enhance_negative_prompt_processed = process_enhance( + all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, + current_progress, current_task_id, denoising_strength, enhance_inpaint_disable_initial_latent, + enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength, + enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask, + preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style, + use_synthetic_refiner, width, persist_image=persist_image) + async_task.enhance_stats[index] += 1 + + if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after + and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled): + if enhance_prompt_processed != '': + last_enhance_prompt = enhance_prompt_processed + if enhance_negative_prompt_processed != '': + last_enhance_negative_prompt = enhance_negative_prompt_processed + + except ldm_patched.modules.model_management.InterruptProcessingException: + if async_task.last_stop == 'skip': + print('User skipped') + async_task.last_stop = False + continue + else: + print('User stopped') + exception_result = 'break' + break + finally: + done_steps_inpainting += enhance_steps + + enhancement_task_time = time.perf_counter() - enhancement_task_start_time + print(f'Enhancement time: {enhancement_task_time:.2f} seconds') + + if exception_result == 'break': + break + + if enhance_uov_after: + current_task_id += 1 + # last step in enhance, always save + persist_image = True + current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( + all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, + current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, + last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img, + preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, + width, persist_image) + async_task.enhance_stats[index] += 1 + + if exception_result == 'continue': + continue + elif exception_result == 'break': + break + + enhancement_image_time = time.perf_counter() - enhancement_image_start_time + print(f'Enhancement image time: {enhancement_image_time:.2f} seconds') + + stop_processing(async_task, processing_start_time) + + if task.finish_with_error: + worker_queue.finish_task(task.job_id) + return task.task_result + yield_result(None, results, tasks, async_task.output_format, async_task.black_out_nsfw) + return + except Exception as e: + logger.std_error(f'[Fooocus] Worker error: {e}') + + if not task.is_finished: + task.set_result([], True, str(e)) + worker_queue.finish_task(task.job_id) + logger.std_info(f"[Task Queue] Finish task with error, job_id={task.job_id}") diff --git a/requirements.txt b/requirements.txt index 913d501..edf5da7 100644 --- a/requirements.txt +++ b/requirements.txt @@ -33,4 +33,4 @@ requests numpy sqlalchemy packaging -rich \ No newline at end of file +rich From e19445a421cdf17aa91b77c5aadc8c4556d70f69 Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Fri, 9 Aug 2024 00:13:11 +0800 Subject: [PATCH 06/15] save work --- fooocusapi/routes/generate_v1.py | 31 +- fooocusapi/routes/generate_v2.py | 37 +- fooocusapi/utils/api_utils.py | 23 +- fooocusapi/worker.py | 218 ++-- fooocusapi/worker_merge.py | 1593 ------------------------------ 5 files changed, 195 insertions(+), 1707 deletions(-) delete mode 100644 fooocusapi/worker_merge.py diff --git a/fooocusapi/routes/generate_v1.py b/fooocusapi/routes/generate_v1.py index 5306180..0d9f8e3 100644 --- a/fooocusapi/routes/generate_v1.py +++ b/fooocusapi/routes/generate_v1.py @@ -12,7 +12,7 @@ from fooocusapi.models.common.requests import CommonRequest as Text2ImgRequest from fooocusapi.models.requests_v1 import ( - ImgUpscaleOrVaryRequest, + ImageEnhanceRequest, ImgUpscaleOrVaryRequest, ImgPromptRequest, ImgInpaintOrOutpaintRequest ) @@ -147,6 +147,35 @@ def img_prompt( return call_worker(req, accept) +@secure_router.post( + path="/v1/generation/image-enhance", + response_model=List[GeneratedImageResult] | AsyncJobResponse, + responses=img_generate_responses, + tags=["GenerateV1"]) +def img_prompt( + enhance_input_image: Optional[UploadFile] = File(None), + req: ImageEnhanceRequest = Depends(ImageEnhanceRequest.as_form), + accept: str = Header(None), + accept_query: str | None = Query( + None, alias='accept', + description="Parameter to override 'Accept' header, 'image/png' for output bytes")): + """\nImage Prompt\n + Image Prompt + A prompt-based image generation. + Arguments: + enhance_input_image {UploadFile} -- Input image file + req {ImageEnhanceRequest} -- Request body + accept {str} -- Accept header + accept_query {str} -- Parameter to override 'Accept' header, 'image/png' for output bytes + Returns: + Response -- img_generate_responses + """ + if accept_query is not None and len(accept_query) > 0: + accept = accept_query + + return call_worker(req, accept) + + @secure_router.post( path="/v1/tools/describe-image", response_model=DescribeImageResponse, diff --git a/fooocusapi/routes/generate_v2.py b/fooocusapi/routes/generate_v2.py index 0c512c1..229ee12 100644 --- a/fooocusapi/routes/generate_v2.py +++ b/fooocusapi/routes/generate_v2.py @@ -4,11 +4,11 @@ from typing import List from fastapi import APIRouter, Depends, Header, Query -from fooocusapi.models.common.base import GenerateMaskRequest +from fooocusapi.models.common.base import EnhanceCtrlNets, GenerateMaskRequest from fooocusapi.utils.api_utils import api_key_auth from fooocusapi.models.requests_v1 import ImagePrompt from fooocusapi.models.requests_v2 import ( - ImgInpaintOrOutpaintRequestJson, + ImageEnhanceRequestJson, ImgInpaintOrOutpaintRequestJson, ImgPromptRequestJson, Text2ImgRequestWithPrompt, ImgUpscaleOrVaryRequestJson @@ -203,6 +203,39 @@ def img_prompt( return call_worker(req, accept) +@secure_router.post( + path="/v2/generation/image-enhance", + response_model=List[GeneratedImageResult] | AsyncJobResponse, + responses=img_generate_responses, + tags=["GenerateV2"]) +def img_enhance( + req: ImageEnhanceRequestJson, + accept: str = Header(None), + accept_query: str | None = Query( + None, alias='accept', + description="Parameter to override 'Accept' header, 'image/png' for output bytes")): + """\nImage prompt\n + Image prompt generation + Arguments: + req {ImageEnhanceRequestJson} -- Request body + accept {str} -- Accept header + accept_query {str} -- Parameter to override 'Accept' header, 'image/png' for output bytes + Returns: + Response -- img_generate_responses + """ + if accept_query is not None and len(accept_query) > 0: + accept = accept_query + + if req.enhance_input_image is not None: + req.enhance_input_image = base64_to_stream(req.enhance_input_image) + + if len(req.enhance_ctrlnets) < 3: + default_enhance_ctrlnet = [EnhanceCtrlNets()] + req.enhance_ctrlnets.extend(default_enhance_ctrlnet * (4 - len(req.enhance_ctrlnets))) + + return call_worker(req, accept) + + @secure_router.post( path="/v1/tools/generate_mask", summary="Generate mask endpoint", diff --git a/fooocusapi/utils/api_utils.py b/fooocusapi/utils/api_utils.py index fc38499..0565e46 100644 --- a/fooocusapi/utils/api_utils.py +++ b/fooocusapi/utils/api_utils.py @@ -5,6 +5,7 @@ from fastapi.security import APIKeyHeader from fastapi import HTTPException, Security +from fooocusapi.models.common.base import EnhanceCtrlNets from modules import flags from modules import config from modules.sdxl_styles import legal_style_names @@ -26,12 +27,12 @@ GeneratedImageResult ) from fooocusapi.models.requests_v1 import ( - ImgInpaintOrOutpaintRequest, + ImageEnhanceRequest, ImgInpaintOrOutpaintRequest, ImgPromptRequest, ImgUpscaleOrVaryRequest ) from fooocusapi.models.requests_v2 import ( - Text2ImgRequestWithPrompt, + ImageEnhanceRequestJson, Text2ImgRequestWithPrompt, ImgInpaintOrOutpaintRequestJson, ImgUpscaleOrVaryRequestJson, ImgPromptRequestJson @@ -155,6 +156,17 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: img_prompt.cn_weight = flags.default_parameters[img_prompt.cn_type.value][1] image_prompts.append( (cn_img, img_prompt.cn_stop, img_prompt.cn_weight, img_prompt.cn_type.value)) + # 'enhance_input_image' + # 'enhance_checkbox' + # 'enhance_uov_method' + # 'enhance_uov_processing_order' + # 'enhance_uov_prompt_type' + enhance_input_image = None if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_input_image + enhance_checkbox = True + enhance_uov_method = flags.disabled if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_method + enhance_uov_processing_order = flags.disabled if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_processing_order + enhance_uov_prompt_type = flags.disabled if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_prompt_type + enhance_ctrlnets = EnhanceCtrlNets() if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_ctrlnets advanced_params = None if req.advanced_params is not None: @@ -202,7 +214,12 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: outpaint_distance_bottom=outpaint_distance_bottom, inpaint_input_image=inpaint_input_image, inpaint_additional_prompt=inpaint_additional_prompt, - enhance_ctrlnets=req.enhance_ctrlnets, + enhance_input_image=enhance_input_image, + enhance_checkbox=enhance_checkbox, + enhance_uov_method=enhance_uov_method, + enhance_uov_processing_order=enhance_uov_processing_order, + enhance_uov_prompt_type=enhance_uov_prompt_type, + enhance_ctrlnets=enhance_ctrlnets, read_wildcards_in_order=req.read_wildcards_in_order, image_prompts=image_prompts, advanced_params=advanced_params, diff --git a/fooocusapi/worker.py b/fooocusapi/worker.py index 12c1526..92dace3 100644 --- a/fooocusapi/worker.py +++ b/fooocusapi/worker.py @@ -1,6 +1,9 @@ """ Worker, modify from https://github.com/lllyasviel/Fooocus/blob/main/modules/async_worker.py """ +import re +import threading +import uuid import logging import time from typing import List @@ -11,33 +14,30 @@ import modules.patch import modules.config from extras.inpaint_mask import SAMOptions, generate_mask_from_image +from fooocusapi.models.common.image_meta import image_parse from fooocusapi.models.common.task import ( - GenerationFinishReason, ImageGenerationResult + GenerationFinishReason, + ImageGenerationResult ) from fooocusapi.parameters import ImageGenerationParams from fooocusapi.task_queue import ( QueueTask, - TaskOutputs, TaskQueue + TaskOutputs, + TaskQueue ) +from fooocusapi.utils.file_utils import save_output_file from fooocusapi.utils.logger import logger from modules.flags import Performance -from modules.patch import patch_all +from modules.patch import PatchSettings, patch_all, patch_settings from modules.private_logger import log from modules.sdxl_styles import fooocus_expansion from modules.util import erode_or_dilate import fooocus_version -class EarlyReturnException(BaseException): - pass - - patch_all() -worker_queue: TaskQueue | None = None -last_model_name = None - class AsyncTask: def __init__(self, args: ImageGenerationParams): @@ -197,14 +197,23 @@ def __init__(self, args: ImageGenerationParams): self.outpaint_distance = [0, 0, 0, 0] +async_tasks = [] + + +class EarlyReturnException(BaseException): + pass + + +worker_queue: TaskQueue | None = None +last_model_name = None + + def process_stop(): """Stop process""" import ldm_patched.modules.model_management ldm_patched.modules.model_management.interrupt_current_processing() -@torch.no_grad() -@torch.inference_mode() def task_schedule_loop(): """Task schedule loop""" while True: @@ -217,8 +226,6 @@ def task_schedule_loop(): process_generate(current_task) -@torch.no_grad() -@torch.inference_mode() def blocking_get_task_result(job_id: str) -> List[ImageGenerationResult]: """ Get task result, when async_task is false @@ -241,65 +248,60 @@ def blocking_get_task_result(job_id: str) -> List[ImageGenerationResult]: return task.task_result -global async_tasks - - @torch.no_grad() @torch.inference_mode() -def process_generate(task: QueueTask): +def process_generate(async_job: QueueTask): """Generate image""" - import copy + try: + import modules.default_pipeline as pipeline + except Exception as e: + logger.std_error(f'[Task Queue] Import default pipeline error: {e}') + if not async_job.is_finished: + worker_queue.finish_task(async_job.job_id) + async_job.set_result(task_result=[], finish_with_error=True, error_message=str(e)) + logger.std_error(f"[Task Queue] Finish task with error, seq={async_job.job_id}") + return [] + + async_task = AsyncTask(async_job.req_param) + global async_tasks + import os - import random - import re - import time + import traceback + import math import numpy as np - import extras.face_crop - from extras import ( - ip_adapter, - preprocessors - ) - from extras.censor import default_censor - from extras.expansion import safe_str - + import torch + import time + import random + import copy + import modules.core as core + import modules.flags as flags + import modules.patch import ldm_patched.modules.model_management - import modules.config - from modules import ( - constants, - core, - flags, - patch, - inpaint_worker, - default_pipeline as pipeline - ) - from modules.sdxl_styles import ( - apply_arrays, - apply_style, - fooocus_expansion, - get_random_style, - random_style_name - ) - from modules.util import ( - HWC3, apply_wildcards, - erode_or_dilate, - get_image_shape_ceil, - get_shape_ceil, - parse_lora_references_from_prompt, - remove_empty_str, resample_image, - resize_image, set_image_shape_ceil - ) + import extras.preprocessors as preprocessors + import modules.inpaint_worker as inpaint_worker + import modules.constants as constants + import extras.ip_adapter as ip_adapter + import extras.face_crop + import fooocus_version - from modules.meta_parser import get_metadata_parser - from modules.patch import PatchSettings, patch_settings + from extras.censor import default_censor + from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name from modules.private_logger import log + from extras.expansion import safe_str + from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil, + get_shape_ceil, resample_image, erode_or_dilate, parse_lora_references_from_prompt, + apply_wildcards) from modules.upscaler import perform_upscale + from modules.flags import Performance + from modules.meta_parser import get_metadata_parser pid = os.getpid() + logger.std_info(f"[Task Queue] Start task, job_id={async_job.job_id}, pid={pid}") - outputs = TaskOutputs(task) + outputs = TaskOutputs(async_job) results = [] - async_task = AsyncTask(task.req_param) + async_task = AsyncTask(async_job.req_param) def progressbar(_, number, text): """progress bar""" @@ -307,14 +309,14 @@ def progressbar(_, number, text): outputs.append(['preview', (number, text, None)]) def yield_result(_, images, tasks, extension='png', - blockout_nsfw=False, censor=True): + black_out_nsfw=False, censor=True): """ Yield result :param _: async task object :param images: list for generated image :param tasks: the image was generated one by one, when image number is not one, it will be a task list :param extension: extension for saved image - :param blockout_nsfw: blockout nsfw image + :param black_out_nsfw: blockout nsfw image :param censor: censor image :return: """ @@ -325,19 +327,19 @@ def yield_result(_, images, tasks, extension='png', images = default_censor(images) for ind, im in enumerate(images): - if task.req_param.save_name == '': - image_name = f"{task.job_id}-{str(index)}" + if async_job.req_param.save_name == '': + image_name = f"{async_job.job_id}-{str(index)}" else: - image_name = f"{task.req_param.save_name}-{str(index)}" + image_name = f"{async_job.req_param.save_name}-{str(index)}" if len(tasks) == 0: img_seed = -1 img_meta = {} else: img_seed = tasks[index]['task_seed'] - img_meta = task.image_parse( + img_meta = image_parse( async_tak=async_task, task=tasks[index]) - img_filename = task.save_output_file( + img_filename = save_output_file( img=im, image_name=image_name, image_meta=img_meta, @@ -346,9 +348,9 @@ def yield_result(_, images, tasks, extension='png', im=img_filename, seed=str(img_seed), finish_reason=GenerationFinishReason.success)) - task.set_result(results, False) - worker_queue.finish_task(task.job_id) - logger.std_info(f"[Task Queue] Finish task, job_id={task.job_id}") + async_job.set_result(results, False) + worker_queue.finish_task(async_job.job_id) + logger.std_info(f"[Task Queue] Finish task, job_id={async_job.job_id}") outputs.append(['results', images]) pipeline.prepare_text_encoder(async_call=True) @@ -359,6 +361,7 @@ def process_task(all_steps, async_task, callback, controlnet_canny_path, control total_count, show_intermediate_results, persist_image=True): if async_task.last_stop is not False: ldm_patched.modules.model_management.interrupt_current_processing() + if 'cn' in goals: for cn_flag, cn_path in [ (flags.cn_canny, controlnet_canny_path), @@ -395,8 +398,7 @@ def process_task(all_steps, async_task, callback, controlnet_canny_path, control imgs = default_censor(imgs) progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image) - yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False, - do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) + yield_result(async_task, img_paths, tasks, async_task.output_format, async_task.black_out_nsfw, False) return imgs, img_paths, current_progress @@ -481,7 +483,7 @@ def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path cn_img = HWC3(cn_img) task[0] = core.numpy_to_pytorch(cn_img) if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + yield_result(async_task, cn_img, tasks, async_task.output_format, async_task.black_out_nsfw) for task in async_task.cn_tasks[flags.cn_cpds]: cn_img, cn_stop, cn_weight = task cn_img = resize_image(HWC3(cn_img), width=width, height=height) @@ -492,7 +494,7 @@ def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path cn_img = HWC3(cn_img) task[0] = core.numpy_to_pytorch(cn_img) if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + yield_result(async_task, cn_img, tasks, async_task.output_format, async_task.black_out_nsfw) for task in async_task.cn_tasks[flags.cn_ip]: cn_img, cn_stop, cn_weight = task cn_img = HWC3(cn_img) @@ -502,7 +504,7 @@ def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + yield_result(async_task, cn_img, tasks, async_task.output_format, async_task.black_out_nsfw) for task in async_task.cn_tasks[flags.cn_ip_face]: cn_img, cn_stop, cn_weight = task cn_img = HWC3(cn_img) @@ -515,7 +517,7 @@ def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) + yield_result(async_task, cn_img, tasks, async_task.output_format, async_task.black_out_nsfw) all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face] if len(all_ip_tasks) > 0: pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) @@ -566,8 +568,8 @@ def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_i k=inpaint_respective_field ) if async_task.debugging_inpaint_preprocessor: - yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100, - async_task.black_out_nsfw, do_not_show_finished_images=True) + yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), tasks, + async_task.output_format, async_task.black_out_nsfw) raise EarlyReturnException if advance_progress: @@ -1094,8 +1096,7 @@ def process_enhance(all_steps, async_task, callback, controlnet_canny_path, cont img = default_censor(img) progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image) - yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False, - do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) + yield_result(async_task, uov_image_path, tasks, async_task.output_format, async_task.black_out_nsfw, False) return current_progress, img, prompt, negative_prompt if 'inpaint' in goals and inpaint_parameterized: @@ -1171,16 +1172,6 @@ def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_c done_steps_upscaling += steps return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result - try: - import modules.default_pipeline as pipeline - except Exception as e: - logger.std_error(f'[Task Queue] Import default pipeline error: {e}') - if not task.is_finished: - worker_queue.finish_task(task.job_id) - task.set_result([], True, str(e)) - logger.std_error(f"[Task Queue] Finish task with error, seq={task.job_id}") - return [] - try: preparation_start_time = time.perf_counter() async_task.processing = True @@ -1297,8 +1288,7 @@ def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_c async_task.uov_input_image = default_censor(async_task.uov_input_image) progressbar(async_task, 100, 'Saving image to system ...') uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format) - yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False, - do_not_show_finished_images=True) + yield_result(async_task, uov_input_image_path, tasks, async_task.output_format, async_task.black_out_nsfw, False) return if 'inpaint' in goals: @@ -1407,14 +1397,27 @@ def callback(step, x0, x, total_steps, y): current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1)) images_to_enhance += imgs - except ldm_patched.modules.model_management.InterruptProcessingException: - if async_task.last_stop == 'skip': - print('User skipped') - async_task.last_stop = False - continue - else: - print('User stopped') - break + except ldm_patched.modules.model_management.InterruptProcessingException as e: + logger.std_warn("[Fooocus] User stopped") + results.append(ImageGenerationResult( + im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.user_cancel)) + async_job.set_result([], True, str(e)) + break + # break + # if async_task.last_stop == 'skip': + # print('User skipped') + # async_task.last_stop = False + # continue + # else: + # print('User stopped') + # break + except Exception as e: + logger.std_error(f'[Fooocus] Process error: {e}') + logging.exception(e) + results.append(ImageGenerationResult( + im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.error)) + async_job.set_result([], True, str(e)) + break del task['c'], task['uc'] # Save memory execution_time = time.perf_counter() - execution_start_time @@ -1502,8 +1505,7 @@ def callback(step, x0, x, total_steps, y): if async_task.debugging_enhance_masks_checkbox: outputs.append(['preview', (current_progress, 'Loading ...', mask)]) - yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False, - async_task.disable_intermediate_results) + yield_result(async_task, mask, tasks, async_task.output_format, async_task.black_out_nsfw, False) async_task.enhance_stats[index] += 1 print(f'[Enhance] {dino_detection_count} boxes detected') @@ -1573,15 +1575,15 @@ def callback(step, x0, x, total_steps, y): stop_processing(async_task, processing_start_time) - if task.finish_with_error: - worker_queue.finish_task(task.job_id) - return task.task_result + if async_job.finish_with_error: + worker_queue.finish_task(async_job.job_id) + return async_job.task_result yield_result(None, results, tasks, async_task.output_format, async_task.black_out_nsfw) return except Exception as e: logger.std_error(f'[Fooocus] Worker error: {e}') - if not task.is_finished: - task.set_result([], True, str(e)) - worker_queue.finish_task(task.job_id) - logger.std_info(f"[Task Queue] Finish task with error, job_id={task.job_id}") + if not async_job.is_finished: + async_job.set_result([], True, str(e)) + worker_queue.finish_task(async_job.job_id) + logger.std_info(f"[Task Queue] Finish task with error, job_id={async_job.job_id}") diff --git a/fooocusapi/worker_merge.py b/fooocusapi/worker_merge.py deleted file mode 100644 index c4f9a98..0000000 --- a/fooocusapi/worker_merge.py +++ /dev/null @@ -1,1593 +0,0 @@ -""" -Worker, modify from https://github.com/lllyasviel/Fooocus/blob/main/modules/async_worker.py -""" -import re -import threading -import uuid -import logging -import time -from typing import List - -import torch - -import ldm_patched.modules.model_management -import modules.patch -import modules.config -from extras.inpaint_mask import SAMOptions, generate_mask_from_image -from fooocusapi.models.common.image_meta import image_parse -from fooocusapi.models.common.task import ( - GenerationFinishReason, - ImageGenerationResult -) -from fooocusapi.parameters import ImageGenerationParams -from fooocusapi.task_queue import ( - QueueTask, - TaskOutputs, - TaskQueue -) -from fooocusapi.utils.file_utils import save_output_file -from fooocusapi.utils.logger import logger - -from modules.flags import Performance -from modules.patch import PatchSettings, patch_all, patch_settings -from modules.private_logger import log -from modules.sdxl_styles import fooocus_expansion -from modules.util import erode_or_dilate -import fooocus_version - - -patch_all() - - -class AsyncTask: - def __init__(self, args: ImageGenerationParams): - from modules.flags import Performance, MetadataScheme, ip_list, disabled - from modules.util import get_enabled_loras - from modules.config import default_max_lora_number - import args_manager - - adp = args.advanced_params - - self.yields = [] - self.results = [] - self.last_stop = False - self.processing = False - - self.performance_loras = [] - - self.generate_image_grid = False - self.prompt = args.prompt - self.negative_prompt = args.negative_prompt - self.style_selections = args.style_selections - - self.performance_selection = Performance(args.performance_selection) - self.steps = self.performance_selection.steps() - self.original_steps = self.steps - - self.aspect_ratios_selection = args.aspect_ratios_selection - self.image_number = args.image_number - self.output_format = args.save_extension - self.seed = int(args.image_seed) - self.read_wildcards_in_order = args.read_wildcards_in_order - self.sharpness = args.sharpness - self.cfg_scale = args.guidance_scale - self.base_model_name = args.base_model_name - self.refiner_model_name = args.refiner_model_name - self.refiner_switch = args.refiner_switch - self.loras = get_enabled_loras(args.loras) - self.input_image_checkbox = True - self.current_tab = args.current_tab - self.uov_method = args.uov_method - self.uov_input_image = args.uov_input_image - self.outpaint_selections = args.outpaint_selections - self.inpaint_input_image = args.inpaint_input_image - self.inpaint_additional_prompt = args.inpaint_additional_prompt - self.inpaint_mask_image_upload = args.inpaint_input_image['mask'] - - self.disable_preview = adp.disable_preview - self.disable_intermediate_results = adp.disable_intermediate_results - self.disable_seed_increment = adp.disable_seed_increment - self.black_out_nsfw = adp.black_out_nsfw - self.adm_scaler_positive = adp.adm_scaler_positive - self.adm_scaler_negative = adp.adm_scaler_negative - self.adm_scaler_end = adp.scaler_end - self.adaptive_cfg = adp.adaptive_cfg - self.clip_skip = adp.clip_skip - self.sampler_name = adp.sampler_name - self.scheduler_name = adp.scheduler_name - self.vae_name = adp.vae_name - self.overwrite_step = adp.overwrite_step - self.overwrite_switch = adp.overwrite_switch - self.overwrite_width = adp.overwrite_width - self.overwrite_height = adp.overwrite_height - self.overwrite_vary_strength = adp.overwrite_vary_strength - self.overwrite_upscale_strength = adp.overwrite_upscale_strength - self.mixing_image_prompt_and_vary_upscale = adp.mixing_image_prompt_and_vary_upscale - self.mixing_image_prompt_and_inpaint = adp.mixing_image_prompt_and_inpaint - self.debugging_cn_preprocessor = adp.debugging_cn_preprocessor - self.skipping_cn_preprocessor = adp.skipping_cn_preprocessor - self.canny_low_threshold = adp.canny_low_threshold - self.canny_high_threshold = adp.canny_high_threshold - self.refiner_swap_method = adp.refiner_swap_method - self.controlnet_softness = adp.controlnet_softness - self.freeu_enabled = adp.freeu_enabled - self.freeu_b1 = adp.freeu_b1 - self.freeu_b2 = adp.freeu_b2 - self.freeu_s1 = adp.freeu_s1 - self.freeu_s2 = adp.freeu_s2 - self.debugging_inpaint_preprocessor = adp.debugging_inpaint_preprocessor - self.inpaint_disable_initial_latent = adp.inpaint_disable_initial_latent - self.inpaint_engine = adp.inpaint_engine - self.inpaint_strength = adp.inpaint_strength - self.inpaint_respective_field = adp.inpaint_respective_field - self.inpaint_advanced_masking_checkbox = adp.inpaint_advanced_masking_checkbox - self.invert_mask_checkbox = adp.invert_mask_checkbox - self.inpaint_erode_or_dilate = adp.inpaint_erode_or_dilate - self.save_final_enhanced_image_only = adp.save_final_enhanced_image_only if not args_manager.args.disable_image_log else False - self.save_metadata_to_images = args.save_meta - self.metadata_scheme = MetadataScheme( - args.meta_scheme) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS - - self.cn_tasks = {x: [] for x in ip_list} - for image_prompt in args.image_prompts: - cn_img = image_prompt[0] - cn_stop = image_prompt[1] - cn_weight = image_prompt[2] - cn_type = image_prompt[3] - if cn_img is not None: - self.cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) - - self.debugging_dino = adp.debugging_dino - self.dino_erode_or_dilate = adp.dino_erode_or_dilate - self.debugging_enhance_masks_checkbox = adp.debugging_enhance_masks_checkbox - - self.enhance_input_image = args.enhance_input_image - self.enhance_checkbox = args.enhance_checkbox - self.enhance_uov_method = args.enhance_uov_method - self.enhance_uov_processing_order = args.enhance_uov_processing_order - self.enhance_uov_prompt_type = args.enhance_uov_prompt_type - self.enhance_ctrls = [] - for enhance in args.enhance_ctrlnets: - enhance_enabled = enhance.enhance_enabled - enhance_mask_dino_prompt_text = enhance.enhance_mask_dino_prompt - enhance_prompt = enhance.enhance_prompt - enhance_negative_prompt = enhance.enhance_negative_prompt - enhance_mask_model = enhance.enhance_mask_model - enhance_mask_cloth_category = enhance.enhance_mask_cloth_category - enhance_mask_sam_model = enhance.enhance_mask_sam_model - enhance_mask_text_threshold = enhance.enhance_mask_text_threshold - enhance_mask_box_threshold = enhance.enhance_mask_box_threshold - enhance_mask_sam_max_detections = enhance.enhance_mask_sam_max_detections - enhance_inpaint_disable_initial_latent = enhance.enhance_inpaint_disable_initial_latent - enhance_inpaint_engine = enhance.enhance_inpaint_engine - enhance_inpaint_strength = enhance.enhance_inpaint_strength - enhance_inpaint_respective_field = enhance.enhance_inpaint_respective_field - enhance_inpaint_erode_or_dilate = enhance.enhance_inpaint_erode_or_dilate - enhance_mask_invert = enhance.enhance_mask_invert - if enhance_enabled: - self.enhance_ctrls.append([ - enhance_mask_dino_prompt_text, - enhance_prompt, - enhance_negative_prompt, - enhance_mask_model, - enhance_mask_cloth_category, - enhance_mask_sam_model, - enhance_mask_text_threshold, - enhance_mask_box_threshold, - enhance_mask_sam_max_detections, - enhance_inpaint_disable_initial_latent, - enhance_inpaint_engine, - enhance_inpaint_strength, - enhance_inpaint_respective_field, - enhance_inpaint_erode_or_dilate, - enhance_mask_invert - ]) - self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method != disabled.casefold() or len(self.enhance_ctrls) > 0) - self.images_to_enhance_count = 0 - self.enhance_stats = {} - - try: - self.outpaint_distance = [ - args.outpaint_distance_left, - args.outpaint_distance_top, - args.outpaint_distance_right, - args.outpaint_distance_bottom - ] - except IndexError: - self.outpaint_distance = [0, 0, 0, 0] - - -async_tasks = [] - - -class EarlyReturnException(BaseException): - pass - - -worker_queue: TaskQueue | None = None -last_model_name = None - - -def process_stop(): - """Stop process""" - import ldm_patched.modules.model_management - ldm_patched.modules.model_management.interrupt_current_processing() - - -def task_schedule_loop(): - """Task schedule loop""" - while True: - if len(worker_queue.queue) == 0: - time.sleep(0.05) - continue - - current_task = worker_queue.queue[0] - if current_task.start_mills == 0: - process_generate(current_task) - - -def blocking_get_task_result(job_id: str) -> List[ImageGenerationResult]: - """ - Get task result, when async_task is false - :param job_id: - :return: - """ - waiting_sleep_steps: int = 0 - waiting_start_time = time.perf_counter() - while not worker_queue.is_task_finished(job_id): - if waiting_sleep_steps == 0: - logger.std_info(f"[Task Queue] Waiting for task finished, job_id={job_id}") - delay = 0.05 - time.sleep(delay) - waiting_sleep_steps += 1 - if waiting_sleep_steps % int(10 / delay) == 0: - waiting_time = time.perf_counter() - waiting_start_time - logger.std_info(f"[Task Queue] Already waiting for {round(waiting_time, 1)} seconds, job_id={job_id}") - - task = worker_queue.get_task(job_id, True) - return task.task_result - - -@torch.no_grad() -@torch.inference_mode() -def process_generate(async_job: QueueTask): - """Generate image""" - try: - import modules.default_pipeline as pipeline - except Exception as e: - logger.std_error(f'[Task Queue] Import default pipeline error: {e}') - if not async_job.is_finished: - worker_queue.finish_task(async_job.job_id) - async_job.set_result(task_result=[], finish_with_error=True, error_message=str(e)) - logger.std_error(f"[Task Queue] Finish task with error, seq={async_job.job_id}") - return [] - - async_task = AsyncTask(async_job.req_param) - global async_tasks - - import os - import traceback - import math - import numpy as np - import torch - import time - import random - import copy - import modules.core as core - import modules.flags as flags - import modules.patch - import ldm_patched.modules.model_management - import extras.preprocessors as preprocessors - import modules.inpaint_worker as inpaint_worker - import modules.constants as constants - import extras.ip_adapter as ip_adapter - import extras.face_crop - import fooocus_version - - from extras.censor import default_censor - from modules.sdxl_styles import apply_style, get_random_style, fooocus_expansion, apply_arrays, random_style_name - from modules.private_logger import log - from extras.expansion import safe_str - from modules.util import (remove_empty_str, HWC3, resize_image, get_image_shape_ceil, set_image_shape_ceil, - get_shape_ceil, resample_image, erode_or_dilate, parse_lora_references_from_prompt, - apply_wildcards) - from modules.upscaler import perform_upscale - from modules.flags import Performance - from modules.meta_parser import get_metadata_parser - - pid = os.getpid() - logger.std_info(f"[Task Queue] Start task, job_id={async_job.job_id}, pid={pid}") - - outputs = TaskOutputs(async_job) - results = [] - - async_task = AsyncTask(async_job.req_param) - - def progressbar(_, number, text): - """progress bar""" - logger.std_info(f'[Fooocus] {text}') - outputs.append(['preview', (number, text, None)]) - - def yield_result(_, images, tasks, extension='png', - black_out_nsfw=False, censor=True): - """ - Yield result - :param _: async task object - :param images: list for generated image - :param tasks: the image was generated one by one, when image number is not one, it will be a task list - :param extension: extension for saved image - :param black_out_nsfw: blockout nsfw image - :param censor: censor image - :return: - """ - if not isinstance(images, list): - images = [images] - - if censor and (modules.config.default_black_out_nsfw or async_task.black_out_nsfw): - images = default_censor(images) - - for ind, im in enumerate(images): - if async_job.req_param.save_name == '': - image_name = f"{async_job.job_id}-{str(index)}" - else: - image_name = f"{async_job.req_param.save_name}-{str(index)}" - if len(tasks) == 0: - img_seed = -1 - img_meta = {} - else: - img_seed = tasks[index]['task_seed'] - img_meta = image_parse( - async_tak=async_task, - task=tasks[index]) - img_filename = save_output_file( - img=im, - image_name=image_name, - image_meta=img_meta, - extension=extension) - results.append(ImageGenerationResult( - im=img_filename, - seed=str(img_seed), - finish_reason=GenerationFinishReason.success)) - async_job.set_result(results, False) - worker_queue.finish_task(async_job.job_id) - logger.std_info(f"[Task Queue] Finish task, job_id={async_job.job_id}") - - outputs.append(['results', images]) - pipeline.prepare_text_encoder(async_call=True) - - def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id, - denoising_strength, final_scheduler_name, goals, initial_latent, steps, switch, positive_cond, - negative_cond, task, loras, tiled, use_expansion, width, height, base_progress, preparation_steps, - total_count, show_intermediate_results, persist_image=True): - if async_task.last_stop is not False: - ldm_patched.modules.model_management.interrupt_current_processing() - - if 'cn' in goals: - for cn_flag, cn_path in [ - (flags.cn_canny, controlnet_canny_path), - (flags.cn_cpds, controlnet_cpds_path) - ]: - for cn_img, cn_stop, cn_weight in async_task.cn_tasks[cn_flag]: - positive_cond, negative_cond = core.apply_controlnet( - positive_cond, negative_cond, - pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) - imgs = pipeline.process_diffusion( - positive_cond=positive_cond, - negative_cond=negative_cond, - steps=steps, - switch=switch, - width=width, - height=height, - image_seed=task['task_seed'], - callback=callback, - sampler_name=async_task.sampler_name, - scheduler_name=final_scheduler_name, - latent=initial_latent, - denoise=denoising_strength, - tiled=tiled, - cfg_scale=async_task.cfg_scale, - refiner_swap_method=async_task.refiner_swap_method, - disable_preview=async_task.disable_preview - ) - del positive_cond, negative_cond # Save memory - if inpaint_worker.current_task is not None: - imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] - current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * steps) - if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: - progressbar(async_task, current_progress, 'Checking for NSFW content ...') - imgs = default_censor(imgs) - progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') - img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image) - yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False, - do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) - - return imgs, img_paths, current_progress - - def apply_patch_settings(async_task): - patch_settings[pid] = PatchSettings( - async_task.sharpness, - async_task.adm_scaler_end, - async_task.adm_scaler_positive, - async_task.adm_scaler_negative, - async_task.controlnet_softness, - async_task.adaptive_cfg - ) - - def save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image=True) -> list: - img_paths = [] - for x in imgs: - d = [('Prompt', 'prompt', task['log_positive_prompt']), - ('Negative Prompt', 'negative_prompt', task['log_negative_prompt']), - ('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']), - ('Styles', 'styles', - str(task['styles'] if not use_expansion else [fooocus_expansion] + task['styles'])), - ('Performance', 'performance', async_task.performance_selection.value), - ('Steps', 'steps', async_task.steps), - ('Resolution', 'resolution', str((width, height))), - ('Guidance Scale', 'guidance_scale', async_task.cfg_scale), - ('Sharpness', 'sharpness', async_task.sharpness), - ('ADM Guidance', 'adm_guidance', str(( - modules.patch.patch_settings[pid].positive_adm_scale, - modules.patch.patch_settings[pid].negative_adm_scale, - modules.patch.patch_settings[pid].adm_scaler_end))), - ('Base Model', 'base_model', async_task.base_model_name), - ('Refiner Model', 'refiner_model', async_task.refiner_model_name), - ('Refiner Switch', 'refiner_switch', async_task.refiner_switch)] - - if async_task.refiner_model_name != 'None': - if async_task.overwrite_switch > 0: - d.append(('Overwrite Switch', 'overwrite_switch', async_task.overwrite_switch)) - if async_task.refiner_swap_method != flags.refiner_swap_method: - d.append(('Refiner Swap Method', 'refiner_swap_method', async_task.refiner_swap_method)) - if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr: - d.append( - ('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg)) - - if async_task.clip_skip > 1: - d.append(('CLIP Skip', 'clip_skip', async_task.clip_skip)) - d.append(('Sampler', 'sampler', async_task.sampler_name)) - d.append(('Scheduler', 'scheduler', async_task.scheduler_name)) - d.append(('VAE', 'vae', async_task.vae_name)) - d.append(('Seed', 'seed', str(task['task_seed']))) - - if async_task.freeu_enabled: - d.append(('FreeU', 'freeu', - str((async_task.freeu_b1, async_task.freeu_b2, async_task.freeu_s1, async_task.freeu_s2)))) - - for li, (n, w) in enumerate(loras): - if n != 'None': - d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}')) - - metadata_parser = None - if async_task.save_metadata_to_images: - metadata_parser = modules.meta_parser.get_metadata_parser(async_task.metadata_scheme) - metadata_parser.set_data(task['log_positive_prompt'], task['positive'], - task['log_negative_prompt'], task['negative'], - async_task.steps, async_task.base_model_name, async_task.refiner_model_name, - loras, async_task.vae_name) - d.append(('Metadata Scheme', 'metadata_scheme', - async_task.metadata_scheme.value if async_task.save_metadata_to_images else async_task.save_metadata_to_images)) - d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version)) - img_paths.append(log(x, d, metadata_parser, async_task.output_format, task, persist_image)) - - return img_paths - - def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress): - for task in async_task.cn_tasks[flags.cn_canny]: - cn_img, cn_stop, cn_weight = task - cn_img = resize_image(HWC3(cn_img), width=width, height=height) - - if not async_task.skipping_cn_preprocessor: - cn_img = preprocessors.canny_pyramid(cn_img, async_task.canny_low_threshold, - async_task.canny_high_threshold) - - cn_img = HWC3(cn_img) - task[0] = core.numpy_to_pytorch(cn_img) - if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) - for task in async_task.cn_tasks[flags.cn_cpds]: - cn_img, cn_stop, cn_weight = task - cn_img = resize_image(HWC3(cn_img), width=width, height=height) - - if not async_task.skipping_cn_preprocessor: - cn_img = preprocessors.cpds(cn_img) - - cn_img = HWC3(cn_img) - task[0] = core.numpy_to_pytorch(cn_img) - if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) - for task in async_task.cn_tasks[flags.cn_ip]: - cn_img, cn_stop, cn_weight = task - cn_img = HWC3(cn_img) - - # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 - cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) - - task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) - if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) - for task in async_task.cn_tasks[flags.cn_ip_face]: - cn_img, cn_stop, cn_weight = task - cn_img = HWC3(cn_img) - - if not async_task.skipping_cn_preprocessor: - cn_img = extras.face_crop.crop_image(cn_img) - - # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 - cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) - - task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) - if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) - all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face] - if len(all_ip_tasks) > 0: - pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) - - def apply_vary(async_task, uov_method, denoising_strength, uov_input_image, switch, current_progress, advance_progress=False): - if 'subtle' in uov_method: - denoising_strength = 0.5 - if 'strong' in uov_method: - denoising_strength = 0.85 - if async_task.overwrite_vary_strength > 0: - denoising_strength = async_task.overwrite_vary_strength - shape_ceil = get_image_shape_ceil(uov_input_image) - if shape_ceil < 1024: - print(f'[Vary] Image is resized because it is too small.') - shape_ceil = 1024 - elif shape_ceil > 2048: - print(f'[Vary] Image is resized because it is too big.') - shape_ceil = 2048 - uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) - initial_pixels = core.numpy_to_pytorch(uov_input_image) - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'VAE encoding ...') - candidate_vae, _ = pipeline.get_candidate_vae( - steps=async_task.steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=async_task.refiner_swap_method - ) - initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) - B, C, H, W = initial_latent['samples'].shape - width = W * 8 - height = H * 8 - print(f'Final resolution is {str((width, height))}.') - return uov_input_image, denoising_strength, initial_latent, width, height, current_progress - - def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_image, - inpaint_mask, inpaint_parameterized, denoising_strength, inpaint_respective_field, switch, - inpaint_disable_initial_latent, current_progress, skip_apply_outpaint=False, - advance_progress=False): - if not skip_apply_outpaint: - inpaint_image, inpaint_mask = apply_outpaint(async_task, inpaint_image, inpaint_mask) - - inpaint_worker.current_task = inpaint_worker.InpaintWorker( - image=inpaint_image, - mask=inpaint_mask, - use_fill=denoising_strength > 0.99, - k=inpaint_respective_field - ) - if async_task.debugging_inpaint_preprocessor: - yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100, - async_task.black_out_nsfw, do_not_show_finished_images=True) - raise EarlyReturnException - - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'VAE Inpaint encoding ...') - inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) - inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) - inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) - candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( - steps=async_task.steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=async_task.refiner_swap_method - ) - latent_inpaint, latent_mask = core.encode_vae_inpaint( - mask=inpaint_pixel_mask, - vae=candidate_vae, - pixels=inpaint_pixel_image) - latent_swap = None - if candidate_vae_swap is not None: - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'VAE SD15 encoding ...') - latent_swap = core.encode_vae( - vae=candidate_vae_swap, - pixels=inpaint_pixel_fill)['samples'] - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'VAE encoding ...') - latent_fill = core.encode_vae( - vae=candidate_vae, - pixels=inpaint_pixel_fill)['samples'] - inpaint_worker.current_task.load_latent( - latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) - if inpaint_parameterized: - pipeline.final_unet = inpaint_worker.current_task.patch( - inpaint_head_model_path=inpaint_head_model_path, - inpaint_latent=latent_inpaint, - inpaint_latent_mask=latent_mask, - model=pipeline.final_unet - ) - if not inpaint_disable_initial_latent: - initial_latent = {'samples': latent_fill} - B, C, H, W = latent_fill.shape - height, width = H * 8, W * 8 - final_height, final_width = inpaint_worker.current_task.image.shape[:2] - print(f'Final resolution is {str((final_width, final_height))}, latent is {str((width, height))}.') - - return denoising_strength, initial_latent, width, height, current_progress - - def apply_outpaint(async_task, inpaint_image, inpaint_mask): - try: - dt_left, dt_top, dt_right, dt_bottom = async_task.outpaint_distance[:4] - except Exception: - dt_left, dt_top, dt_right, dt_bottom = 0, 0, 0, 0 - if len(async_task.outpaint_selections) > 0: - H, W, C = inpaint_image.shape - if 'top' in async_task.outpaint_selections: - distance_top = int(H * 0.3) - if dt_top > 0: - distance_top = dt_top - - inpaint_image = np.pad(inpaint_image, [[distance_top, 0], [0, 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[distance_top, 0], [0, 0]], mode='constant', - constant_values=255) - if 'bottom' in async_task.outpaint_selections: - distance_bottom = int(H * 0.3) - if dt_bottom > 0: - distance_bottom = dt_bottom - - inpaint_image = np.pad(inpaint_image, [[0, distance_bottom], [0, 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, distance_bottom], [0, 0]], mode='constant', - constant_values=255) - - H, W, C = inpaint_image.shape - if 'left' in async_task.outpaint_selections: - distance_left = int(W * 0.3) - if dt_left > 0: - distance_left = dt_left - - inpaint_image = np.pad(inpaint_image, [[0, 0], [distance_left, 0], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, 0], [distance_left, 0]], mode='constant', - constant_values=255) - if 'right' in async_task.outpaint_selections: - distance_right = int(W * 0.3) - if dt_right > 0: - distance_right = dt_right - - inpaint_image = np.pad(inpaint_image, [[0, 0], [0, distance_right], [0, 0]], mode='edge') - inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, distance_right]], mode='constant', - constant_values=255) - - inpaint_image = np.ascontiguousarray(inpaint_image.copy()) - inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) - async_task.inpaint_strength = 1.0 - async_task.inpaint_respective_field = 1.0 - return inpaint_image, inpaint_mask - - def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progress, advance_progress=False): - H, W, C = uov_input_image.shape - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, f'Upscaling image from {str((W, H))} ...') - uov_input_image = perform_upscale(uov_input_image) - print(f'Image upscaled.') - if '1.5x' in uov_method: - f = 1.5 - elif '2x' in uov_method: - f = 2.0 - else: - # @freek99 - pattern = r"([0-9]+(?:\.[0-9]+)?)x" - matches = re.findall(pattern, uov_method) - try: - f = float(matches[0]) - if f < 1.0: - f = 1.0 - if f > 5.0: - f = 5.0 - except Exception: - f = 1.0 - shape_ceil = get_shape_ceil(H * f, W * f) - if shape_ceil < 1024: - print(f'[Upscale] Image is resized because it is too small.') - uov_input_image = set_image_shape_ceil(uov_input_image, 1024) - shape_ceil = 1024 - else: - uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) - image_is_super_large = shape_ceil > 2800 - if 'fast' in uov_method: - direct_return = True - elif image_is_super_large: - print('Image is too large. Directly returned the SR image. ' - 'Usually directly return SR image at 4K resolution ' - 'yields better results than SDXL diffusion.') - direct_return = True - else: - direct_return = False - if direct_return: - return direct_return, uov_input_image, None, None, None, None, None, current_progress - - tiled = True - denoising_strength = 0.382 - if async_task.overwrite_upscale_strength > 0: - denoising_strength = async_task.overwrite_upscale_strength - initial_pixels = core.numpy_to_pytorch(uov_input_image) - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'VAE encoding ...') - candidate_vae, _ = pipeline.get_candidate_vae( - steps=async_task.steps, - switch=switch, - denoise=denoising_strength, - refiner_swap_method=async_task.refiner_swap_method - ) - initial_latent = core.encode_vae( - vae=candidate_vae, - pixels=initial_pixels, tiled=True) - B, C, H, W = initial_latent['samples'].shape - width = W * 8 - height = H * 8 - print(f'Final resolution is {str((width, height))}.') - return direct_return, uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress - - def apply_overrides(async_task, steps, height, width): - if async_task.overwrite_step > 0: - steps = async_task.overwrite_step - switch = int(round(async_task.steps * async_task.refiner_switch)) - if async_task.overwrite_switch > 0: - switch = async_task.overwrite_switch - if async_task.overwrite_width > 0: - width = async_task.overwrite_width - if async_task.overwrite_height > 0: - height = async_task.overwrite_height - return steps, switch, width, height - - def process_prompt(async_task, prompt, negative_prompt, base_model_additional_loras, image_number, disable_seed_increment, use_expansion, use_style, - use_synthetic_refiner, current_progress, advance_progress=False): - prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') - negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') - prompt = prompts[0] - negative_prompt = negative_prompts[0] - if prompt == '': - # disable expansion when empty since it is not meaningful and influences image prompt - use_expansion = False - extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] - extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'Loading models ...') - lora_filenames = modules.util.remove_performance_lora(modules.config.lora_filenames, - async_task.performance_selection) - loras, prompt = parse_lora_references_from_prompt(prompt, async_task.loras, - modules.config.default_max_lora_number, - lora_filenames=lora_filenames) - loras += async_task.performance_loras - pipeline.refresh_everything(refiner_model_name=async_task.refiner_model_name, - base_model_name=async_task.base_model_name, - loras=loras, base_model_additional_loras=base_model_additional_loras, - use_synthetic_refiner=use_synthetic_refiner, vae_name=async_task.vae_name) - pipeline.set_clip_skip(async_task.clip_skip) - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'Processing prompts ...') - tasks = [] - for i in range(image_number): - if disable_seed_increment: - task_seed = async_task.seed % (constants.MAX_SEED + 1) - else: - task_seed = (async_task.seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not - - task_rng = random.Random(task_seed) # may bind to inpaint noise in the future - task_prompt = apply_wildcards(prompt, task_rng, i, async_task.read_wildcards_in_order) - task_prompt = apply_arrays(task_prompt, i) - task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, async_task.read_wildcards_in_order) - task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt - in - extra_positive_prompts] - task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, async_task.read_wildcards_in_order) for pmt - in - extra_negative_prompts] - - positive_basic_workloads = [] - negative_basic_workloads = [] - - task_styles = async_task.style_selections.copy() - if use_style: - placeholder_replaced = False - - for j, s in enumerate(task_styles): - if s == random_style_name: - s = get_random_style(task_rng) - task_styles[j] = s - p, n, style_has_placeholder = apply_style(s, positive=task_prompt) - if style_has_placeholder: - placeholder_replaced = True - positive_basic_workloads = positive_basic_workloads + p - negative_basic_workloads = negative_basic_workloads + n - - if not placeholder_replaced: - positive_basic_workloads = [task_prompt] + positive_basic_workloads - else: - positive_basic_workloads.append(task_prompt) - - negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative. - - positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts - negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts - - positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) - negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) - - tasks.append(dict( - task_seed=task_seed, - task_prompt=task_prompt, - task_negative_prompt=task_negative_prompt, - positive=positive_basic_workloads, - negative=negative_basic_workloads, - expansion='', - c=None, - uc=None, - positive_top_k=len(positive_basic_workloads), - negative_top_k=len(negative_basic_workloads), - log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), - log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), - styles=task_styles - )) - if use_expansion: - if advance_progress: - current_progress += 1 - for i, t in enumerate(tasks): - progressbar(async_task, current_progress, f'Preparing Fooocus text #{i + 1} ...') - expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) - print(f'[Prompt Expansion] {expansion}') - t['expansion'] = expansion - t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy. - if advance_progress: - current_progress += 1 - for i, t in enumerate(tasks): - progressbar(async_task, current_progress, f'Encoding positive #{i + 1} ...') - t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) - if advance_progress: - current_progress += 1 - for i, t in enumerate(tasks): - if abs(float(async_task.cfg_scale) - 1.0) < 1e-4: - t['uc'] = pipeline.clone_cond(t['c']) - else: - progressbar(async_task, current_progress, f'Encoding negative #{i + 1} ...') - t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) - return tasks, use_expansion, loras, current_progress - - def apply_freeu(async_task): - print(f'FreeU is enabled!') - pipeline.final_unet = core.apply_freeu( - pipeline.final_unet, - async_task.freeu_b1, - async_task.freeu_b2, - async_task.freeu_s1, - async_task.freeu_s2 - ) - - def patch_discrete(unet, scheduler_name): - return core.opModelSamplingDiscrete.patch(unet, scheduler_name, False)[0] - - def patch_edm(unet, scheduler_name): - return core.opModelSamplingContinuousEDM.patch(unet, scheduler_name, 120.0, 0.002)[0] - - def patch_samplers(async_task): - final_scheduler_name = async_task.scheduler_name - - if async_task.scheduler_name in ['lcm', 'tcd']: - final_scheduler_name = 'sgm_uniform' - if pipeline.final_unet is not None: - pipeline.final_unet = patch_discrete(pipeline.final_unet, async_task.scheduler_name) - if pipeline.final_refiner_unet is not None: - pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet, async_task.scheduler_name) - - elif async_task.scheduler_name == 'edm_playground_v2.5': - final_scheduler_name = 'karras' - if pipeline.final_unet is not None: - pipeline.final_unet = patch_edm(pipeline.final_unet, async_task.scheduler_name) - if pipeline.final_refiner_unet is not None: - pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet, async_task.scheduler_name) - - return final_scheduler_name - - def set_hyper_sd_defaults(async_task, current_progress, advance_progress=False): - print('Enter Hyper-SD mode.') - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'Downloading Hyper-SD components ...') - async_task.performance_loras += [(modules.config.downloading_sdxl_hyper_sd_lora(), 0.8)] - if async_task.refiner_model_name != 'None': - print(f'Refiner disabled in Hyper-SD mode.') - async_task.refiner_model_name = 'None' - async_task.sampler_name = 'dpmpp_sde_gpu' - async_task.scheduler_name = 'karras' - async_task.sharpness = 0.0 - async_task.cfg_scale = 1.0 - async_task.adaptive_cfg = 1.0 - async_task.refiner_switch = 1.0 - async_task.adm_scaler_positive = 1.0 - async_task.adm_scaler_negative = 1.0 - async_task.adm_scaler_end = 0.0 - return current_progress - - def set_lightning_defaults(async_task, current_progress, advance_progress=False): - print('Enter Lightning mode.') - if advance_progress: - current_progress += 1 - progressbar(async_task, 1, 'Downloading Lightning components ...') - async_task.performance_loras += [(modules.config.downloading_sdxl_lightning_lora(), 1.0)] - if async_task.refiner_model_name != 'None': - print(f'Refiner disabled in Lightning mode.') - async_task.refiner_model_name = 'None' - async_task.sampler_name = 'euler' - async_task.scheduler_name = 'sgm_uniform' - async_task.sharpness = 0.0 - async_task.cfg_scale = 1.0 - async_task.adaptive_cfg = 1.0 - async_task.refiner_switch = 1.0 - async_task.adm_scaler_positive = 1.0 - async_task.adm_scaler_negative = 1.0 - async_task.adm_scaler_end = 0.0 - return current_progress - - def set_lcm_defaults(async_task, current_progress, advance_progress=False): - print('Enter LCM mode.') - if advance_progress: - current_progress += 1 - progressbar(async_task, 1, 'Downloading LCM components ...') - async_task.performance_loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)] - if async_task.refiner_model_name != 'None': - print(f'Refiner disabled in LCM mode.') - async_task.refiner_model_name = 'None' - async_task.sampler_name = 'lcm' - async_task.scheduler_name = 'lcm' - async_task.sharpness = 0.0 - async_task.cfg_scale = 1.0 - async_task.adaptive_cfg = 1.0 - async_task.refiner_switch = 1.0 - async_task.adm_scaler_positive = 1.0 - async_task.adm_scaler_negative = 1.0 - async_task.adm_scaler_end = 0.0 - return current_progress - - def apply_image_input(async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, - controlnet_cpds_path, goals, inpaint_head_model_path, inpaint_image, inpaint_mask, - inpaint_parameterized, ip_adapter_face_path, ip_adapter_path, ip_negative_path, - skip_prompt_processing, use_synthetic_refiner): - if (async_task.current_tab == 'uov' or ( - async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_vary_upscale)) \ - and async_task.uov_method != flags.disabled.casefold() and async_task.uov_input_image is not None: - async_task.uov_input_image, skip_prompt_processing, async_task.steps = prepare_upscale( - async_task, goals, async_task.uov_input_image, async_task.uov_method, async_task.performance_selection, - async_task.steps, 1, skip_prompt_processing=skip_prompt_processing) - if (async_task.current_tab == 'inpaint' or ( - async_task.current_tab == 'ip' and async_task.mixing_image_prompt_and_inpaint)) \ - and isinstance(async_task.inpaint_input_image, dict): - inpaint_image = async_task.inpaint_input_image['image'] - inpaint_mask = async_task.inpaint_input_image['mask'][:, :, 0] - - if async_task.inpaint_advanced_masking_checkbox: - if isinstance(async_task.inpaint_mask_image_upload, dict): - if (isinstance(async_task.inpaint_mask_image_upload['image'], np.ndarray) - and isinstance(async_task.inpaint_mask_image_upload['mask'], np.ndarray) - and async_task.inpaint_mask_image_upload['image'].ndim == 3): - async_task.inpaint_mask_image_upload = np.maximum( - async_task.inpaint_mask_image_upload['image'], - async_task.inpaint_mask_image_upload['mask']) - if isinstance(async_task.inpaint_mask_image_upload, - np.ndarray) and async_task.inpaint_mask_image_upload.ndim == 3: - H, W, C = inpaint_image.shape - async_task.inpaint_mask_image_upload = resample_image(async_task.inpaint_mask_image_upload, - width=W, height=H) - async_task.inpaint_mask_image_upload = np.mean(async_task.inpaint_mask_image_upload, axis=2) - async_task.inpaint_mask_image_upload = (async_task.inpaint_mask_image_upload > 127).astype( - np.uint8) * 255 - inpaint_mask = np.maximum(inpaint_mask, async_task.inpaint_mask_image_upload) - - if int(async_task.inpaint_erode_or_dilate) != 0: - inpaint_mask = erode_or_dilate(inpaint_mask, async_task.inpaint_erode_or_dilate) - - if async_task.invert_mask_checkbox: - inpaint_mask = 255 - inpaint_mask - - inpaint_image = HWC3(inpaint_image) - if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ - and (np.any(inpaint_mask > 127) or len(async_task.outpaint_selections) > 0): - progressbar(async_task, 1, 'Downloading upscale models ...') - modules.config.downloading_upscale_model() - if inpaint_parameterized: - progressbar(async_task, 1, 'Downloading inpainter ...') - inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( - async_task.inpaint_engine) - base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] - print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') - if async_task.refiner_model_name == 'None': - use_synthetic_refiner = True - async_task.refiner_switch = 0.8 - else: - inpaint_head_model_path, inpaint_patch_model_path = None, None - print(f'[Inpaint] Parameterized inpaint is disabled.') - if async_task.inpaint_additional_prompt != '': - if async_task.prompt == '': - async_task.prompt = async_task.inpaint_additional_prompt - else: - async_task.prompt = async_task.inpaint_additional_prompt + '\n' + async_task.prompt - goals.append('inpaint') - if async_task.current_tab == 'ip' or \ - async_task.mixing_image_prompt_and_vary_upscale or \ - async_task.mixing_image_prompt_and_inpaint: - goals.append('cn') - progressbar(async_task, 1, 'Downloading control models ...') - if len(async_task.cn_tasks[flags.cn_canny]) > 0: - controlnet_canny_path = modules.config.downloading_controlnet_canny() - if len(async_task.cn_tasks[flags.cn_cpds]) > 0: - controlnet_cpds_path = modules.config.downloading_controlnet_cpds() - if len(async_task.cn_tasks[flags.cn_ip]) > 0: - clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip') - if len(async_task.cn_tasks[flags.cn_ip_face]) > 0: - clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters( - 'face') - if async_task.current_tab == 'enhance' and async_task.enhance_input_image is not None: - goals.append('enhance') - skip_prompt_processing = True - async_task.enhance_input_image = HWC3(async_task.enhance_input_image) - return base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner - - def prepare_upscale(async_task, goals, uov_input_image, uov_method, performance, steps, current_progress, - advance_progress=False, skip_prompt_processing=False): - uov_input_image = HWC3(uov_input_image) - if 'vary' in uov_method: - goals.append('vary') - elif 'upscale' in uov_method: - goals.append('upscale') - if 'fast' in uov_method: - skip_prompt_processing = True - steps = 0 - else: - steps = performance.steps_uov() - - if advance_progress: - current_progress += 1 - progressbar(async_task, current_progress, 'Downloading upscale models ...') - modules.config.downloading_upscale_model() - return uov_input_image, skip_prompt_processing, steps - - def prepare_enhance_prompt(prompt: str, fallback_prompt: str): - if safe_str(prompt) == '' or len(remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')) == 0: - prompt = fallback_prompt - - return prompt - - def stop_processing(async_task, processing_start_time): - async_task.processing = False - processing_time = time.perf_counter() - processing_start_time - print(f'Processing time (total): {processing_time:.2f} seconds') - - def process_enhance(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, - current_progress, current_task_id, denoising_strength, inpaint_disable_initial_latent, - inpaint_engine, inpaint_respective_field, inpaint_strength, - prompt, negative_prompt, final_scheduler_name, goals, height, img, mask, - preparation_steps, steps, switch, tiled, total_count, use_expansion, use_style, - use_synthetic_refiner, width, show_intermediate_results=True, persist_image=True): - base_model_additional_loras = [] - inpaint_head_model_path = None - inpaint_parameterized = inpaint_engine != 'None' # inpaint_engine = None, improve detail - initial_latent = None - - prompt = prepare_enhance_prompt(prompt, async_task.prompt) - negative_prompt = prepare_enhance_prompt(negative_prompt, async_task.negative_prompt) - - if 'vary' in goals: - img, denoising_strength, initial_latent, width, height, current_progress = apply_vary( - async_task, async_task.enhance_uov_method, denoising_strength, img, switch, current_progress) - if 'upscale' in goals: - direct_return, img, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( - async_task, img, async_task.enhance_uov_method, switch, current_progress) - if direct_return: - d = [('Upscale (Fast)', 'upscale_fast', '2x')] - if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: - progressbar(async_task, current_progress, 'Checking for NSFW content ...') - img = default_censor(img) - progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') - uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image) - yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False, - do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) - return current_progress, img, prompt, negative_prompt - - if 'inpaint' in goals and inpaint_parameterized: - progressbar(async_task, current_progress, 'Downloading inpainter ...') - inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( - inpaint_engine) - if inpaint_patch_model_path not in base_model_additional_loras: - base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] - progressbar(async_task, current_progress, 'Preparing enhance prompts ...') - # positive and negative conditioning aren't available here anymore, process prompt again - tasks_enhance, use_expansion, loras, current_progress = process_prompt( - async_task, prompt, negative_prompt, base_model_additional_loras, 1, True, - use_expansion, use_style, use_synthetic_refiner, current_progress) - task_enhance = tasks_enhance[0] - # TODO could support vary, upscale and CN in the future - # if 'cn' in goals: - # apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width) - if async_task.freeu_enabled: - apply_freeu(async_task) - patch_samplers(async_task) - if 'inpaint' in goals: - denoising_strength, initial_latent, width, height, current_progress = apply_inpaint( - async_task, None, inpaint_head_model_path, img, mask, - inpaint_parameterized, inpaint_strength, - inpaint_respective_field, switch, inpaint_disable_initial_latent, - current_progress, True) - imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, - controlnet_cpds_path, current_task_id, denoising_strength, - final_scheduler_name, goals, initial_latent, steps, switch, - task_enhance['c'], task_enhance['uc'], task_enhance, loras, - tiled, use_expansion, width, height, current_progress, - preparation_steps, total_count, show_intermediate_results, - persist_image) - - del task_enhance['c'], task_enhance['uc'] # Save memory - return current_progress, imgs[0], prompt, negative_prompt - - def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, - current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, - prompt, negative_prompt, final_scheduler_name, height, img, preparation_steps, switch, tiled, - total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image=True): - # reset inpaint worker to prevent tensor size issues and not mix upscale and inpainting - inpaint_worker.current_task = None - - current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) - goals_enhance = [] - img, skip_prompt_processing, steps = prepare_upscale( - async_task, goals_enhance, img, async_task.enhance_uov_method, async_task.performance_selection, - enhance_steps, current_progress) - steps, _, _, _ = apply_overrides(async_task, steps, height, width) - exception_result = '' - if len(goals_enhance) > 0: - try: - current_progress, img, prompt, negative_prompt = process_enhance( - all_steps, async_task, callback, controlnet_canny_path, - controlnet_cpds_path, current_progress, current_task_id, denoising_strength, False, - 'None', 0.0, 0.0, prompt, negative_prompt, final_scheduler_name, - goals_enhance, height, img, None, preparation_steps, steps, switch, tiled, total_count, - use_expansion, use_style, use_synthetic_refiner, width, persist_image=persist_image) - - except ldm_patched.modules.model_management.InterruptProcessingException: - if async_task.last_stop == 'skip': - print('User skipped') - async_task.last_stop = False - # also skip all enhance steps for this image, but add the steps to the progress bar - if async_task.enhance_uov_processing_order == flags.enhancement_uov_before: - done_steps_inpainting += len(async_task.enhance_ctrls) * enhance_steps - exception_result = 'continue' - else: - print('User stopped') - exception_result = 'break' - finally: - done_steps_upscaling += steps - return current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result - - try: - preparation_start_time = time.perf_counter() - async_task.processing = True - - async_task.outpaint_selections = [o.lower() for o in async_task.outpaint_selections] - base_model_additional_loras = [] - async_task.uov_method = async_task.uov_method.casefold() - async_task.enhance_uov_method = async_task.enhance_uov_method.casefold() - - if fooocus_expansion in async_task.style_selections: - use_expansion = True - async_task.style_selections.remove(fooocus_expansion) - else: - use_expansion = False - - use_style = len(async_task.style_selections) > 0 - - if async_task.base_model_name == async_task.refiner_model_name: - print(f'Refiner disabled because base model and refiner are same.') - async_task.refiner_model_name = 'None' - - current_progress = 0 - if async_task.performance_selection == Performance.EXTREME_SPEED: - set_lcm_defaults(async_task, current_progress, advance_progress=True) - elif async_task.performance_selection == Performance.LIGHTNING: - set_lightning_defaults(async_task, current_progress, advance_progress=True) - elif async_task.performance_selection == Performance.HYPER_SD: - set_hyper_sd_defaults(async_task, current_progress, advance_progress=True) - - print(f'[Parameters] Adaptive CFG = {async_task.adaptive_cfg}') - print(f'[Parameters] CLIP Skip = {async_task.clip_skip}') - print(f'[Parameters] Sharpness = {async_task.sharpness}') - print(f'[Parameters] ControlNet Softness = {async_task.controlnet_softness}') - print(f'[Parameters] ADM Scale = ' - f'{async_task.adm_scaler_positive} : ' - f'{async_task.adm_scaler_negative} : ' - f'{async_task.adm_scaler_end}') - print(f'[Parameters] Seed = {async_task.seed}') - - apply_patch_settings(async_task) - - print(f'[Parameters] CFG = {async_task.cfg_scale}') - - initial_latent = None - denoising_strength = 1.0 - tiled = False - - width, height = async_task.aspect_ratios_selection.replace('×', ' ').split(' ')[:2] - width, height = int(width), int(height) - - skip_prompt_processing = False - - inpaint_worker.current_task = None - inpaint_parameterized = async_task.inpaint_engine != 'None' - inpaint_image = None - inpaint_mask = None - inpaint_head_model_path = None - - use_synthetic_refiner = False - - controlnet_canny_path = None - controlnet_cpds_path = None - clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None - - goals = [] - tasks = [] - current_progress = 1 - - if async_task.input_image_checkbox: - base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, inpaint_head_model_path, inpaint_image, inpaint_mask, ip_adapter_face_path, ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner = apply_image_input( - async_task, base_model_additional_loras, clip_vision_path, controlnet_canny_path, controlnet_cpds_path, - goals, inpaint_head_model_path, inpaint_image, inpaint_mask, inpaint_parameterized, ip_adapter_face_path, - ip_adapter_path, ip_negative_path, skip_prompt_processing, use_synthetic_refiner) - - # Load or unload CNs - progressbar(async_task, current_progress, 'Loading control models ...') - pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path]) - ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path) - ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path) - - async_task.steps, switch, width, height = apply_overrides(async_task, async_task.steps, height, width) - - print(f'[Parameters] Sampler = {async_task.sampler_name} - {async_task.scheduler_name}') - print(f'[Parameters] Steps = {async_task.steps} - {switch}') - - progressbar(async_task, current_progress, 'Initializing ...') - - loras = async_task.loras - if not skip_prompt_processing: - tasks, use_expansion, loras, current_progress = process_prompt(async_task, async_task.prompt, async_task.negative_prompt, - base_model_additional_loras, async_task.image_number, - async_task.disable_seed_increment, use_expansion, use_style, - use_synthetic_refiner, current_progress, advance_progress=True) - - if len(goals) > 0: - current_progress += 1 - progressbar(async_task, current_progress, 'Image processing ...') - - should_enhance = async_task.enhance_checkbox and (async_task.enhance_uov_method != flags.disabled.casefold() or len(async_task.enhance_ctrls) > 0) - - if 'vary' in goals: - async_task.uov_input_image, denoising_strength, initial_latent, width, height, current_progress = apply_vary( - async_task, async_task.uov_method, denoising_strength, async_task.uov_input_image, switch, - current_progress) - - if 'upscale' in goals: - direct_return, async_task.uov_input_image, denoising_strength, initial_latent, tiled, width, height, current_progress = apply_upscale( - async_task, async_task.uov_input_image, async_task.uov_method, switch, current_progress, - advance_progress=True) - if direct_return: - d = [('Upscale (Fast)', 'upscale_fast', '2x')] - if modules.config.default_black_out_nsfw or async_task.black_out_nsfw: - progressbar(async_task, 100, 'Checking for NSFW content ...') - async_task.uov_input_image = default_censor(async_task.uov_input_image) - progressbar(async_task, 100, 'Saving image to system ...') - uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format) - yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False, - do_not_show_finished_images=True) - return - - if 'inpaint' in goals: - try: - denoising_strength, initial_latent, width, height, current_progress = apply_inpaint( - async_task, - initial_latent, - inpaint_head_model_path, - inpaint_image, - inpaint_mask, - inpaint_parameterized, - async_task.inpaint_strength, - async_task.inpaint_respective_field, - switch, - async_task.inpaint_disable_initial_latent, - current_progress, - advance_progress=True) - except EarlyReturnException: - return - - if 'cn' in goals: - apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path, width, current_progress) - if async_task.debugging_cn_preprocessor: - return - - if async_task.freeu_enabled: - apply_freeu(async_task) - - # async_task.steps can have value of uov steps here when upscale has been applied - steps, _, _, _ = apply_overrides(async_task, async_task.steps, height, width) - - images_to_enhance = [] - if 'enhance' in goals: - async_task.image_number = 1 - images_to_enhance += [async_task.enhance_input_image] - height, width, _ = async_task.enhance_input_image.shape - # input image already provided, processing is skipped - steps = 0 - - all_steps = steps * async_task.image_number - - if async_task.enhance_checkbox and async_task.enhance_uov_method != flags.disabled.casefold(): - enhance_upscale_steps = async_task.performance_selection.steps() - if 'upscale' in async_task.enhance_uov_method: - if 'fast' in async_task.enhance_uov_method: - enhance_upscale_steps = 0 - else: - enhance_upscale_steps = async_task.performance_selection.steps_uov() - enhance_upscale_steps, _, _, _ = apply_overrides(async_task, enhance_upscale_steps, height, width) - enhance_upscale_steps_total = async_task.image_number * enhance_upscale_steps - all_steps += enhance_upscale_steps_total - - if async_task.enhance_checkbox and len(async_task.enhance_ctrls) != 0: - enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) - all_steps += async_task.image_number * len(async_task.enhance_ctrls) * enhance_steps - - all_steps = max(all_steps, 1) - - print(f'[Parameters] Denoising Strength = {denoising_strength}') - - if isinstance(initial_latent, dict) and 'samples' in initial_latent: - log_shape = initial_latent['samples'].shape - else: - log_shape = f'Image Space {(height, width)}' - - print(f'[Parameters] Initial Latent shape: {log_shape}') - - preparation_time = time.perf_counter() - preparation_start_time - print(f'Preparation time: {preparation_time:.2f} seconds') - - final_scheduler_name = patch_samplers(async_task) - print(f'Using {final_scheduler_name} scheduler.') - - outputs.append(['preview', (current_progress, 'Moving model to GPU ...', None)]) - - processing_start_time = time.perf_counter() - - preparation_steps = current_progress - total_count = async_task.image_number - - def callback(step, x0, x, total_steps, y): - """callback, used for progress and preview""" - done_steps = current_task_id * steps + step - outputs.append(['preview', ( - int(15.0 + 85.0 * float(done_steps) / float(all_steps)), - f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling', - y)]) - - show_intermediate_results = len(tasks) > 1 or async_task.should_enhance - persist_image = not async_task.should_enhance or not async_task.save_final_enhanced_image_only - - for current_task_id, task in enumerate(tasks): - progressbar(async_task, current_progress, f'Preparing task {current_task_id + 1}/{async_task.image_number} ...') - execution_start_time = time.perf_counter() - - try: - imgs, img_paths, current_progress = process_task(all_steps, async_task, callback, controlnet_canny_path, - controlnet_cpds_path, current_task_id, - denoising_strength, final_scheduler_name, goals, - initial_latent, async_task.steps, switch, task['c'], - task['uc'], task, loras, tiled, use_expansion, width, - height, current_progress, preparation_steps, - async_task.image_number, show_intermediate_results, - persist_image) - - current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1)) - images_to_enhance += imgs - - except ldm_patched.modules.model_management.InterruptProcessingException as e: - logger.std_warn("[Fooocus] User stopped") - results.append(ImageGenerationResult( - im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.user_cancel)) - async_job.set_result([], True, str(e)) - break - # break - # if async_task.last_stop == 'skip': - # print('User skipped') - # async_task.last_stop = False - # continue - # else: - # print('User stopped') - # break - except Exception as e: - logger.std_error(f'[Fooocus] Process error: {e}') - logging.exception(e) - results.append(ImageGenerationResult( - im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.error)) - async_job.set_result([], True, str(e)) - break - - del task['c'], task['uc'] # Save memory - execution_time = time.perf_counter() - execution_start_time - print(f'Generating and saving time: {execution_time:.2f} seconds') - - if not async_task.should_enhance: - print(f'[Enhance] Skipping, preconditions aren\'t met') - stop_processing(async_task, processing_start_time) - return - - progressbar(async_task, current_progress, 'Processing enhance ...') - - active_enhance_tabs = len(async_task.enhance_ctrls) - should_process_enhance_uov = async_task.enhance_uov_method != flags.disabled.casefold() - enhance_uov_before = False - enhance_uov_after = False - if should_process_enhance_uov: - active_enhance_tabs += 1 - enhance_uov_before = async_task.enhance_uov_processing_order == flags.enhancement_uov_before - enhance_uov_after = async_task.enhance_uov_processing_order == flags.enhancement_uov_after - total_count = len(images_to_enhance) * active_enhance_tabs - async_task.images_to_enhance_count = len(images_to_enhance) - - base_progress = current_progress - current_task_id = -1 - done_steps_upscaling = 0 - done_steps_inpainting = 0 - enhance_steps, _, _, _ = apply_overrides(async_task, async_task.original_steps, height, width) - exception_result = None - for index, img in enumerate(images_to_enhance): - async_task.enhance_stats[index] = 0 - enhancement_image_start_time = time.perf_counter() - - last_enhance_prompt = async_task.prompt - last_enhance_negative_prompt = async_task.negative_prompt - - if enhance_uov_before: - current_task_id += 1 - persist_image = not async_task.save_final_enhanced_image_only or active_enhance_tabs == 0 - current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( - all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, - current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, - async_task.prompt, async_task.negative_prompt, final_scheduler_name, height, img, preparation_steps, - switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, width, persist_image) - async_task.enhance_stats[index] += 1 - - if exception_result == 'continue': - continue - elif exception_result == 'break': - break - - # inpaint for all other tabs - for enhance_mask_dino_prompt_text, enhance_prompt, enhance_negative_prompt, enhance_mask_model, enhance_mask_cloth_category, enhance_mask_sam_model, enhance_mask_text_threshold, enhance_mask_box_threshold, enhance_mask_sam_max_detections, enhance_inpaint_disable_initial_latent, enhance_inpaint_engine, enhance_inpaint_strength, enhance_inpaint_respective_field, enhance_inpaint_erode_or_dilate, enhance_mask_invert in async_task.enhance_ctrls: - current_task_id += 1 - current_progress = int(base_progress + (100 - preparation_steps) / float(all_steps) * (done_steps_upscaling + done_steps_inpainting)) - progressbar(async_task, current_progress, f'Preparing enhancement {current_task_id + 1}/{total_count} ...') - enhancement_task_start_time = time.perf_counter() - is_last_enhance_for_image = (current_task_id + 1) % active_enhance_tabs == 0 and not enhance_uov_after - persist_image = not async_task.save_final_enhanced_image_only or is_last_enhance_for_image - - extras = {} - if enhance_mask_model == 'sam': - print(f'[Enhance] Searching for "{enhance_mask_dino_prompt_text}"') - elif enhance_mask_model == 'u2net_cloth_seg': - extras['cloth_category'] = enhance_mask_cloth_category - - mask, dino_detection_count, sam_detection_count, sam_detection_on_mask_count = generate_mask_from_image( - img, mask_model=enhance_mask_model, extras=extras, sam_options=SAMOptions( - dino_prompt=enhance_mask_dino_prompt_text, - dino_box_threshold=enhance_mask_box_threshold, - dino_text_threshold=enhance_mask_text_threshold, - dino_erode_or_dilate=async_task.dino_erode_or_dilate, - dino_debug=async_task.debugging_dino, - max_detections=enhance_mask_sam_max_detections, - model_type=enhance_mask_sam_model, - )) - if len(mask.shape) == 3: - mask = mask[:, :, 0] - - if int(enhance_inpaint_erode_or_dilate) != 0: - mask = erode_or_dilate(mask, enhance_inpaint_erode_or_dilate) - - if enhance_mask_invert: - mask = 255 - mask - - if async_task.debugging_enhance_masks_checkbox: - outputs.append(['preview', (current_progress, 'Loading ...', mask)]) - yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False, - async_task.disable_intermediate_results) - async_task.enhance_stats[index] += 1 - - print(f'[Enhance] {dino_detection_count} boxes detected') - print(f'[Enhance] {sam_detection_count} segments detected in boxes') - print(f'[Enhance] {sam_detection_on_mask_count} segments applied to mask') - - if enhance_mask_model == 'sam' and (dino_detection_count == 0 or not async_task.debugging_dino and sam_detection_on_mask_count == 0): - print(f'[Enhance] No "{enhance_mask_dino_prompt_text}" detected, skipping') - continue - - goals_enhance = ['inpaint'] - - try: - current_progress, img, enhance_prompt_processed, enhance_negative_prompt_processed = process_enhance( - all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, - current_progress, current_task_id, denoising_strength, enhance_inpaint_disable_initial_latent, - enhance_inpaint_engine, enhance_inpaint_respective_field, enhance_inpaint_strength, - enhance_prompt, enhance_negative_prompt, final_scheduler_name, goals_enhance, height, img, mask, - preparation_steps, enhance_steps, switch, tiled, total_count, use_expansion, use_style, - use_synthetic_refiner, width, persist_image=persist_image) - async_task.enhance_stats[index] += 1 - - if (should_process_enhance_uov and async_task.enhance_uov_processing_order == flags.enhancement_uov_after - and async_task.enhance_uov_prompt_type == flags.enhancement_uov_prompt_type_last_filled): - if enhance_prompt_processed != '': - last_enhance_prompt = enhance_prompt_processed - if enhance_negative_prompt_processed != '': - last_enhance_negative_prompt = enhance_negative_prompt_processed - - except ldm_patched.modules.model_management.InterruptProcessingException: - if async_task.last_stop == 'skip': - print('User skipped') - async_task.last_stop = False - continue - else: - print('User stopped') - exception_result = 'break' - break - finally: - done_steps_inpainting += enhance_steps - - enhancement_task_time = time.perf_counter() - enhancement_task_start_time - print(f'Enhancement time: {enhancement_task_time:.2f} seconds') - - if exception_result == 'break': - break - - if enhance_uov_after: - current_task_id += 1 - # last step in enhance, always save - persist_image = True - current_task_id, done_steps_inpainting, done_steps_upscaling, img, exception_result = enhance_upscale( - all_steps, async_task, base_progress, callback, controlnet_canny_path, controlnet_cpds_path, - current_task_id, denoising_strength, done_steps_inpainting, done_steps_upscaling, enhance_steps, - last_enhance_prompt, last_enhance_negative_prompt, final_scheduler_name, height, img, - preparation_steps, switch, tiled, total_count, use_expansion, use_style, use_synthetic_refiner, - width, persist_image) - async_task.enhance_stats[index] += 1 - - if exception_result == 'continue': - continue - elif exception_result == 'break': - break - - enhancement_image_time = time.perf_counter() - enhancement_image_start_time - print(f'Enhancement image time: {enhancement_image_time:.2f} seconds') - - stop_processing(async_task, processing_start_time) - - if task.finish_with_error: - worker_queue.finish_task(task.job_id) - return task.task_result - yield_result(None, results, tasks, async_task.output_format, async_task.black_out_nsfw) - return - except Exception as e: - logger.std_error(f'[Fooocus] Worker error: {e}') - - if not task.is_finished: - task.set_result([], True, str(e)) - worker_queue.finish_task(task.job_id) - logger.std_info(f"[Task Queue] Finish task with error, job_id={task.job_id}") From 542903bb73ab5fa1862a81c2236d4c4a21dc1e9d Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Sat, 10 Aug 2024 19:48:46 +0800 Subject: [PATCH 07/15] save work --- .gitignore | 1 + fooocusapi/models/common/base.py | 4 +- fooocusapi/models/common/requests.py | 2 +- fooocusapi/parameters.py | 5 +- fooocusapi/routes/generate_v2.py | 2 +- fooocusapi/utils/api_utils.py | 70 +++++++++++++++++++--------- fooocusapi/worker.py | 16 +++---- 7 files changed, 65 insertions(+), 35 deletions(-) diff --git a/.gitignore b/.gitignore index fd4bdb5..4916cad 100644 --- a/.gitignore +++ b/.gitignore @@ -34,6 +34,7 @@ config.txt config_modification_tutorial.txt user_path_config.txt user_path_config-deprecated.txt +hash_cache.txt sorted_styles.json /presets diff --git a/fooocusapi/models/common/base.py b/fooocusapi/models/common/base.py index 3809267..6388994 100644 --- a/fooocusapi/models/common/base.py +++ b/fooocusapi/models/common/base.py @@ -124,8 +124,8 @@ class ControlNetType(str, Enum): class ImagePrompt(BaseModel): """Common params object ImagePrompt""" cn_img: UploadFile | None = Field(default=None) - cn_stop: float | None = Field(default=None, ge=0, le=1) - cn_weight: float | None = Field(default=None, ge=0, le=2, description="None for default value") + cn_stop: float | None = Field(default=0.5, ge=0, le=1) + cn_weight: float | None = Field(default=0.6, ge=0, le=2, description="None for default value") cn_type: ControlNetType = Field(default=ControlNetType.cn_ip) diff --git a/fooocusapi/models/common/requests.py b/fooocusapi/models/common/requests.py index b5687b5..9f948ed 100644 --- a/fooocusapi/models/common/requests.py +++ b/fooocusapi/models/common/requests.py @@ -81,7 +81,7 @@ class AdvancedParams(BaseModel): inpaint_engine: str = Field(default_inpaint_engine_version, description="Inpaint Engine") inpaint_strength: float = Field(1.0, description="Inpaint Denoising Strength", ge=0.0, le=1.0) inpaint_respective_field: float = Field(1.0, description="Inpaint Respective Field", ge=0.0, le=1.0) - inpaint_mask_upload_checkbox: bool = Field(True, description="Upload Mask") + inpaint_advanced_masking_checkbox: bool = Field(True, description="Upload Mask") invert_mask_checkbox: bool = Field(False, description="Invert Mask") inpaint_erode_or_dilate: int = Field(0, description="Mask Erode or Dilate", ge=-64, le=64) black_out_nsfw: bool = Field(False, description="Block out NSFW") diff --git a/fooocusapi/parameters.py b/fooocusapi/parameters.py index 9ff36c0..a8408db 100644 --- a/fooocusapi/parameters.py +++ b/fooocusapi/parameters.py @@ -31,7 +31,7 @@ def __init__( outpaint_distance_right: int, outpaint_distance_top: int, outpaint_distance_bottom: int, - inpaint_input_image: Dict[str, np.ndarray] | None, + inpaint_input_image: Dict[str, np.ndarray | None], inpaint_additional_prompt: str | None, enhance_input_image: np.ndarray | None, enhance_checkbox: bool, @@ -87,13 +87,14 @@ def __init__( self.require_base64 = require_base64 self.advanced_params = advanced_params + self.current_tab = 'uov' if self.enhance_input_image is not None: self.current_tab = 'enhance' elif self.image_prompts[0][0] is not None: self.current_tab = 'ip' elif self.uov_input_image is not None: self.current_tab = 'uov' - elif self.inpaint_input_image is not None: + elif self.inpaint_input_image["image"] is not None: self.current_tab = 'inpaint' if self.advanced_params is None: diff --git a/fooocusapi/routes/generate_v2.py b/fooocusapi/routes/generate_v2.py index 229ee12..7dbde29 100644 --- a/fooocusapi/routes/generate_v2.py +++ b/fooocusapi/routes/generate_v2.py @@ -231,7 +231,7 @@ def img_enhance( if len(req.enhance_ctrlnets) < 3: default_enhance_ctrlnet = [EnhanceCtrlNets()] - req.enhance_ctrlnets.extend(default_enhance_ctrlnet * (4 - len(req.enhance_ctrlnets))) + req.enhance_ctrlnets + (default_enhance_ctrlnet * (4 - len(req.enhance_ctrlnets))) return call_worker(req, accept) diff --git a/fooocusapi/utils/api_utils.py b/fooocusapi/utils/api_utils.py index 0565e46..ef8e27c 100644 --- a/fooocusapi/utils/api_utils.py +++ b/fooocusapi/utils/api_utils.py @@ -1,12 +1,14 @@ """some utils for api""" +import random from typing import List +import numpy from fastapi import Response from fastapi.security import APIKeyHeader from fastapi import HTTPException, Security -from fooocusapi.models.common.base import EnhanceCtrlNets -from modules import flags +from fooocusapi.models.common.base import EnhanceCtrlNets, ImagePrompt +from modules import constants, flags from modules import config from modules.sdxl_styles import legal_style_names @@ -51,18 +53,38 @@ from fooocusapi.parameters import ImageGenerationParams from fooocusapi.task_queue import QueueTask - +from modules.util import HWC3 api_key_header = APIKeyHeader(name="X-API-KEY", auto_error=False) +def refresh_seed(seed_string: int | str | None) -> int: + """ + Refresh and check seed number. + :params seed_string: seed, str or int. None means random + :return: seed number + """ + RANDOM_SEED = random.randint(constants.MIN_SEED, constants.MAX_SEED) + try: + seed_value = int(seed_string) + except ValueError: + return RANDOM_SEED + + if seed_value < constants.MIN_SEED or seed_value > constants.MAX_SEED or seed_string == -1: + return RANDOM_SEED + + return seed_value + + def check_models_exist(file_name: str, model_type: str) -> str: """ Check if all models exist """ - config.update_files() + if file_name in (None, 'None'): + return 'None' - if file_name not in (config.model_filenames, config.lora_filenames): + config.update_files() + if file_name not in (config.model_filenames + config.lora_filenames): logger.std_warn(f"[Warning] Wrong {model_type} model input: {file_name}, using default") if model_type == 'base': return default_base_model_name @@ -101,7 +123,7 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: performance_selection = req.performance_selection.value aspect_ratios_selection = req.aspect_ratios_selection image_number = req.image_number - image_seed = None if req.image_seed == -1 else req.image_seed + image_seed = refresh_seed(req.image_seed) sharpness = req.sharpness guidance_scale = req.guidance_scale base_model_name = check_models_exist(req.base_model_name, 'base') @@ -116,22 +138,25 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: upscale_value = None if not isinstance(req, (ImgUpscaleOrVaryRequest, ImgUpscaleOrVaryRequestJson)) else req.upscale_value outpaint_selections = [] if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else [ s.value for s in req.outpaint_selections] - outpaint_distance_left = None if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else req.outpaint_distance_left - outpaint_distance_right = None if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else req.outpaint_distance_right - outpaint_distance_top = None if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else req.outpaint_distance_top - outpaint_distance_bottom = None if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else req.outpaint_distance_bottom + outpaint_distance_left = 0 if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else req.outpaint_distance_left + outpaint_distance_right = 0 if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else req.outpaint_distance_right + outpaint_distance_top = 0 if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else req.outpaint_distance_top + outpaint_distance_bottom = 0 if not isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) else req.outpaint_distance_bottom if refiner_model_name == '': refiner_model_name = 'None' - inpaint_input_image = None + inpaint_input_image = dict(image=None, mask=None) inpaint_additional_prompt = None if isinstance(req, (ImgInpaintOrOutpaintRequest, ImgInpaintOrOutpaintRequestJson)) and req.input_image is not None: inpaint_additional_prompt = req.inpaint_additional_prompt input_image = read_input_image(req.input_image) - input_mask = None + + inpaint_image_size = input_image.shape[:2] + input_mask = numpy.zeros(inpaint_image_size, dtype=numpy.uint8) if req.input_mask is not None: - input_mask = read_input_image(req.input_mask) + input_mask = HWC3(read_input_image(req.input_mask)) + inpaint_input_image = { 'image': input_image, 'mask': input_mask @@ -156,17 +181,20 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: img_prompt.cn_weight = flags.default_parameters[img_prompt.cn_type.value][1] image_prompts.append( (cn_img, img_prompt.cn_stop, img_prompt.cn_weight, img_prompt.cn_type.value)) - # 'enhance_input_image' - # 'enhance_checkbox' - # 'enhance_uov_method' - # 'enhance_uov_processing_order' - # 'enhance_uov_prompt_type' + + if len(image_prompts) < config.default_controlnet_image_count: + dp = (None, 0.5, 0.6, 'ImagePrompt') + image_prompts += [dp] * (config.default_controlnet_image_count - len(image_prompts)) + enhance_input_image = None if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_input_image enhance_checkbox = True enhance_uov_method = flags.disabled if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_method - enhance_uov_processing_order = flags.disabled if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_processing_order - enhance_uov_prompt_type = flags.disabled if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_prompt_type - enhance_ctrlnets = EnhanceCtrlNets() if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_ctrlnets + enhance_uov_processing_order = "Before First Enhancement" if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_processing_order + enhance_uov_prompt_type = "Original Prompts" if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_prompt_type + if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)): + enhance_ctrlnets = [EnhanceCtrlNets()] * config.default_enhance_tabs + else: + enhance_ctrlnets = req.enhance_ctrlnets advanced_params = None if req.advanced_params is not None: diff --git a/fooocusapi/worker.py b/fooocusapi/worker.py index 92dace3..06903c0 100644 --- a/fooocusapi/worker.py +++ b/fooocusapi/worker.py @@ -90,7 +90,7 @@ def __init__(self, args: ImageGenerationParams): self.black_out_nsfw = adp.black_out_nsfw self.adm_scaler_positive = adp.adm_scaler_positive self.adm_scaler_negative = adp.adm_scaler_negative - self.adm_scaler_end = adp.scaler_end + self.adm_scaler_end = adp.adm_scaler_end self.adaptive_cfg = adp.adaptive_cfg self.clip_skip = adp.clip_skip self.sampler_name = adp.sampler_name @@ -328,17 +328,17 @@ def yield_result(_, images, tasks, extension='png', for ind, im in enumerate(images): if async_job.req_param.save_name == '': - image_name = f"{async_job.job_id}-{str(index)}" + image_name = f"{async_job.job_id}-{str(ind)}" else: - image_name = f"{async_job.req_param.save_name}-{str(index)}" + image_name = f"{async_job.req_param.save_name}-{str(ind)}" if len(tasks) == 0: img_seed = -1 img_meta = {} else: - img_seed = tasks[index]['task_seed'] + img_seed = tasks[ind]['task_seed'] img_meta = image_parse( async_tak=async_task, - task=tasks[index]) + task=tasks[ind]) img_filename = save_output_file( img=im, image_name=image_name, @@ -1219,7 +1219,7 @@ def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_c denoising_strength = 1.0 tiled = False - width, height = async_task.aspect_ratios_selection.replace('×', ' ').split(' ')[:2] + width, height = async_task.aspect_ratios_selection.split('*')[:2] width, height = int(width), int(height) skip_prompt_processing = False @@ -1581,8 +1581,8 @@ def callback(step, x0, x, total_steps, y): yield_result(None, results, tasks, async_task.output_format, async_task.black_out_nsfw) return except Exception as e: - logger.std_error(f'[Fooocus] Worker error: {e}') - + # logger.std_error(f'[Fooocus] Worker error: {e}') + raise Exception(e) if not async_job.is_finished: async_job.set_result([], True, str(e)) worker_queue.finish_task(async_job.job_id) From af3a164b97cf88136742e795ee5825d2f8e2bead Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Sun, 11 Aug 2024 17:55:30 +0800 Subject: [PATCH 08/15] text to image work now --- fooocusapi/utils/file_utils.py | 16 +++-- fooocusapi/worker.py | 108 +++++++++++++++------------------ 2 files changed, 62 insertions(+), 62 deletions(-) diff --git a/fooocusapi/utils/file_utils.py b/fooocusapi/utils/file_utils.py index 351e7c7..d2e5c0c 100644 --- a/fooocusapi/utils/file_utils.py +++ b/fooocusapi/utils/file_utils.py @@ -10,6 +10,7 @@ """ import base64 import datetime +import shutil from io import BytesIO import os import json @@ -29,7 +30,7 @@ def save_output_file( - img: np.ndarray, + img: np.ndarray | str, image_meta: dict = None, image_name: str = '', extension: str = 'png') -> str: @@ -48,6 +49,14 @@ def save_output_file( filename = os.path.join(date_string, image_name + '.' + extension) file_path = os.path.join(output_dir, filename) + os.makedirs(os.path.dirname(file_path), exist_ok=True) + + try: + if isinstance(img, str): + shutil.move(img, file_path) + return Path(file_path).as_posix() + except Exception: + raise Exception if extension not in ['png', 'jpg', 'webp']: extension = 'png' @@ -57,12 +66,11 @@ def save_output_file( image_meta = {} meta = None - if extension == 'png'and image_meta != {}: + if extension == 'png' and image_meta != {}: meta = PngInfo() meta.add_text("parameters", json.dumps(image_meta)) meta.add_text("fooocus_scheme", image_meta['metadata_scheme']) - os.makedirs(os.path.dirname(file_path), exist_ok=True) Image.fromarray(img).save( file_path, format=image_format, @@ -142,4 +150,4 @@ def get_file_serve_url(filename: str | None) -> str | None: """ if filename is None: return None - return STATIC_SERVER_BASE + filename.replace('\\', '/') + return STATIC_SERVER_BASE + '/'.join(filename.split('/')[-2:]) diff --git a/fooocusapi/worker.py b/fooocusapi/worker.py index 06903c0..c81b909 100644 --- a/fooocusapi/worker.py +++ b/fooocusapi/worker.py @@ -182,7 +182,7 @@ def __init__(self, args: ImageGenerationParams): enhance_inpaint_erode_or_dilate, enhance_mask_invert ]) - self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method != disabled.casefold() or len(self.enhance_ctrls) > 0) + self.should_enhance = self.enhance_checkbox and (self.enhance_uov_method.casefold() != disabled.casefold() or len(self.enhance_ctrls) > 0) self.images_to_enhance_count = 0 self.enhance_stats = {} @@ -269,7 +269,6 @@ def process_generate(async_job: QueueTask): import traceback import math import numpy as np - import torch import time import random import copy @@ -308,51 +307,53 @@ def progressbar(_, number, text): logger.std_info(f'[Fooocus] {text}') outputs.append(['preview', (number, text, None)]) - def yield_result(_, images, tasks, extension='png', - black_out_nsfw=False, censor=True): + def yield_result(async_task, imgs, progressbar_index, black_out_nsfw, censor=True, do_not_show_finished_images=False): + if not isinstance(imgs, list): + imgs = [imgs] + + if censor and (modules.config.default_black_out_nsfw or black_out_nsfw): + progressbar(async_task, progressbar_index, 'Checking for NSFW content ...') + imgs = default_censor(imgs) + + async_task.results = async_task.results + imgs + + if do_not_show_finished_images: + return + + async_task.yields.append(['results', async_task.results]) + return + + def return_result(_, tasks): """ Yield result :param _: async task object - :param images: list for generated image :param tasks: the image was generated one by one, when image number is not one, it will be a task list - :param extension: extension for saved image - :param black_out_nsfw: blockout nsfw image - :param censor: censor image :return: """ - if not isinstance(images, list): - images = [images] - - if censor and (modules.config.default_black_out_nsfw or async_task.black_out_nsfw): - images = default_censor(images) - - for ind, im in enumerate(images): + extension = async_job.req_param.save_extension + for ind, im in enumerate(async_task.results): if async_job.req_param.save_name == '': image_name = f"{async_job.job_id}-{str(ind)}" else: image_name = f"{async_job.req_param.save_name}-{str(ind)}" - if len(tasks) == 0: - img_seed = -1 - img_meta = {} - else: - img_seed = tasks[ind]['task_seed'] - img_meta = image_parse( - async_tak=async_task, - task=tasks[ind]) + + img_seed = tasks[ind]['task_seed'] + img_filename = save_output_file( img=im, image_name=image_name, - image_meta=img_meta, + image_meta={}, extension=extension) results.append(ImageGenerationResult( im=img_filename, seed=str(img_seed), finish_reason=GenerationFinishReason.success)) + async_job.set_result(results, False) worker_queue.finish_task(async_job.job_id) logger.std_info(f"[Task Queue] Finish task, job_id={async_job.job_id}") - outputs.append(['results', images]) + outputs.append(['results', async_task.results]) pipeline.prepare_text_encoder(async_call=True) def process_task(all_steps, async_task, callback, controlnet_canny_path, controlnet_cpds_path, current_task_id, @@ -398,7 +399,8 @@ def process_task(all_steps, async_task, callback, controlnet_canny_path, control imgs = default_censor(imgs) progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') img_paths = save_and_log(async_task, height, imgs, task, use_expansion, width, loras, persist_image) - yield_result(async_task, img_paths, tasks, async_task.output_format, async_task.black_out_nsfw, False) + yield_result(async_task, img_paths, current_progress, async_task.black_out_nsfw, False, + do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) return imgs, img_paths, current_progress @@ -483,7 +485,7 @@ def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path cn_img = HWC3(cn_img) task[0] = core.numpy_to_pytorch(cn_img) if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, tasks, async_task.output_format, async_task.black_out_nsfw) + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) for task in async_task.cn_tasks[flags.cn_cpds]: cn_img, cn_stop, cn_weight = task cn_img = resize_image(HWC3(cn_img), width=width, height=height) @@ -494,7 +496,7 @@ def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path cn_img = HWC3(cn_img) task[0] = core.numpy_to_pytorch(cn_img) if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, tasks, async_task.output_format, async_task.black_out_nsfw) + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) for task in async_task.cn_tasks[flags.cn_ip]: cn_img, cn_stop, cn_weight = task cn_img = HWC3(cn_img) @@ -504,7 +506,7 @@ def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, tasks, async_task.output_format, async_task.black_out_nsfw) + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) for task in async_task.cn_tasks[flags.cn_ip_face]: cn_img, cn_stop, cn_weight = task cn_img = HWC3(cn_img) @@ -517,7 +519,7 @@ def apply_control_nets(async_task, height, ip_adapter_face_path, ip_adapter_path task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) if async_task.debugging_cn_preprocessor: - yield_result(async_task, cn_img, tasks, async_task.output_format, async_task.black_out_nsfw) + yield_result(async_task, cn_img, current_progress, async_task.black_out_nsfw, do_not_show_finished_images=True) all_ip_tasks = async_task.cn_tasks[flags.cn_ip] + async_task.cn_tasks[flags.cn_ip_face] if len(all_ip_tasks) > 0: pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) @@ -568,8 +570,8 @@ def apply_inpaint(async_task, initial_latent, inpaint_head_model_path, inpaint_i k=inpaint_respective_field ) if async_task.debugging_inpaint_preprocessor: - yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), tasks, - async_task.output_format, async_task.black_out_nsfw) + yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), 100, + async_task.black_out_nsfw, do_not_show_finished_images=True) raise EarlyReturnException if advance_progress: @@ -1066,6 +1068,7 @@ def prepare_enhance_prompt(prompt: str, fallback_prompt: str): def stop_processing(async_task, processing_start_time): async_task.processing = False + return_result(async_task, tasks) processing_time = time.perf_counter() - processing_start_time print(f'Processing time (total): {processing_time:.2f} seconds') @@ -1096,7 +1099,8 @@ def process_enhance(all_steps, async_task, callback, controlnet_canny_path, cont img = default_censor(img) progressbar(async_task, current_progress, f'Saving image {current_task_id + 1}/{total_count} to system ...') uov_image_path = log(img, d, output_format=async_task.output_format, persist_image=persist_image) - yield_result(async_task, uov_image_path, tasks, async_task.output_format, async_task.black_out_nsfw, False) + yield_result(async_task, uov_image_path, current_progress, async_task.black_out_nsfw, False, + do_not_show_finished_images=not show_intermediate_results or async_task.disable_intermediate_results) return current_progress, img, prompt, negative_prompt if 'inpaint' in goals and inpaint_parameterized: @@ -1288,7 +1292,8 @@ def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_c async_task.uov_input_image = default_censor(async_task.uov_input_image) progressbar(async_task, 100, 'Saving image to system ...') uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format) - yield_result(async_task, uov_input_image_path, tasks, async_task.output_format, async_task.black_out_nsfw, False) + yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False, + do_not_show_finished_images=True) return if 'inpaint' in goals: @@ -1397,27 +1402,14 @@ def callback(step, x0, x, total_steps, y): current_progress = int(preparation_steps + (100 - preparation_steps) / float(all_steps) * async_task.steps * (current_task_id + 1)) images_to_enhance += imgs - except ldm_patched.modules.model_management.InterruptProcessingException as e: - logger.std_warn("[Fooocus] User stopped") - results.append(ImageGenerationResult( - im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.user_cancel)) - async_job.set_result([], True, str(e)) - break - # break - # if async_task.last_stop == 'skip': - # print('User skipped') - # async_task.last_stop = False - # continue - # else: - # print('User stopped') - # break - except Exception as e: - logger.std_error(f'[Fooocus] Process error: {e}') - logging.exception(e) - results.append(ImageGenerationResult( - im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.error)) - async_job.set_result([], True, str(e)) - break + except ldm_patched.modules.model_management.InterruptProcessingException: + if async_task.last_stop == 'skip': + print('User skipped') + async_task.last_stop = False + continue + else: + print('User stopped') + break del task['c'], task['uc'] # Save memory execution_time = time.perf_counter() - execution_start_time @@ -1505,7 +1497,8 @@ def callback(step, x0, x, total_steps, y): if async_task.debugging_enhance_masks_checkbox: outputs.append(['preview', (current_progress, 'Loading ...', mask)]) - yield_result(async_task, mask, tasks, async_task.output_format, async_task.black_out_nsfw, False) + yield_result(async_task, mask, current_progress, async_task.black_out_nsfw, False, + async_task.disable_intermediate_results) async_task.enhance_stats[index] += 1 print(f'[Enhance] {dino_detection_count} boxes detected') @@ -1578,11 +1571,10 @@ def callback(step, x0, x, total_steps, y): if async_job.finish_with_error: worker_queue.finish_task(async_job.job_id) return async_job.task_result - yield_result(None, results, tasks, async_task.output_format, async_task.black_out_nsfw) + return_result(async_task, tasks) return except Exception as e: # logger.std_error(f'[Fooocus] Worker error: {e}') - raise Exception(e) if not async_job.is_finished: async_job.set_result([], True, str(e)) worker_queue.finish_task(async_job.job_id) From 4aee2bc68a9ca5fecffdad1bff0a224f62c6b5be Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Mon, 12 Aug 2024 00:05:30 +0800 Subject: [PATCH 09/15] almost done, most of the endpoint seems work well, but still need more test --- examples/examples.ipynb | 21 ++++++--------------- fooocusapi/models/requests_v1.py | 2 +- fooocusapi/utils/api_utils.py | 2 +- fooocusapi/utils/file_utils.py | 24 ------------------------ fooocusapi/utils/img_utils.py | 4 ++-- fooocusapi/worker.py | 5 ++--- 6 files changed, 12 insertions(+), 46 deletions(-) diff --git a/examples/examples.ipynb b/examples/examples.ipynb index 1477e38..4773670 100644 --- a/examples/examples.ipynb +++ b/examples/examples.ipynb @@ -9,22 +9,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2024-04-04T10:19:57.369099Z", "start_time": "2024-04-04T10:19:57.328298Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'job_id': 'b53d8776-62a6-4398-bb8f-8118dc57403a', 'job_type': 'Text to Image', 'job_stage': 'WAITING', 'job_progress': 0, 'job_status': None, 'job_step_preview': None, 'job_result': None}\n" - ] - } - ], + "outputs": [], "source": [ "import requests\n", "import json\n", @@ -43,7 +35,6 @@ " return response.json()\n", "\n", "result =text2img({\n", - " \"prompt\": \"1girl sitting on the ground\",\n", " \"performance_selection\": \"Lightning\",\n", " \"async_process\": True\n", "})\n", @@ -84,7 +75,7 @@ "result =upscale_vary(\n", " image=image,\n", " params={\n", - " \"uov_method\": \"Upscale (2x)\",\n", + " \"uov_method\": \"Vary\",\n", " \"async_process\": True\n", " })\n", "print(json.dumps(result, indent=4, ensure_ascii=False))" @@ -352,8 +343,8 @@ "# image_prompt v2 Interface example\n", "host = \"http://127.0.0.1:8888\"\n", "image = open(\"./imgs/bear.jpg\", \"rb\").read()\n", - "source = open(\"./imgs/s.jpg\", \"rb\").read()\n", - "mask = open(\"./imgs/m.png\", \"rb\").read()\n", + "source = open(\"./imgs/inpaint_source.jpg\", \"rb\").read()\n", + "mask = open(\"./imgs/inpaint_mask.png\", \"rb\").read()\n", "\n", "def image_prompt(params: dict) -> dict:\n", " \"\"\"\n", @@ -522,7 +513,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.10" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/fooocusapi/models/requests_v1.py b/fooocusapi/models/requests_v1.py index fe580a7..992128f 100644 --- a/fooocusapi/models/requests_v1.py +++ b/fooocusapi/models/requests_v1.py @@ -175,7 +175,7 @@ def as_form( cls, input_image: UploadFile = Form(File(None), description="Init image for inpaint or outpaint"), input_mask: UploadFile = Form(File(None), description="Inpaint or outpaint mask"), - inpaint_additional_prompt: str | None = Form(None, description="Describe what you want to inpaint"), + inpaint_additional_prompt: str | None = Form(default='', description="Describe what you want to inpaint"), outpaint_selections: List[str] = Form([], description="Outpaint expansion selections, literal 'Left', 'Right', 'Top', 'Bottom' separated by comma"), outpaint_distance_left: int = Form(default=0, description="Set outpaint left distance, 0 for default"), outpaint_distance_right: int = Form(default=0, description="Set outpaint right distance, 0 for default"), diff --git a/fooocusapi/utils/api_utils.py b/fooocusapi/utils/api_utils.py index ef8e27c..786ffd5 100644 --- a/fooocusapi/utils/api_utils.py +++ b/fooocusapi/utils/api_utils.py @@ -153,7 +153,7 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: input_image = read_input_image(req.input_image) inpaint_image_size = input_image.shape[:2] - input_mask = numpy.zeros(inpaint_image_size, dtype=numpy.uint8) + input_mask = HWC3(numpy.zeros(inpaint_image_size, dtype=numpy.uint8)) if req.input_mask is not None: input_mask = HWC3(read_input_image(req.input_mask)) diff --git a/fooocusapi/utils/file_utils.py b/fooocusapi/utils/file_utils.py index d2e5c0c..361a8e2 100644 --- a/fooocusapi/utils/file_utils.py +++ b/fooocusapi/utils/file_utils.py @@ -13,11 +13,9 @@ import shutil from io import BytesIO import os -import json from pathlib import Path import numpy as np from PIL import Image -from PIL.PngImagePlugin import PngInfo from fooocusapi.utils.logger import logger @@ -31,14 +29,12 @@ def save_output_file( img: np.ndarray | str, - image_meta: dict = None, image_name: str = '', extension: str = 'png') -> str: """ Save np image to file Args: img: np.ndarray image to save - image_meta: dict of image metadata image_name: str of image name extension: str of image extension Returns: @@ -58,26 +54,6 @@ def save_output_file( except Exception: raise Exception - if extension not in ['png', 'jpg', 'webp']: - extension = 'png' - image_format = Image.registered_extensions()['.'+extension] - - if image_meta is None: - image_meta = {} - - meta = None - if extension == 'png' and image_meta != {}: - meta = PngInfo() - meta.add_text("parameters", json.dumps(image_meta)) - meta.add_text("fooocus_scheme", image_meta['metadata_scheme']) - - Image.fromarray(img).save( - file_path, - format=image_format, - pnginfo=meta, - optimize=True) - return Path(filename).as_posix() - def delete_output_file(filename: str): """ diff --git a/fooocusapi/utils/img_utils.py b/fooocusapi/utils/img_utils.py index d65fee6..8fd2c48 100644 --- a/fooocusapi/utils/img_utils.py +++ b/fooocusapi/utils/img_utils.py @@ -9,7 +9,7 @@ from io import BytesIO from fastapi import UploadFile from PIL import Image - +import starlette import requests import numpy as np @@ -111,7 +111,7 @@ def read_input_image(input_image: UploadFile | str | None) -> np.ndarray | None: input_image = input_image.split(sep=',', maxsplit=1)[1] input_image_bytes = base64.b64decode(input_image) - if isinstance(input_image, UploadFile): + if isinstance(input_image, (UploadFile, starlette.datastructures.UploadFile)): input_image_bytes = input_image.file.read() pil_image = Image.open(BytesIO(input_image_bytes)) diff --git a/fooocusapi/worker.py b/fooocusapi/worker.py index c81b909..eabb352 100644 --- a/fooocusapi/worker.py +++ b/fooocusapi/worker.py @@ -342,7 +342,6 @@ def return_result(_, tasks): img_filename = save_output_file( img=im, image_name=image_name, - image_meta={}, extension=extension) results.append(ImageGenerationResult( im=img_filename, @@ -1574,8 +1573,8 @@ def callback(step, x0, x, total_steps, y): return_result(async_task, tasks) return except Exception as e: - # logger.std_error(f'[Fooocus] Worker error: {e}') + raise e if not async_job.is_finished: async_job.set_result([], True, str(e)) worker_queue.finish_task(async_job.job_id) - logger.std_info(f"[Task Queue] Finish task with error, job_id={async_job.job_id}") + logger.std_error(f"[Task Queue] Finish task with error: {e}, job_id={async_job.job_id}") From a0646fd23fe2e08c7cc5855c09dbceb3b7ad6c5f Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Mon, 12 Aug 2024 16:21:27 +0800 Subject: [PATCH 10/15] enhance image is work now --- fooocusapi/models/common/base.py | 3 ++- fooocusapi/models/common/requests.py | 2 +- fooocusapi/models/requests_v1.py | 6 +++--- fooocusapi/utils/api_utils.py | 2 +- fooocusapi/worker.py | 11 ++++++++--- 5 files changed, 15 insertions(+), 9 deletions(-) diff --git a/fooocusapi/models/common/base.py b/fooocusapi/models/common/base.py index 6388994..d0b0256 100644 --- a/fooocusapi/models/common/base.py +++ b/fooocusapi/models/common/base.py @@ -62,7 +62,7 @@ class MaskModel(str, Enum): class EnhanceCtrlNets(BaseModel): enhance_enabled: bool = Field(default=False, description="Enable enhance control nets") - enhance_mask_dino_prompt: str = Field(default="", description="Mask dino prompt") + enhance_mask_dino_prompt: str = Field(default="face", description="Mask dino prompt, this is necessary, error if no value. usual values: face, eye, mouth, hair, hand, body") enhance_prompt: str = Field(default="", description="Prompt") enhance_negative_prompt: str = Field(default="", description="Negative prompt") enhance_mask_model: MaskModel = Field(default=MaskModel.sam, description="Mask model") @@ -97,6 +97,7 @@ class GenerateMaskRequest(BaseModel): class UpscaleOrVaryMethod(str, Enum): """Upscale or Vary method""" + disabled = 'Disabled' subtle_variation = 'Vary (Subtle)' strong_variation = 'Vary (Strong)' upscale_15 = 'Upscale (1.5x)' diff --git a/fooocusapi/models/common/requests.py b/fooocusapi/models/common/requests.py index 9f948ed..66f95cd 100644 --- a/fooocusapi/models/common/requests.py +++ b/fooocusapi/models/common/requests.py @@ -130,7 +130,7 @@ def advanced_params_parser(advanced_params: str | None) -> AdvancedParams: if advanced_params is not None and len(advanced_params) > 0: try: advanced_params_obj = AdvancedParams.__pydantic_validator__.validate_json(advanced_params) - return AdvancedParams(**advanced_params_obj) + return advanced_params_obj except ValidationError: return AdvancedParams() return AdvancedParams() diff --git a/fooocusapi/models/requests_v1.py b/fooocusapi/models/requests_v1.py index 992128f..09a73c2 100644 --- a/fooocusapi/models/requests_v1.py +++ b/fooocusapi/models/requests_v1.py @@ -293,7 +293,7 @@ def as_form( enhance_uov_processing_order: str = Form(default="Before First Enhancement", description="Upscale or vary processing order"), enhance_uov_prompt_type: str = Form(default="Original Prompts", description="Upscale or vary prompt type"), - enhance_enabled_1: bool = Form(default=True, description="Enhance checkbox 1"), + enhance_enabled_1: bool = Form(default=False, description="Enhance checkbox 1"), enhance_mask_dino_prompt_1: str = Form(default="", description="Mask dino prompt"), enhance_prompt_1: str = Form(default="", description="Prompt"), enhance_negative_prompt_1: str = Form(default="", description="Negative prompt"), @@ -310,7 +310,7 @@ def as_form( enhance_inpaint_erode_or_dilate_1: float = Form(default=0, ge=-64, le=64, description="Inpaint erode or dilate"), enhance_mask_invert_1: bool = Form(default=False, description="Inpaint mask invert"), - enhance_enabled_2: bool = Form(default=True, description="Enhance checkbox 1"), + enhance_enabled_2: bool = Form(default=False, description="Enhance checkbox 2"), enhance_mask_dino_prompt_2: str = Form(default="", description="Mask dino prompt"), enhance_prompt_2: str = Form(default="", description="Prompt"), enhance_negative_prompt_2: str = Form(default="", description="Negative prompt"), @@ -327,7 +327,7 @@ def as_form( enhance_inpaint_erode_or_dilate_2: float = Form(default=0, ge=-64, le=64, description="Inpaint erode or dilate"), enhance_mask_invert_2: bool = Form(default=False, description="Inpaint mask invert"), - enhance_enabled_3: bool = Form(default=True, description="Enhance checkbox 1"), + enhance_enabled_3: bool = Form(default=False, description="Enhance checkbox 3"), enhance_mask_dino_prompt_3: str = Form(default="", description="Mask dino prompt"), enhance_prompt_3: str = Form(default="", description="Prompt"), enhance_negative_prompt_3: str = Form(default="", description="Negative prompt"), diff --git a/fooocusapi/utils/api_utils.py b/fooocusapi/utils/api_utils.py index 786ffd5..554bfbf 100644 --- a/fooocusapi/utils/api_utils.py +++ b/fooocusapi/utils/api_utils.py @@ -186,7 +186,7 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: dp = (None, 0.5, 0.6, 'ImagePrompt') image_prompts += [dp] * (config.default_controlnet_image_count - len(image_prompts)) - enhance_input_image = None if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_input_image + enhance_input_image = None if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else read_input_image(req.enhance_input_image) enhance_checkbox = True enhance_uov_method = flags.disabled if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_method enhance_uov_processing_order = "Before First Enhancement" if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_processing_order diff --git a/fooocusapi/worker.py b/fooocusapi/worker.py index eabb352..6fbb7ed 100644 --- a/fooocusapi/worker.py +++ b/fooocusapi/worker.py @@ -17,7 +17,7 @@ from fooocusapi.models.common.image_meta import image_parse from fooocusapi.models.common.task import ( GenerationFinishReason, - ImageGenerationResult + ImageGenerationResult, TaskType ) from fooocusapi.parameters import ImageGenerationParams from fooocusapi.task_queue import ( @@ -332,12 +332,17 @@ def return_result(_, tasks): """ extension = async_job.req_param.save_extension for ind, im in enumerate(async_task.results): + if modules.config.temp_path in im: + continue if async_job.req_param.save_name == '': image_name = f"{async_job.job_id}-{str(ind)}" else: image_name = f"{async_job.req_param.save_name}-{str(ind)}" - img_seed = tasks[ind]['task_seed'] + try: + img_seed = tasks[ind]['task_seed'] + except Exception: + img_seed = async_task.seed img_filename = save_output_file( img=im, @@ -1113,6 +1118,7 @@ def process_enhance(all_steps, async_task, callback, controlnet_canny_path, cont tasks_enhance, use_expansion, loras, current_progress = process_prompt( async_task, prompt, negative_prompt, base_model_additional_loras, 1, True, use_expansion, use_style, use_synthetic_refiner, current_progress) + tasks.extend(tasks_enhance) task_enhance = tasks_enhance[0] # TODO could support vary, upscale and CN in the future # if 'cn' in goals: @@ -1570,7 +1576,6 @@ def callback(step, x0, x, total_steps, y): if async_job.finish_with_error: worker_queue.finish_task(async_job.job_id) return async_job.task_result - return_result(async_task, tasks) return except Exception as e: raise e From 2119508879f6c574b801d9f6cfcdbd0f512b26af Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Mon, 12 Aug 2024 16:27:40 +0800 Subject: [PATCH 11/15] Due to the hard-coding used on line 17 of `repositories\Fooocus\extras\GroundingDINO\util\inference.py`, a copy of the `extras` directory was copied to the project root directory --- extras/BLIP/configs/bert_config.json | 21 + extras/BLIP/configs/caption_coco.yaml | 33 + extras/BLIP/configs/med_config.json | 21 + extras/BLIP/configs/nlvr.yaml | 21 + extras/BLIP/configs/nocaps.yaml | 15 + extras/BLIP/configs/pretrain.yaml | 27 + extras/BLIP/configs/retrieval_coco.yaml | 34 + extras/BLIP/configs/retrieval_flickr.yaml | 34 + extras/BLIP/configs/retrieval_msrvtt.yaml | 12 + extras/BLIP/configs/vqa.yaml | 25 + extras/BLIP/models/bert_tokenizer/config.json | 23 + .../BLIP/models/bert_tokenizer/tokenizer.json | 1 + .../bert_tokenizer/tokenizer_config.json | 3 + extras/BLIP/models/bert_tokenizer/vocab.txt | 30522 ++++++++++++++++ extras/BLIP/models/blip.py | 239 + extras/BLIP/models/blip_itm.py | 76 + extras/BLIP/models/blip_nlvr.py | 105 + extras/BLIP/models/blip_pretrain.py | 339 + extras/BLIP/models/blip_retrieval.py | 319 + extras/BLIP/models/blip_vqa.py | 186 + extras/BLIP/models/med.py | 955 + extras/BLIP/models/nlvr_encoder.py | 843 + extras/BLIP/models/vit.py | 308 + .../config/GroundingDINO_SwinT_OGC.py | 43 + extras/GroundingDINO/util/inference.py | 100 + extras/censor.py | 60 + extras/expansion.py | 129 + extras/face_crop.py | 50 + extras/facexlib/detection/__init__.py | 31 + extras/facexlib/detection/align_trans.py | 219 + extras/facexlib/detection/matlab_cp2tform.py | 317 + extras/facexlib/detection/retinaface.py | 366 + extras/facexlib/detection/retinaface_net.py | 196 + extras/facexlib/detection/retinaface_utils.py | 421 + extras/facexlib/parsing/__init__.py | 24 + extras/facexlib/parsing/bisenet.py | 140 + extras/facexlib/parsing/parsenet.py | 194 + extras/facexlib/parsing/resnet.py | 69 + extras/facexlib/utils/__init__.py | 7 + .../facexlib/utils/face_restoration_helper.py | 374 + extras/facexlib/utils/face_utils.py | 250 + extras/facexlib/utils/misc.py | 118 + extras/inpaint_mask.py | 130 + extras/interrogate.py | 63 + extras/ip_adapter.py | 284 + extras/preprocessors.py | 81 + extras/resampler.py | 120 + extras/safety_checker/configs/config.json | 171 + .../configs/preprocessor_config.json | 20 + .../safety_checker/models/safety_checker.py | 126 + extras/sam/predictor.py | 288 + extras/vae_interpose.py | 109 + extras/wd14tagger.py | 98 + 53 files changed, 38760 insertions(+) create mode 100644 extras/BLIP/configs/bert_config.json create mode 100644 extras/BLIP/configs/caption_coco.yaml create mode 100644 extras/BLIP/configs/med_config.json create mode 100644 extras/BLIP/configs/nlvr.yaml create mode 100644 extras/BLIP/configs/nocaps.yaml create mode 100644 extras/BLIP/configs/pretrain.yaml create mode 100644 extras/BLIP/configs/retrieval_coco.yaml create mode 100644 extras/BLIP/configs/retrieval_flickr.yaml create mode 100644 extras/BLIP/configs/retrieval_msrvtt.yaml create mode 100644 extras/BLIP/configs/vqa.yaml create mode 100644 extras/BLIP/models/bert_tokenizer/config.json create mode 100644 extras/BLIP/models/bert_tokenizer/tokenizer.json create mode 100644 extras/BLIP/models/bert_tokenizer/tokenizer_config.json create mode 100644 extras/BLIP/models/bert_tokenizer/vocab.txt create mode 100644 extras/BLIP/models/blip.py create mode 100644 extras/BLIP/models/blip_itm.py create mode 100644 extras/BLIP/models/blip_nlvr.py create mode 100644 extras/BLIP/models/blip_pretrain.py create mode 100644 extras/BLIP/models/blip_retrieval.py create mode 100644 extras/BLIP/models/blip_vqa.py create mode 100644 extras/BLIP/models/med.py create mode 100644 extras/BLIP/models/nlvr_encoder.py create mode 100644 extras/BLIP/models/vit.py create mode 100644 extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py create mode 100644 extras/GroundingDINO/util/inference.py create mode 100644 extras/censor.py create mode 100644 extras/expansion.py create mode 100644 extras/face_crop.py create mode 100644 extras/facexlib/detection/__init__.py create mode 100644 extras/facexlib/detection/align_trans.py create mode 100644 extras/facexlib/detection/matlab_cp2tform.py create mode 100644 extras/facexlib/detection/retinaface.py create mode 100644 extras/facexlib/detection/retinaface_net.py create mode 100644 extras/facexlib/detection/retinaface_utils.py create mode 100644 extras/facexlib/parsing/__init__.py create mode 100644 extras/facexlib/parsing/bisenet.py create mode 100644 extras/facexlib/parsing/parsenet.py create mode 100644 extras/facexlib/parsing/resnet.py create mode 100644 extras/facexlib/utils/__init__.py create mode 100644 extras/facexlib/utils/face_restoration_helper.py create mode 100644 extras/facexlib/utils/face_utils.py create mode 100644 extras/facexlib/utils/misc.py create mode 100644 extras/inpaint_mask.py create mode 100644 extras/interrogate.py create mode 100644 extras/ip_adapter.py create mode 100644 extras/preprocessors.py create mode 100644 extras/resampler.py create mode 100644 extras/safety_checker/configs/config.json create mode 100644 extras/safety_checker/configs/preprocessor_config.json create mode 100644 extras/safety_checker/models/safety_checker.py create mode 100644 extras/sam/predictor.py create mode 100644 extras/vae_interpose.py create mode 100644 extras/wd14tagger.py diff --git a/extras/BLIP/configs/bert_config.json b/extras/BLIP/configs/bert_config.json new file mode 100644 index 0000000..3ef38aa --- /dev/null +++ b/extras/BLIP/configs/bert_config.json @@ -0,0 +1,21 @@ +{ + "architectures": [ + "BertModel" + ], + "attention_probs_dropout_prob": 0.1, + "hidden_act": "gelu", + "hidden_dropout_prob": 0.1, + "hidden_size": 768, + "initializer_range": 0.02, + "intermediate_size": 3072, + "layer_norm_eps": 1e-12, + "max_position_embeddings": 512, + "model_type": "bert", + "num_attention_heads": 12, + "num_hidden_layers": 12, + "pad_token_id": 0, + "type_vocab_size": 2, + "vocab_size": 30522, + "encoder_width": 768, + "add_cross_attention": true +} diff --git a/extras/BLIP/configs/caption_coco.yaml b/extras/BLIP/configs/caption_coco.yaml new file mode 100644 index 0000000..42eab70 --- /dev/null +++ b/extras/BLIP/configs/caption_coco.yaml @@ -0,0 +1,33 @@ +image_root: '/export/share/datasets/vision/coco/images/' +ann_root: 'annotation' +coco_gt_root: 'annotation/coco_gt' + +# set pretrained as a file path or an url +pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth' + +# size of vit model; base or large +vit: 'base' +vit_grad_ckpt: False +vit_ckpt_layer: 0 +batch_size: 32 +init_lr: 1e-5 + +# vit: 'large' +# vit_grad_ckpt: True +# vit_ckpt_layer: 5 +# batch_size: 16 +# init_lr: 2e-6 + +image_size: 384 + +# generation configs +max_length: 20 +min_length: 5 +num_beams: 3 +prompt: 'a picture of ' + +# optimizer +weight_decay: 0.05 +min_lr: 0 +max_epoch: 5 + diff --git a/extras/BLIP/configs/med_config.json b/extras/BLIP/configs/med_config.json new file mode 100644 index 0000000..0ffad0a --- /dev/null +++ b/extras/BLIP/configs/med_config.json @@ -0,0 +1,21 @@ +{ + "architectures": [ + "BertModel" + ], + "attention_probs_dropout_prob": 0.1, + "hidden_act": "gelu", + "hidden_dropout_prob": 0.1, + "hidden_size": 768, + "initializer_range": 0.02, + "intermediate_size": 3072, + "layer_norm_eps": 1e-12, + "max_position_embeddings": 512, + "model_type": "bert", + "num_attention_heads": 12, + "num_hidden_layers": 12, + "pad_token_id": 0, + "type_vocab_size": 2, + "vocab_size": 30524, + "encoder_width": 768, + "add_cross_attention": true +} diff --git a/extras/BLIP/configs/nlvr.yaml b/extras/BLIP/configs/nlvr.yaml new file mode 100644 index 0000000..2d1122a --- /dev/null +++ b/extras/BLIP/configs/nlvr.yaml @@ -0,0 +1,21 @@ +image_root: '/export/share/datasets/vision/NLVR2/' +ann_root: 'annotation' + +# set pretrained as a file path or an url +pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth' + +#size of vit model; base or large +vit: 'base' +batch_size_train: 16 +batch_size_test: 64 +vit_grad_ckpt: False +vit_ckpt_layer: 0 +max_epoch: 15 + +image_size: 384 + +# optimizer +weight_decay: 0.05 +init_lr: 3e-5 +min_lr: 0 + diff --git a/extras/BLIP/configs/nocaps.yaml b/extras/BLIP/configs/nocaps.yaml new file mode 100644 index 0000000..9028135 --- /dev/null +++ b/extras/BLIP/configs/nocaps.yaml @@ -0,0 +1,15 @@ +image_root: '/export/share/datasets/vision/nocaps/' +ann_root: 'annotation' + +# set pretrained as a file path or an url +pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth' + +vit: 'base' +batch_size: 32 + +image_size: 384 + +max_length: 20 +min_length: 5 +num_beams: 3 +prompt: 'a picture of ' \ No newline at end of file diff --git a/extras/BLIP/configs/pretrain.yaml b/extras/BLIP/configs/pretrain.yaml new file mode 100644 index 0000000..02355ee --- /dev/null +++ b/extras/BLIP/configs/pretrain.yaml @@ -0,0 +1,27 @@ +train_file: ['/export/share/junnan-li/VL_pretrain/annotation/coco_karpathy_train.json', + '/export/share/junnan-li/VL_pretrain/annotation/vg_caption.json', + ] +laion_path: '' + +# size of vit model; base or large +vit: 'base' +vit_grad_ckpt: False +vit_ckpt_layer: 0 + +image_size: 224 +batch_size: 75 + +queue_size: 57600 +alpha: 0.4 + +# optimizer +weight_decay: 0.05 +init_lr: 3e-4 +min_lr: 1e-6 +warmup_lr: 1e-6 +lr_decay_rate: 0.9 +max_epoch: 20 +warmup_steps: 3000 + + + diff --git a/extras/BLIP/configs/retrieval_coco.yaml b/extras/BLIP/configs/retrieval_coco.yaml new file mode 100644 index 0000000..a8569e9 --- /dev/null +++ b/extras/BLIP/configs/retrieval_coco.yaml @@ -0,0 +1,34 @@ +image_root: '/export/share/datasets/vision/coco/images/' +ann_root: 'annotation' +dataset: 'coco' + +# set pretrained as a file path or an url +pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' + +# size of vit model; base or large + +vit: 'base' +batch_size_train: 32 +batch_size_test: 64 +vit_grad_ckpt: True +vit_ckpt_layer: 4 +init_lr: 1e-5 + +# vit: 'large' +# batch_size_train: 16 +# batch_size_test: 32 +# vit_grad_ckpt: True +# vit_ckpt_layer: 12 +# init_lr: 5e-6 + +image_size: 384 +queue_size: 57600 +alpha: 0.4 +k_test: 256 +negative_all_rank: True + +# optimizer +weight_decay: 0.05 +min_lr: 0 +max_epoch: 6 + diff --git a/extras/BLIP/configs/retrieval_flickr.yaml b/extras/BLIP/configs/retrieval_flickr.yaml new file mode 100644 index 0000000..d75ea4e --- /dev/null +++ b/extras/BLIP/configs/retrieval_flickr.yaml @@ -0,0 +1,34 @@ +image_root: '/export/share/datasets/vision/flickr30k/' +ann_root: 'annotation' +dataset: 'flickr' + +# set pretrained as a file path or an url +pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth' + +# size of vit model; base or large + +vit: 'base' +batch_size_train: 32 +batch_size_test: 64 +vit_grad_ckpt: True +vit_ckpt_layer: 4 +init_lr: 1e-5 + +# vit: 'large' +# batch_size_train: 16 +# batch_size_test: 32 +# vit_grad_ckpt: True +# vit_ckpt_layer: 10 +# init_lr: 5e-6 + +image_size: 384 +queue_size: 57600 +alpha: 0.4 +k_test: 128 +negative_all_rank: False + +# optimizer +weight_decay: 0.05 +min_lr: 0 +max_epoch: 6 + diff --git a/extras/BLIP/configs/retrieval_msrvtt.yaml b/extras/BLIP/configs/retrieval_msrvtt.yaml new file mode 100644 index 0000000..395f625 --- /dev/null +++ b/extras/BLIP/configs/retrieval_msrvtt.yaml @@ -0,0 +1,12 @@ +video_root: '/export/share/dongxuli/data/msrvtt_retrieval/videos' +ann_root: 'annotation' + +# set pretrained as a file path or an url +pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' + +# size of vit model; base or large +vit: 'base' +batch_size: 64 +k_test: 128 +image_size: 384 +num_frm_test: 8 \ No newline at end of file diff --git a/extras/BLIP/configs/vqa.yaml b/extras/BLIP/configs/vqa.yaml new file mode 100644 index 0000000..74327e6 --- /dev/null +++ b/extras/BLIP/configs/vqa.yaml @@ -0,0 +1,25 @@ +vqa_root: '/export/share/datasets/vision/VQA/Images/mscoco/' #followed by train2014/ +vg_root: '/export/share/datasets/vision/visual-genome/' #followed by image/ +train_files: ['vqa_train','vqa_val','vg_qa'] +ann_root: 'annotation' + +# set pretrained as a file path or an url +pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' + +# size of vit model; base or large +vit: 'base' +batch_size_train: 16 +batch_size_test: 32 +vit_grad_ckpt: False +vit_ckpt_layer: 0 +init_lr: 2e-5 + +image_size: 480 + +k_test: 128 +inference: 'rank' + +# optimizer +weight_decay: 0.05 +min_lr: 0 +max_epoch: 10 \ No newline at end of file diff --git a/extras/BLIP/models/bert_tokenizer/config.json b/extras/BLIP/models/bert_tokenizer/config.json new file mode 100644 index 0000000..45a2321 --- /dev/null +++ b/extras/BLIP/models/bert_tokenizer/config.json @@ -0,0 +1,23 @@ +{ + "architectures": [ + "BertForMaskedLM" + ], + "attention_probs_dropout_prob": 0.1, + "gradient_checkpointing": false, + "hidden_act": "gelu", + "hidden_dropout_prob": 0.1, + "hidden_size": 768, + "initializer_range": 0.02, + "intermediate_size": 3072, + "layer_norm_eps": 1e-12, + "max_position_embeddings": 512, + "model_type": "bert", + "num_attention_heads": 12, + "num_hidden_layers": 12, + "pad_token_id": 0, + "position_embedding_type": "absolute", + "transformers_version": "4.6.0.dev0", + "type_vocab_size": 2, + "use_cache": true, + "vocab_size": 30522 +} diff --git a/extras/BLIP/models/bert_tokenizer/tokenizer.json b/extras/BLIP/models/bert_tokenizer/tokenizer.json new file mode 100644 index 0000000..949a6f0 --- /dev/null +++ b/extras/BLIP/models/bert_tokenizer/tokenizer.json @@ -0,0 +1 @@ +{"version":"1.0","truncation":null,"padding":null,"added_tokens":[{"id":0,"special":true,"content":"[PAD]","single_word":false,"lstrip":false,"rstrip":false,"normalized":false},{"id":100,"special":true,"content":"[UNK]","single_word":false,"lstrip":false,"rstrip":false,"normalized":false},{"id":101,"special":true,"content":"[CLS]","single_word":false,"lstrip":false,"rstrip":false,"normalized":false},{"id":102,"special":true,"content":"[SEP]","single_word":false,"lstrip":false,"rstrip":false,"normalized":false},{"id":103,"special":true,"content":"[MASK]","single_word":false,"lstrip":false,"rstrip":false,"normalized":false}],"normalizer":{"type":"BertNormalizer","clean_text":true,"handle_chinese_chars":true,"strip_accents":null,"lowercase":true},"pre_tokenizer":{"type":"BertPreTokenizer"},"post_processor":{"type":"TemplateProcessing","single":[{"SpecialToken":{"id":"[CLS]","type_id":0}},{"Sequence":{"id":"A","type_id":0}},{"SpecialToken":{"id":"[SEP]","type_id":0}}],"pair":[{"SpecialToken":{"id":"[CLS]","type_id":0}},{"Sequence":{"id":"A","type_id":0}},{"SpecialToken":{"id":"[SEP]","type_id":0}},{"Sequence":{"id":"B","type_id":1}},{"SpecialToken":{"id":"[SEP]","type_id":1}}],"special_tokens":{"[CLS]":{"id":"[CLS]","ids":[101],"tokens":["[CLS]"]},"[SEP]":{"id":"[SEP]","ids":[102],"tokens":["[SEP]"]}}},"decoder":{"type":"WordPiece","prefix":"##","cleanup":true},"model":{"unk_token":"[UNK]","continuing_subword_prefix":"##","max_input_chars_per_word":100,"vocab":{"[PAD]":0,"[unused0]":1,"[unused1]":2,"[unused2]":3,"[unused3]":4,"[unused4]":5,"[unused5]":6,"[unused6]":7,"[unused7]":8,"[unused8]":9,"[unused9]":10,"[unused10]":11,"[unused11]":12,"[unused12]":13,"[unused13]":14,"[unused14]":15,"[unused15]":16,"[unused16]":17,"[unused17]":18,"[unused18]":19,"[unused19]":20,"[unused20]":21,"[unused21]":22,"[unused22]":23,"[unused23]":24,"[unused24]":25,"[unused25]":26,"[unused26]":27,"[unused27]":28,"[unused28]":29,"[unused29]":30,"[unused30]":31,"[unused31]":32,"[unused32]":33,"[unused33]":34,"[unused34]":35,"[unused35]":36,"[unused36]":37,"[unused37]":38,"[unused38]":39,"[unused39]":40,"[unused40]":41,"[unused41]":42,"[unused42]":43,"[unused43]":44,"[unused44]":45,"[unused45]":46,"[unused46]":47,"[unused47]":48,"[unused48]":49,"[unused49]":50,"[unused50]":51,"[unused51]":52,"[unused52]":53,"[unused53]":54,"[unused54]":55,"[unused55]":56,"[unused56]":57,"[unused57]":58,"[unused58]":59,"[unused59]":60,"[unused60]":61,"[unused61]":62,"[unused62]":63,"[unused63]":64,"[unused64]":65,"[unused65]":66,"[unused66]":67,"[unused67]":68,"[unused68]":69,"[unused69]":70,"[unused70]":71,"[unused71]":72,"[unused72]":73,"[unused73]":74,"[unused74]":75,"[unused75]":76,"[unused76]":77,"[unused77]":78,"[unused78]":79,"[unused79]":80,"[unused80]":81,"[unused81]":82,"[unused82]":83,"[unused83]":84,"[unused84]":85,"[unused85]":86,"[unused86]":87,"[unused87]":88,"[unused88]":89,"[unused89]":90,"[unused90]":91,"[unused91]":92,"[unused92]":93,"[unused93]":94,"[unused94]":95,"[unused95]":96,"[unused96]":97,"[unused97]":98,"[unused98]":99,"[UNK]":100,"[CLS]":101,"[SEP]":102,"[MASK]":103,"[unused99]":104,"[unused100]":105,"[unused101]":106,"[unused102]":107,"[unused103]":108,"[unused104]":109,"[unused105]":110,"[unused106]":111,"[unused107]":112,"[unused108]":113,"[unused109]":114,"[unused110]":115,"[unused111]":116,"[unused112]":117,"[unused113]":118,"[unused114]":119,"[unused115]":120,"[unused116]":121,"[unused117]":122,"[unused118]":123,"[unused119]":124,"[unused120]":125,"[unused121]":126,"[unused122]":127,"[unused123]":128,"[unused124]":129,"[unused125]":130,"[unused126]":131,"[unused127]":132,"[unused128]":133,"[unused129]":134,"[unused130]":135,"[unused131]":136,"[unused132]":137,"[unused133]":138,"[unused134]":139,"[unused135]":140,"[unused136]":141,"[unused137]":142,"[unused138]":143,"[unused139]":144,"[unused140]":145,"[unused141]":146,"[unused142]":147,"[unused143]":148,"[unused144]":149,"[unused145]":150,"[unused146]":151,"[unused147]":152,"[unused148]":153,"[unused149]":154,"[unused150]":155,"[unused151]":156,"[unused152]":157,"[unused153]":158,"[unused154]":159,"[unused155]":160,"[unused156]":161,"[unused157]":162,"[unused158]":163,"[unused159]":164,"[unused160]":165,"[unused161]":166,"[unused162]":167,"[unused163]":168,"[unused164]":169,"[unused165]":170,"[unused166]":171,"[unused167]":172,"[unused168]":173,"[unused169]":174,"[unused170]":175,"[unused171]":176,"[unused172]":177,"[unused173]":178,"[unused174]":179,"[unused175]":180,"[unused176]":181,"[unused177]":182,"[unused178]":183,"[unused179]":184,"[unused180]":185,"[unused181]":186,"[unused182]":187,"[unused183]":188,"[unused184]":189,"[unused185]":190,"[unused186]":191,"[unused187]":192,"[unused188]":193,"[unused189]":194,"[unused190]":195,"[unused191]":196,"[unused192]":197,"[unused193]":198,"[unused194]":199,"[unused195]":200,"[unused196]":201,"[unused197]":202,"[unused198]":203,"[unused199]":204,"[unused200]":205,"[unused201]":206,"[unused202]":207,"[unused203]":208,"[unused204]":209,"[unused205]":210,"[unused206]":211,"[unused207]":212,"[unused208]":213,"[unused209]":214,"[unused210]":215,"[unused211]":216,"[unused212]":217,"[unused213]":218,"[unused214]":219,"[unused215]":220,"[unused216]":221,"[unused217]":222,"[unused218]":223,"[unused219]":224,"[unused220]":225,"[unused221]":226,"[unused222]":227,"[unused223]":228,"[unused224]":229,"[unused225]":230,"[unused226]":231,"[unused227]":232,"[unused228]":233,"[unused229]":234,"[unused230]":235,"[unused231]":236,"[unused232]":237,"[unused233]":238,"[unused234]":239,"[unused235]":240,"[unused236]":241,"[unused237]":242,"[unused238]":243,"[unused239]":244,"[unused240]":245,"[unused241]":246,"[unused242]":247,"[unused243]":248,"[unused244]":249,"[unused245]":250,"[unused246]":251,"[unused247]":252,"[unused248]":253,"[unused249]":254,"[unused250]":255,"[unused251]":256,"[unused252]":257,"[unused253]":258,"[unused254]":259,"[unused255]":260,"[unused256]":261,"[unused257]":262,"[unused258]":263,"[unused259]":264,"[unused260]":265,"[unused261]":266,"[unused262]":267,"[unused263]":268,"[unused264]":269,"[unused265]":270,"[unused266]":271,"[unused267]":272,"[unused268]":273,"[unused269]":274,"[unused270]":275,"[unused271]":276,"[unused272]":277,"[unused273]":278,"[unused274]":279,"[unused275]":280,"[unused276]":281,"[unused277]":282,"[unused278]":283,"[unused279]":284,"[unused280]":285,"[unused281]":286,"[unused282]":287,"[unused283]":288,"[unused284]":289,"[unused285]":290,"[unused286]":291,"[unused287]":292,"[unused288]":293,"[unused289]":294,"[unused290]":295,"[unused291]":296,"[unused292]":297,"[unused293]":298,"[unused294]":299,"[unused295]":300,"[unused296]":301,"[unused297]":302,"[unused298]":303,"[unused299]":304,"[unused300]":305,"[unused301]":306,"[unused302]":307,"[unused303]":308,"[unused304]":309,"[unused305]":310,"[unused306]":311,"[unused307]":312,"[unused308]":313,"[unused309]":314,"[unused310]":315,"[unused311]":316,"[unused312]":317,"[unused313]":318,"[unused314]":319,"[unused315]":320,"[unused316]":321,"[unused317]":322,"[unused318]":323,"[unused319]":324,"[unused320]":325,"[unused321]":326,"[unused322]":327,"[unused323]":328,"[unused324]":329,"[unused325]":330,"[unused326]":331,"[unused327]":332,"[unused328]":333,"[unused329]":334,"[unused330]":335,"[unused331]":336,"[unused332]":337,"[unused333]":338,"[unused334]":339,"[unused335]":340,"[unused336]":341,"[unused337]":342,"[unused338]":343,"[unused339]":344,"[unused340]":345,"[unused341]":346,"[unused342]":347,"[unused343]":348,"[unused344]":349,"[unused345]":350,"[unused346]":351,"[unused347]":352,"[unused348]":353,"[unused349]":354,"[unused350]":355,"[unused351]":356,"[unused352]":357,"[unused353]":358,"[unused354]":359,"[unused355]":360,"[unused356]":361,"[unused357]":362,"[unused358]":363,"[unused359]":364,"[unused360]":365,"[unused361]":366,"[unused362]":367,"[unused363]":368,"[unused364]":369,"[unused365]":370,"[unused366]":371,"[unused367]":372,"[unused368]":373,"[unused369]":374,"[unused370]":375,"[unused371]":376,"[unused372]":377,"[unused373]":378,"[unused374]":379,"[unused375]":380,"[unused376]":381,"[unused377]":382,"[unused378]":383,"[unused379]":384,"[unused380]":385,"[unused381]":386,"[unused382]":387,"[unused383]":388,"[unused384]":389,"[unused385]":390,"[unused386]":391,"[unused387]":392,"[unused388]":393,"[unused389]":394,"[unused390]":395,"[unused391]":396,"[unused392]":397,"[unused393]":398,"[unused394]":399,"[unused395]":400,"[unused396]":401,"[unused397]":402,"[unused398]":403,"[unused399]":404,"[unused400]":405,"[unused401]":406,"[unused402]":407,"[unused403]":408,"[unused404]":409,"[unused405]":410,"[unused406]":411,"[unused407]":412,"[unused408]":413,"[unused409]":414,"[unused410]":415,"[unused411]":416,"[unused412]":417,"[unused413]":418,"[unused414]":419,"[unused415]":420,"[unused416]":421,"[unused417]":422,"[unused418]":423,"[unused419]":424,"[unused420]":425,"[unused421]":426,"[unused422]":427,"[unused423]":428,"[unused424]":429,"[unused425]":430,"[unused426]":431,"[unused427]":432,"[unused428]":433,"[unused429]":434,"[unused430]":435,"[unused431]":436,"[unused432]":437,"[unused433]":438,"[unused434]":439,"[unused435]":440,"[unused436]":441,"[unused437]":442,"[unused438]":443,"[unused439]":444,"[unused440]":445,"[unused441]":446,"[unused442]":447,"[unused443]":448,"[unused444]":449,"[unused445]":450,"[unused446]":451,"[unused447]":452,"[unused448]":453,"[unused449]":454,"[unused450]":455,"[unused451]":456,"[unused452]":457,"[unused453]":458,"[unused454]":459,"[unused455]":460,"[unused456]":461,"[unused457]":462,"[unused458]":463,"[unused459]":464,"[unused460]":465,"[unused461]":466,"[unused462]":467,"[unused463]":468,"[unused464]":469,"[unused465]":470,"[unused466]":471,"[unused467]":472,"[unused468]":473,"[unused469]":474,"[unused470]":475,"[unused471]":476,"[unused472]":477,"[unused473]":478,"[unused474]":479,"[unused475]":480,"[unused476]":481,"[unused477]":482,"[unused478]":483,"[unused479]":484,"[unused480]":485,"[unused481]":486,"[unused482]":487,"[unused483]":488,"[unused484]":489,"[unused485]":490,"[unused486]":491,"[unused487]":492,"[unused488]":493,"[unused489]":494,"[unused490]":495,"[unused491]":496,"[unused492]":497,"[unused493]":498,"[unused494]":499,"[unused495]":500,"[unused496]":501,"[unused497]":502,"[unused498]":503,"[unused499]":504,"[unused500]":505,"[unused501]":506,"[unused502]":507,"[unused503]":508,"[unused504]":509,"[unused505]":510,"[unused506]":511,"[unused507]":512,"[unused508]":513,"[unused509]":514,"[unused510]":515,"[unused511]":516,"[unused512]":517,"[unused513]":518,"[unused514]":519,"[unused515]":520,"[unused516]":521,"[unused517]":522,"[unused518]":523,"[unused519]":524,"[unused520]":525,"[unused521]":526,"[unused522]":527,"[unused523]":528,"[unused524]":529,"[unused525]":530,"[unused526]":531,"[unused527]":532,"[unused528]":533,"[unused529]":534,"[unused530]":535,"[unused531]":536,"[unused532]":537,"[unused533]":538,"[unused534]":539,"[unused535]":540,"[unused536]":541,"[unused537]":542,"[unused538]":543,"[unused539]":544,"[unused540]":545,"[unused541]":546,"[unused542]":547,"[unused543]":548,"[unused544]":549,"[unused545]":550,"[unused546]":551,"[unused547]":552,"[unused548]":553,"[unused549]":554,"[unused550]":555,"[unused551]":556,"[unused552]":557,"[unused553]":558,"[unused554]":559,"[unused555]":560,"[unused556]":561,"[unused557]":562,"[unused558]":563,"[unused559]":564,"[unused560]":565,"[unused561]":566,"[unused562]":567,"[unused563]":568,"[unused564]":569,"[unused565]":570,"[unused566]":571,"[unused567]":572,"[unused568]":573,"[unused569]":574,"[unused570]":575,"[unused571]":576,"[unused572]":577,"[unused573]":578,"[unused574]":579,"[unused575]":580,"[unused576]":581,"[unused577]":582,"[unused578]":583,"[unused579]":584,"[unused580]":585,"[unused581]":586,"[unused582]":587,"[unused583]":588,"[unused584]":589,"[unused585]":590,"[unused586]":591,"[unused587]":592,"[unused588]":593,"[unused589]":594,"[unused590]":595,"[unused591]":596,"[unused592]":597,"[unused593]":598,"[unused594]":599,"[unused595]":600,"[unused596]":601,"[unused597]":602,"[unused598]":603,"[unused599]":604,"[unused600]":605,"[unused601]":606,"[unused602]":607,"[unused603]":608,"[unused604]":609,"[unused605]":610,"[unused606]":611,"[unused607]":612,"[unused608]":613,"[unused609]":614,"[unused610]":615,"[unused611]":616,"[unused612]":617,"[unused613]":618,"[unused614]":619,"[unused615]":620,"[unused616]":621,"[unused617]":622,"[unused618]":623,"[unused619]":624,"[unused620]":625,"[unused621]":626,"[unused622]":627,"[unused623]":628,"[unused624]":629,"[unused625]":630,"[unused626]":631,"[unused627]":632,"[unused628]":633,"[unused629]":634,"[unused630]":635,"[unused631]":636,"[unused632]":637,"[unused633]":638,"[unused634]":639,"[unused635]":640,"[unused636]":641,"[unused637]":642,"[unused638]":643,"[unused639]":644,"[unused640]":645,"[unused641]":646,"[unused642]":647,"[unused643]":648,"[unused644]":649,"[unused645]":650,"[unused646]":651,"[unused647]":652,"[unused648]":653,"[unused649]":654,"[unused650]":655,"[unused651]":656,"[unused652]":657,"[unused653]":658,"[unused654]":659,"[unused655]":660,"[unused656]":661,"[unused657]":662,"[unused658]":663,"[unused659]":664,"[unused660]":665,"[unused661]":666,"[unused662]":667,"[unused663]":668,"[unused664]":669,"[unused665]":670,"[unused666]":671,"[unused667]":672,"[unused668]":673,"[unused669]":674,"[unused670]":675,"[unused671]":676,"[unused672]":677,"[unused673]":678,"[unused674]":679,"[unused675]":680,"[unused676]":681,"[unused677]":682,"[unused678]":683,"[unused679]":684,"[unused680]":685,"[unused681]":686,"[unused682]":687,"[unused683]":688,"[unused684]":689,"[unused685]":690,"[unused686]":691,"[unused687]":692,"[unused688]":693,"[unused689]":694,"[unused690]":695,"[unused691]":696,"[unused692]":697,"[unused693]":698,"[unused694]":699,"[unused695]":700,"[unused696]":701,"[unused697]":702,"[unused698]":703,"[unused699]":704,"[unused700]":705,"[unused701]":706,"[unused702]":707,"[unused703]":708,"[unused704]":709,"[unused705]":710,"[unused706]":711,"[unused707]":712,"[unused708]":713,"[unused709]":714,"[unused710]":715,"[unused711]":716,"[unused712]":717,"[unused713]":718,"[unused714]":719,"[unused715]":720,"[unused716]":721,"[unused717]":722,"[unused718]":723,"[unused719]":724,"[unused720]":725,"[unused721]":726,"[unused722]":727,"[unused723]":728,"[unused724]":729,"[unused725]":730,"[unused726]":731,"[unused727]":732,"[unused728]":733,"[unused729]":734,"[unused730]":735,"[unused731]":736,"[unused732]":737,"[unused733]":738,"[unused734]":739,"[unused735]":740,"[unused736]":741,"[unused737]":742,"[unused738]":743,"[unused739]":744,"[unused740]":745,"[unused741]":746,"[unused742]":747,"[unused743]":748,"[unused744]":749,"[unused745]":750,"[unused746]":751,"[unused747]":752,"[unused748]":753,"[unused749]":754,"[unused750]":755,"[unused751]":756,"[unused752]":757,"[unused753]":758,"[unused754]":759,"[unused755]":760,"[unused756]":761,"[unused757]":762,"[unused758]":763,"[unused759]":764,"[unused760]":765,"[unused761]":766,"[unused762]":767,"[unused763]":768,"[unused764]":769,"[unused765]":770,"[unused766]":771,"[unused767]":772,"[unused768]":773,"[unused769]":774,"[unused770]":775,"[unused771]":776,"[unused772]":777,"[unused773]":778,"[unused774]":779,"[unused775]":780,"[unused776]":781,"[unused777]":782,"[unused778]":783,"[unused779]":784,"[unused780]":785,"[unused781]":786,"[unused782]":787,"[unused783]":788,"[unused784]":789,"[unused785]":790,"[unused786]":791,"[unused787]":792,"[unused788]":793,"[unused789]":794,"[unused790]":795,"[unused791]":796,"[unused792]":797,"[unused793]":798,"[unused794]":799,"[unused795]":800,"[unused796]":801,"[unused797]":802,"[unused798]":803,"[unused799]":804,"[unused800]":805,"[unused801]":806,"[unused802]":807,"[unused803]":808,"[unused804]":809,"[unused805]":810,"[unused806]":811,"[unused807]":812,"[unused808]":813,"[unused809]":814,"[unused810]":815,"[unused811]":816,"[unused812]":817,"[unused813]":818,"[unused814]":819,"[unused815]":820,"[unused816]":821,"[unused817]":822,"[unused818]":823,"[unused819]":824,"[unused820]":825,"[unused821]":826,"[unused822]":827,"[unused823]":828,"[unused824]":829,"[unused825]":830,"[unused826]":831,"[unused827]":832,"[unused828]":833,"[unused829]":834,"[unused830]":835,"[unused831]":836,"[unused832]":837,"[unused833]":838,"[unused834]":839,"[unused835]":840,"[unused836]":841,"[unused837]":842,"[unused838]":843,"[unused839]":844,"[unused840]":845,"[unused841]":846,"[unused842]":847,"[unused843]":848,"[unused844]":849,"[unused845]":850,"[unused846]":851,"[unused847]":852,"[unused848]":853,"[unused849]":854,"[unused850]":855,"[unused851]":856,"[unused852]":857,"[unused853]":858,"[unused854]":859,"[unused855]":860,"[unused856]":861,"[unused857]":862,"[unused858]":863,"[unused859]":864,"[unused860]":865,"[unused861]":866,"[unused862]":867,"[unused863]":868,"[unused864]":869,"[unused865]":870,"[unused866]":871,"[unused867]":872,"[unused868]":873,"[unused869]":874,"[unused870]":875,"[unused871]":876,"[unused872]":877,"[unused873]":878,"[unused874]":879,"[unused875]":880,"[unused876]":881,"[unused877]":882,"[unused878]":883,"[unused879]":884,"[unused880]":885,"[unused881]":886,"[unused882]":887,"[unused883]":888,"[unused884]":889,"[unused885]":890,"[unused886]":891,"[unused887]":892,"[unused888]":893,"[unused889]":894,"[unused890]":895,"[unused891]":896,"[unused892]":897,"[unused893]":898,"[unused894]":899,"[unused895]":900,"[unused896]":901,"[unused897]":902,"[unused898]":903,"[unused899]":904,"[unused900]":905,"[unused901]":906,"[unused902]":907,"[unused903]":908,"[unused904]":909,"[unused905]":910,"[unused906]":911,"[unused907]":912,"[unused908]":913,"[unused909]":914,"[unused910]":915,"[unused911]":916,"[unused912]":917,"[unused913]":918,"[unused914]":919,"[unused915]":920,"[unused916]":921,"[unused917]":922,"[unused918]":923,"[unused919]":924,"[unused920]":925,"[unused921]":926,"[unused922]":927,"[unused923]":928,"[unused924]":929,"[unused925]":930,"[unused926]":931,"[unused927]":932,"[unused928]":933,"[unused929]":934,"[unused930]":935,"[unused931]":936,"[unused932]":937,"[unused933]":938,"[unused934]":939,"[unused935]":940,"[unused936]":941,"[unused937]":942,"[unused938]":943,"[unused939]":944,"[unused940]":945,"[unused941]":946,"[unused942]":947,"[unused943]":948,"[unused944]":949,"[unused945]":950,"[unused946]":951,"[unused947]":952,"[unused948]":953,"[unused949]":954,"[unused950]":955,"[unused951]":956,"[unused952]":957,"[unused953]":958,"[unused954]":959,"[unused955]":960,"[unused956]":961,"[unused957]":962,"[unused958]":963,"[unused959]":964,"[unused960]":965,"[unused961]":966,"[unused962]":967,"[unused963]":968,"[unused964]":969,"[unused965]":970,"[unused966]":971,"[unused967]":972,"[unused968]":973,"[unused969]":974,"[unused970]":975,"[unused971]":976,"[unused972]":977,"[unused973]":978,"[unused974]":979,"[unused975]":980,"[unused976]":981,"[unused977]":982,"[unused978]":983,"[unused979]":984,"[unused980]":985,"[unused981]":986,"[unused982]":987,"[unused983]":988,"[unused984]":989,"[unused985]":990,"[unused986]":991,"[unused987]":992,"[unused988]":993,"[unused989]":994,"[unused990]":995,"[unused991]":996,"[unused992]":997,"[unused993]":998,"!":999,"\"":1000,"#":1001,"$":1002,"%":1003,"&":1004,"'":1005,"(":1006,")":1007,"*":1008,"+":1009,",":1010,"-":1011,".":1012,"/":1013,"0":1014,"1":1015,"2":1016,"3":1017,"4":1018,"5":1019,"6":1020,"7":1021,"8":1022,"9":1023,":":1024,";":1025,"<":1026,"=":1027,">":1028,"?":1029,"@":1030,"[":1031,"\\":1032,"]":1033,"^":1034,"_":1035,"`":1036,"a":1037,"b":1038,"c":1039,"d":1040,"e":1041,"f":1042,"g":1043,"h":1044,"i":1045,"j":1046,"k":1047,"l":1048,"m":1049,"n":1050,"o":1051,"p":1052,"q":1053,"r":1054,"s":1055,"t":1056,"u":1057,"v":1058,"w":1059,"x":1060,"y":1061,"z":1062,"{":1063,"|":1064,"}":1065,"~":1066,"¡":1067,"¢":1068,"£":1069,"¤":1070,"¥":1071,"¦":1072,"§":1073,"¨":1074,"©":1075,"ª":1076,"«":1077,"¬":1078,"®":1079,"°":1080,"±":1081,"²":1082,"³":1083,"´":1084,"µ":1085,"¶":1086,"·":1087,"¹":1088,"º":1089,"»":1090,"¼":1091,"½":1092,"¾":1093,"¿":1094,"×":1095,"ß":1096,"æ":1097,"ð":1098,"÷":1099,"ø":1100,"þ":1101,"đ":1102,"ħ":1103,"ı":1104,"ł":1105,"ŋ":1106,"œ":1107,"ƒ":1108,"ɐ":1109,"ɑ":1110,"ɒ":1111,"ɔ":1112,"ɕ":1113,"ə":1114,"ɛ":1115,"ɡ":1116,"ɣ":1117,"ɨ":1118,"ɪ":1119,"ɫ":1120,"ɬ":1121,"ɯ":1122,"ɲ":1123,"ɴ":1124,"ɹ":1125,"ɾ":1126,"ʀ":1127,"ʁ":1128,"ʂ":1129,"ʃ":1130,"ʉ":1131,"ʊ":1132,"ʋ":1133,"ʌ":1134,"ʎ":1135,"ʐ":1136,"ʑ":1137,"ʒ":1138,"ʔ":1139,"ʰ":1140,"ʲ":1141,"ʳ":1142,"ʷ":1143,"ʸ":1144,"ʻ":1145,"ʼ":1146,"ʾ":1147,"ʿ":1148,"ˈ":1149,"ː":1150,"ˡ":1151,"ˢ":1152,"ˣ":1153,"ˤ":1154,"α":1155,"β":1156,"γ":1157,"δ":1158,"ε":1159,"ζ":1160,"η":1161,"θ":1162,"ι":1163,"κ":1164,"λ":1165,"μ":1166,"ν":1167,"ξ":1168,"ο":1169,"π":1170,"ρ":1171,"ς":1172,"σ":1173,"τ":1174,"υ":1175,"φ":1176,"χ":1177,"ψ":1178,"ω":1179,"а":1180,"б":1181,"в":1182,"г":1183,"д":1184,"е":1185,"ж":1186,"з":1187,"и":1188,"к":1189,"л":1190,"м":1191,"н":1192,"о":1193,"п":1194,"р":1195,"с":1196,"т":1197,"у":1198,"ф":1199,"х":1200,"ц":1201,"ч":1202,"ш":1203,"щ":1204,"ъ":1205,"ы":1206,"ь":1207,"э":1208,"ю":1209,"я":1210,"ђ":1211,"є":1212,"і":1213,"ј":1214,"љ":1215,"њ":1216,"ћ":1217,"ӏ":1218,"ա":1219,"բ":1220,"գ":1221,"դ":1222,"ե":1223,"թ":1224,"ի":1225,"լ":1226,"կ":1227,"հ":1228,"մ":1229,"յ":1230,"ն":1231,"ո":1232,"պ":1233,"ս":1234,"վ":1235,"տ":1236,"ր":1237,"ւ":1238,"ք":1239,"־":1240,"א":1241,"ב":1242,"ג":1243,"ד":1244,"ה":1245,"ו":1246,"ז":1247,"ח":1248,"ט":1249,"י":1250,"ך":1251,"כ":1252,"ל":1253,"ם":1254,"מ":1255,"ן":1256,"נ":1257,"ס":1258,"ע":1259,"ף":1260,"פ":1261,"ץ":1262,"צ":1263,"ק":1264,"ר":1265,"ש":1266,"ת":1267,"،":1268,"ء":1269,"ا":1270,"ب":1271,"ة":1272,"ت":1273,"ث":1274,"ج":1275,"ح":1276,"خ":1277,"د":1278,"ذ":1279,"ر":1280,"ز":1281,"س":1282,"ش":1283,"ص":1284,"ض":1285,"ط":1286,"ظ":1287,"ع":1288,"غ":1289,"ـ":1290,"ف":1291,"ق":1292,"ك":1293,"ل":1294,"م":1295,"ن":1296,"ه":1297,"و":1298,"ى":1299,"ي":1300,"ٹ":1301,"پ":1302,"چ":1303,"ک":1304,"گ":1305,"ں":1306,"ھ":1307,"ہ":1308,"ی":1309,"ے":1310,"अ":1311,"आ":1312,"उ":1313,"ए":1314,"क":1315,"ख":1316,"ग":1317,"च":1318,"ज":1319,"ट":1320,"ड":1321,"ण":1322,"त":1323,"थ":1324,"द":1325,"ध":1326,"न":1327,"प":1328,"ब":1329,"भ":1330,"म":1331,"य":1332,"र":1333,"ल":1334,"व":1335,"श":1336,"ष":1337,"स":1338,"ह":1339,"ा":1340,"ि":1341,"ी":1342,"ो":1343,"।":1344,"॥":1345,"ং":1346,"অ":1347,"আ":1348,"ই":1349,"উ":1350,"এ":1351,"ও":1352,"ক":1353,"খ":1354,"গ":1355,"চ":1356,"ছ":1357,"জ":1358,"ট":1359,"ড":1360,"ণ":1361,"ত":1362,"থ":1363,"দ":1364,"ধ":1365,"ন":1366,"প":1367,"ব":1368,"ভ":1369,"ম":1370,"য":1371,"র":1372,"ল":1373,"শ":1374,"ষ":1375,"স":1376,"হ":1377,"া":1378,"ি":1379,"ী":1380,"ে":1381,"க":1382,"ச":1383,"ட":1384,"த":1385,"ந":1386,"ன":1387,"ப":1388,"ம":1389,"ய":1390,"ர":1391,"ல":1392,"ள":1393,"வ":1394,"ா":1395,"ி":1396,"ு":1397,"ே":1398,"ை":1399,"ನ":1400,"ರ":1401,"ಾ":1402,"ක":1403,"ය":1404,"ර":1405,"ල":1406,"ව":1407,"ා":1408,"ก":1409,"ง":1410,"ต":1411,"ท":1412,"น":1413,"พ":1414,"ม":1415,"ย":1416,"ร":1417,"ล":1418,"ว":1419,"ส":1420,"อ":1421,"า":1422,"เ":1423,"་":1424,"།":1425,"ག":1426,"ང":1427,"ད":1428,"ན":1429,"པ":1430,"བ":1431,"མ":1432,"འ":1433,"ར":1434,"ལ":1435,"ས":1436,"မ":1437,"ა":1438,"ბ":1439,"გ":1440,"დ":1441,"ე":1442,"ვ":1443,"თ":1444,"ი":1445,"კ":1446,"ლ":1447,"მ":1448,"ნ":1449,"ო":1450,"რ":1451,"ს":1452,"ტ":1453,"უ":1454,"ᄀ":1455,"ᄂ":1456,"ᄃ":1457,"ᄅ":1458,"ᄆ":1459,"ᄇ":1460,"ᄉ":1461,"ᄊ":1462,"ᄋ":1463,"ᄌ":1464,"ᄎ":1465,"ᄏ":1466,"ᄐ":1467,"ᄑ":1468,"ᄒ":1469,"ᅡ":1470,"ᅢ":1471,"ᅥ":1472,"ᅦ":1473,"ᅧ":1474,"ᅩ":1475,"ᅪ":1476,"ᅭ":1477,"ᅮ":1478,"ᅯ":1479,"ᅲ":1480,"ᅳ":1481,"ᅴ":1482,"ᅵ":1483,"ᆨ":1484,"ᆫ":1485,"ᆯ":1486,"ᆷ":1487,"ᆸ":1488,"ᆼ":1489,"ᴬ":1490,"ᴮ":1491,"ᴰ":1492,"ᴵ":1493,"ᴺ":1494,"ᵀ":1495,"ᵃ":1496,"ᵇ":1497,"ᵈ":1498,"ᵉ":1499,"ᵍ":1500,"ᵏ":1501,"ᵐ":1502,"ᵒ":1503,"ᵖ":1504,"ᵗ":1505,"ᵘ":1506,"ᵢ":1507,"ᵣ":1508,"ᵤ":1509,"ᵥ":1510,"ᶜ":1511,"ᶠ":1512,"‐":1513,"‑":1514,"‒":1515,"–":1516,"—":1517,"―":1518,"‖":1519,"‘":1520,"’":1521,"‚":1522,"“":1523,"”":1524,"„":1525,"†":1526,"‡":1527,"•":1528,"…":1529,"‰":1530,"′":1531,"″":1532,"›":1533,"‿":1534,"⁄":1535,"⁰":1536,"ⁱ":1537,"⁴":1538,"⁵":1539,"⁶":1540,"⁷":1541,"⁸":1542,"⁹":1543,"⁺":1544,"⁻":1545,"ⁿ":1546,"₀":1547,"₁":1548,"₂":1549,"₃":1550,"₄":1551,"₅":1552,"₆":1553,"₇":1554,"₈":1555,"₉":1556,"₊":1557,"₍":1558,"₎":1559,"ₐ":1560,"ₑ":1561,"ₒ":1562,"ₓ":1563,"ₕ":1564,"ₖ":1565,"ₗ":1566,"ₘ":1567,"ₙ":1568,"ₚ":1569,"ₛ":1570,"ₜ":1571,"₤":1572,"₩":1573,"€":1574,"₱":1575,"₹":1576,"ℓ":1577,"№":1578,"ℝ":1579,"™":1580,"⅓":1581,"⅔":1582,"←":1583,"↑":1584,"→":1585,"↓":1586,"↔":1587,"↦":1588,"⇄":1589,"⇌":1590,"⇒":1591,"∂":1592,"∅":1593,"∆":1594,"∇":1595,"∈":1596,"−":1597,"∗":1598,"∘":1599,"√":1600,"∞":1601,"∧":1602,"∨":1603,"∩":1604,"∪":1605,"≈":1606,"≡":1607,"≤":1608,"≥":1609,"⊂":1610,"⊆":1611,"⊕":1612,"⊗":1613,"⋅":1614,"─":1615,"│":1616,"■":1617,"▪":1618,"●":1619,"★":1620,"☆":1621,"☉":1622,"♠":1623,"♣":1624,"♥":1625,"♦":1626,"♭":1627,"♯":1628,"⟨":1629,"⟩":1630,"ⱼ":1631,"⺩":1632,"⺼":1633,"⽥":1634,"、":1635,"。":1636,"〈":1637,"〉":1638,"《":1639,"》":1640,"「":1641,"」":1642,"『":1643,"』":1644,"〜":1645,"あ":1646,"い":1647,"う":1648,"え":1649,"お":1650,"か":1651,"き":1652,"く":1653,"け":1654,"こ":1655,"さ":1656,"し":1657,"す":1658,"せ":1659,"そ":1660,"た":1661,"ち":1662,"っ":1663,"つ":1664,"て":1665,"と":1666,"な":1667,"に":1668,"ぬ":1669,"ね":1670,"の":1671,"は":1672,"ひ":1673,"ふ":1674,"へ":1675,"ほ":1676,"ま":1677,"み":1678,"む":1679,"め":1680,"も":1681,"や":1682,"ゆ":1683,"よ":1684,"ら":1685,"り":1686,"る":1687,"れ":1688,"ろ":1689,"を":1690,"ん":1691,"ァ":1692,"ア":1693,"ィ":1694,"イ":1695,"ウ":1696,"ェ":1697,"エ":1698,"オ":1699,"カ":1700,"キ":1701,"ク":1702,"ケ":1703,"コ":1704,"サ":1705,"シ":1706,"ス":1707,"セ":1708,"タ":1709,"チ":1710,"ッ":1711,"ツ":1712,"テ":1713,"ト":1714,"ナ":1715,"ニ":1716,"ノ":1717,"ハ":1718,"ヒ":1719,"フ":1720,"ヘ":1721,"ホ":1722,"マ":1723,"ミ":1724,"ム":1725,"メ":1726,"モ":1727,"ャ":1728,"ュ":1729,"ョ":1730,"ラ":1731,"リ":1732,"ル":1733,"レ":1734,"ロ":1735,"ワ":1736,"ン":1737,"・":1738,"ー":1739,"一":1740,"三":1741,"上":1742,"下":1743,"不":1744,"世":1745,"中":1746,"主":1747,"久":1748,"之":1749,"也":1750,"事":1751,"二":1752,"五":1753,"井":1754,"京":1755,"人":1756,"亻":1757,"仁":1758,"介":1759,"代":1760,"仮":1761,"伊":1762,"会":1763,"佐":1764,"侍":1765,"保":1766,"信":1767,"健":1768,"元":1769,"光":1770,"八":1771,"公":1772,"内":1773,"出":1774,"分":1775,"前":1776,"劉":1777,"力":1778,"加":1779,"勝":1780,"北":1781,"区":1782,"十":1783,"千":1784,"南":1785,"博":1786,"原":1787,"口":1788,"古":1789,"史":1790,"司":1791,"合":1792,"吉":1793,"同":1794,"名":1795,"和":1796,"囗":1797,"四":1798,"国":1799,"國":1800,"土":1801,"地":1802,"坂":1803,"城":1804,"堂":1805,"場":1806,"士":1807,"夏":1808,"外":1809,"大":1810,"天":1811,"太":1812,"夫":1813,"奈":1814,"女":1815,"子":1816,"学":1817,"宀":1818,"宇":1819,"安":1820,"宗":1821,"定":1822,"宣":1823,"宮":1824,"家":1825,"宿":1826,"寺":1827,"將":1828,"小":1829,"尚":1830,"山":1831,"岡":1832,"島":1833,"崎":1834,"川":1835,"州":1836,"巿":1837,"帝":1838,"平":1839,"年":1840,"幸":1841,"广":1842,"弘":1843,"張":1844,"彳":1845,"後":1846,"御":1847,"德":1848,"心":1849,"忄":1850,"志":1851,"忠":1852,"愛":1853,"成":1854,"我":1855,"戦":1856,"戸":1857,"手":1858,"扌":1859,"政":1860,"文":1861,"新":1862,"方":1863,"日":1864,"明":1865,"星":1866,"春":1867,"昭":1868,"智":1869,"曲":1870,"書":1871,"月":1872,"有":1873,"朝":1874,"木":1875,"本":1876,"李":1877,"村":1878,"東":1879,"松":1880,"林":1881,"森":1882,"楊":1883,"樹":1884,"橋":1885,"歌":1886,"止":1887,"正":1888,"武":1889,"比":1890,"氏":1891,"民":1892,"水":1893,"氵":1894,"氷":1895,"永":1896,"江":1897,"沢":1898,"河":1899,"治":1900,"法":1901,"海":1902,"清":1903,"漢":1904,"瀬":1905,"火":1906,"版":1907,"犬":1908,"王":1909,"生":1910,"田":1911,"男":1912,"疒":1913,"発":1914,"白":1915,"的":1916,"皇":1917,"目":1918,"相":1919,"省":1920,"真":1921,"石":1922,"示":1923,"社":1924,"神":1925,"福":1926,"禾":1927,"秀":1928,"秋":1929,"空":1930,"立":1931,"章":1932,"竹":1933,"糹":1934,"美":1935,"義":1936,"耳":1937,"良":1938,"艹":1939,"花":1940,"英":1941,"華":1942,"葉":1943,"藤":1944,"行":1945,"街":1946,"西":1947,"見":1948,"訁":1949,"語":1950,"谷":1951,"貝":1952,"貴":1953,"車":1954,"軍":1955,"辶":1956,"道":1957,"郎":1958,"郡":1959,"部":1960,"都":1961,"里":1962,"野":1963,"金":1964,"鈴":1965,"镇":1966,"長":1967,"門":1968,"間":1969,"阝":1970,"阿":1971,"陳":1972,"陽":1973,"雄":1974,"青":1975,"面":1976,"風":1977,"食":1978,"香":1979,"馬":1980,"高":1981,"龍":1982,"龸":1983,"fi":1984,"fl":1985,"!":1986,"(":1987,")":1988,",":1989,"-":1990,".":1991,"/":1992,":":1993,"?":1994,"~":1995,"the":1996,"of":1997,"and":1998,"in":1999,"to":2000,"was":2001,"he":2002,"is":2003,"as":2004,"for":2005,"on":2006,"with":2007,"that":2008,"it":2009,"his":2010,"by":2011,"at":2012,"from":2013,"her":2014,"##s":2015,"she":2016,"you":2017,"had":2018,"an":2019,"were":2020,"but":2021,"be":2022,"this":2023,"are":2024,"not":2025,"my":2026,"they":2027,"one":2028,"which":2029,"or":2030,"have":2031,"him":2032,"me":2033,"first":2034,"all":2035,"also":2036,"their":2037,"has":2038,"up":2039,"who":2040,"out":2041,"been":2042,"when":2043,"after":2044,"there":2045,"into":2046,"new":2047,"two":2048,"its":2049,"##a":2050,"time":2051,"would":2052,"no":2053,"what":2054,"about":2055,"said":2056,"we":2057,"over":2058,"then":2059,"other":2060,"so":2061,"more":2062,"##e":2063,"can":2064,"if":2065,"like":2066,"back":2067,"them":2068,"only":2069,"some":2070,"could":2071,"##i":2072,"where":2073,"just":2074,"##ing":2075,"during":2076,"before":2077,"##n":2078,"do":2079,"##o":2080,"made":2081,"school":2082,"through":2083,"than":2084,"now":2085,"years":2086,"most":2087,"world":2088,"may":2089,"between":2090,"down":2091,"well":2092,"three":2093,"##d":2094,"year":2095,"while":2096,"will":2097,"##ed":2098,"##r":2099,"##y":2100,"later":2101,"##t":2102,"city":2103,"under":2104,"around":2105,"did":2106,"such":2107,"being":2108,"used":2109,"state":2110,"people":2111,"part":2112,"know":2113,"against":2114,"your":2115,"many":2116,"second":2117,"university":2118,"both":2119,"national":2120,"##er":2121,"these":2122,"don":2123,"known":2124,"off":2125,"way":2126,"until":2127,"re":2128,"how":2129,"even":2130,"get":2131,"head":2132,"...":2133,"didn":2134,"##ly":2135,"team":2136,"american":2137,"because":2138,"de":2139,"##l":2140,"born":2141,"united":2142,"film":2143,"since":2144,"still":2145,"long":2146,"work":2147,"south":2148,"us":2149,"became":2150,"any":2151,"high":2152,"again":2153,"day":2154,"family":2155,"see":2156,"right":2157,"man":2158,"eyes":2159,"house":2160,"season":2161,"war":2162,"states":2163,"including":2164,"took":2165,"life":2166,"north":2167,"same":2168,"each":2169,"called":2170,"name":2171,"much":2172,"place":2173,"however":2174,"go":2175,"four":2176,"group":2177,"another":2178,"found":2179,"won":2180,"area":2181,"here":2182,"going":2183,"10":2184,"away":2185,"series":2186,"left":2187,"home":2188,"music":2189,"best":2190,"make":2191,"hand":2192,"number":2193,"company":2194,"several":2195,"never":2196,"last":2197,"john":2198,"000":2199,"very":2200,"album":2201,"take":2202,"end":2203,"good":2204,"too":2205,"following":2206,"released":2207,"game":2208,"played":2209,"little":2210,"began":2211,"district":2212,"##m":2213,"old":2214,"want":2215,"those":2216,"side":2217,"held":2218,"own":2219,"early":2220,"county":2221,"ll":2222,"league":2223,"use":2224,"west":2225,"##u":2226,"face":2227,"think":2228,"##es":2229,"2010":2230,"government":2231,"##h":2232,"march":2233,"came":2234,"small":2235,"general":2236,"town":2237,"june":2238,"##on":2239,"line":2240,"based":2241,"something":2242,"##k":2243,"september":2244,"thought":2245,"looked":2246,"along":2247,"international":2248,"2011":2249,"air":2250,"july":2251,"club":2252,"went":2253,"january":2254,"october":2255,"our":2256,"august":2257,"april":2258,"york":2259,"12":2260,"few":2261,"2012":2262,"2008":2263,"east":2264,"show":2265,"member":2266,"college":2267,"2009":2268,"father":2269,"public":2270,"##us":2271,"come":2272,"men":2273,"five":2274,"set":2275,"station":2276,"church":2277,"##c":2278,"next":2279,"former":2280,"november":2281,"room":2282,"party":2283,"located":2284,"december":2285,"2013":2286,"age":2287,"got":2288,"2007":2289,"##g":2290,"system":2291,"let":2292,"love":2293,"2006":2294,"though":2295,"every":2296,"2014":2297,"look":2298,"song":2299,"water":2300,"century":2301,"without":2302,"body":2303,"black":2304,"night":2305,"within":2306,"great":2307,"women":2308,"single":2309,"ve":2310,"building":2311,"large":2312,"population":2313,"river":2314,"named":2315,"band":2316,"white":2317,"started":2318,"##an":2319,"once":2320,"15":2321,"20":2322,"should":2323,"18":2324,"2015":2325,"service":2326,"top":2327,"built":2328,"british":2329,"open":2330,"death":2331,"king":2332,"moved":2333,"local":2334,"times":2335,"children":2336,"february":2337,"book":2338,"why":2339,"11":2340,"door":2341,"need":2342,"president":2343,"order":2344,"final":2345,"road":2346,"wasn":2347,"although":2348,"due":2349,"major":2350,"died":2351,"village":2352,"third":2353,"knew":2354,"2016":2355,"asked":2356,"turned":2357,"st":2358,"wanted":2359,"say":2360,"##p":2361,"together":2362,"received":2363,"main":2364,"son":2365,"served":2366,"different":2367,"##en":2368,"behind":2369,"himself":2370,"felt":2371,"members":2372,"power":2373,"football":2374,"law":2375,"voice":2376,"play":2377,"##in":2378,"near":2379,"park":2380,"history":2381,"30":2382,"having":2383,"2005":2384,"16":2385,"##man":2386,"saw":2387,"mother":2388,"##al":2389,"army":2390,"point":2391,"front":2392,"help":2393,"english":2394,"street":2395,"art":2396,"late":2397,"hands":2398,"games":2399,"award":2400,"##ia":2401,"young":2402,"14":2403,"put":2404,"published":2405,"country":2406,"division":2407,"across":2408,"told":2409,"13":2410,"often":2411,"ever":2412,"french":2413,"london":2414,"center":2415,"six":2416,"red":2417,"2017":2418,"led":2419,"days":2420,"include":2421,"light":2422,"25":2423,"find":2424,"tell":2425,"among":2426,"species":2427,"really":2428,"according":2429,"central":2430,"half":2431,"2004":2432,"form":2433,"original":2434,"gave":2435,"office":2436,"making":2437,"enough":2438,"lost":2439,"full":2440,"opened":2441,"must":2442,"included":2443,"live":2444,"given":2445,"german":2446,"player":2447,"run":2448,"business":2449,"woman":2450,"community":2451,"cup":2452,"might":2453,"million":2454,"land":2455,"2000":2456,"court":2457,"development":2458,"17":2459,"short":2460,"round":2461,"ii":2462,"km":2463,"seen":2464,"class":2465,"story":2466,"always":2467,"become":2468,"sure":2469,"research":2470,"almost":2471,"director":2472,"council":2473,"la":2474,"##2":2475,"career":2476,"things":2477,"using":2478,"island":2479,"##z":2480,"couldn":2481,"car":2482,"##is":2483,"24":2484,"close":2485,"force":2486,"##1":2487,"better":2488,"free":2489,"support":2490,"control":2491,"field":2492,"students":2493,"2003":2494,"education":2495,"married":2496,"##b":2497,"nothing":2498,"worked":2499,"others":2500,"record":2501,"big":2502,"inside":2503,"level":2504,"anything":2505,"continued":2506,"give":2507,"james":2508,"##3":2509,"military":2510,"established":2511,"non":2512,"returned":2513,"feel":2514,"does":2515,"title":2516,"written":2517,"thing":2518,"feet":2519,"william":2520,"far":2521,"co":2522,"association":2523,"hard":2524,"already":2525,"2002":2526,"##ra":2527,"championship":2528,"human":2529,"western":2530,"100":2531,"##na":2532,"department":2533,"hall":2534,"role":2535,"various":2536,"production":2537,"21":2538,"19":2539,"heart":2540,"2001":2541,"living":2542,"fire":2543,"version":2544,"##ers":2545,"##f":2546,"television":2547,"royal":2548,"##4":2549,"produced":2550,"working":2551,"act":2552,"case":2553,"society":2554,"region":2555,"present":2556,"radio":2557,"period":2558,"looking":2559,"least":2560,"total":2561,"keep":2562,"england":2563,"wife":2564,"program":2565,"per":2566,"brother":2567,"mind":2568,"special":2569,"22":2570,"##le":2571,"am":2572,"works":2573,"soon":2574,"##6":2575,"political":2576,"george":2577,"services":2578,"taken":2579,"created":2580,"##7":2581,"further":2582,"able":2583,"reached":2584,"david":2585,"union":2586,"joined":2587,"upon":2588,"done":2589,"important":2590,"social":2591,"information":2592,"either":2593,"##ic":2594,"##x":2595,"appeared":2596,"position":2597,"ground":2598,"lead":2599,"rock":2600,"dark":2601,"election":2602,"23":2603,"board":2604,"france":2605,"hair":2606,"course":2607,"arms":2608,"site":2609,"police":2610,"girl":2611,"instead":2612,"real":2613,"sound":2614,"##v":2615,"words":2616,"moment":2617,"##te":2618,"someone":2619,"##8":2620,"summer":2621,"project":2622,"announced":2623,"san":2624,"less":2625,"wrote":2626,"past":2627,"followed":2628,"##5":2629,"blue":2630,"founded":2631,"al":2632,"finally":2633,"india":2634,"taking":2635,"records":2636,"america":2637,"##ne":2638,"1999":2639,"design":2640,"considered":2641,"northern":2642,"god":2643,"stop":2644,"battle":2645,"toward":2646,"european":2647,"outside":2648,"described":2649,"track":2650,"today":2651,"playing":2652,"language":2653,"28":2654,"call":2655,"26":2656,"heard":2657,"professional":2658,"low":2659,"australia":2660,"miles":2661,"california":2662,"win":2663,"yet":2664,"green":2665,"##ie":2666,"trying":2667,"blood":2668,"##ton":2669,"southern":2670,"science":2671,"maybe":2672,"everything":2673,"match":2674,"square":2675,"27":2676,"mouth":2677,"video":2678,"race":2679,"recorded":2680,"leave":2681,"above":2682,"##9":2683,"daughter":2684,"points":2685,"space":2686,"1998":2687,"museum":2688,"change":2689,"middle":2690,"common":2691,"##0":2692,"move":2693,"tv":2694,"post":2695,"##ta":2696,"lake":2697,"seven":2698,"tried":2699,"elected":2700,"closed":2701,"ten":2702,"paul":2703,"minister":2704,"##th":2705,"months":2706,"start":2707,"chief":2708,"return":2709,"canada":2710,"person":2711,"sea":2712,"release":2713,"similar":2714,"modern":2715,"brought":2716,"rest":2717,"hit":2718,"formed":2719,"mr":2720,"##la":2721,"1997":2722,"floor":2723,"event":2724,"doing":2725,"thomas":2726,"1996":2727,"robert":2728,"care":2729,"killed":2730,"training":2731,"star":2732,"week":2733,"needed":2734,"turn":2735,"finished":2736,"railway":2737,"rather":2738,"news":2739,"health":2740,"sent":2741,"example":2742,"ran":2743,"term":2744,"michael":2745,"coming":2746,"currently":2747,"yes":2748,"forces":2749,"despite":2750,"gold":2751,"areas":2752,"50":2753,"stage":2754,"fact":2755,"29":2756,"dead":2757,"says":2758,"popular":2759,"2018":2760,"originally":2761,"germany":2762,"probably":2763,"developed":2764,"result":2765,"pulled":2766,"friend":2767,"stood":2768,"money":2769,"running":2770,"mi":2771,"signed":2772,"word":2773,"songs":2774,"child":2775,"eventually":2776,"met":2777,"tour":2778,"average":2779,"teams":2780,"minutes":2781,"festival":2782,"current":2783,"deep":2784,"kind":2785,"1995":2786,"decided":2787,"usually":2788,"eastern":2789,"seemed":2790,"##ness":2791,"episode":2792,"bed":2793,"added":2794,"table":2795,"indian":2796,"private":2797,"charles":2798,"route":2799,"available":2800,"idea":2801,"throughout":2802,"centre":2803,"addition":2804,"appointed":2805,"style":2806,"1994":2807,"books":2808,"eight":2809,"construction":2810,"press":2811,"mean":2812,"wall":2813,"friends":2814,"remained":2815,"schools":2816,"study":2817,"##ch":2818,"##um":2819,"institute":2820,"oh":2821,"chinese":2822,"sometimes":2823,"events":2824,"possible":2825,"1992":2826,"australian":2827,"type":2828,"brown":2829,"forward":2830,"talk":2831,"process":2832,"food":2833,"debut":2834,"seat":2835,"performance":2836,"committee":2837,"features":2838,"character":2839,"arts":2840,"herself":2841,"else":2842,"lot":2843,"strong":2844,"russian":2845,"range":2846,"hours":2847,"peter":2848,"arm":2849,"##da":2850,"morning":2851,"dr":2852,"sold":2853,"##ry":2854,"quickly":2855,"directed":2856,"1993":2857,"guitar":2858,"china":2859,"##w":2860,"31":2861,"list":2862,"##ma":2863,"performed":2864,"media":2865,"uk":2866,"players":2867,"smile":2868,"##rs":2869,"myself":2870,"40":2871,"placed":2872,"coach":2873,"province":2874,"towards":2875,"wouldn":2876,"leading":2877,"whole":2878,"boy":2879,"official":2880,"designed":2881,"grand":2882,"census":2883,"##el":2884,"europe":2885,"attack":2886,"japanese":2887,"henry":2888,"1991":2889,"##re":2890,"##os":2891,"cross":2892,"getting":2893,"alone":2894,"action":2895,"lower":2896,"network":2897,"wide":2898,"washington":2899,"japan":2900,"1990":2901,"hospital":2902,"believe":2903,"changed":2904,"sister":2905,"##ar":2906,"hold":2907,"gone":2908,"sir":2909,"hadn":2910,"ship":2911,"##ka":2912,"studies":2913,"academy":2914,"shot":2915,"rights":2916,"below":2917,"base":2918,"bad":2919,"involved":2920,"kept":2921,"largest":2922,"##ist":2923,"bank":2924,"future":2925,"especially":2926,"beginning":2927,"mark":2928,"movement":2929,"section":2930,"female":2931,"magazine":2932,"plan":2933,"professor":2934,"lord":2935,"longer":2936,"##ian":2937,"sat":2938,"walked":2939,"hill":2940,"actually":2941,"civil":2942,"energy":2943,"model":2944,"families":2945,"size":2946,"thus":2947,"aircraft":2948,"completed":2949,"includes":2950,"data":2951,"captain":2952,"##or":2953,"fight":2954,"vocals":2955,"featured":2956,"richard":2957,"bridge":2958,"fourth":2959,"1989":2960,"officer":2961,"stone":2962,"hear":2963,"##ism":2964,"means":2965,"medical":2966,"groups":2967,"management":2968,"self":2969,"lips":2970,"competition":2971,"entire":2972,"lived":2973,"technology":2974,"leaving":2975,"federal":2976,"tournament":2977,"bit":2978,"passed":2979,"hot":2980,"independent":2981,"awards":2982,"kingdom":2983,"mary":2984,"spent":2985,"fine":2986,"doesn":2987,"reported":2988,"##ling":2989,"jack":2990,"fall":2991,"raised":2992,"itself":2993,"stay":2994,"true":2995,"studio":2996,"1988":2997,"sports":2998,"replaced":2999,"paris":3000,"systems":3001,"saint":3002,"leader":3003,"theatre":3004,"whose":3005,"market":3006,"capital":3007,"parents":3008,"spanish":3009,"canadian":3010,"earth":3011,"##ity":3012,"cut":3013,"degree":3014,"writing":3015,"bay":3016,"christian":3017,"awarded":3018,"natural":3019,"higher":3020,"bill":3021,"##as":3022,"coast":3023,"provided":3024,"previous":3025,"senior":3026,"ft":3027,"valley":3028,"organization":3029,"stopped":3030,"onto":3031,"countries":3032,"parts":3033,"conference":3034,"queen":3035,"security":3036,"interest":3037,"saying":3038,"allowed":3039,"master":3040,"earlier":3041,"phone":3042,"matter":3043,"smith":3044,"winning":3045,"try":3046,"happened":3047,"moving":3048,"campaign":3049,"los":3050,"##ley":3051,"breath":3052,"nearly":3053,"mid":3054,"1987":3055,"certain":3056,"girls":3057,"date":3058,"italian":3059,"african":3060,"standing":3061,"fell":3062,"artist":3063,"##ted":3064,"shows":3065,"deal":3066,"mine":3067,"industry":3068,"1986":3069,"##ng":3070,"everyone":3071,"republic":3072,"provide":3073,"collection":3074,"library":3075,"student":3076,"##ville":3077,"primary":3078,"owned":3079,"older":3080,"via":3081,"heavy":3082,"1st":3083,"makes":3084,"##able":3085,"attention":3086,"anyone":3087,"africa":3088,"##ri":3089,"stated":3090,"length":3091,"ended":3092,"fingers":3093,"command":3094,"staff":3095,"skin":3096,"foreign":3097,"opening":3098,"governor":3099,"okay":3100,"medal":3101,"kill":3102,"sun":3103,"cover":3104,"job":3105,"1985":3106,"introduced":3107,"chest":3108,"hell":3109,"feeling":3110,"##ies":3111,"success":3112,"meet":3113,"reason":3114,"standard":3115,"meeting":3116,"novel":3117,"1984":3118,"trade":3119,"source":3120,"buildings":3121,"##land":3122,"rose":3123,"guy":3124,"goal":3125,"##ur":3126,"chapter":3127,"native":3128,"husband":3129,"previously":3130,"unit":3131,"limited":3132,"entered":3133,"weeks":3134,"producer":3135,"operations":3136,"mountain":3137,"takes":3138,"covered":3139,"forced":3140,"related":3141,"roman":3142,"complete":3143,"successful":3144,"key":3145,"texas":3146,"cold":3147,"##ya":3148,"channel":3149,"1980":3150,"traditional":3151,"films":3152,"dance":3153,"clear":3154,"approximately":3155,"500":3156,"nine":3157,"van":3158,"prince":3159,"question":3160,"active":3161,"tracks":3162,"ireland":3163,"regional":3164,"silver":3165,"author":3166,"personal":3167,"sense":3168,"operation":3169,"##ine":3170,"economic":3171,"1983":3172,"holding":3173,"twenty":3174,"isbn":3175,"additional":3176,"speed":3177,"hour":3178,"edition":3179,"regular":3180,"historic":3181,"places":3182,"whom":3183,"shook":3184,"movie":3185,"km²":3186,"secretary":3187,"prior":3188,"report":3189,"chicago":3190,"read":3191,"foundation":3192,"view":3193,"engine":3194,"scored":3195,"1982":3196,"units":3197,"ask":3198,"airport":3199,"property":3200,"ready":3201,"immediately":3202,"lady":3203,"month":3204,"listed":3205,"contract":3206,"##de":3207,"manager":3208,"themselves":3209,"lines":3210,"##ki":3211,"navy":3212,"writer":3213,"meant":3214,"##ts":3215,"runs":3216,"##ro":3217,"practice":3218,"championships":3219,"singer":3220,"glass":3221,"commission":3222,"required":3223,"forest":3224,"starting":3225,"culture":3226,"generally":3227,"giving":3228,"access":3229,"attended":3230,"test":3231,"couple":3232,"stand":3233,"catholic":3234,"martin":3235,"caught":3236,"executive":3237,"##less":3238,"eye":3239,"##ey":3240,"thinking":3241,"chair":3242,"quite":3243,"shoulder":3244,"1979":3245,"hope":3246,"decision":3247,"plays":3248,"defeated":3249,"municipality":3250,"whether":3251,"structure":3252,"offered":3253,"slowly":3254,"pain":3255,"ice":3256,"direction":3257,"##ion":3258,"paper":3259,"mission":3260,"1981":3261,"mostly":3262,"200":3263,"noted":3264,"individual":3265,"managed":3266,"nature":3267,"lives":3268,"plant":3269,"##ha":3270,"helped":3271,"except":3272,"studied":3273,"computer":3274,"figure":3275,"relationship":3276,"issue":3277,"significant":3278,"loss":3279,"die":3280,"smiled":3281,"gun":3282,"ago":3283,"highest":3284,"1972":3285,"##am":3286,"male":3287,"bring":3288,"goals":3289,"mexico":3290,"problem":3291,"distance":3292,"commercial":3293,"completely":3294,"location":3295,"annual":3296,"famous":3297,"drive":3298,"1976":3299,"neck":3300,"1978":3301,"surface":3302,"caused":3303,"italy":3304,"understand":3305,"greek":3306,"highway":3307,"wrong":3308,"hotel":3309,"comes":3310,"appearance":3311,"joseph":3312,"double":3313,"issues":3314,"musical":3315,"companies":3316,"castle":3317,"income":3318,"review":3319,"assembly":3320,"bass":3321,"initially":3322,"parliament":3323,"artists":3324,"experience":3325,"1974":3326,"particular":3327,"walk":3328,"foot":3329,"engineering":3330,"talking":3331,"window":3332,"dropped":3333,"##ter":3334,"miss":3335,"baby":3336,"boys":3337,"break":3338,"1975":3339,"stars":3340,"edge":3341,"remember":3342,"policy":3343,"carried":3344,"train":3345,"stadium":3346,"bar":3347,"sex":3348,"angeles":3349,"evidence":3350,"##ge":3351,"becoming":3352,"assistant":3353,"soviet":3354,"1977":3355,"upper":3356,"step":3357,"wing":3358,"1970":3359,"youth":3360,"financial":3361,"reach":3362,"##ll":3363,"actor":3364,"numerous":3365,"##se":3366,"##st":3367,"nodded":3368,"arrived":3369,"##ation":3370,"minute":3371,"##nt":3372,"believed":3373,"sorry":3374,"complex":3375,"beautiful":3376,"victory":3377,"associated":3378,"temple":3379,"1968":3380,"1973":3381,"chance":3382,"perhaps":3383,"metal":3384,"##son":3385,"1945":3386,"bishop":3387,"##et":3388,"lee":3389,"launched":3390,"particularly":3391,"tree":3392,"le":3393,"retired":3394,"subject":3395,"prize":3396,"contains":3397,"yeah":3398,"theory":3399,"empire":3400,"##ce":3401,"suddenly":3402,"waiting":3403,"trust":3404,"recording":3405,"##to":3406,"happy":3407,"terms":3408,"camp":3409,"champion":3410,"1971":3411,"religious":3412,"pass":3413,"zealand":3414,"names":3415,"2nd":3416,"port":3417,"ancient":3418,"tom":3419,"corner":3420,"represented":3421,"watch":3422,"legal":3423,"anti":3424,"justice":3425,"cause":3426,"watched":3427,"brothers":3428,"45":3429,"material":3430,"changes":3431,"simply":3432,"response":3433,"louis":3434,"fast":3435,"##ting":3436,"answer":3437,"60":3438,"historical":3439,"1969":3440,"stories":3441,"straight":3442,"create":3443,"feature":3444,"increased":3445,"rate":3446,"administration":3447,"virginia":3448,"el":3449,"activities":3450,"cultural":3451,"overall":3452,"winner":3453,"programs":3454,"basketball":3455,"legs":3456,"guard":3457,"beyond":3458,"cast":3459,"doctor":3460,"mm":3461,"flight":3462,"results":3463,"remains":3464,"cost":3465,"effect":3466,"winter":3467,"##ble":3468,"larger":3469,"islands":3470,"problems":3471,"chairman":3472,"grew":3473,"commander":3474,"isn":3475,"1967":3476,"pay":3477,"failed":3478,"selected":3479,"hurt":3480,"fort":3481,"box":3482,"regiment":3483,"majority":3484,"journal":3485,"35":3486,"edward":3487,"plans":3488,"##ke":3489,"##ni":3490,"shown":3491,"pretty":3492,"irish":3493,"characters":3494,"directly":3495,"scene":3496,"likely":3497,"operated":3498,"allow":3499,"spring":3500,"##j":3501,"junior":3502,"matches":3503,"looks":3504,"mike":3505,"houses":3506,"fellow":3507,"##tion":3508,"beach":3509,"marriage":3510,"##ham":3511,"##ive":3512,"rules":3513,"oil":3514,"65":3515,"florida":3516,"expected":3517,"nearby":3518,"congress":3519,"sam":3520,"peace":3521,"recent":3522,"iii":3523,"wait":3524,"subsequently":3525,"cell":3526,"##do":3527,"variety":3528,"serving":3529,"agreed":3530,"please":3531,"poor":3532,"joe":3533,"pacific":3534,"attempt":3535,"wood":3536,"democratic":3537,"piece":3538,"prime":3539,"##ca":3540,"rural":3541,"mile":3542,"touch":3543,"appears":3544,"township":3545,"1964":3546,"1966":3547,"soldiers":3548,"##men":3549,"##ized":3550,"1965":3551,"pennsylvania":3552,"closer":3553,"fighting":3554,"claimed":3555,"score":3556,"jones":3557,"physical":3558,"editor":3559,"##ous":3560,"filled":3561,"genus":3562,"specific":3563,"sitting":3564,"super":3565,"mom":3566,"##va":3567,"therefore":3568,"supported":3569,"status":3570,"fear":3571,"cases":3572,"store":3573,"meaning":3574,"wales":3575,"minor":3576,"spain":3577,"tower":3578,"focus":3579,"vice":3580,"frank":3581,"follow":3582,"parish":3583,"separate":3584,"golden":3585,"horse":3586,"fifth":3587,"remaining":3588,"branch":3589,"32":3590,"presented":3591,"stared":3592,"##id":3593,"uses":3594,"secret":3595,"forms":3596,"##co":3597,"baseball":3598,"exactly":3599,"##ck":3600,"choice":3601,"note":3602,"discovered":3603,"travel":3604,"composed":3605,"truth":3606,"russia":3607,"ball":3608,"color":3609,"kiss":3610,"dad":3611,"wind":3612,"continue":3613,"ring":3614,"referred":3615,"numbers":3616,"digital":3617,"greater":3618,"##ns":3619,"metres":3620,"slightly":3621,"direct":3622,"increase":3623,"1960":3624,"responsible":3625,"crew":3626,"rule":3627,"trees":3628,"troops":3629,"##no":3630,"broke":3631,"goes":3632,"individuals":3633,"hundred":3634,"weight":3635,"creek":3636,"sleep":3637,"memory":3638,"defense":3639,"provides":3640,"ordered":3641,"code":3642,"value":3643,"jewish":3644,"windows":3645,"1944":3646,"safe":3647,"judge":3648,"whatever":3649,"corps":3650,"realized":3651,"growing":3652,"pre":3653,"##ga":3654,"cities":3655,"alexander":3656,"gaze":3657,"lies":3658,"spread":3659,"scott":3660,"letter":3661,"showed":3662,"situation":3663,"mayor":3664,"transport":3665,"watching":3666,"workers":3667,"extended":3668,"##li":3669,"expression":3670,"normal":3671,"##ment":3672,"chart":3673,"multiple":3674,"border":3675,"##ba":3676,"host":3677,"##ner":3678,"daily":3679,"mrs":3680,"walls":3681,"piano":3682,"##ko":3683,"heat":3684,"cannot":3685,"##ate":3686,"earned":3687,"products":3688,"drama":3689,"era":3690,"authority":3691,"seasons":3692,"join":3693,"grade":3694,"##io":3695,"sign":3696,"difficult":3697,"machine":3698,"1963":3699,"territory":3700,"mainly":3701,"##wood":3702,"stations":3703,"squadron":3704,"1962":3705,"stepped":3706,"iron":3707,"19th":3708,"##led":3709,"serve":3710,"appear":3711,"sky":3712,"speak":3713,"broken":3714,"charge":3715,"knowledge":3716,"kilometres":3717,"removed":3718,"ships":3719,"article":3720,"campus":3721,"simple":3722,"##ty":3723,"pushed":3724,"britain":3725,"##ve":3726,"leaves":3727,"recently":3728,"cd":3729,"soft":3730,"boston":3731,"latter":3732,"easy":3733,"acquired":3734,"poland":3735,"##sa":3736,"quality":3737,"officers":3738,"presence":3739,"planned":3740,"nations":3741,"mass":3742,"broadcast":3743,"jean":3744,"share":3745,"image":3746,"influence":3747,"wild":3748,"offer":3749,"emperor":3750,"electric":3751,"reading":3752,"headed":3753,"ability":3754,"promoted":3755,"yellow":3756,"ministry":3757,"1942":3758,"throat":3759,"smaller":3760,"politician":3761,"##by":3762,"latin":3763,"spoke":3764,"cars":3765,"williams":3766,"males":3767,"lack":3768,"pop":3769,"80":3770,"##ier":3771,"acting":3772,"seeing":3773,"consists":3774,"##ti":3775,"estate":3776,"1961":3777,"pressure":3778,"johnson":3779,"newspaper":3780,"jr":3781,"chris":3782,"olympics":3783,"online":3784,"conditions":3785,"beat":3786,"elements":3787,"walking":3788,"vote":3789,"##field":3790,"needs":3791,"carolina":3792,"text":3793,"featuring":3794,"global":3795,"block":3796,"shirt":3797,"levels":3798,"francisco":3799,"purpose":3800,"females":3801,"et":3802,"dutch":3803,"duke":3804,"ahead":3805,"gas":3806,"twice":3807,"safety":3808,"serious":3809,"turning":3810,"highly":3811,"lieutenant":3812,"firm":3813,"maria":3814,"amount":3815,"mixed":3816,"daniel":3817,"proposed":3818,"perfect":3819,"agreement":3820,"affairs":3821,"3rd":3822,"seconds":3823,"contemporary":3824,"paid":3825,"1943":3826,"prison":3827,"save":3828,"kitchen":3829,"label":3830,"administrative":3831,"intended":3832,"constructed":3833,"academic":3834,"nice":3835,"teacher":3836,"races":3837,"1956":3838,"formerly":3839,"corporation":3840,"ben":3841,"nation":3842,"issued":3843,"shut":3844,"1958":3845,"drums":3846,"housing":3847,"victoria":3848,"seems":3849,"opera":3850,"1959":3851,"graduated":3852,"function":3853,"von":3854,"mentioned":3855,"picked":3856,"build":3857,"recognized":3858,"shortly":3859,"protection":3860,"picture":3861,"notable":3862,"exchange":3863,"elections":3864,"1980s":3865,"loved":3866,"percent":3867,"racing":3868,"fish":3869,"elizabeth":3870,"garden":3871,"volume":3872,"hockey":3873,"1941":3874,"beside":3875,"settled":3876,"##ford":3877,"1940":3878,"competed":3879,"replied":3880,"drew":3881,"1948":3882,"actress":3883,"marine":3884,"scotland":3885,"steel":3886,"glanced":3887,"farm":3888,"steve":3889,"1957":3890,"risk":3891,"tonight":3892,"positive":3893,"magic":3894,"singles":3895,"effects":3896,"gray":3897,"screen":3898,"dog":3899,"##ja":3900,"residents":3901,"bus":3902,"sides":3903,"none":3904,"secondary":3905,"literature":3906,"polish":3907,"destroyed":3908,"flying":3909,"founder":3910,"households":3911,"1939":3912,"lay":3913,"reserve":3914,"usa":3915,"gallery":3916,"##ler":3917,"1946":3918,"industrial":3919,"younger":3920,"approach":3921,"appearances":3922,"urban":3923,"ones":3924,"1950":3925,"finish":3926,"avenue":3927,"powerful":3928,"fully":3929,"growth":3930,"page":3931,"honor":3932,"jersey":3933,"projects":3934,"advanced":3935,"revealed":3936,"basic":3937,"90":3938,"infantry":3939,"pair":3940,"equipment":3941,"visit":3942,"33":3943,"evening":3944,"search":3945,"grant":3946,"effort":3947,"solo":3948,"treatment":3949,"buried":3950,"republican":3951,"primarily":3952,"bottom":3953,"owner":3954,"1970s":3955,"israel":3956,"gives":3957,"jim":3958,"dream":3959,"bob":3960,"remain":3961,"spot":3962,"70":3963,"notes":3964,"produce":3965,"champions":3966,"contact":3967,"ed":3968,"soul":3969,"accepted":3970,"ways":3971,"del":3972,"##ally":3973,"losing":3974,"split":3975,"price":3976,"capacity":3977,"basis":3978,"trial":3979,"questions":3980,"##ina":3981,"1955":3982,"20th":3983,"guess":3984,"officially":3985,"memorial":3986,"naval":3987,"initial":3988,"##ization":3989,"whispered":3990,"median":3991,"engineer":3992,"##ful":3993,"sydney":3994,"##go":3995,"columbia":3996,"strength":3997,"300":3998,"1952":3999,"tears":4000,"senate":4001,"00":4002,"card":4003,"asian":4004,"agent":4005,"1947":4006,"software":4007,"44":4008,"draw":4009,"warm":4010,"supposed":4011,"com":4012,"pro":4013,"##il":4014,"transferred":4015,"leaned":4016,"##at":4017,"candidate":4018,"escape":4019,"mountains":4020,"asia":4021,"potential":4022,"activity":4023,"entertainment":4024,"seem":4025,"traffic":4026,"jackson":4027,"murder":4028,"36":4029,"slow":4030,"product":4031,"orchestra":4032,"haven":4033,"agency":4034,"bbc":4035,"taught":4036,"website":4037,"comedy":4038,"unable":4039,"storm":4040,"planning":4041,"albums":4042,"rugby":4043,"environment":4044,"scientific":4045,"grabbed":4046,"protect":4047,"##hi":4048,"boat":4049,"typically":4050,"1954":4051,"1953":4052,"damage":4053,"principal":4054,"divided":4055,"dedicated":4056,"mount":4057,"ohio":4058,"##berg":4059,"pick":4060,"fought":4061,"driver":4062,"##der":4063,"empty":4064,"shoulders":4065,"sort":4066,"thank":4067,"berlin":4068,"prominent":4069,"account":4070,"freedom":4071,"necessary":4072,"efforts":4073,"alex":4074,"headquarters":4075,"follows":4076,"alongside":4077,"des":4078,"simon":4079,"andrew":4080,"suggested":4081,"operating":4082,"learning":4083,"steps":4084,"1949":4085,"sweet":4086,"technical":4087,"begin":4088,"easily":4089,"34":4090,"teeth":4091,"speaking":4092,"settlement":4093,"scale":4094,"##sh":4095,"renamed":4096,"ray":4097,"max":4098,"enemy":4099,"semi":4100,"joint":4101,"compared":4102,"##rd":4103,"scottish":4104,"leadership":4105,"analysis":4106,"offers":4107,"georgia":4108,"pieces":4109,"captured":4110,"animal":4111,"deputy":4112,"guest":4113,"organized":4114,"##lin":4115,"tony":4116,"combined":4117,"method":4118,"challenge":4119,"1960s":4120,"huge":4121,"wants":4122,"battalion":4123,"sons":4124,"rise":4125,"crime":4126,"types":4127,"facilities":4128,"telling":4129,"path":4130,"1951":4131,"platform":4132,"sit":4133,"1990s":4134,"##lo":4135,"tells":4136,"assigned":4137,"rich":4138,"pull":4139,"##ot":4140,"commonly":4141,"alive":4142,"##za":4143,"letters":4144,"concept":4145,"conducted":4146,"wearing":4147,"happen":4148,"bought":4149,"becomes":4150,"holy":4151,"gets":4152,"ocean":4153,"defeat":4154,"languages":4155,"purchased":4156,"coffee":4157,"occurred":4158,"titled":4159,"##q":4160,"declared":4161,"applied":4162,"sciences":4163,"concert":4164,"sounds":4165,"jazz":4166,"brain":4167,"##me":4168,"painting":4169,"fleet":4170,"tax":4171,"nick":4172,"##ius":4173,"michigan":4174,"count":4175,"animals":4176,"leaders":4177,"episodes":4178,"##line":4179,"content":4180,"##den":4181,"birth":4182,"##it":4183,"clubs":4184,"64":4185,"palace":4186,"critical":4187,"refused":4188,"fair":4189,"leg":4190,"laughed":4191,"returning":4192,"surrounding":4193,"participated":4194,"formation":4195,"lifted":4196,"pointed":4197,"connected":4198,"rome":4199,"medicine":4200,"laid":4201,"taylor":4202,"santa":4203,"powers":4204,"adam":4205,"tall":4206,"shared":4207,"focused":4208,"knowing":4209,"yards":4210,"entrance":4211,"falls":4212,"##wa":4213,"calling":4214,"##ad":4215,"sources":4216,"chosen":4217,"beneath":4218,"resources":4219,"yard":4220,"##ite":4221,"nominated":4222,"silence":4223,"zone":4224,"defined":4225,"##que":4226,"gained":4227,"thirty":4228,"38":4229,"bodies":4230,"moon":4231,"##ard":4232,"adopted":4233,"christmas":4234,"widely":4235,"register":4236,"apart":4237,"iran":4238,"premier":4239,"serves":4240,"du":4241,"unknown":4242,"parties":4243,"##les":4244,"generation":4245,"##ff":4246,"continues":4247,"quick":4248,"fields":4249,"brigade":4250,"quiet":4251,"teaching":4252,"clothes":4253,"impact":4254,"weapons":4255,"partner":4256,"flat":4257,"theater":4258,"supreme":4259,"1938":4260,"37":4261,"relations":4262,"##tor":4263,"plants":4264,"suffered":4265,"1936":4266,"wilson":4267,"kids":4268,"begins":4269,"##age":4270,"1918":4271,"seats":4272,"armed":4273,"internet":4274,"models":4275,"worth":4276,"laws":4277,"400":4278,"communities":4279,"classes":4280,"background":4281,"knows":4282,"thanks":4283,"quarter":4284,"reaching":4285,"humans":4286,"carry":4287,"killing":4288,"format":4289,"kong":4290,"hong":4291,"setting":4292,"75":4293,"architecture":4294,"disease":4295,"railroad":4296,"inc":4297,"possibly":4298,"wish":4299,"arthur":4300,"thoughts":4301,"harry":4302,"doors":4303,"density":4304,"##di":4305,"crowd":4306,"illinois":4307,"stomach":4308,"tone":4309,"unique":4310,"reports":4311,"anyway":4312,"##ir":4313,"liberal":4314,"der":4315,"vehicle":4316,"thick":4317,"dry":4318,"drug":4319,"faced":4320,"largely":4321,"facility":4322,"theme":4323,"holds":4324,"creation":4325,"strange":4326,"colonel":4327,"##mi":4328,"revolution":4329,"bell":4330,"politics":4331,"turns":4332,"silent":4333,"rail":4334,"relief":4335,"independence":4336,"combat":4337,"shape":4338,"write":4339,"determined":4340,"sales":4341,"learned":4342,"4th":4343,"finger":4344,"oxford":4345,"providing":4346,"1937":4347,"heritage":4348,"fiction":4349,"situated":4350,"designated":4351,"allowing":4352,"distribution":4353,"hosted":4354,"##est":4355,"sight":4356,"interview":4357,"estimated":4358,"reduced":4359,"##ria":4360,"toronto":4361,"footballer":4362,"keeping":4363,"guys":4364,"damn":4365,"claim":4366,"motion":4367,"sport":4368,"sixth":4369,"stayed":4370,"##ze":4371,"en":4372,"rear":4373,"receive":4374,"handed":4375,"twelve":4376,"dress":4377,"audience":4378,"granted":4379,"brazil":4380,"##well":4381,"spirit":4382,"##ated":4383,"noticed":4384,"etc":4385,"olympic":4386,"representative":4387,"eric":4388,"tight":4389,"trouble":4390,"reviews":4391,"drink":4392,"vampire":4393,"missing":4394,"roles":4395,"ranked":4396,"newly":4397,"household":4398,"finals":4399,"wave":4400,"critics":4401,"##ee":4402,"phase":4403,"massachusetts":4404,"pilot":4405,"unlike":4406,"philadelphia":4407,"bright":4408,"guns":4409,"crown":4410,"organizations":4411,"roof":4412,"42":4413,"respectively":4414,"clearly":4415,"tongue":4416,"marked":4417,"circle":4418,"fox":4419,"korea":4420,"bronze":4421,"brian":4422,"expanded":4423,"sexual":4424,"supply":4425,"yourself":4426,"inspired":4427,"labour":4428,"fc":4429,"##ah":4430,"reference":4431,"vision":4432,"draft":4433,"connection":4434,"brand":4435,"reasons":4436,"1935":4437,"classic":4438,"driving":4439,"trip":4440,"jesus":4441,"cells":4442,"entry":4443,"1920":4444,"neither":4445,"trail":4446,"claims":4447,"atlantic":4448,"orders":4449,"labor":4450,"nose":4451,"afraid":4452,"identified":4453,"intelligence":4454,"calls":4455,"cancer":4456,"attacked":4457,"passing":4458,"stephen":4459,"positions":4460,"imperial":4461,"grey":4462,"jason":4463,"39":4464,"sunday":4465,"48":4466,"swedish":4467,"avoid":4468,"extra":4469,"uncle":4470,"message":4471,"covers":4472,"allows":4473,"surprise":4474,"materials":4475,"fame":4476,"hunter":4477,"##ji":4478,"1930":4479,"citizens":4480,"figures":4481,"davis":4482,"environmental":4483,"confirmed":4484,"shit":4485,"titles":4486,"di":4487,"performing":4488,"difference":4489,"acts":4490,"attacks":4491,"##ov":4492,"existing":4493,"votes":4494,"opportunity":4495,"nor":4496,"shop":4497,"entirely":4498,"trains":4499,"opposite":4500,"pakistan":4501,"##pa":4502,"develop":4503,"resulted":4504,"representatives":4505,"actions":4506,"reality":4507,"pressed":4508,"##ish":4509,"barely":4510,"wine":4511,"conversation":4512,"faculty":4513,"northwest":4514,"ends":4515,"documentary":4516,"nuclear":4517,"stock":4518,"grace":4519,"sets":4520,"eat":4521,"alternative":4522,"##ps":4523,"bag":4524,"resulting":4525,"creating":4526,"surprised":4527,"cemetery":4528,"1919":4529,"drop":4530,"finding":4531,"sarah":4532,"cricket":4533,"streets":4534,"tradition":4535,"ride":4536,"1933":4537,"exhibition":4538,"target":4539,"ear":4540,"explained":4541,"rain":4542,"composer":4543,"injury":4544,"apartment":4545,"municipal":4546,"educational":4547,"occupied":4548,"netherlands":4549,"clean":4550,"billion":4551,"constitution":4552,"learn":4553,"1914":4554,"maximum":4555,"classical":4556,"francis":4557,"lose":4558,"opposition":4559,"jose":4560,"ontario":4561,"bear":4562,"core":4563,"hills":4564,"rolled":4565,"ending":4566,"drawn":4567,"permanent":4568,"fun":4569,"##tes":4570,"##lla":4571,"lewis":4572,"sites":4573,"chamber":4574,"ryan":4575,"##way":4576,"scoring":4577,"height":4578,"1934":4579,"##house":4580,"lyrics":4581,"staring":4582,"55":4583,"officials":4584,"1917":4585,"snow":4586,"oldest":4587,"##tic":4588,"orange":4589,"##ger":4590,"qualified":4591,"interior":4592,"apparently":4593,"succeeded":4594,"thousand":4595,"dinner":4596,"lights":4597,"existence":4598,"fans":4599,"heavily":4600,"41":4601,"greatest":4602,"conservative":4603,"send":4604,"bowl":4605,"plus":4606,"enter":4607,"catch":4608,"##un":4609,"economy":4610,"duty":4611,"1929":4612,"speech":4613,"authorities":4614,"princess":4615,"performances":4616,"versions":4617,"shall":4618,"graduate":4619,"pictures":4620,"effective":4621,"remembered":4622,"poetry":4623,"desk":4624,"crossed":4625,"starring":4626,"starts":4627,"passenger":4628,"sharp":4629,"##ant":4630,"acres":4631,"ass":4632,"weather":4633,"falling":4634,"rank":4635,"fund":4636,"supporting":4637,"check":4638,"adult":4639,"publishing":4640,"heads":4641,"cm":4642,"southeast":4643,"lane":4644,"##burg":4645,"application":4646,"bc":4647,"##ura":4648,"les":4649,"condition":4650,"transfer":4651,"prevent":4652,"display":4653,"ex":4654,"regions":4655,"earl":4656,"federation":4657,"cool":4658,"relatively":4659,"answered":4660,"besides":4661,"1928":4662,"obtained":4663,"portion":4664,"##town":4665,"mix":4666,"##ding":4667,"reaction":4668,"liked":4669,"dean":4670,"express":4671,"peak":4672,"1932":4673,"##tte":4674,"counter":4675,"religion":4676,"chain":4677,"rare":4678,"miller":4679,"convention":4680,"aid":4681,"lie":4682,"vehicles":4683,"mobile":4684,"perform":4685,"squad":4686,"wonder":4687,"lying":4688,"crazy":4689,"sword":4690,"##ping":4691,"attempted":4692,"centuries":4693,"weren":4694,"philosophy":4695,"category":4696,"##ize":4697,"anna":4698,"interested":4699,"47":4700,"sweden":4701,"wolf":4702,"frequently":4703,"abandoned":4704,"kg":4705,"literary":4706,"alliance":4707,"task":4708,"entitled":4709,"##ay":4710,"threw":4711,"promotion":4712,"factory":4713,"tiny":4714,"soccer":4715,"visited":4716,"matt":4717,"fm":4718,"achieved":4719,"52":4720,"defence":4721,"internal":4722,"persian":4723,"43":4724,"methods":4725,"##ging":4726,"arrested":4727,"otherwise":4728,"cambridge":4729,"programming":4730,"villages":4731,"elementary":4732,"districts":4733,"rooms":4734,"criminal":4735,"conflict":4736,"worry":4737,"trained":4738,"1931":4739,"attempts":4740,"waited":4741,"signal":4742,"bird":4743,"truck":4744,"subsequent":4745,"programme":4746,"##ol":4747,"ad":4748,"49":4749,"communist":4750,"details":4751,"faith":4752,"sector":4753,"patrick":4754,"carrying":4755,"laugh":4756,"##ss":4757,"controlled":4758,"korean":4759,"showing":4760,"origin":4761,"fuel":4762,"evil":4763,"1927":4764,"##ent":4765,"brief":4766,"identity":4767,"darkness":4768,"address":4769,"pool":4770,"missed":4771,"publication":4772,"web":4773,"planet":4774,"ian":4775,"anne":4776,"wings":4777,"invited":4778,"##tt":4779,"briefly":4780,"standards":4781,"kissed":4782,"##be":4783,"ideas":4784,"climate":4785,"causing":4786,"walter":4787,"worse":4788,"albert":4789,"articles":4790,"winners":4791,"desire":4792,"aged":4793,"northeast":4794,"dangerous":4795,"gate":4796,"doubt":4797,"1922":4798,"wooden":4799,"multi":4800,"##ky":4801,"poet":4802,"rising":4803,"funding":4804,"46":4805,"communications":4806,"communication":4807,"violence":4808,"copies":4809,"prepared":4810,"ford":4811,"investigation":4812,"skills":4813,"1924":4814,"pulling":4815,"electronic":4816,"##ak":4817,"##ial":4818,"##han":4819,"containing":4820,"ultimately":4821,"offices":4822,"singing":4823,"understanding":4824,"restaurant":4825,"tomorrow":4826,"fashion":4827,"christ":4828,"ward":4829,"da":4830,"pope":4831,"stands":4832,"5th":4833,"flow":4834,"studios":4835,"aired":4836,"commissioned":4837,"contained":4838,"exist":4839,"fresh":4840,"americans":4841,"##per":4842,"wrestling":4843,"approved":4844,"kid":4845,"employed":4846,"respect":4847,"suit":4848,"1925":4849,"angel":4850,"asking":4851,"increasing":4852,"frame":4853,"angry":4854,"selling":4855,"1950s":4856,"thin":4857,"finds":4858,"##nd":4859,"temperature":4860,"statement":4861,"ali":4862,"explain":4863,"inhabitants":4864,"towns":4865,"extensive":4866,"narrow":4867,"51":4868,"jane":4869,"flowers":4870,"images":4871,"promise":4872,"somewhere":4873,"object":4874,"fly":4875,"closely":4876,"##ls":4877,"1912":4878,"bureau":4879,"cape":4880,"1926":4881,"weekly":4882,"presidential":4883,"legislative":4884,"1921":4885,"##ai":4886,"##au":4887,"launch":4888,"founding":4889,"##ny":4890,"978":4891,"##ring":4892,"artillery":4893,"strike":4894,"un":4895,"institutions":4896,"roll":4897,"writers":4898,"landing":4899,"chose":4900,"kevin":4901,"anymore":4902,"pp":4903,"##ut":4904,"attorney":4905,"fit":4906,"dan":4907,"billboard":4908,"receiving":4909,"agricultural":4910,"breaking":4911,"sought":4912,"dave":4913,"admitted":4914,"lands":4915,"mexican":4916,"##bury":4917,"charlie":4918,"specifically":4919,"hole":4920,"iv":4921,"howard":4922,"credit":4923,"moscow":4924,"roads":4925,"accident":4926,"1923":4927,"proved":4928,"wear":4929,"struck":4930,"hey":4931,"guards":4932,"stuff":4933,"slid":4934,"expansion":4935,"1915":4936,"cat":4937,"anthony":4938,"##kin":4939,"melbourne":4940,"opposed":4941,"sub":4942,"southwest":4943,"architect":4944,"failure":4945,"plane":4946,"1916":4947,"##ron":4948,"map":4949,"camera":4950,"tank":4951,"listen":4952,"regarding":4953,"wet":4954,"introduction":4955,"metropolitan":4956,"link":4957,"ep":4958,"fighter":4959,"inch":4960,"grown":4961,"gene":4962,"anger":4963,"fixed":4964,"buy":4965,"dvd":4966,"khan":4967,"domestic":4968,"worldwide":4969,"chapel":4970,"mill":4971,"functions":4972,"examples":4973,"##head":4974,"developing":4975,"1910":4976,"turkey":4977,"hits":4978,"pocket":4979,"antonio":4980,"papers":4981,"grow":4982,"unless":4983,"circuit":4984,"18th":4985,"concerned":4986,"attached":4987,"journalist":4988,"selection":4989,"journey":4990,"converted":4991,"provincial":4992,"painted":4993,"hearing":4994,"aren":4995,"bands":4996,"negative":4997,"aside":4998,"wondered":4999,"knight":5000,"lap":5001,"survey":5002,"ma":5003,"##ow":5004,"noise":5005,"billy":5006,"##ium":5007,"shooting":5008,"guide":5009,"bedroom":5010,"priest":5011,"resistance":5012,"motor":5013,"homes":5014,"sounded":5015,"giant":5016,"##mer":5017,"150":5018,"scenes":5019,"equal":5020,"comic":5021,"patients":5022,"hidden":5023,"solid":5024,"actual":5025,"bringing":5026,"afternoon":5027,"touched":5028,"funds":5029,"wedding":5030,"consisted":5031,"marie":5032,"canal":5033,"sr":5034,"kim":5035,"treaty":5036,"turkish":5037,"recognition":5038,"residence":5039,"cathedral":5040,"broad":5041,"knees":5042,"incident":5043,"shaped":5044,"fired":5045,"norwegian":5046,"handle":5047,"cheek":5048,"contest":5049,"represent":5050,"##pe":5051,"representing":5052,"beauty":5053,"##sen":5054,"birds":5055,"advantage":5056,"emergency":5057,"wrapped":5058,"drawing":5059,"notice":5060,"pink":5061,"broadcasting":5062,"##ong":5063,"somehow":5064,"bachelor":5065,"seventh":5066,"collected":5067,"registered":5068,"establishment":5069,"alan":5070,"assumed":5071,"chemical":5072,"personnel":5073,"roger":5074,"retirement":5075,"jeff":5076,"portuguese":5077,"wore":5078,"tied":5079,"device":5080,"threat":5081,"progress":5082,"advance":5083,"##ised":5084,"banks":5085,"hired":5086,"manchester":5087,"nfl":5088,"teachers":5089,"structures":5090,"forever":5091,"##bo":5092,"tennis":5093,"helping":5094,"saturday":5095,"sale":5096,"applications":5097,"junction":5098,"hip":5099,"incorporated":5100,"neighborhood":5101,"dressed":5102,"ceremony":5103,"##ds":5104,"influenced":5105,"hers":5106,"visual":5107,"stairs":5108,"decades":5109,"inner":5110,"kansas":5111,"hung":5112,"hoped":5113,"gain":5114,"scheduled":5115,"downtown":5116,"engaged":5117,"austria":5118,"clock":5119,"norway":5120,"certainly":5121,"pale":5122,"protected":5123,"1913":5124,"victor":5125,"employees":5126,"plate":5127,"putting":5128,"surrounded":5129,"##ists":5130,"finishing":5131,"blues":5132,"tropical":5133,"##ries":5134,"minnesota":5135,"consider":5136,"philippines":5137,"accept":5138,"54":5139,"retrieved":5140,"1900":5141,"concern":5142,"anderson":5143,"properties":5144,"institution":5145,"gordon":5146,"successfully":5147,"vietnam":5148,"##dy":5149,"backing":5150,"outstanding":5151,"muslim":5152,"crossing":5153,"folk":5154,"producing":5155,"usual":5156,"demand":5157,"occurs":5158,"observed":5159,"lawyer":5160,"educated":5161,"##ana":5162,"kelly":5163,"string":5164,"pleasure":5165,"budget":5166,"items":5167,"quietly":5168,"colorado":5169,"philip":5170,"typical":5171,"##worth":5172,"derived":5173,"600":5174,"survived":5175,"asks":5176,"mental":5177,"##ide":5178,"56":5179,"jake":5180,"jews":5181,"distinguished":5182,"ltd":5183,"1911":5184,"sri":5185,"extremely":5186,"53":5187,"athletic":5188,"loud":5189,"thousands":5190,"worried":5191,"shadow":5192,"transportation":5193,"horses":5194,"weapon":5195,"arena":5196,"importance":5197,"users":5198,"tim":5199,"objects":5200,"contributed":5201,"dragon":5202,"douglas":5203,"aware":5204,"senator":5205,"johnny":5206,"jordan":5207,"sisters":5208,"engines":5209,"flag":5210,"investment":5211,"samuel":5212,"shock":5213,"capable":5214,"clark":5215,"row":5216,"wheel":5217,"refers":5218,"session":5219,"familiar":5220,"biggest":5221,"wins":5222,"hate":5223,"maintained":5224,"drove":5225,"hamilton":5226,"request":5227,"expressed":5228,"injured":5229,"underground":5230,"churches":5231,"walker":5232,"wars":5233,"tunnel":5234,"passes":5235,"stupid":5236,"agriculture":5237,"softly":5238,"cabinet":5239,"regarded":5240,"joining":5241,"indiana":5242,"##ea":5243,"##ms":5244,"push":5245,"dates":5246,"spend":5247,"behavior":5248,"woods":5249,"protein":5250,"gently":5251,"chase":5252,"morgan":5253,"mention":5254,"burning":5255,"wake":5256,"combination":5257,"occur":5258,"mirror":5259,"leads":5260,"jimmy":5261,"indeed":5262,"impossible":5263,"singapore":5264,"paintings":5265,"covering":5266,"##nes":5267,"soldier":5268,"locations":5269,"attendance":5270,"sell":5271,"historian":5272,"wisconsin":5273,"invasion":5274,"argued":5275,"painter":5276,"diego":5277,"changing":5278,"egypt":5279,"##don":5280,"experienced":5281,"inches":5282,"##ku":5283,"missouri":5284,"vol":5285,"grounds":5286,"spoken":5287,"switzerland":5288,"##gan":5289,"reform":5290,"rolling":5291,"ha":5292,"forget":5293,"massive":5294,"resigned":5295,"burned":5296,"allen":5297,"tennessee":5298,"locked":5299,"values":5300,"improved":5301,"##mo":5302,"wounded":5303,"universe":5304,"sick":5305,"dating":5306,"facing":5307,"pack":5308,"purchase":5309,"user":5310,"##pur":5311,"moments":5312,"##ul":5313,"merged":5314,"anniversary":5315,"1908":5316,"coal":5317,"brick":5318,"understood":5319,"causes":5320,"dynasty":5321,"queensland":5322,"establish":5323,"stores":5324,"crisis":5325,"promote":5326,"hoping":5327,"views":5328,"cards":5329,"referee":5330,"extension":5331,"##si":5332,"raise":5333,"arizona":5334,"improve":5335,"colonial":5336,"formal":5337,"charged":5338,"##rt":5339,"palm":5340,"lucky":5341,"hide":5342,"rescue":5343,"faces":5344,"95":5345,"feelings":5346,"candidates":5347,"juan":5348,"##ell":5349,"goods":5350,"6th":5351,"courses":5352,"weekend":5353,"59":5354,"luke":5355,"cash":5356,"fallen":5357,"##om":5358,"delivered":5359,"affected":5360,"installed":5361,"carefully":5362,"tries":5363,"swiss":5364,"hollywood":5365,"costs":5366,"lincoln":5367,"responsibility":5368,"##he":5369,"shore":5370,"file":5371,"proper":5372,"normally":5373,"maryland":5374,"assistance":5375,"jump":5376,"constant":5377,"offering":5378,"friendly":5379,"waters":5380,"persons":5381,"realize":5382,"contain":5383,"trophy":5384,"800":5385,"partnership":5386,"factor":5387,"58":5388,"musicians":5389,"cry":5390,"bound":5391,"oregon":5392,"indicated":5393,"hero":5394,"houston":5395,"medium":5396,"##ure":5397,"consisting":5398,"somewhat":5399,"##ara":5400,"57":5401,"cycle":5402,"##che":5403,"beer":5404,"moore":5405,"frederick":5406,"gotten":5407,"eleven":5408,"worst":5409,"weak":5410,"approached":5411,"arranged":5412,"chin":5413,"loan":5414,"universal":5415,"bond":5416,"fifteen":5417,"pattern":5418,"disappeared":5419,"##ney":5420,"translated":5421,"##zed":5422,"lip":5423,"arab":5424,"capture":5425,"interests":5426,"insurance":5427,"##chi":5428,"shifted":5429,"cave":5430,"prix":5431,"warning":5432,"sections":5433,"courts":5434,"coat":5435,"plot":5436,"smell":5437,"feed":5438,"golf":5439,"favorite":5440,"maintain":5441,"knife":5442,"vs":5443,"voted":5444,"degrees":5445,"finance":5446,"quebec":5447,"opinion":5448,"translation":5449,"manner":5450,"ruled":5451,"operate":5452,"productions":5453,"choose":5454,"musician":5455,"discovery":5456,"confused":5457,"tired":5458,"separated":5459,"stream":5460,"techniques":5461,"committed":5462,"attend":5463,"ranking":5464,"kings":5465,"throw":5466,"passengers":5467,"measure":5468,"horror":5469,"fan":5470,"mining":5471,"sand":5472,"danger":5473,"salt":5474,"calm":5475,"decade":5476,"dam":5477,"require":5478,"runner":5479,"##ik":5480,"rush":5481,"associate":5482,"greece":5483,"##ker":5484,"rivers":5485,"consecutive":5486,"matthew":5487,"##ski":5488,"sighed":5489,"sq":5490,"documents":5491,"steam":5492,"edited":5493,"closing":5494,"tie":5495,"accused":5496,"1905":5497,"##ini":5498,"islamic":5499,"distributed":5500,"directors":5501,"organisation":5502,"bruce":5503,"7th":5504,"breathing":5505,"mad":5506,"lit":5507,"arrival":5508,"concrete":5509,"taste":5510,"08":5511,"composition":5512,"shaking":5513,"faster":5514,"amateur":5515,"adjacent":5516,"stating":5517,"1906":5518,"twin":5519,"flew":5520,"##ran":5521,"tokyo":5522,"publications":5523,"##tone":5524,"obviously":5525,"ridge":5526,"storage":5527,"1907":5528,"carl":5529,"pages":5530,"concluded":5531,"desert":5532,"driven":5533,"universities":5534,"ages":5535,"terminal":5536,"sequence":5537,"borough":5538,"250":5539,"constituency":5540,"creative":5541,"cousin":5542,"economics":5543,"dreams":5544,"margaret":5545,"notably":5546,"reduce":5547,"montreal":5548,"mode":5549,"17th":5550,"ears":5551,"saved":5552,"jan":5553,"vocal":5554,"##ica":5555,"1909":5556,"andy":5557,"##jo":5558,"riding":5559,"roughly":5560,"threatened":5561,"##ise":5562,"meters":5563,"meanwhile":5564,"landed":5565,"compete":5566,"repeated":5567,"grass":5568,"czech":5569,"regularly":5570,"charges":5571,"tea":5572,"sudden":5573,"appeal":5574,"##ung":5575,"solution":5576,"describes":5577,"pierre":5578,"classification":5579,"glad":5580,"parking":5581,"##ning":5582,"belt":5583,"physics":5584,"99":5585,"rachel":5586,"add":5587,"hungarian":5588,"participate":5589,"expedition":5590,"damaged":5591,"gift":5592,"childhood":5593,"85":5594,"fifty":5595,"##red":5596,"mathematics":5597,"jumped":5598,"letting":5599,"defensive":5600,"mph":5601,"##ux":5602,"##gh":5603,"testing":5604,"##hip":5605,"hundreds":5606,"shoot":5607,"owners":5608,"matters":5609,"smoke":5610,"israeli":5611,"kentucky":5612,"dancing":5613,"mounted":5614,"grandfather":5615,"emma":5616,"designs":5617,"profit":5618,"argentina":5619,"##gs":5620,"truly":5621,"li":5622,"lawrence":5623,"cole":5624,"begun":5625,"detroit":5626,"willing":5627,"branches":5628,"smiling":5629,"decide":5630,"miami":5631,"enjoyed":5632,"recordings":5633,"##dale":5634,"poverty":5635,"ethnic":5636,"gay":5637,"##bi":5638,"gary":5639,"arabic":5640,"09":5641,"accompanied":5642,"##one":5643,"##ons":5644,"fishing":5645,"determine":5646,"residential":5647,"acid":5648,"##ary":5649,"alice":5650,"returns":5651,"starred":5652,"mail":5653,"##ang":5654,"jonathan":5655,"strategy":5656,"##ue":5657,"net":5658,"forty":5659,"cook":5660,"businesses":5661,"equivalent":5662,"commonwealth":5663,"distinct":5664,"ill":5665,"##cy":5666,"seriously":5667,"##ors":5668,"##ped":5669,"shift":5670,"harris":5671,"replace":5672,"rio":5673,"imagine":5674,"formula":5675,"ensure":5676,"##ber":5677,"additionally":5678,"scheme":5679,"conservation":5680,"occasionally":5681,"purposes":5682,"feels":5683,"favor":5684,"##and":5685,"##ore":5686,"1930s":5687,"contrast":5688,"hanging":5689,"hunt":5690,"movies":5691,"1904":5692,"instruments":5693,"victims":5694,"danish":5695,"christopher":5696,"busy":5697,"demon":5698,"sugar":5699,"earliest":5700,"colony":5701,"studying":5702,"balance":5703,"duties":5704,"##ks":5705,"belgium":5706,"slipped":5707,"carter":5708,"05":5709,"visible":5710,"stages":5711,"iraq":5712,"fifa":5713,"##im":5714,"commune":5715,"forming":5716,"zero":5717,"07":5718,"continuing":5719,"talked":5720,"counties":5721,"legend":5722,"bathroom":5723,"option":5724,"tail":5725,"clay":5726,"daughters":5727,"afterwards":5728,"severe":5729,"jaw":5730,"visitors":5731,"##ded":5732,"devices":5733,"aviation":5734,"russell":5735,"kate":5736,"##vi":5737,"entering":5738,"subjects":5739,"##ino":5740,"temporary":5741,"swimming":5742,"forth":5743,"smooth":5744,"ghost":5745,"audio":5746,"bush":5747,"operates":5748,"rocks":5749,"movements":5750,"signs":5751,"eddie":5752,"##tz":5753,"ann":5754,"voices":5755,"honorary":5756,"06":5757,"memories":5758,"dallas":5759,"pure":5760,"measures":5761,"racial":5762,"promised":5763,"66":5764,"harvard":5765,"ceo":5766,"16th":5767,"parliamentary":5768,"indicate":5769,"benefit":5770,"flesh":5771,"dublin":5772,"louisiana":5773,"1902":5774,"1901":5775,"patient":5776,"sleeping":5777,"1903":5778,"membership":5779,"coastal":5780,"medieval":5781,"wanting":5782,"element":5783,"scholars":5784,"rice":5785,"62":5786,"limit":5787,"survive":5788,"makeup":5789,"rating":5790,"definitely":5791,"collaboration":5792,"obvious":5793,"##tan":5794,"boss":5795,"ms":5796,"baron":5797,"birthday":5798,"linked":5799,"soil":5800,"diocese":5801,"##lan":5802,"ncaa":5803,"##mann":5804,"offensive":5805,"shell":5806,"shouldn":5807,"waist":5808,"##tus":5809,"plain":5810,"ross":5811,"organ":5812,"resolution":5813,"manufacturing":5814,"adding":5815,"relative":5816,"kennedy":5817,"98":5818,"whilst":5819,"moth":5820,"marketing":5821,"gardens":5822,"crash":5823,"72":5824,"heading":5825,"partners":5826,"credited":5827,"carlos":5828,"moves":5829,"cable":5830,"##zi":5831,"marshall":5832,"##out":5833,"depending":5834,"bottle":5835,"represents":5836,"rejected":5837,"responded":5838,"existed":5839,"04":5840,"jobs":5841,"denmark":5842,"lock":5843,"##ating":5844,"treated":5845,"graham":5846,"routes":5847,"talent":5848,"commissioner":5849,"drugs":5850,"secure":5851,"tests":5852,"reign":5853,"restored":5854,"photography":5855,"##gi":5856,"contributions":5857,"oklahoma":5858,"designer":5859,"disc":5860,"grin":5861,"seattle":5862,"robin":5863,"paused":5864,"atlanta":5865,"unusual":5866,"##gate":5867,"praised":5868,"las":5869,"laughing":5870,"satellite":5871,"hungary":5872,"visiting":5873,"##sky":5874,"interesting":5875,"factors":5876,"deck":5877,"poems":5878,"norman":5879,"##water":5880,"stuck":5881,"speaker":5882,"rifle":5883,"domain":5884,"premiered":5885,"##her":5886,"dc":5887,"comics":5888,"actors":5889,"01":5890,"reputation":5891,"eliminated":5892,"8th":5893,"ceiling":5894,"prisoners":5895,"script":5896,"##nce":5897,"leather":5898,"austin":5899,"mississippi":5900,"rapidly":5901,"admiral":5902,"parallel":5903,"charlotte":5904,"guilty":5905,"tools":5906,"gender":5907,"divisions":5908,"fruit":5909,"##bs":5910,"laboratory":5911,"nelson":5912,"fantasy":5913,"marry":5914,"rapid":5915,"aunt":5916,"tribe":5917,"requirements":5918,"aspects":5919,"suicide":5920,"amongst":5921,"adams":5922,"bone":5923,"ukraine":5924,"abc":5925,"kick":5926,"sees":5927,"edinburgh":5928,"clothing":5929,"column":5930,"rough":5931,"gods":5932,"hunting":5933,"broadway":5934,"gathered":5935,"concerns":5936,"##ek":5937,"spending":5938,"ty":5939,"12th":5940,"snapped":5941,"requires":5942,"solar":5943,"bones":5944,"cavalry":5945,"##tta":5946,"iowa":5947,"drinking":5948,"waste":5949,"index":5950,"franklin":5951,"charity":5952,"thompson":5953,"stewart":5954,"tip":5955,"flash":5956,"landscape":5957,"friday":5958,"enjoy":5959,"singh":5960,"poem":5961,"listening":5962,"##back":5963,"eighth":5964,"fred":5965,"differences":5966,"adapted":5967,"bomb":5968,"ukrainian":5969,"surgery":5970,"corporate":5971,"masters":5972,"anywhere":5973,"##more":5974,"waves":5975,"odd":5976,"sean":5977,"portugal":5978,"orleans":5979,"dick":5980,"debate":5981,"kent":5982,"eating":5983,"puerto":5984,"cleared":5985,"96":5986,"expect":5987,"cinema":5988,"97":5989,"guitarist":5990,"blocks":5991,"electrical":5992,"agree":5993,"involving":5994,"depth":5995,"dying":5996,"panel":5997,"struggle":5998,"##ged":5999,"peninsula":6000,"adults":6001,"novels":6002,"emerged":6003,"vienna":6004,"metro":6005,"debuted":6006,"shoes":6007,"tamil":6008,"songwriter":6009,"meets":6010,"prove":6011,"beating":6012,"instance":6013,"heaven":6014,"scared":6015,"sending":6016,"marks":6017,"artistic":6018,"passage":6019,"superior":6020,"03":6021,"significantly":6022,"shopping":6023,"##tive":6024,"retained":6025,"##izing":6026,"malaysia":6027,"technique":6028,"cheeks":6029,"##ola":6030,"warren":6031,"maintenance":6032,"destroy":6033,"extreme":6034,"allied":6035,"120":6036,"appearing":6037,"##yn":6038,"fill":6039,"advice":6040,"alabama":6041,"qualifying":6042,"policies":6043,"cleveland":6044,"hat":6045,"battery":6046,"smart":6047,"authors":6048,"10th":6049,"soundtrack":6050,"acted":6051,"dated":6052,"lb":6053,"glance":6054,"equipped":6055,"coalition":6056,"funny":6057,"outer":6058,"ambassador":6059,"roy":6060,"possibility":6061,"couples":6062,"campbell":6063,"dna":6064,"loose":6065,"ethan":6066,"supplies":6067,"1898":6068,"gonna":6069,"88":6070,"monster":6071,"##res":6072,"shake":6073,"agents":6074,"frequency":6075,"springs":6076,"dogs":6077,"practices":6078,"61":6079,"gang":6080,"plastic":6081,"easier":6082,"suggests":6083,"gulf":6084,"blade":6085,"exposed":6086,"colors":6087,"industries":6088,"markets":6089,"pan":6090,"nervous":6091,"electoral":6092,"charts":6093,"legislation":6094,"ownership":6095,"##idae":6096,"mac":6097,"appointment":6098,"shield":6099,"copy":6100,"assault":6101,"socialist":6102,"abbey":6103,"monument":6104,"license":6105,"throne":6106,"employment":6107,"jay":6108,"93":6109,"replacement":6110,"charter":6111,"cloud":6112,"powered":6113,"suffering":6114,"accounts":6115,"oak":6116,"connecticut":6117,"strongly":6118,"wright":6119,"colour":6120,"crystal":6121,"13th":6122,"context":6123,"welsh":6124,"networks":6125,"voiced":6126,"gabriel":6127,"jerry":6128,"##cing":6129,"forehead":6130,"mp":6131,"##ens":6132,"manage":6133,"schedule":6134,"totally":6135,"remix":6136,"##ii":6137,"forests":6138,"occupation":6139,"print":6140,"nicholas":6141,"brazilian":6142,"strategic":6143,"vampires":6144,"engineers":6145,"76":6146,"roots":6147,"seek":6148,"correct":6149,"instrumental":6150,"und":6151,"alfred":6152,"backed":6153,"hop":6154,"##des":6155,"stanley":6156,"robinson":6157,"traveled":6158,"wayne":6159,"welcome":6160,"austrian":6161,"achieve":6162,"67":6163,"exit":6164,"rates":6165,"1899":6166,"strip":6167,"whereas":6168,"##cs":6169,"sing":6170,"deeply":6171,"adventure":6172,"bobby":6173,"rick":6174,"jamie":6175,"careful":6176,"components":6177,"cap":6178,"useful":6179,"personality":6180,"knee":6181,"##shi":6182,"pushing":6183,"hosts":6184,"02":6185,"protest":6186,"ca":6187,"ottoman":6188,"symphony":6189,"##sis":6190,"63":6191,"boundary":6192,"1890":6193,"processes":6194,"considering":6195,"considerable":6196,"tons":6197,"##work":6198,"##ft":6199,"##nia":6200,"cooper":6201,"trading":6202,"dear":6203,"conduct":6204,"91":6205,"illegal":6206,"apple":6207,"revolutionary":6208,"holiday":6209,"definition":6210,"harder":6211,"##van":6212,"jacob":6213,"circumstances":6214,"destruction":6215,"##lle":6216,"popularity":6217,"grip":6218,"classified":6219,"liverpool":6220,"donald":6221,"baltimore":6222,"flows":6223,"seeking":6224,"honour":6225,"approval":6226,"92":6227,"mechanical":6228,"till":6229,"happening":6230,"statue":6231,"critic":6232,"increasingly":6233,"immediate":6234,"describe":6235,"commerce":6236,"stare":6237,"##ster":6238,"indonesia":6239,"meat":6240,"rounds":6241,"boats":6242,"baker":6243,"orthodox":6244,"depression":6245,"formally":6246,"worn":6247,"naked":6248,"claire":6249,"muttered":6250,"sentence":6251,"11th":6252,"emily":6253,"document":6254,"77":6255,"criticism":6256,"wished":6257,"vessel":6258,"spiritual":6259,"bent":6260,"virgin":6261,"parker":6262,"minimum":6263,"murray":6264,"lunch":6265,"danny":6266,"printed":6267,"compilation":6268,"keyboards":6269,"false":6270,"blow":6271,"belonged":6272,"68":6273,"raising":6274,"78":6275,"cutting":6276,"##board":6277,"pittsburgh":6278,"##up":6279,"9th":6280,"shadows":6281,"81":6282,"hated":6283,"indigenous":6284,"jon":6285,"15th":6286,"barry":6287,"scholar":6288,"ah":6289,"##zer":6290,"oliver":6291,"##gy":6292,"stick":6293,"susan":6294,"meetings":6295,"attracted":6296,"spell":6297,"romantic":6298,"##ver":6299,"ye":6300,"1895":6301,"photo":6302,"demanded":6303,"customers":6304,"##ac":6305,"1896":6306,"logan":6307,"revival":6308,"keys":6309,"modified":6310,"commanded":6311,"jeans":6312,"##ious":6313,"upset":6314,"raw":6315,"phil":6316,"detective":6317,"hiding":6318,"resident":6319,"vincent":6320,"##bly":6321,"experiences":6322,"diamond":6323,"defeating":6324,"coverage":6325,"lucas":6326,"external":6327,"parks":6328,"franchise":6329,"helen":6330,"bible":6331,"successor":6332,"percussion":6333,"celebrated":6334,"il":6335,"lift":6336,"profile":6337,"clan":6338,"romania":6339,"##ied":6340,"mills":6341,"##su":6342,"nobody":6343,"achievement":6344,"shrugged":6345,"fault":6346,"1897":6347,"rhythm":6348,"initiative":6349,"breakfast":6350,"carbon":6351,"700":6352,"69":6353,"lasted":6354,"violent":6355,"74":6356,"wound":6357,"ken":6358,"killer":6359,"gradually":6360,"filmed":6361,"°c":6362,"dollars":6363,"processing":6364,"94":6365,"remove":6366,"criticized":6367,"guests":6368,"sang":6369,"chemistry":6370,"##vin":6371,"legislature":6372,"disney":6373,"##bridge":6374,"uniform":6375,"escaped":6376,"integrated":6377,"proposal":6378,"purple":6379,"denied":6380,"liquid":6381,"karl":6382,"influential":6383,"morris":6384,"nights":6385,"stones":6386,"intense":6387,"experimental":6388,"twisted":6389,"71":6390,"84":6391,"##ld":6392,"pace":6393,"nazi":6394,"mitchell":6395,"ny":6396,"blind":6397,"reporter":6398,"newspapers":6399,"14th":6400,"centers":6401,"burn":6402,"basin":6403,"forgotten":6404,"surviving":6405,"filed":6406,"collections":6407,"monastery":6408,"losses":6409,"manual":6410,"couch":6411,"description":6412,"appropriate":6413,"merely":6414,"tag":6415,"missions":6416,"sebastian":6417,"restoration":6418,"replacing":6419,"triple":6420,"73":6421,"elder":6422,"julia":6423,"warriors":6424,"benjamin":6425,"julian":6426,"convinced":6427,"stronger":6428,"amazing":6429,"declined":6430,"versus":6431,"merchant":6432,"happens":6433,"output":6434,"finland":6435,"bare":6436,"barbara":6437,"absence":6438,"ignored":6439,"dawn":6440,"injuries":6441,"##port":6442,"producers":6443,"##ram":6444,"82":6445,"luis":6446,"##ities":6447,"kw":6448,"admit":6449,"expensive":6450,"electricity":6451,"nba":6452,"exception":6453,"symbol":6454,"##ving":6455,"ladies":6456,"shower":6457,"sheriff":6458,"characteristics":6459,"##je":6460,"aimed":6461,"button":6462,"ratio":6463,"effectively":6464,"summit":6465,"angle":6466,"jury":6467,"bears":6468,"foster":6469,"vessels":6470,"pants":6471,"executed":6472,"evans":6473,"dozen":6474,"advertising":6475,"kicked":6476,"patrol":6477,"1889":6478,"competitions":6479,"lifetime":6480,"principles":6481,"athletics":6482,"##logy":6483,"birmingham":6484,"sponsored":6485,"89":6486,"rob":6487,"nomination":6488,"1893":6489,"acoustic":6490,"##sm":6491,"creature":6492,"longest":6493,"##tra":6494,"credits":6495,"harbor":6496,"dust":6497,"josh":6498,"##so":6499,"territories":6500,"milk":6501,"infrastructure":6502,"completion":6503,"thailand":6504,"indians":6505,"leon":6506,"archbishop":6507,"##sy":6508,"assist":6509,"pitch":6510,"blake":6511,"arrangement":6512,"girlfriend":6513,"serbian":6514,"operational":6515,"hence":6516,"sad":6517,"scent":6518,"fur":6519,"dj":6520,"sessions":6521,"hp":6522,"refer":6523,"rarely":6524,"##ora":6525,"exists":6526,"1892":6527,"##ten":6528,"scientists":6529,"dirty":6530,"penalty":6531,"burst":6532,"portrait":6533,"seed":6534,"79":6535,"pole":6536,"limits":6537,"rival":6538,"1894":6539,"stable":6540,"alpha":6541,"grave":6542,"constitutional":6543,"alcohol":6544,"arrest":6545,"flower":6546,"mystery":6547,"devil":6548,"architectural":6549,"relationships":6550,"greatly":6551,"habitat":6552,"##istic":6553,"larry":6554,"progressive":6555,"remote":6556,"cotton":6557,"##ics":6558,"##ok":6559,"preserved":6560,"reaches":6561,"##ming":6562,"cited":6563,"86":6564,"vast":6565,"scholarship":6566,"decisions":6567,"cbs":6568,"joy":6569,"teach":6570,"1885":6571,"editions":6572,"knocked":6573,"eve":6574,"searching":6575,"partly":6576,"participation":6577,"gap":6578,"animated":6579,"fate":6580,"excellent":6581,"##ett":6582,"na":6583,"87":6584,"alternate":6585,"saints":6586,"youngest":6587,"##ily":6588,"climbed":6589,"##ita":6590,"##tors":6591,"suggest":6592,"##ct":6593,"discussion":6594,"staying":6595,"choir":6596,"lakes":6597,"jacket":6598,"revenue":6599,"nevertheless":6600,"peaked":6601,"instrument":6602,"wondering":6603,"annually":6604,"managing":6605,"neil":6606,"1891":6607,"signing":6608,"terry":6609,"##ice":6610,"apply":6611,"clinical":6612,"brooklyn":6613,"aim":6614,"catherine":6615,"fuck":6616,"farmers":6617,"figured":6618,"ninth":6619,"pride":6620,"hugh":6621,"evolution":6622,"ordinary":6623,"involvement":6624,"comfortable":6625,"shouted":6626,"tech":6627,"encouraged":6628,"taiwan":6629,"representation":6630,"sharing":6631,"##lia":6632,"##em":6633,"panic":6634,"exact":6635,"cargo":6636,"competing":6637,"fat":6638,"cried":6639,"83":6640,"1920s":6641,"occasions":6642,"pa":6643,"cabin":6644,"borders":6645,"utah":6646,"marcus":6647,"##isation":6648,"badly":6649,"muscles":6650,"##ance":6651,"victorian":6652,"transition":6653,"warner":6654,"bet":6655,"permission":6656,"##rin":6657,"slave":6658,"terrible":6659,"similarly":6660,"shares":6661,"seth":6662,"uefa":6663,"possession":6664,"medals":6665,"benefits":6666,"colleges":6667,"lowered":6668,"perfectly":6669,"mall":6670,"transit":6671,"##ye":6672,"##kar":6673,"publisher":6674,"##ened":6675,"harrison":6676,"deaths":6677,"elevation":6678,"##ae":6679,"asleep":6680,"machines":6681,"sigh":6682,"ash":6683,"hardly":6684,"argument":6685,"occasion":6686,"parent":6687,"leo":6688,"decline":6689,"1888":6690,"contribution":6691,"##ua":6692,"concentration":6693,"1000":6694,"opportunities":6695,"hispanic":6696,"guardian":6697,"extent":6698,"emotions":6699,"hips":6700,"mason":6701,"volumes":6702,"bloody":6703,"controversy":6704,"diameter":6705,"steady":6706,"mistake":6707,"phoenix":6708,"identify":6709,"violin":6710,"##sk":6711,"departure":6712,"richmond":6713,"spin":6714,"funeral":6715,"enemies":6716,"1864":6717,"gear":6718,"literally":6719,"connor":6720,"random":6721,"sergeant":6722,"grab":6723,"confusion":6724,"1865":6725,"transmission":6726,"informed":6727,"op":6728,"leaning":6729,"sacred":6730,"suspended":6731,"thinks":6732,"gates":6733,"portland":6734,"luck":6735,"agencies":6736,"yours":6737,"hull":6738,"expert":6739,"muscle":6740,"layer":6741,"practical":6742,"sculpture":6743,"jerusalem":6744,"latest":6745,"lloyd":6746,"statistics":6747,"deeper":6748,"recommended":6749,"warrior":6750,"arkansas":6751,"mess":6752,"supports":6753,"greg":6754,"eagle":6755,"1880":6756,"recovered":6757,"rated":6758,"concerts":6759,"rushed":6760,"##ano":6761,"stops":6762,"eggs":6763,"files":6764,"premiere":6765,"keith":6766,"##vo":6767,"delhi":6768,"turner":6769,"pit":6770,"affair":6771,"belief":6772,"paint":6773,"##zing":6774,"mate":6775,"##ach":6776,"##ev":6777,"victim":6778,"##ology":6779,"withdrew":6780,"bonus":6781,"styles":6782,"fled":6783,"##ud":6784,"glasgow":6785,"technologies":6786,"funded":6787,"nbc":6788,"adaptation":6789,"##ata":6790,"portrayed":6791,"cooperation":6792,"supporters":6793,"judges":6794,"bernard":6795,"justin":6796,"hallway":6797,"ralph":6798,"##ick":6799,"graduating":6800,"controversial":6801,"distant":6802,"continental":6803,"spider":6804,"bite":6805,"##ho":6806,"recognize":6807,"intention":6808,"mixing":6809,"##ese":6810,"egyptian":6811,"bow":6812,"tourism":6813,"suppose":6814,"claiming":6815,"tiger":6816,"dominated":6817,"participants":6818,"vi":6819,"##ru":6820,"nurse":6821,"partially":6822,"tape":6823,"##rum":6824,"psychology":6825,"##rn":6826,"essential":6827,"touring":6828,"duo":6829,"voting":6830,"civilian":6831,"emotional":6832,"channels":6833,"##king":6834,"apparent":6835,"hebrew":6836,"1887":6837,"tommy":6838,"carrier":6839,"intersection":6840,"beast":6841,"hudson":6842,"##gar":6843,"##zo":6844,"lab":6845,"nova":6846,"bench":6847,"discuss":6848,"costa":6849,"##ered":6850,"detailed":6851,"behalf":6852,"drivers":6853,"unfortunately":6854,"obtain":6855,"##lis":6856,"rocky":6857,"##dae":6858,"siege":6859,"friendship":6860,"honey":6861,"##rian":6862,"1861":6863,"amy":6864,"hang":6865,"posted":6866,"governments":6867,"collins":6868,"respond":6869,"wildlife":6870,"preferred":6871,"operator":6872,"##po":6873,"laura":6874,"pregnant":6875,"videos":6876,"dennis":6877,"suspected":6878,"boots":6879,"instantly":6880,"weird":6881,"automatic":6882,"businessman":6883,"alleged":6884,"placing":6885,"throwing":6886,"ph":6887,"mood":6888,"1862":6889,"perry":6890,"venue":6891,"jet":6892,"remainder":6893,"##lli":6894,"##ci":6895,"passion":6896,"biological":6897,"boyfriend":6898,"1863":6899,"dirt":6900,"buffalo":6901,"ron":6902,"segment":6903,"fa":6904,"abuse":6905,"##era":6906,"genre":6907,"thrown":6908,"stroke":6909,"colored":6910,"stress":6911,"exercise":6912,"displayed":6913,"##gen":6914,"struggled":6915,"##tti":6916,"abroad":6917,"dramatic":6918,"wonderful":6919,"thereafter":6920,"madrid":6921,"component":6922,"widespread":6923,"##sed":6924,"tale":6925,"citizen":6926,"todd":6927,"monday":6928,"1886":6929,"vancouver":6930,"overseas":6931,"forcing":6932,"crying":6933,"descent":6934,"##ris":6935,"discussed":6936,"substantial":6937,"ranks":6938,"regime":6939,"1870":6940,"provinces":6941,"switch":6942,"drum":6943,"zane":6944,"ted":6945,"tribes":6946,"proof":6947,"lp":6948,"cream":6949,"researchers":6950,"volunteer":6951,"manor":6952,"silk":6953,"milan":6954,"donated":6955,"allies":6956,"venture":6957,"principle":6958,"delivery":6959,"enterprise":6960,"##ves":6961,"##ans":6962,"bars":6963,"traditionally":6964,"witch":6965,"reminded":6966,"copper":6967,"##uk":6968,"pete":6969,"inter":6970,"links":6971,"colin":6972,"grinned":6973,"elsewhere":6974,"competitive":6975,"frequent":6976,"##oy":6977,"scream":6978,"##hu":6979,"tension":6980,"texts":6981,"submarine":6982,"finnish":6983,"defending":6984,"defend":6985,"pat":6986,"detail":6987,"1884":6988,"affiliated":6989,"stuart":6990,"themes":6991,"villa":6992,"periods":6993,"tool":6994,"belgian":6995,"ruling":6996,"crimes":6997,"answers":6998,"folded":6999,"licensed":7000,"resort":7001,"demolished":7002,"hans":7003,"lucy":7004,"1881":7005,"lion":7006,"traded":7007,"photographs":7008,"writes":7009,"craig":7010,"##fa":7011,"trials":7012,"generated":7013,"beth":7014,"noble":7015,"debt":7016,"percentage":7017,"yorkshire":7018,"erected":7019,"ss":7020,"viewed":7021,"grades":7022,"confidence":7023,"ceased":7024,"islam":7025,"telephone":7026,"retail":7027,"##ible":7028,"chile":7029,"m²":7030,"roberts":7031,"sixteen":7032,"##ich":7033,"commented":7034,"hampshire":7035,"innocent":7036,"dual":7037,"pounds":7038,"checked":7039,"regulations":7040,"afghanistan":7041,"sung":7042,"rico":7043,"liberty":7044,"assets":7045,"bigger":7046,"options":7047,"angels":7048,"relegated":7049,"tribute":7050,"wells":7051,"attending":7052,"leaf":7053,"##yan":7054,"butler":7055,"romanian":7056,"forum":7057,"monthly":7058,"lisa":7059,"patterns":7060,"gmina":7061,"##tory":7062,"madison":7063,"hurricane":7064,"rev":7065,"##ians":7066,"bristol":7067,"##ula":7068,"elite":7069,"valuable":7070,"disaster":7071,"democracy":7072,"awareness":7073,"germans":7074,"freyja":7075,"##ins":7076,"loop":7077,"absolutely":7078,"paying":7079,"populations":7080,"maine":7081,"sole":7082,"prayer":7083,"spencer":7084,"releases":7085,"doorway":7086,"bull":7087,"##ani":7088,"lover":7089,"midnight":7090,"conclusion":7091,"##sson":7092,"thirteen":7093,"lily":7094,"mediterranean":7095,"##lt":7096,"nhl":7097,"proud":7098,"sample":7099,"##hill":7100,"drummer":7101,"guinea":7102,"##ova":7103,"murphy":7104,"climb":7105,"##ston":7106,"instant":7107,"attributed":7108,"horn":7109,"ain":7110,"railways":7111,"steven":7112,"##ao":7113,"autumn":7114,"ferry":7115,"opponent":7116,"root":7117,"traveling":7118,"secured":7119,"corridor":7120,"stretched":7121,"tales":7122,"sheet":7123,"trinity":7124,"cattle":7125,"helps":7126,"indicates":7127,"manhattan":7128,"murdered":7129,"fitted":7130,"1882":7131,"gentle":7132,"grandmother":7133,"mines":7134,"shocked":7135,"vegas":7136,"produces":7137,"##light":7138,"caribbean":7139,"##ou":7140,"belong":7141,"continuous":7142,"desperate":7143,"drunk":7144,"historically":7145,"trio":7146,"waved":7147,"raf":7148,"dealing":7149,"nathan":7150,"bat":7151,"murmured":7152,"interrupted":7153,"residing":7154,"scientist":7155,"pioneer":7156,"harold":7157,"aaron":7158,"##net":7159,"delta":7160,"attempting":7161,"minority":7162,"mini":7163,"believes":7164,"chorus":7165,"tend":7166,"lots":7167,"eyed":7168,"indoor":7169,"load":7170,"shots":7171,"updated":7172,"jail":7173,"##llo":7174,"concerning":7175,"connecting":7176,"wealth":7177,"##ved":7178,"slaves":7179,"arrive":7180,"rangers":7181,"sufficient":7182,"rebuilt":7183,"##wick":7184,"cardinal":7185,"flood":7186,"muhammad":7187,"whenever":7188,"relation":7189,"runners":7190,"moral":7191,"repair":7192,"viewers":7193,"arriving":7194,"revenge":7195,"punk":7196,"assisted":7197,"bath":7198,"fairly":7199,"breathe":7200,"lists":7201,"innings":7202,"illustrated":7203,"whisper":7204,"nearest":7205,"voters":7206,"clinton":7207,"ties":7208,"ultimate":7209,"screamed":7210,"beijing":7211,"lions":7212,"andre":7213,"fictional":7214,"gathering":7215,"comfort":7216,"radar":7217,"suitable":7218,"dismissed":7219,"hms":7220,"ban":7221,"pine":7222,"wrist":7223,"atmosphere":7224,"voivodeship":7225,"bid":7226,"timber":7227,"##ned":7228,"##nan":7229,"giants":7230,"##ane":7231,"cameron":7232,"recovery":7233,"uss":7234,"identical":7235,"categories":7236,"switched":7237,"serbia":7238,"laughter":7239,"noah":7240,"ensemble":7241,"therapy":7242,"peoples":7243,"touching":7244,"##off":7245,"locally":7246,"pearl":7247,"platforms":7248,"everywhere":7249,"ballet":7250,"tables":7251,"lanka":7252,"herbert":7253,"outdoor":7254,"toured":7255,"derek":7256,"1883":7257,"spaces":7258,"contested":7259,"swept":7260,"1878":7261,"exclusive":7262,"slight":7263,"connections":7264,"##dra":7265,"winds":7266,"prisoner":7267,"collective":7268,"bangladesh":7269,"tube":7270,"publicly":7271,"wealthy":7272,"thai":7273,"##ys":7274,"isolated":7275,"select":7276,"##ric":7277,"insisted":7278,"pen":7279,"fortune":7280,"ticket":7281,"spotted":7282,"reportedly":7283,"animation":7284,"enforcement":7285,"tanks":7286,"110":7287,"decides":7288,"wider":7289,"lowest":7290,"owen":7291,"##time":7292,"nod":7293,"hitting":7294,"##hn":7295,"gregory":7296,"furthermore":7297,"magazines":7298,"fighters":7299,"solutions":7300,"##ery":7301,"pointing":7302,"requested":7303,"peru":7304,"reed":7305,"chancellor":7306,"knights":7307,"mask":7308,"worker":7309,"eldest":7310,"flames":7311,"reduction":7312,"1860":7313,"volunteers":7314,"##tis":7315,"reporting":7316,"##hl":7317,"wire":7318,"advisory":7319,"endemic":7320,"origins":7321,"settlers":7322,"pursue":7323,"knock":7324,"consumer":7325,"1876":7326,"eu":7327,"compound":7328,"creatures":7329,"mansion":7330,"sentenced":7331,"ivan":7332,"deployed":7333,"guitars":7334,"frowned":7335,"involves":7336,"mechanism":7337,"kilometers":7338,"perspective":7339,"shops":7340,"maps":7341,"terminus":7342,"duncan":7343,"alien":7344,"fist":7345,"bridges":7346,"##pers":7347,"heroes":7348,"fed":7349,"derby":7350,"swallowed":7351,"##ros":7352,"patent":7353,"sara":7354,"illness":7355,"characterized":7356,"adventures":7357,"slide":7358,"hawaii":7359,"jurisdiction":7360,"##op":7361,"organised":7362,"##side":7363,"adelaide":7364,"walks":7365,"biology":7366,"se":7367,"##ties":7368,"rogers":7369,"swing":7370,"tightly":7371,"boundaries":7372,"##rie":7373,"prepare":7374,"implementation":7375,"stolen":7376,"##sha":7377,"certified":7378,"colombia":7379,"edwards":7380,"garage":7381,"##mm":7382,"recalled":7383,"##ball":7384,"rage":7385,"harm":7386,"nigeria":7387,"breast":7388,"##ren":7389,"furniture":7390,"pupils":7391,"settle":7392,"##lus":7393,"cuba":7394,"balls":7395,"client":7396,"alaska":7397,"21st":7398,"linear":7399,"thrust":7400,"celebration":7401,"latino":7402,"genetic":7403,"terror":7404,"##cia":7405,"##ening":7406,"lightning":7407,"fee":7408,"witness":7409,"lodge":7410,"establishing":7411,"skull":7412,"##ique":7413,"earning":7414,"hood":7415,"##ei":7416,"rebellion":7417,"wang":7418,"sporting":7419,"warned":7420,"missile":7421,"devoted":7422,"activist":7423,"porch":7424,"worship":7425,"fourteen":7426,"package":7427,"1871":7428,"decorated":7429,"##shire":7430,"housed":7431,"##ock":7432,"chess":7433,"sailed":7434,"doctors":7435,"oscar":7436,"joan":7437,"treat":7438,"garcia":7439,"harbour":7440,"jeremy":7441,"##ire":7442,"traditions":7443,"dominant":7444,"jacques":7445,"##gon":7446,"##wan":7447,"relocated":7448,"1879":7449,"amendment":7450,"sized":7451,"companion":7452,"simultaneously":7453,"volleyball":7454,"spun":7455,"acre":7456,"increases":7457,"stopping":7458,"loves":7459,"belongs":7460,"affect":7461,"drafted":7462,"tossed":7463,"scout":7464,"battles":7465,"1875":7466,"filming":7467,"shoved":7468,"munich":7469,"tenure":7470,"vertical":7471,"romance":7472,"pc":7473,"##cher":7474,"argue":7475,"##ical":7476,"craft":7477,"ranging":7478,"www":7479,"opens":7480,"honest":7481,"tyler":7482,"yesterday":7483,"virtual":7484,"##let":7485,"muslims":7486,"reveal":7487,"snake":7488,"immigrants":7489,"radical":7490,"screaming":7491,"speakers":7492,"firing":7493,"saving":7494,"belonging":7495,"ease":7496,"lighting":7497,"prefecture":7498,"blame":7499,"farmer":7500,"hungry":7501,"grows":7502,"rubbed":7503,"beam":7504,"sur":7505,"subsidiary":7506,"##cha":7507,"armenian":7508,"sao":7509,"dropping":7510,"conventional":7511,"##fer":7512,"microsoft":7513,"reply":7514,"qualify":7515,"spots":7516,"1867":7517,"sweat":7518,"festivals":7519,"##ken":7520,"immigration":7521,"physician":7522,"discover":7523,"exposure":7524,"sandy":7525,"explanation":7526,"isaac":7527,"implemented":7528,"##fish":7529,"hart":7530,"initiated":7531,"connect":7532,"stakes":7533,"presents":7534,"heights":7535,"householder":7536,"pleased":7537,"tourist":7538,"regardless":7539,"slip":7540,"closest":7541,"##ction":7542,"surely":7543,"sultan":7544,"brings":7545,"riley":7546,"preparation":7547,"aboard":7548,"slammed":7549,"baptist":7550,"experiment":7551,"ongoing":7552,"interstate":7553,"organic":7554,"playoffs":7555,"##ika":7556,"1877":7557,"130":7558,"##tar":7559,"hindu":7560,"error":7561,"tours":7562,"tier":7563,"plenty":7564,"arrangements":7565,"talks":7566,"trapped":7567,"excited":7568,"sank":7569,"ho":7570,"athens":7571,"1872":7572,"denver":7573,"welfare":7574,"suburb":7575,"athletes":7576,"trick":7577,"diverse":7578,"belly":7579,"exclusively":7580,"yelled":7581,"1868":7582,"##med":7583,"conversion":7584,"##ette":7585,"1874":7586,"internationally":7587,"computers":7588,"conductor":7589,"abilities":7590,"sensitive":7591,"hello":7592,"dispute":7593,"measured":7594,"globe":7595,"rocket":7596,"prices":7597,"amsterdam":7598,"flights":7599,"tigers":7600,"inn":7601,"municipalities":7602,"emotion":7603,"references":7604,"3d":7605,"##mus":7606,"explains":7607,"airlines":7608,"manufactured":7609,"pm":7610,"archaeological":7611,"1873":7612,"interpretation":7613,"devon":7614,"comment":7615,"##ites":7616,"settlements":7617,"kissing":7618,"absolute":7619,"improvement":7620,"suite":7621,"impressed":7622,"barcelona":7623,"sullivan":7624,"jefferson":7625,"towers":7626,"jesse":7627,"julie":7628,"##tin":7629,"##lu":7630,"grandson":7631,"hi":7632,"gauge":7633,"regard":7634,"rings":7635,"interviews":7636,"trace":7637,"raymond":7638,"thumb":7639,"departments":7640,"burns":7641,"serial":7642,"bulgarian":7643,"scores":7644,"demonstrated":7645,"##ix":7646,"1866":7647,"kyle":7648,"alberta":7649,"underneath":7650,"romanized":7651,"##ward":7652,"relieved":7653,"acquisition":7654,"phrase":7655,"cliff":7656,"reveals":7657,"han":7658,"cuts":7659,"merger":7660,"custom":7661,"##dar":7662,"nee":7663,"gilbert":7664,"graduation":7665,"##nts":7666,"assessment":7667,"cafe":7668,"difficulty":7669,"demands":7670,"swung":7671,"democrat":7672,"jennifer":7673,"commons":7674,"1940s":7675,"grove":7676,"##yo":7677,"completing":7678,"focuses":7679,"sum":7680,"substitute":7681,"bearing":7682,"stretch":7683,"reception":7684,"##py":7685,"reflected":7686,"essentially":7687,"destination":7688,"pairs":7689,"##ched":7690,"survival":7691,"resource":7692,"##bach":7693,"promoting":7694,"doubles":7695,"messages":7696,"tear":7697,"##down":7698,"##fully":7699,"parade":7700,"florence":7701,"harvey":7702,"incumbent":7703,"partial":7704,"framework":7705,"900":7706,"pedro":7707,"frozen":7708,"procedure":7709,"olivia":7710,"controls":7711,"##mic":7712,"shelter":7713,"personally":7714,"temperatures":7715,"##od":7716,"brisbane":7717,"tested":7718,"sits":7719,"marble":7720,"comprehensive":7721,"oxygen":7722,"leonard":7723,"##kov":7724,"inaugural":7725,"iranian":7726,"referring":7727,"quarters":7728,"attitude":7729,"##ivity":7730,"mainstream":7731,"lined":7732,"mars":7733,"dakota":7734,"norfolk":7735,"unsuccessful":7736,"##°":7737,"explosion":7738,"helicopter":7739,"congressional":7740,"##sing":7741,"inspector":7742,"bitch":7743,"seal":7744,"departed":7745,"divine":7746,"##ters":7747,"coaching":7748,"examination":7749,"punishment":7750,"manufacturer":7751,"sink":7752,"columns":7753,"unincorporated":7754,"signals":7755,"nevada":7756,"squeezed":7757,"dylan":7758,"dining":7759,"photos":7760,"martial":7761,"manuel":7762,"eighteen":7763,"elevator":7764,"brushed":7765,"plates":7766,"ministers":7767,"ivy":7768,"congregation":7769,"##len":7770,"slept":7771,"specialized":7772,"taxes":7773,"curve":7774,"restricted":7775,"negotiations":7776,"likes":7777,"statistical":7778,"arnold":7779,"inspiration":7780,"execution":7781,"bold":7782,"intermediate":7783,"significance":7784,"margin":7785,"ruler":7786,"wheels":7787,"gothic":7788,"intellectual":7789,"dependent":7790,"listened":7791,"eligible":7792,"buses":7793,"widow":7794,"syria":7795,"earn":7796,"cincinnati":7797,"collapsed":7798,"recipient":7799,"secrets":7800,"accessible":7801,"philippine":7802,"maritime":7803,"goddess":7804,"clerk":7805,"surrender":7806,"breaks":7807,"playoff":7808,"database":7809,"##ified":7810,"##lon":7811,"ideal":7812,"beetle":7813,"aspect":7814,"soap":7815,"regulation":7816,"strings":7817,"expand":7818,"anglo":7819,"shorter":7820,"crosses":7821,"retreat":7822,"tough":7823,"coins":7824,"wallace":7825,"directions":7826,"pressing":7827,"##oon":7828,"shipping":7829,"locomotives":7830,"comparison":7831,"topics":7832,"nephew":7833,"##mes":7834,"distinction":7835,"honors":7836,"travelled":7837,"sierra":7838,"ibn":7839,"##over":7840,"fortress":7841,"sa":7842,"recognised":7843,"carved":7844,"1869":7845,"clients":7846,"##dan":7847,"intent":7848,"##mar":7849,"coaches":7850,"describing":7851,"bread":7852,"##ington":7853,"beaten":7854,"northwestern":7855,"##ona":7856,"merit":7857,"youtube":7858,"collapse":7859,"challenges":7860,"em":7861,"historians":7862,"objective":7863,"submitted":7864,"virus":7865,"attacking":7866,"drake":7867,"assume":7868,"##ere":7869,"diseases":7870,"marc":7871,"stem":7872,"leeds":7873,"##cus":7874,"##ab":7875,"farming":7876,"glasses":7877,"##lock":7878,"visits":7879,"nowhere":7880,"fellowship":7881,"relevant":7882,"carries":7883,"restaurants":7884,"experiments":7885,"101":7886,"constantly":7887,"bases":7888,"targets":7889,"shah":7890,"tenth":7891,"opponents":7892,"verse":7893,"territorial":7894,"##ira":7895,"writings":7896,"corruption":7897,"##hs":7898,"instruction":7899,"inherited":7900,"reverse":7901,"emphasis":7902,"##vic":7903,"employee":7904,"arch":7905,"keeps":7906,"rabbi":7907,"watson":7908,"payment":7909,"uh":7910,"##ala":7911,"nancy":7912,"##tre":7913,"venice":7914,"fastest":7915,"sexy":7916,"banned":7917,"adrian":7918,"properly":7919,"ruth":7920,"touchdown":7921,"dollar":7922,"boards":7923,"metre":7924,"circles":7925,"edges":7926,"favour":7927,"comments":7928,"ok":7929,"travels":7930,"liberation":7931,"scattered":7932,"firmly":7933,"##ular":7934,"holland":7935,"permitted":7936,"diesel":7937,"kenya":7938,"den":7939,"originated":7940,"##ral":7941,"demons":7942,"resumed":7943,"dragged":7944,"rider":7945,"##rus":7946,"servant":7947,"blinked":7948,"extend":7949,"torn":7950,"##ias":7951,"##sey":7952,"input":7953,"meal":7954,"everybody":7955,"cylinder":7956,"kinds":7957,"camps":7958,"##fe":7959,"bullet":7960,"logic":7961,"##wn":7962,"croatian":7963,"evolved":7964,"healthy":7965,"fool":7966,"chocolate":7967,"wise":7968,"preserve":7969,"pradesh":7970,"##ess":7971,"respective":7972,"1850":7973,"##ew":7974,"chicken":7975,"artificial":7976,"gross":7977,"corresponding":7978,"convicted":7979,"cage":7980,"caroline":7981,"dialogue":7982,"##dor":7983,"narrative":7984,"stranger":7985,"mario":7986,"br":7987,"christianity":7988,"failing":7989,"trent":7990,"commanding":7991,"buddhist":7992,"1848":7993,"maurice":7994,"focusing":7995,"yale":7996,"bike":7997,"altitude":7998,"##ering":7999,"mouse":8000,"revised":8001,"##sley":8002,"veteran":8003,"##ig":8004,"pulls":8005,"theology":8006,"crashed":8007,"campaigns":8008,"legion":8009,"##ability":8010,"drag":8011,"excellence":8012,"customer":8013,"cancelled":8014,"intensity":8015,"excuse":8016,"##lar":8017,"liga":8018,"participating":8019,"contributing":8020,"printing":8021,"##burn":8022,"variable":8023,"##rk":8024,"curious":8025,"bin":8026,"legacy":8027,"renaissance":8028,"##my":8029,"symptoms":8030,"binding":8031,"vocalist":8032,"dancer":8033,"##nie":8034,"grammar":8035,"gospel":8036,"democrats":8037,"ya":8038,"enters":8039,"sc":8040,"diplomatic":8041,"hitler":8042,"##ser":8043,"clouds":8044,"mathematical":8045,"quit":8046,"defended":8047,"oriented":8048,"##heim":8049,"fundamental":8050,"hardware":8051,"impressive":8052,"equally":8053,"convince":8054,"confederate":8055,"guilt":8056,"chuck":8057,"sliding":8058,"##ware":8059,"magnetic":8060,"narrowed":8061,"petersburg":8062,"bulgaria":8063,"otto":8064,"phd":8065,"skill":8066,"##ama":8067,"reader":8068,"hopes":8069,"pitcher":8070,"reservoir":8071,"hearts":8072,"automatically":8073,"expecting":8074,"mysterious":8075,"bennett":8076,"extensively":8077,"imagined":8078,"seeds":8079,"monitor":8080,"fix":8081,"##ative":8082,"journalism":8083,"struggling":8084,"signature":8085,"ranch":8086,"encounter":8087,"photographer":8088,"observation":8089,"protests":8090,"##pin":8091,"influences":8092,"##hr":8093,"calendar":8094,"##all":8095,"cruz":8096,"croatia":8097,"locomotive":8098,"hughes":8099,"naturally":8100,"shakespeare":8101,"basement":8102,"hook":8103,"uncredited":8104,"faded":8105,"theories":8106,"approaches":8107,"dare":8108,"phillips":8109,"filling":8110,"fury":8111,"obama":8112,"##ain":8113,"efficient":8114,"arc":8115,"deliver":8116,"min":8117,"raid":8118,"breeding":8119,"inducted":8120,"leagues":8121,"efficiency":8122,"axis":8123,"montana":8124,"eagles":8125,"##ked":8126,"supplied":8127,"instructions":8128,"karen":8129,"picking":8130,"indicating":8131,"trap":8132,"anchor":8133,"practically":8134,"christians":8135,"tomb":8136,"vary":8137,"occasional":8138,"electronics":8139,"lords":8140,"readers":8141,"newcastle":8142,"faint":8143,"innovation":8144,"collect":8145,"situations":8146,"engagement":8147,"160":8148,"claude":8149,"mixture":8150,"##feld":8151,"peer":8152,"tissue":8153,"logo":8154,"lean":8155,"##ration":8156,"°f":8157,"floors":8158,"##ven":8159,"architects":8160,"reducing":8161,"##our":8162,"##ments":8163,"rope":8164,"1859":8165,"ottawa":8166,"##har":8167,"samples":8168,"banking":8169,"declaration":8170,"proteins":8171,"resignation":8172,"francois":8173,"saudi":8174,"advocate":8175,"exhibited":8176,"armor":8177,"twins":8178,"divorce":8179,"##ras":8180,"abraham":8181,"reviewed":8182,"jo":8183,"temporarily":8184,"matrix":8185,"physically":8186,"pulse":8187,"curled":8188,"##ena":8189,"difficulties":8190,"bengal":8191,"usage":8192,"##ban":8193,"annie":8194,"riders":8195,"certificate":8196,"##pi":8197,"holes":8198,"warsaw":8199,"distinctive":8200,"jessica":8201,"##mon":8202,"mutual":8203,"1857":8204,"customs":8205,"circular":8206,"eugene":8207,"removal":8208,"loaded":8209,"mere":8210,"vulnerable":8211,"depicted":8212,"generations":8213,"dame":8214,"heir":8215,"enormous":8216,"lightly":8217,"climbing":8218,"pitched":8219,"lessons":8220,"pilots":8221,"nepal":8222,"ram":8223,"google":8224,"preparing":8225,"brad":8226,"louise":8227,"renowned":8228,"##₂":8229,"liam":8230,"##ably":8231,"plaza":8232,"shaw":8233,"sophie":8234,"brilliant":8235,"bills":8236,"##bar":8237,"##nik":8238,"fucking":8239,"mainland":8240,"server":8241,"pleasant":8242,"seized":8243,"veterans":8244,"jerked":8245,"fail":8246,"beta":8247,"brush":8248,"radiation":8249,"stored":8250,"warmth":8251,"southeastern":8252,"nate":8253,"sin":8254,"raced":8255,"berkeley":8256,"joke":8257,"athlete":8258,"designation":8259,"trunk":8260,"##low":8261,"roland":8262,"qualification":8263,"archives":8264,"heels":8265,"artwork":8266,"receives":8267,"judicial":8268,"reserves":8269,"##bed":8270,"woke":8271,"installation":8272,"abu":8273,"floating":8274,"fake":8275,"lesser":8276,"excitement":8277,"interface":8278,"concentrated":8279,"addressed":8280,"characteristic":8281,"amanda":8282,"saxophone":8283,"monk":8284,"auto":8285,"##bus":8286,"releasing":8287,"egg":8288,"dies":8289,"interaction":8290,"defender":8291,"ce":8292,"outbreak":8293,"glory":8294,"loving":8295,"##bert":8296,"sequel":8297,"consciousness":8298,"http":8299,"awake":8300,"ski":8301,"enrolled":8302,"##ress":8303,"handling":8304,"rookie":8305,"brow":8306,"somebody":8307,"biography":8308,"warfare":8309,"amounts":8310,"contracts":8311,"presentation":8312,"fabric":8313,"dissolved":8314,"challenged":8315,"meter":8316,"psychological":8317,"lt":8318,"elevated":8319,"rally":8320,"accurate":8321,"##tha":8322,"hospitals":8323,"undergraduate":8324,"specialist":8325,"venezuela":8326,"exhibit":8327,"shed":8328,"nursing":8329,"protestant":8330,"fluid":8331,"structural":8332,"footage":8333,"jared":8334,"consistent":8335,"prey":8336,"##ska":8337,"succession":8338,"reflect":8339,"exile":8340,"lebanon":8341,"wiped":8342,"suspect":8343,"shanghai":8344,"resting":8345,"integration":8346,"preservation":8347,"marvel":8348,"variant":8349,"pirates":8350,"sheep":8351,"rounded":8352,"capita":8353,"sailing":8354,"colonies":8355,"manuscript":8356,"deemed":8357,"variations":8358,"clarke":8359,"functional":8360,"emerging":8361,"boxing":8362,"relaxed":8363,"curse":8364,"azerbaijan":8365,"heavyweight":8366,"nickname":8367,"editorial":8368,"rang":8369,"grid":8370,"tightened":8371,"earthquake":8372,"flashed":8373,"miguel":8374,"rushing":8375,"##ches":8376,"improvements":8377,"boxes":8378,"brooks":8379,"180":8380,"consumption":8381,"molecular":8382,"felix":8383,"societies":8384,"repeatedly":8385,"variation":8386,"aids":8387,"civic":8388,"graphics":8389,"professionals":8390,"realm":8391,"autonomous":8392,"receiver":8393,"delayed":8394,"workshop":8395,"militia":8396,"chairs":8397,"trump":8398,"canyon":8399,"##point":8400,"harsh":8401,"extending":8402,"lovely":8403,"happiness":8404,"##jan":8405,"stake":8406,"eyebrows":8407,"embassy":8408,"wellington":8409,"hannah":8410,"##ella":8411,"sony":8412,"corners":8413,"bishops":8414,"swear":8415,"cloth":8416,"contents":8417,"xi":8418,"namely":8419,"commenced":8420,"1854":8421,"stanford":8422,"nashville":8423,"courage":8424,"graphic":8425,"commitment":8426,"garrison":8427,"##bin":8428,"hamlet":8429,"clearing":8430,"rebels":8431,"attraction":8432,"literacy":8433,"cooking":8434,"ruins":8435,"temples":8436,"jenny":8437,"humanity":8438,"celebrate":8439,"hasn":8440,"freight":8441,"sixty":8442,"rebel":8443,"bastard":8444,"##art":8445,"newton":8446,"##ada":8447,"deer":8448,"##ges":8449,"##ching":8450,"smiles":8451,"delaware":8452,"singers":8453,"##ets":8454,"approaching":8455,"assists":8456,"flame":8457,"##ph":8458,"boulevard":8459,"barrel":8460,"planted":8461,"##ome":8462,"pursuit":8463,"##sia":8464,"consequences":8465,"posts":8466,"shallow":8467,"invitation":8468,"rode":8469,"depot":8470,"ernest":8471,"kane":8472,"rod":8473,"concepts":8474,"preston":8475,"topic":8476,"chambers":8477,"striking":8478,"blast":8479,"arrives":8480,"descendants":8481,"montgomery":8482,"ranges":8483,"worlds":8484,"##lay":8485,"##ari":8486,"span":8487,"chaos":8488,"praise":8489,"##ag":8490,"fewer":8491,"1855":8492,"sanctuary":8493,"mud":8494,"fbi":8495,"##ions":8496,"programmes":8497,"maintaining":8498,"unity":8499,"harper":8500,"bore":8501,"handsome":8502,"closure":8503,"tournaments":8504,"thunder":8505,"nebraska":8506,"linda":8507,"facade":8508,"puts":8509,"satisfied":8510,"argentine":8511,"dale":8512,"cork":8513,"dome":8514,"panama":8515,"##yl":8516,"1858":8517,"tasks":8518,"experts":8519,"##ates":8520,"feeding":8521,"equation":8522,"##las":8523,"##ida":8524,"##tu":8525,"engage":8526,"bryan":8527,"##ax":8528,"um":8529,"quartet":8530,"melody":8531,"disbanded":8532,"sheffield":8533,"blocked":8534,"gasped":8535,"delay":8536,"kisses":8537,"maggie":8538,"connects":8539,"##non":8540,"sts":8541,"poured":8542,"creator":8543,"publishers":8544,"##we":8545,"guided":8546,"ellis":8547,"extinct":8548,"hug":8549,"gaining":8550,"##ord":8551,"complicated":8552,"##bility":8553,"poll":8554,"clenched":8555,"investigate":8556,"##use":8557,"thereby":8558,"quantum":8559,"spine":8560,"cdp":8561,"humor":8562,"kills":8563,"administered":8564,"semifinals":8565,"##du":8566,"encountered":8567,"ignore":8568,"##bu":8569,"commentary":8570,"##maker":8571,"bother":8572,"roosevelt":8573,"140":8574,"plains":8575,"halfway":8576,"flowing":8577,"cultures":8578,"crack":8579,"imprisoned":8580,"neighboring":8581,"airline":8582,"##ses":8583,"##view":8584,"##mate":8585,"##ec":8586,"gather":8587,"wolves":8588,"marathon":8589,"transformed":8590,"##ill":8591,"cruise":8592,"organisations":8593,"carol":8594,"punch":8595,"exhibitions":8596,"numbered":8597,"alarm":8598,"ratings":8599,"daddy":8600,"silently":8601,"##stein":8602,"queens":8603,"colours":8604,"impression":8605,"guidance":8606,"liu":8607,"tactical":8608,"##rat":8609,"marshal":8610,"della":8611,"arrow":8612,"##ings":8613,"rested":8614,"feared":8615,"tender":8616,"owns":8617,"bitter":8618,"advisor":8619,"escort":8620,"##ides":8621,"spare":8622,"farms":8623,"grants":8624,"##ene":8625,"dragons":8626,"encourage":8627,"colleagues":8628,"cameras":8629,"##und":8630,"sucked":8631,"pile":8632,"spirits":8633,"prague":8634,"statements":8635,"suspension":8636,"landmark":8637,"fence":8638,"torture":8639,"recreation":8640,"bags":8641,"permanently":8642,"survivors":8643,"pond":8644,"spy":8645,"predecessor":8646,"bombing":8647,"coup":8648,"##og":8649,"protecting":8650,"transformation":8651,"glow":8652,"##lands":8653,"##book":8654,"dug":8655,"priests":8656,"andrea":8657,"feat":8658,"barn":8659,"jumping":8660,"##chen":8661,"##ologist":8662,"##con":8663,"casualties":8664,"stern":8665,"auckland":8666,"pipe":8667,"serie":8668,"revealing":8669,"ba":8670,"##bel":8671,"trevor":8672,"mercy":8673,"spectrum":8674,"yang":8675,"consist":8676,"governing":8677,"collaborated":8678,"possessed":8679,"epic":8680,"comprises":8681,"blew":8682,"shane":8683,"##ack":8684,"lopez":8685,"honored":8686,"magical":8687,"sacrifice":8688,"judgment":8689,"perceived":8690,"hammer":8691,"mtv":8692,"baronet":8693,"tune":8694,"das":8695,"missionary":8696,"sheets":8697,"350":8698,"neutral":8699,"oral":8700,"threatening":8701,"attractive":8702,"shade":8703,"aims":8704,"seminary":8705,"##master":8706,"estates":8707,"1856":8708,"michel":8709,"wounds":8710,"refugees":8711,"manufacturers":8712,"##nic":8713,"mercury":8714,"syndrome":8715,"porter":8716,"##iya":8717,"##din":8718,"hamburg":8719,"identification":8720,"upstairs":8721,"purse":8722,"widened":8723,"pause":8724,"cared":8725,"breathed":8726,"affiliate":8727,"santiago":8728,"prevented":8729,"celtic":8730,"fisher":8731,"125":8732,"recruited":8733,"byzantine":8734,"reconstruction":8735,"farther":8736,"##mp":8737,"diet":8738,"sake":8739,"au":8740,"spite":8741,"sensation":8742,"##ert":8743,"blank":8744,"separation":8745,"105":8746,"##hon":8747,"vladimir":8748,"armies":8749,"anime":8750,"##lie":8751,"accommodate":8752,"orbit":8753,"cult":8754,"sofia":8755,"archive":8756,"##ify":8757,"##box":8758,"founders":8759,"sustained":8760,"disorder":8761,"honours":8762,"northeastern":8763,"mia":8764,"crops":8765,"violet":8766,"threats":8767,"blanket":8768,"fires":8769,"canton":8770,"followers":8771,"southwestern":8772,"prototype":8773,"voyage":8774,"assignment":8775,"altered":8776,"moderate":8777,"protocol":8778,"pistol":8779,"##eo":8780,"questioned":8781,"brass":8782,"lifting":8783,"1852":8784,"math":8785,"authored":8786,"##ual":8787,"doug":8788,"dimensional":8789,"dynamic":8790,"##san":8791,"1851":8792,"pronounced":8793,"grateful":8794,"quest":8795,"uncomfortable":8796,"boom":8797,"presidency":8798,"stevens":8799,"relating":8800,"politicians":8801,"chen":8802,"barrier":8803,"quinn":8804,"diana":8805,"mosque":8806,"tribal":8807,"cheese":8808,"palmer":8809,"portions":8810,"sometime":8811,"chester":8812,"treasure":8813,"wu":8814,"bend":8815,"download":8816,"millions":8817,"reforms":8818,"registration":8819,"##osa":8820,"consequently":8821,"monitoring":8822,"ate":8823,"preliminary":8824,"brandon":8825,"invented":8826,"ps":8827,"eaten":8828,"exterior":8829,"intervention":8830,"ports":8831,"documented":8832,"log":8833,"displays":8834,"lecture":8835,"sally":8836,"favourite":8837,"##itz":8838,"vermont":8839,"lo":8840,"invisible":8841,"isle":8842,"breed":8843,"##ator":8844,"journalists":8845,"relay":8846,"speaks":8847,"backward":8848,"explore":8849,"midfielder":8850,"actively":8851,"stefan":8852,"procedures":8853,"cannon":8854,"blond":8855,"kenneth":8856,"centered":8857,"servants":8858,"chains":8859,"libraries":8860,"malcolm":8861,"essex":8862,"henri":8863,"slavery":8864,"##hal":8865,"facts":8866,"fairy":8867,"coached":8868,"cassie":8869,"cats":8870,"washed":8871,"cop":8872,"##fi":8873,"announcement":8874,"item":8875,"2000s":8876,"vinyl":8877,"activated":8878,"marco":8879,"frontier":8880,"growled":8881,"curriculum":8882,"##das":8883,"loyal":8884,"accomplished":8885,"leslie":8886,"ritual":8887,"kenny":8888,"##00":8889,"vii":8890,"napoleon":8891,"hollow":8892,"hybrid":8893,"jungle":8894,"stationed":8895,"friedrich":8896,"counted":8897,"##ulated":8898,"platinum":8899,"theatrical":8900,"seated":8901,"col":8902,"rubber":8903,"glen":8904,"1840":8905,"diversity":8906,"healing":8907,"extends":8908,"id":8909,"provisions":8910,"administrator":8911,"columbus":8912,"##oe":8913,"tributary":8914,"te":8915,"assured":8916,"org":8917,"##uous":8918,"prestigious":8919,"examined":8920,"lectures":8921,"grammy":8922,"ronald":8923,"associations":8924,"bailey":8925,"allan":8926,"essays":8927,"flute":8928,"believing":8929,"consultant":8930,"proceedings":8931,"travelling":8932,"1853":8933,"kit":8934,"kerala":8935,"yugoslavia":8936,"buddy":8937,"methodist":8938,"##ith":8939,"burial":8940,"centres":8941,"batman":8942,"##nda":8943,"discontinued":8944,"bo":8945,"dock":8946,"stockholm":8947,"lungs":8948,"severely":8949,"##nk":8950,"citing":8951,"manga":8952,"##ugh":8953,"steal":8954,"mumbai":8955,"iraqi":8956,"robot":8957,"celebrity":8958,"bride":8959,"broadcasts":8960,"abolished":8961,"pot":8962,"joel":8963,"overhead":8964,"franz":8965,"packed":8966,"reconnaissance":8967,"johann":8968,"acknowledged":8969,"introduce":8970,"handled":8971,"doctorate":8972,"developments":8973,"drinks":8974,"alley":8975,"palestine":8976,"##nis":8977,"##aki":8978,"proceeded":8979,"recover":8980,"bradley":8981,"grain":8982,"patch":8983,"afford":8984,"infection":8985,"nationalist":8986,"legendary":8987,"##ath":8988,"interchange":8989,"virtually":8990,"gen":8991,"gravity":8992,"exploration":8993,"amber":8994,"vital":8995,"wishes":8996,"powell":8997,"doctrine":8998,"elbow":8999,"screenplay":9000,"##bird":9001,"contribute":9002,"indonesian":9003,"pet":9004,"creates":9005,"##com":9006,"enzyme":9007,"kylie":9008,"discipline":9009,"drops":9010,"manila":9011,"hunger":9012,"##ien":9013,"layers":9014,"suffer":9015,"fever":9016,"bits":9017,"monica":9018,"keyboard":9019,"manages":9020,"##hood":9021,"searched":9022,"appeals":9023,"##bad":9024,"testament":9025,"grande":9026,"reid":9027,"##war":9028,"beliefs":9029,"congo":9030,"##ification":9031,"##dia":9032,"si":9033,"requiring":9034,"##via":9035,"casey":9036,"1849":9037,"regret":9038,"streak":9039,"rape":9040,"depends":9041,"syrian":9042,"sprint":9043,"pound":9044,"tourists":9045,"upcoming":9046,"pub":9047,"##xi":9048,"tense":9049,"##els":9050,"practiced":9051,"echo":9052,"nationwide":9053,"guild":9054,"motorcycle":9055,"liz":9056,"##zar":9057,"chiefs":9058,"desired":9059,"elena":9060,"bye":9061,"precious":9062,"absorbed":9063,"relatives":9064,"booth":9065,"pianist":9066,"##mal":9067,"citizenship":9068,"exhausted":9069,"wilhelm":9070,"##ceae":9071,"##hed":9072,"noting":9073,"quarterback":9074,"urge":9075,"hectares":9076,"##gue":9077,"ace":9078,"holly":9079,"##tal":9080,"blonde":9081,"davies":9082,"parked":9083,"sustainable":9084,"stepping":9085,"twentieth":9086,"airfield":9087,"galaxy":9088,"nest":9089,"chip":9090,"##nell":9091,"tan":9092,"shaft":9093,"paulo":9094,"requirement":9095,"##zy":9096,"paradise":9097,"tobacco":9098,"trans":9099,"renewed":9100,"vietnamese":9101,"##cker":9102,"##ju":9103,"suggesting":9104,"catching":9105,"holmes":9106,"enjoying":9107,"md":9108,"trips":9109,"colt":9110,"holder":9111,"butterfly":9112,"nerve":9113,"reformed":9114,"cherry":9115,"bowling":9116,"trailer":9117,"carriage":9118,"goodbye":9119,"appreciate":9120,"toy":9121,"joshua":9122,"interactive":9123,"enabled":9124,"involve":9125,"##kan":9126,"collar":9127,"determination":9128,"bunch":9129,"facebook":9130,"recall":9131,"shorts":9132,"superintendent":9133,"episcopal":9134,"frustration":9135,"giovanni":9136,"nineteenth":9137,"laser":9138,"privately":9139,"array":9140,"circulation":9141,"##ovic":9142,"armstrong":9143,"deals":9144,"painful":9145,"permit":9146,"discrimination":9147,"##wi":9148,"aires":9149,"retiring":9150,"cottage":9151,"ni":9152,"##sta":9153,"horizon":9154,"ellen":9155,"jamaica":9156,"ripped":9157,"fernando":9158,"chapters":9159,"playstation":9160,"patron":9161,"lecturer":9162,"navigation":9163,"behaviour":9164,"genes":9165,"georgian":9166,"export":9167,"solomon":9168,"rivals":9169,"swift":9170,"seventeen":9171,"rodriguez":9172,"princeton":9173,"independently":9174,"sox":9175,"1847":9176,"arguing":9177,"entity":9178,"casting":9179,"hank":9180,"criteria":9181,"oakland":9182,"geographic":9183,"milwaukee":9184,"reflection":9185,"expanding":9186,"conquest":9187,"dubbed":9188,"##tv":9189,"halt":9190,"brave":9191,"brunswick":9192,"doi":9193,"arched":9194,"curtis":9195,"divorced":9196,"predominantly":9197,"somerset":9198,"streams":9199,"ugly":9200,"zoo":9201,"horrible":9202,"curved":9203,"buenos":9204,"fierce":9205,"dictionary":9206,"vector":9207,"theological":9208,"unions":9209,"handful":9210,"stability":9211,"chan":9212,"punjab":9213,"segments":9214,"##lly":9215,"altar":9216,"ignoring":9217,"gesture":9218,"monsters":9219,"pastor":9220,"##stone":9221,"thighs":9222,"unexpected":9223,"operators":9224,"abruptly":9225,"coin":9226,"compiled":9227,"associates":9228,"improving":9229,"migration":9230,"pin":9231,"##ose":9232,"compact":9233,"collegiate":9234,"reserved":9235,"##urs":9236,"quarterfinals":9237,"roster":9238,"restore":9239,"assembled":9240,"hurry":9241,"oval":9242,"##cies":9243,"1846":9244,"flags":9245,"martha":9246,"##del":9247,"victories":9248,"sharply":9249,"##rated":9250,"argues":9251,"deadly":9252,"neo":9253,"drawings":9254,"symbols":9255,"performer":9256,"##iel":9257,"griffin":9258,"restrictions":9259,"editing":9260,"andrews":9261,"java":9262,"journals":9263,"arabia":9264,"compositions":9265,"dee":9266,"pierce":9267,"removing":9268,"hindi":9269,"casino":9270,"runway":9271,"civilians":9272,"minds":9273,"nasa":9274,"hotels":9275,"##zation":9276,"refuge":9277,"rent":9278,"retain":9279,"potentially":9280,"conferences":9281,"suburban":9282,"conducting":9283,"##tto":9284,"##tions":9285,"##tle":9286,"descended":9287,"massacre":9288,"##cal":9289,"ammunition":9290,"terrain":9291,"fork":9292,"souls":9293,"counts":9294,"chelsea":9295,"durham":9296,"drives":9297,"cab":9298,"##bank":9299,"perth":9300,"realizing":9301,"palestinian":9302,"finn":9303,"simpson":9304,"##dal":9305,"betty":9306,"##ule":9307,"moreover":9308,"particles":9309,"cardinals":9310,"tent":9311,"evaluation":9312,"extraordinary":9313,"##oid":9314,"inscription":9315,"##works":9316,"wednesday":9317,"chloe":9318,"maintains":9319,"panels":9320,"ashley":9321,"trucks":9322,"##nation":9323,"cluster":9324,"sunlight":9325,"strikes":9326,"zhang":9327,"##wing":9328,"dialect":9329,"canon":9330,"##ap":9331,"tucked":9332,"##ws":9333,"collecting":9334,"##mas":9335,"##can":9336,"##sville":9337,"maker":9338,"quoted":9339,"evan":9340,"franco":9341,"aria":9342,"buying":9343,"cleaning":9344,"eva":9345,"closet":9346,"provision":9347,"apollo":9348,"clinic":9349,"rat":9350,"##ez":9351,"necessarily":9352,"ac":9353,"##gle":9354,"##ising":9355,"venues":9356,"flipped":9357,"cent":9358,"spreading":9359,"trustees":9360,"checking":9361,"authorized":9362,"##sco":9363,"disappointed":9364,"##ado":9365,"notion":9366,"duration":9367,"trumpet":9368,"hesitated":9369,"topped":9370,"brussels":9371,"rolls":9372,"theoretical":9373,"hint":9374,"define":9375,"aggressive":9376,"repeat":9377,"wash":9378,"peaceful":9379,"optical":9380,"width":9381,"allegedly":9382,"mcdonald":9383,"strict":9384,"copyright":9385,"##illa":9386,"investors":9387,"mar":9388,"jam":9389,"witnesses":9390,"sounding":9391,"miranda":9392,"michelle":9393,"privacy":9394,"hugo":9395,"harmony":9396,"##pp":9397,"valid":9398,"lynn":9399,"glared":9400,"nina":9401,"102":9402,"headquartered":9403,"diving":9404,"boarding":9405,"gibson":9406,"##ncy":9407,"albanian":9408,"marsh":9409,"routine":9410,"dealt":9411,"enhanced":9412,"er":9413,"intelligent":9414,"substance":9415,"targeted":9416,"enlisted":9417,"discovers":9418,"spinning":9419,"observations":9420,"pissed":9421,"smoking":9422,"rebecca":9423,"capitol":9424,"visa":9425,"varied":9426,"costume":9427,"seemingly":9428,"indies":9429,"compensation":9430,"surgeon":9431,"thursday":9432,"arsenal":9433,"westminster":9434,"suburbs":9435,"rid":9436,"anglican":9437,"##ridge":9438,"knots":9439,"foods":9440,"alumni":9441,"lighter":9442,"fraser":9443,"whoever":9444,"portal":9445,"scandal":9446,"##ray":9447,"gavin":9448,"advised":9449,"instructor":9450,"flooding":9451,"terrorist":9452,"##ale":9453,"teenage":9454,"interim":9455,"senses":9456,"duck":9457,"teen":9458,"thesis":9459,"abby":9460,"eager":9461,"overcome":9462,"##ile":9463,"newport":9464,"glenn":9465,"rises":9466,"shame":9467,"##cc":9468,"prompted":9469,"priority":9470,"forgot":9471,"bomber":9472,"nicolas":9473,"protective":9474,"360":9475,"cartoon":9476,"katherine":9477,"breeze":9478,"lonely":9479,"trusted":9480,"henderson":9481,"richardson":9482,"relax":9483,"banner":9484,"candy":9485,"palms":9486,"remarkable":9487,"##rio":9488,"legends":9489,"cricketer":9490,"essay":9491,"ordained":9492,"edmund":9493,"rifles":9494,"trigger":9495,"##uri":9496,"##away":9497,"sail":9498,"alert":9499,"1830":9500,"audiences":9501,"penn":9502,"sussex":9503,"siblings":9504,"pursued":9505,"indianapolis":9506,"resist":9507,"rosa":9508,"consequence":9509,"succeed":9510,"avoided":9511,"1845":9512,"##ulation":9513,"inland":9514,"##tie":9515,"##nna":9516,"counsel":9517,"profession":9518,"chronicle":9519,"hurried":9520,"##una":9521,"eyebrow":9522,"eventual":9523,"bleeding":9524,"innovative":9525,"cure":9526,"##dom":9527,"committees":9528,"accounting":9529,"con":9530,"scope":9531,"hardy":9532,"heather":9533,"tenor":9534,"gut":9535,"herald":9536,"codes":9537,"tore":9538,"scales":9539,"wagon":9540,"##oo":9541,"luxury":9542,"tin":9543,"prefer":9544,"fountain":9545,"triangle":9546,"bonds":9547,"darling":9548,"convoy":9549,"dried":9550,"traced":9551,"beings":9552,"troy":9553,"accidentally":9554,"slam":9555,"findings":9556,"smelled":9557,"joey":9558,"lawyers":9559,"outcome":9560,"steep":9561,"bosnia":9562,"configuration":9563,"shifting":9564,"toll":9565,"brook":9566,"performers":9567,"lobby":9568,"philosophical":9569,"construct":9570,"shrine":9571,"aggregate":9572,"boot":9573,"cox":9574,"phenomenon":9575,"savage":9576,"insane":9577,"solely":9578,"reynolds":9579,"lifestyle":9580,"##ima":9581,"nationally":9582,"holdings":9583,"consideration":9584,"enable":9585,"edgar":9586,"mo":9587,"mama":9588,"##tein":9589,"fights":9590,"relegation":9591,"chances":9592,"atomic":9593,"hub":9594,"conjunction":9595,"awkward":9596,"reactions":9597,"currency":9598,"finale":9599,"kumar":9600,"underwent":9601,"steering":9602,"elaborate":9603,"gifts":9604,"comprising":9605,"melissa":9606,"veins":9607,"reasonable":9608,"sunshine":9609,"chi":9610,"solve":9611,"trails":9612,"inhabited":9613,"elimination":9614,"ethics":9615,"huh":9616,"ana":9617,"molly":9618,"consent":9619,"apartments":9620,"layout":9621,"marines":9622,"##ces":9623,"hunters":9624,"bulk":9625,"##oma":9626,"hometown":9627,"##wall":9628,"##mont":9629,"cracked":9630,"reads":9631,"neighbouring":9632,"withdrawn":9633,"admission":9634,"wingspan":9635,"damned":9636,"anthology":9637,"lancashire":9638,"brands":9639,"batting":9640,"forgive":9641,"cuban":9642,"awful":9643,"##lyn":9644,"104":9645,"dimensions":9646,"imagination":9647,"##ade":9648,"dante":9649,"##ship":9650,"tracking":9651,"desperately":9652,"goalkeeper":9653,"##yne":9654,"groaned":9655,"workshops":9656,"confident":9657,"burton":9658,"gerald":9659,"milton":9660,"circus":9661,"uncertain":9662,"slope":9663,"copenhagen":9664,"sophia":9665,"fog":9666,"philosopher":9667,"portraits":9668,"accent":9669,"cycling":9670,"varying":9671,"gripped":9672,"larvae":9673,"garrett":9674,"specified":9675,"scotia":9676,"mature":9677,"luther":9678,"kurt":9679,"rap":9680,"##kes":9681,"aerial":9682,"750":9683,"ferdinand":9684,"heated":9685,"es":9686,"transported":9687,"##shan":9688,"safely":9689,"nonetheless":9690,"##orn":9691,"##gal":9692,"motors":9693,"demanding":9694,"##sburg":9695,"startled":9696,"##brook":9697,"ally":9698,"generate":9699,"caps":9700,"ghana":9701,"stained":9702,"demo":9703,"mentions":9704,"beds":9705,"ap":9706,"afterward":9707,"diary":9708,"##bling":9709,"utility":9710,"##iro":9711,"richards":9712,"1837":9713,"conspiracy":9714,"conscious":9715,"shining":9716,"footsteps":9717,"observer":9718,"cyprus":9719,"urged":9720,"loyalty":9721,"developer":9722,"probability":9723,"olive":9724,"upgraded":9725,"gym":9726,"miracle":9727,"insects":9728,"graves":9729,"1844":9730,"ourselves":9731,"hydrogen":9732,"amazon":9733,"katie":9734,"tickets":9735,"poets":9736,"##pm":9737,"planes":9738,"##pan":9739,"prevention":9740,"witnessed":9741,"dense":9742,"jin":9743,"randy":9744,"tang":9745,"warehouse":9746,"monroe":9747,"bang":9748,"archived":9749,"elderly":9750,"investigations":9751,"alec":9752,"granite":9753,"mineral":9754,"conflicts":9755,"controlling":9756,"aboriginal":9757,"carlo":9758,"##zu":9759,"mechanics":9760,"stan":9761,"stark":9762,"rhode":9763,"skirt":9764,"est":9765,"##berry":9766,"bombs":9767,"respected":9768,"##horn":9769,"imposed":9770,"limestone":9771,"deny":9772,"nominee":9773,"memphis":9774,"grabbing":9775,"disabled":9776,"##als":9777,"amusement":9778,"aa":9779,"frankfurt":9780,"corn":9781,"referendum":9782,"varies":9783,"slowed":9784,"disk":9785,"firms":9786,"unconscious":9787,"incredible":9788,"clue":9789,"sue":9790,"##zhou":9791,"twist":9792,"##cio":9793,"joins":9794,"idaho":9795,"chad":9796,"developers":9797,"computing":9798,"destroyer":9799,"103":9800,"mortal":9801,"tucker":9802,"kingston":9803,"choices":9804,"yu":9805,"carson":9806,"1800":9807,"os":9808,"whitney":9809,"geneva":9810,"pretend":9811,"dimension":9812,"staged":9813,"plateau":9814,"maya":9815,"##une":9816,"freestyle":9817,"##bc":9818,"rovers":9819,"hiv":9820,"##ids":9821,"tristan":9822,"classroom":9823,"prospect":9824,"##hus":9825,"honestly":9826,"diploma":9827,"lied":9828,"thermal":9829,"auxiliary":9830,"feast":9831,"unlikely":9832,"iata":9833,"##tel":9834,"morocco":9835,"pounding":9836,"treasury":9837,"lithuania":9838,"considerably":9839,"1841":9840,"dish":9841,"1812":9842,"geological":9843,"matching":9844,"stumbled":9845,"destroying":9846,"marched":9847,"brien":9848,"advances":9849,"cake":9850,"nicole":9851,"belle":9852,"settling":9853,"measuring":9854,"directing":9855,"##mie":9856,"tuesday":9857,"bassist":9858,"capabilities":9859,"stunned":9860,"fraud":9861,"torpedo":9862,"##list":9863,"##phone":9864,"anton":9865,"wisdom":9866,"surveillance":9867,"ruined":9868,"##ulate":9869,"lawsuit":9870,"healthcare":9871,"theorem":9872,"halls":9873,"trend":9874,"aka":9875,"horizontal":9876,"dozens":9877,"acquire":9878,"lasting":9879,"swim":9880,"hawk":9881,"gorgeous":9882,"fees":9883,"vicinity":9884,"decrease":9885,"adoption":9886,"tactics":9887,"##ography":9888,"pakistani":9889,"##ole":9890,"draws":9891,"##hall":9892,"willie":9893,"burke":9894,"heath":9895,"algorithm":9896,"integral":9897,"powder":9898,"elliott":9899,"brigadier":9900,"jackie":9901,"tate":9902,"varieties":9903,"darker":9904,"##cho":9905,"lately":9906,"cigarette":9907,"specimens":9908,"adds":9909,"##ree":9910,"##ensis":9911,"##inger":9912,"exploded":9913,"finalist":9914,"cia":9915,"murders":9916,"wilderness":9917,"arguments":9918,"nicknamed":9919,"acceptance":9920,"onwards":9921,"manufacture":9922,"robertson":9923,"jets":9924,"tampa":9925,"enterprises":9926,"blog":9927,"loudly":9928,"composers":9929,"nominations":9930,"1838":9931,"ai":9932,"malta":9933,"inquiry":9934,"automobile":9935,"hosting":9936,"viii":9937,"rays":9938,"tilted":9939,"grief":9940,"museums":9941,"strategies":9942,"furious":9943,"euro":9944,"equality":9945,"cohen":9946,"poison":9947,"surrey":9948,"wireless":9949,"governed":9950,"ridiculous":9951,"moses":9952,"##esh":9953,"##room":9954,"vanished":9955,"##ito":9956,"barnes":9957,"attract":9958,"morrison":9959,"istanbul":9960,"##iness":9961,"absent":9962,"rotation":9963,"petition":9964,"janet":9965,"##logical":9966,"satisfaction":9967,"custody":9968,"deliberately":9969,"observatory":9970,"comedian":9971,"surfaces":9972,"pinyin":9973,"novelist":9974,"strictly":9975,"canterbury":9976,"oslo":9977,"monks":9978,"embrace":9979,"ibm":9980,"jealous":9981,"photograph":9982,"continent":9983,"dorothy":9984,"marina":9985,"doc":9986,"excess":9987,"holden":9988,"allegations":9989,"explaining":9990,"stack":9991,"avoiding":9992,"lance":9993,"storyline":9994,"majesty":9995,"poorly":9996,"spike":9997,"dos":9998,"bradford":9999,"raven":10000,"travis":10001,"classics":10002,"proven":10003,"voltage":10004,"pillow":10005,"fists":10006,"butt":10007,"1842":10008,"interpreted":10009,"##car":10010,"1839":10011,"gage":10012,"telegraph":10013,"lens":10014,"promising":10015,"expelled":10016,"casual":10017,"collector":10018,"zones":10019,"##min":10020,"silly":10021,"nintendo":10022,"##kh":10023,"##bra":10024,"downstairs":10025,"chef":10026,"suspicious":10027,"afl":10028,"flies":10029,"vacant":10030,"uganda":10031,"pregnancy":10032,"condemned":10033,"lutheran":10034,"estimates":10035,"cheap":10036,"decree":10037,"saxon":10038,"proximity":10039,"stripped":10040,"idiot":10041,"deposits":10042,"contrary":10043,"presenter":10044,"magnus":10045,"glacier":10046,"im":10047,"offense":10048,"edwin":10049,"##ori":10050,"upright":10051,"##long":10052,"bolt":10053,"##ois":10054,"toss":10055,"geographical":10056,"##izes":10057,"environments":10058,"delicate":10059,"marking":10060,"abstract":10061,"xavier":10062,"nails":10063,"windsor":10064,"plantation":10065,"occurring":10066,"equity":10067,"saskatchewan":10068,"fears":10069,"drifted":10070,"sequences":10071,"vegetation":10072,"revolt":10073,"##stic":10074,"1843":10075,"sooner":10076,"fusion":10077,"opposing":10078,"nato":10079,"skating":10080,"1836":10081,"secretly":10082,"ruin":10083,"lease":10084,"##oc":10085,"edit":10086,"##nne":10087,"flora":10088,"anxiety":10089,"ruby":10090,"##ological":10091,"##mia":10092,"tel":10093,"bout":10094,"taxi":10095,"emmy":10096,"frost":10097,"rainbow":10098,"compounds":10099,"foundations":10100,"rainfall":10101,"assassination":10102,"nightmare":10103,"dominican":10104,"##win":10105,"achievements":10106,"deserve":10107,"orlando":10108,"intact":10109,"armenia":10110,"##nte":10111,"calgary":10112,"valentine":10113,"106":10114,"marion":10115,"proclaimed":10116,"theodore":10117,"bells":10118,"courtyard":10119,"thigh":10120,"gonzalez":10121,"console":10122,"troop":10123,"minimal":10124,"monte":10125,"everyday":10126,"##ence":10127,"##if":10128,"supporter":10129,"terrorism":10130,"buck":10131,"openly":10132,"presbyterian":10133,"activists":10134,"carpet":10135,"##iers":10136,"rubbing":10137,"uprising":10138,"##yi":10139,"cute":10140,"conceived":10141,"legally":10142,"##cht":10143,"millennium":10144,"cello":10145,"velocity":10146,"ji":10147,"rescued":10148,"cardiff":10149,"1835":10150,"rex":10151,"concentrate":10152,"senators":10153,"beard":10154,"rendered":10155,"glowing":10156,"battalions":10157,"scouts":10158,"competitors":10159,"sculptor":10160,"catalogue":10161,"arctic":10162,"ion":10163,"raja":10164,"bicycle":10165,"wow":10166,"glancing":10167,"lawn":10168,"##woman":10169,"gentleman":10170,"lighthouse":10171,"publish":10172,"predicted":10173,"calculated":10174,"##val":10175,"variants":10176,"##gne":10177,"strain":10178,"##ui":10179,"winston":10180,"deceased":10181,"##nus":10182,"touchdowns":10183,"brady":10184,"caleb":10185,"sinking":10186,"echoed":10187,"crush":10188,"hon":10189,"blessed":10190,"protagonist":10191,"hayes":10192,"endangered":10193,"magnitude":10194,"editors":10195,"##tine":10196,"estimate":10197,"responsibilities":10198,"##mel":10199,"backup":10200,"laying":10201,"consumed":10202,"sealed":10203,"zurich":10204,"lovers":10205,"frustrated":10206,"##eau":10207,"ahmed":10208,"kicking":10209,"mit":10210,"treasurer":10211,"1832":10212,"biblical":10213,"refuse":10214,"terrified":10215,"pump":10216,"agrees":10217,"genuine":10218,"imprisonment":10219,"refuses":10220,"plymouth":10221,"##hen":10222,"lou":10223,"##nen":10224,"tara":10225,"trembling":10226,"antarctic":10227,"ton":10228,"learns":10229,"##tas":10230,"crap":10231,"crucial":10232,"faction":10233,"atop":10234,"##borough":10235,"wrap":10236,"lancaster":10237,"odds":10238,"hopkins":10239,"erik":10240,"lyon":10241,"##eon":10242,"bros":10243,"##ode":10244,"snap":10245,"locality":10246,"tips":10247,"empress":10248,"crowned":10249,"cal":10250,"acclaimed":10251,"chuckled":10252,"##ory":10253,"clara":10254,"sends":10255,"mild":10256,"towel":10257,"##fl":10258,"##day":10259,"##а":10260,"wishing":10261,"assuming":10262,"interviewed":10263,"##bal":10264,"##die":10265,"interactions":10266,"eden":10267,"cups":10268,"helena":10269,"##lf":10270,"indie":10271,"beck":10272,"##fire":10273,"batteries":10274,"filipino":10275,"wizard":10276,"parted":10277,"##lam":10278,"traces":10279,"##born":10280,"rows":10281,"idol":10282,"albany":10283,"delegates":10284,"##ees":10285,"##sar":10286,"discussions":10287,"##ex":10288,"notre":10289,"instructed":10290,"belgrade":10291,"highways":10292,"suggestion":10293,"lauren":10294,"possess":10295,"orientation":10296,"alexandria":10297,"abdul":10298,"beats":10299,"salary":10300,"reunion":10301,"ludwig":10302,"alright":10303,"wagner":10304,"intimate":10305,"pockets":10306,"slovenia":10307,"hugged":10308,"brighton":10309,"merchants":10310,"cruel":10311,"stole":10312,"trek":10313,"slopes":10314,"repairs":10315,"enrollment":10316,"politically":10317,"underlying":10318,"promotional":10319,"counting":10320,"boeing":10321,"##bb":10322,"isabella":10323,"naming":10324,"##и":10325,"keen":10326,"bacteria":10327,"listing":10328,"separately":10329,"belfast":10330,"ussr":10331,"450":10332,"lithuanian":10333,"anybody":10334,"ribs":10335,"sphere":10336,"martinez":10337,"cock":10338,"embarrassed":10339,"proposals":10340,"fragments":10341,"nationals":10342,"##fs":10343,"##wski":10344,"premises":10345,"fin":10346,"1500":10347,"alpine":10348,"matched":10349,"freely":10350,"bounded":10351,"jace":10352,"sleeve":10353,"##af":10354,"gaming":10355,"pier":10356,"populated":10357,"evident":10358,"##like":10359,"frances":10360,"flooded":10361,"##dle":10362,"frightened":10363,"pour":10364,"trainer":10365,"framed":10366,"visitor":10367,"challenging":10368,"pig":10369,"wickets":10370,"##fold":10371,"infected":10372,"email":10373,"##pes":10374,"arose":10375,"##aw":10376,"reward":10377,"ecuador":10378,"oblast":10379,"vale":10380,"ch":10381,"shuttle":10382,"##usa":10383,"bach":10384,"rankings":10385,"forbidden":10386,"cornwall":10387,"accordance":10388,"salem":10389,"consumers":10390,"bruno":10391,"fantastic":10392,"toes":10393,"machinery":10394,"resolved":10395,"julius":10396,"remembering":10397,"propaganda":10398,"iceland":10399,"bombardment":10400,"tide":10401,"contacts":10402,"wives":10403,"##rah":10404,"concerto":10405,"macdonald":10406,"albania":10407,"implement":10408,"daisy":10409,"tapped":10410,"sudan":10411,"helmet":10412,"angela":10413,"mistress":10414,"##lic":10415,"crop":10416,"sunk":10417,"finest":10418,"##craft":10419,"hostile":10420,"##ute":10421,"##tsu":10422,"boxer":10423,"fr":10424,"paths":10425,"adjusted":10426,"habit":10427,"ballot":10428,"supervision":10429,"soprano":10430,"##zen":10431,"bullets":10432,"wicked":10433,"sunset":10434,"regiments":10435,"disappear":10436,"lamp":10437,"performs":10438,"app":10439,"##gia":10440,"##oa":10441,"rabbit":10442,"digging":10443,"incidents":10444,"entries":10445,"##cion":10446,"dishes":10447,"##oi":10448,"introducing":10449,"##ati":10450,"##fied":10451,"freshman":10452,"slot":10453,"jill":10454,"tackles":10455,"baroque":10456,"backs":10457,"##iest":10458,"lone":10459,"sponsor":10460,"destiny":10461,"altogether":10462,"convert":10463,"##aro":10464,"consensus":10465,"shapes":10466,"demonstration":10467,"basically":10468,"feminist":10469,"auction":10470,"artifacts":10471,"##bing":10472,"strongest":10473,"twitter":10474,"halifax":10475,"2019":10476,"allmusic":10477,"mighty":10478,"smallest":10479,"precise":10480,"alexandra":10481,"viola":10482,"##los":10483,"##ille":10484,"manuscripts":10485,"##illo":10486,"dancers":10487,"ari":10488,"managers":10489,"monuments":10490,"blades":10491,"barracks":10492,"springfield":10493,"maiden":10494,"consolidated":10495,"electron":10496,"##end":10497,"berry":10498,"airing":10499,"wheat":10500,"nobel":10501,"inclusion":10502,"blair":10503,"payments":10504,"geography":10505,"bee":10506,"cc":10507,"eleanor":10508,"react":10509,"##hurst":10510,"afc":10511,"manitoba":10512,"##yu":10513,"su":10514,"lineup":10515,"fitness":10516,"recreational":10517,"investments":10518,"airborne":10519,"disappointment":10520,"##dis":10521,"edmonton":10522,"viewing":10523,"##row":10524,"renovation":10525,"##cast":10526,"infant":10527,"bankruptcy":10528,"roses":10529,"aftermath":10530,"pavilion":10531,"##yer":10532,"carpenter":10533,"withdrawal":10534,"ladder":10535,"##hy":10536,"discussing":10537,"popped":10538,"reliable":10539,"agreements":10540,"rochester":10541,"##abad":10542,"curves":10543,"bombers":10544,"220":10545,"rao":10546,"reverend":10547,"decreased":10548,"choosing":10549,"107":10550,"stiff":10551,"consulting":10552,"naples":10553,"crawford":10554,"tracy":10555,"ka":10556,"ribbon":10557,"cops":10558,"##lee":10559,"crushed":10560,"deciding":10561,"unified":10562,"teenager":10563,"accepting":10564,"flagship":10565,"explorer":10566,"poles":10567,"sanchez":10568,"inspection":10569,"revived":10570,"skilled":10571,"induced":10572,"exchanged":10573,"flee":10574,"locals":10575,"tragedy":10576,"swallow":10577,"loading":10578,"hanna":10579,"demonstrate":10580,"##ela":10581,"salvador":10582,"flown":10583,"contestants":10584,"civilization":10585,"##ines":10586,"wanna":10587,"rhodes":10588,"fletcher":10589,"hector":10590,"knocking":10591,"considers":10592,"##ough":10593,"nash":10594,"mechanisms":10595,"sensed":10596,"mentally":10597,"walt":10598,"unclear":10599,"##eus":10600,"renovated":10601,"madame":10602,"##cks":10603,"crews":10604,"governmental":10605,"##hin":10606,"undertaken":10607,"monkey":10608,"##ben":10609,"##ato":10610,"fatal":10611,"armored":10612,"copa":10613,"caves":10614,"governance":10615,"grasp":10616,"perception":10617,"certification":10618,"froze":10619,"damp":10620,"tugged":10621,"wyoming":10622,"##rg":10623,"##ero":10624,"newman":10625,"##lor":10626,"nerves":10627,"curiosity":10628,"graph":10629,"115":10630,"##ami":10631,"withdraw":10632,"tunnels":10633,"dull":10634,"meredith":10635,"moss":10636,"exhibits":10637,"neighbors":10638,"communicate":10639,"accuracy":10640,"explored":10641,"raiders":10642,"republicans":10643,"secular":10644,"kat":10645,"superman":10646,"penny":10647,"criticised":10648,"##tch":10649,"freed":10650,"update":10651,"conviction":10652,"wade":10653,"ham":10654,"likewise":10655,"delegation":10656,"gotta":10657,"doll":10658,"promises":10659,"technological":10660,"myth":10661,"nationality":10662,"resolve":10663,"convent":10664,"##mark":10665,"sharon":10666,"dig":10667,"sip":10668,"coordinator":10669,"entrepreneur":10670,"fold":10671,"##dine":10672,"capability":10673,"councillor":10674,"synonym":10675,"blown":10676,"swan":10677,"cursed":10678,"1815":10679,"jonas":10680,"haired":10681,"sofa":10682,"canvas":10683,"keeper":10684,"rivalry":10685,"##hart":10686,"rapper":10687,"speedway":10688,"swords":10689,"postal":10690,"maxwell":10691,"estonia":10692,"potter":10693,"recurring":10694,"##nn":10695,"##ave":10696,"errors":10697,"##oni":10698,"cognitive":10699,"1834":10700,"##²":10701,"claws":10702,"nadu":10703,"roberto":10704,"bce":10705,"wrestler":10706,"ellie":10707,"##ations":10708,"infinite":10709,"ink":10710,"##tia":10711,"presumably":10712,"finite":10713,"staircase":10714,"108":10715,"noel":10716,"patricia":10717,"nacional":10718,"##cation":10719,"chill":10720,"eternal":10721,"tu":10722,"preventing":10723,"prussia":10724,"fossil":10725,"limbs":10726,"##logist":10727,"ernst":10728,"frog":10729,"perez":10730,"rene":10731,"##ace":10732,"pizza":10733,"prussian":10734,"##ios":10735,"##vy":10736,"molecules":10737,"regulatory":10738,"answering":10739,"opinions":10740,"sworn":10741,"lengths":10742,"supposedly":10743,"hypothesis":10744,"upward":10745,"habitats":10746,"seating":10747,"ancestors":10748,"drank":10749,"yield":10750,"hd":10751,"synthesis":10752,"researcher":10753,"modest":10754,"##var":10755,"mothers":10756,"peered":10757,"voluntary":10758,"homeland":10759,"##the":10760,"acclaim":10761,"##igan":10762,"static":10763,"valve":10764,"luxembourg":10765,"alto":10766,"carroll":10767,"fe":10768,"receptor":10769,"norton":10770,"ambulance":10771,"##tian":10772,"johnston":10773,"catholics":10774,"depicting":10775,"jointly":10776,"elephant":10777,"gloria":10778,"mentor":10779,"badge":10780,"ahmad":10781,"distinguish":10782,"remarked":10783,"councils":10784,"precisely":10785,"allison":10786,"advancing":10787,"detection":10788,"crowded":10789,"##10":10790,"cooperative":10791,"ankle":10792,"mercedes":10793,"dagger":10794,"surrendered":10795,"pollution":10796,"commit":10797,"subway":10798,"jeffrey":10799,"lesson":10800,"sculptures":10801,"provider":10802,"##fication":10803,"membrane":10804,"timothy":10805,"rectangular":10806,"fiscal":10807,"heating":10808,"teammate":10809,"basket":10810,"particle":10811,"anonymous":10812,"deployment":10813,"##ple":10814,"missiles":10815,"courthouse":10816,"proportion":10817,"shoe":10818,"sec":10819,"##ller":10820,"complaints":10821,"forbes":10822,"blacks":10823,"abandon":10824,"remind":10825,"sizes":10826,"overwhelming":10827,"autobiography":10828,"natalie":10829,"##awa":10830,"risks":10831,"contestant":10832,"countryside":10833,"babies":10834,"scorer":10835,"invaded":10836,"enclosed":10837,"proceed":10838,"hurling":10839,"disorders":10840,"##cu":10841,"reflecting":10842,"continuously":10843,"cruiser":10844,"graduates":10845,"freeway":10846,"investigated":10847,"ore":10848,"deserved":10849,"maid":10850,"blocking":10851,"phillip":10852,"jorge":10853,"shakes":10854,"dove":10855,"mann":10856,"variables":10857,"lacked":10858,"burden":10859,"accompanying":10860,"que":10861,"consistently":10862,"organizing":10863,"provisional":10864,"complained":10865,"endless":10866,"##rm":10867,"tubes":10868,"juice":10869,"georges":10870,"krishna":10871,"mick":10872,"labels":10873,"thriller":10874,"##uch":10875,"laps":10876,"arcade":10877,"sage":10878,"snail":10879,"##table":10880,"shannon":10881,"fi":10882,"laurence":10883,"seoul":10884,"vacation":10885,"presenting":10886,"hire":10887,"churchill":10888,"surprisingly":10889,"prohibited":10890,"savannah":10891,"technically":10892,"##oli":10893,"170":10894,"##lessly":10895,"testimony":10896,"suited":10897,"speeds":10898,"toys":10899,"romans":10900,"mlb":10901,"flowering":10902,"measurement":10903,"talented":10904,"kay":10905,"settings":10906,"charleston":10907,"expectations":10908,"shattered":10909,"achieving":10910,"triumph":10911,"ceremonies":10912,"portsmouth":10913,"lanes":10914,"mandatory":10915,"loser":10916,"stretching":10917,"cologne":10918,"realizes":10919,"seventy":10920,"cornell":10921,"careers":10922,"webb":10923,"##ulating":10924,"americas":10925,"budapest":10926,"ava":10927,"suspicion":10928,"##ison":10929,"yo":10930,"conrad":10931,"##hai":10932,"sterling":10933,"jessie":10934,"rector":10935,"##az":10936,"1831":10937,"transform":10938,"organize":10939,"loans":10940,"christine":10941,"volcanic":10942,"warrant":10943,"slender":10944,"summers":10945,"subfamily":10946,"newer":10947,"danced":10948,"dynamics":10949,"rhine":10950,"proceeds":10951,"heinrich":10952,"gastropod":10953,"commands":10954,"sings":10955,"facilitate":10956,"easter":10957,"ra":10958,"positioned":10959,"responses":10960,"expense":10961,"fruits":10962,"yanked":10963,"imported":10964,"25th":10965,"velvet":10966,"vic":10967,"primitive":10968,"tribune":10969,"baldwin":10970,"neighbourhood":10971,"donna":10972,"rip":10973,"hay":10974,"pr":10975,"##uro":10976,"1814":10977,"espn":10978,"welcomed":10979,"##aria":10980,"qualifier":10981,"glare":10982,"highland":10983,"timing":10984,"##cted":10985,"shells":10986,"eased":10987,"geometry":10988,"louder":10989,"exciting":10990,"slovakia":10991,"##sion":10992,"##iz":10993,"##lot":10994,"savings":10995,"prairie":10996,"##ques":10997,"marching":10998,"rafael":10999,"tonnes":11000,"##lled":11001,"curtain":11002,"preceding":11003,"shy":11004,"heal":11005,"greene":11006,"worthy":11007,"##pot":11008,"detachment":11009,"bury":11010,"sherman":11011,"##eck":11012,"reinforced":11013,"seeks":11014,"bottles":11015,"contracted":11016,"duchess":11017,"outfit":11018,"walsh":11019,"##sc":11020,"mickey":11021,"##ase":11022,"geoffrey":11023,"archer":11024,"squeeze":11025,"dawson":11026,"eliminate":11027,"invention":11028,"##enberg":11029,"neal":11030,"##eth":11031,"stance":11032,"dealer":11033,"coral":11034,"maple":11035,"retire":11036,"polo":11037,"simplified":11038,"##ht":11039,"1833":11040,"hid":11041,"watts":11042,"backwards":11043,"jules":11044,"##oke":11045,"genesis":11046,"mt":11047,"frames":11048,"rebounds":11049,"burma":11050,"woodland":11051,"moist":11052,"santos":11053,"whispers":11054,"drained":11055,"subspecies":11056,"##aa":11057,"streaming":11058,"ulster":11059,"burnt":11060,"correspondence":11061,"maternal":11062,"gerard":11063,"denis":11064,"stealing":11065,"##load":11066,"genius":11067,"duchy":11068,"##oria":11069,"inaugurated":11070,"momentum":11071,"suits":11072,"placement":11073,"sovereign":11074,"clause":11075,"thames":11076,"##hara":11077,"confederation":11078,"reservation":11079,"sketch":11080,"yankees":11081,"lets":11082,"rotten":11083,"charm":11084,"hal":11085,"verses":11086,"ultra":11087,"commercially":11088,"dot":11089,"salon":11090,"citation":11091,"adopt":11092,"winnipeg":11093,"mist":11094,"allocated":11095,"cairo":11096,"##boy":11097,"jenkins":11098,"interference":11099,"objectives":11100,"##wind":11101,"1820":11102,"portfolio":11103,"armoured":11104,"sectors":11105,"##eh":11106,"initiatives":11107,"##world":11108,"integrity":11109,"exercises":11110,"robe":11111,"tap":11112,"ab":11113,"gazed":11114,"##tones":11115,"distracted":11116,"rulers":11117,"111":11118,"favorable":11119,"jerome":11120,"tended":11121,"cart":11122,"factories":11123,"##eri":11124,"diplomat":11125,"valued":11126,"gravel":11127,"charitable":11128,"##try":11129,"calvin":11130,"exploring":11131,"chang":11132,"shepherd":11133,"terrace":11134,"pdf":11135,"pupil":11136,"##ural":11137,"reflects":11138,"ups":11139,"##rch":11140,"governors":11141,"shelf":11142,"depths":11143,"##nberg":11144,"trailed":11145,"crest":11146,"tackle":11147,"##nian":11148,"##ats":11149,"hatred":11150,"##kai":11151,"clare":11152,"makers":11153,"ethiopia":11154,"longtime":11155,"detected":11156,"embedded":11157,"lacking":11158,"slapped":11159,"rely":11160,"thomson":11161,"anticipation":11162,"iso":11163,"morton":11164,"successive":11165,"agnes":11166,"screenwriter":11167,"straightened":11168,"philippe":11169,"playwright":11170,"haunted":11171,"licence":11172,"iris":11173,"intentions":11174,"sutton":11175,"112":11176,"logical":11177,"correctly":11178,"##weight":11179,"branded":11180,"licked":11181,"tipped":11182,"silva":11183,"ricky":11184,"narrator":11185,"requests":11186,"##ents":11187,"greeted":11188,"supernatural":11189,"cow":11190,"##wald":11191,"lung":11192,"refusing":11193,"employer":11194,"strait":11195,"gaelic":11196,"liner":11197,"##piece":11198,"zoe":11199,"sabha":11200,"##mba":11201,"driveway":11202,"harvest":11203,"prints":11204,"bates":11205,"reluctantly":11206,"threshold":11207,"algebra":11208,"ira":11209,"wherever":11210,"coupled":11211,"240":11212,"assumption":11213,"picks":11214,"##air":11215,"designers":11216,"raids":11217,"gentlemen":11218,"##ean":11219,"roller":11220,"blowing":11221,"leipzig":11222,"locks":11223,"screw":11224,"dressing":11225,"strand":11226,"##lings":11227,"scar":11228,"dwarf":11229,"depicts":11230,"##nu":11231,"nods":11232,"##mine":11233,"differ":11234,"boris":11235,"##eur":11236,"yuan":11237,"flip":11238,"##gie":11239,"mob":11240,"invested":11241,"questioning":11242,"applying":11243,"##ture":11244,"shout":11245,"##sel":11246,"gameplay":11247,"blamed":11248,"illustrations":11249,"bothered":11250,"weakness":11251,"rehabilitation":11252,"##of":11253,"##zes":11254,"envelope":11255,"rumors":11256,"miners":11257,"leicester":11258,"subtle":11259,"kerry":11260,"##ico":11261,"ferguson":11262,"##fu":11263,"premiership":11264,"ne":11265,"##cat":11266,"bengali":11267,"prof":11268,"catches":11269,"remnants":11270,"dana":11271,"##rily":11272,"shouting":11273,"presidents":11274,"baltic":11275,"ought":11276,"ghosts":11277,"dances":11278,"sailors":11279,"shirley":11280,"fancy":11281,"dominic":11282,"##bie":11283,"madonna":11284,"##rick":11285,"bark":11286,"buttons":11287,"gymnasium":11288,"ashes":11289,"liver":11290,"toby":11291,"oath":11292,"providence":11293,"doyle":11294,"evangelical":11295,"nixon":11296,"cement":11297,"carnegie":11298,"embarked":11299,"hatch":11300,"surroundings":11301,"guarantee":11302,"needing":11303,"pirate":11304,"essence":11305,"##bee":11306,"filter":11307,"crane":11308,"hammond":11309,"projected":11310,"immune":11311,"percy":11312,"twelfth":11313,"##ult":11314,"regent":11315,"doctoral":11316,"damon":11317,"mikhail":11318,"##ichi":11319,"lu":11320,"critically":11321,"elect":11322,"realised":11323,"abortion":11324,"acute":11325,"screening":11326,"mythology":11327,"steadily":11328,"##fc":11329,"frown":11330,"nottingham":11331,"kirk":11332,"wa":11333,"minneapolis":11334,"##rra":11335,"module":11336,"algeria":11337,"mc":11338,"nautical":11339,"encounters":11340,"surprising":11341,"statues":11342,"availability":11343,"shirts":11344,"pie":11345,"alma":11346,"brows":11347,"munster":11348,"mack":11349,"soup":11350,"crater":11351,"tornado":11352,"sanskrit":11353,"cedar":11354,"explosive":11355,"bordered":11356,"dixon":11357,"planets":11358,"stamp":11359,"exam":11360,"happily":11361,"##bble":11362,"carriers":11363,"kidnapped":11364,"##vis":11365,"accommodation":11366,"emigrated":11367,"##met":11368,"knockout":11369,"correspondent":11370,"violation":11371,"profits":11372,"peaks":11373,"lang":11374,"specimen":11375,"agenda":11376,"ancestry":11377,"pottery":11378,"spelling":11379,"equations":11380,"obtaining":11381,"ki":11382,"linking":11383,"1825":11384,"debris":11385,"asylum":11386,"##20":11387,"buddhism":11388,"teddy":11389,"##ants":11390,"gazette":11391,"##nger":11392,"##sse":11393,"dental":11394,"eligibility":11395,"utc":11396,"fathers":11397,"averaged":11398,"zimbabwe":11399,"francesco":11400,"coloured":11401,"hissed":11402,"translator":11403,"lynch":11404,"mandate":11405,"humanities":11406,"mackenzie":11407,"uniforms":11408,"lin":11409,"##iana":11410,"##gio":11411,"asset":11412,"mhz":11413,"fitting":11414,"samantha":11415,"genera":11416,"wei":11417,"rim":11418,"beloved":11419,"shark":11420,"riot":11421,"entities":11422,"expressions":11423,"indo":11424,"carmen":11425,"slipping":11426,"owing":11427,"abbot":11428,"neighbor":11429,"sidney":11430,"##av":11431,"rats":11432,"recommendations":11433,"encouraging":11434,"squadrons":11435,"anticipated":11436,"commanders":11437,"conquered":11438,"##oto":11439,"donations":11440,"diagnosed":11441,"##mond":11442,"divide":11443,"##iva":11444,"guessed":11445,"decoration":11446,"vernon":11447,"auditorium":11448,"revelation":11449,"conversations":11450,"##kers":11451,"##power":11452,"herzegovina":11453,"dash":11454,"alike":11455,"protested":11456,"lateral":11457,"herman":11458,"accredited":11459,"mg":11460,"##gent":11461,"freeman":11462,"mel":11463,"fiji":11464,"crow":11465,"crimson":11466,"##rine":11467,"livestock":11468,"##pped":11469,"humanitarian":11470,"bored":11471,"oz":11472,"whip":11473,"##lene":11474,"##ali":11475,"legitimate":11476,"alter":11477,"grinning":11478,"spelled":11479,"anxious":11480,"oriental":11481,"wesley":11482,"##nin":11483,"##hole":11484,"carnival":11485,"controller":11486,"detect":11487,"##ssa":11488,"bowed":11489,"educator":11490,"kosovo":11491,"macedonia":11492,"##sin":11493,"occupy":11494,"mastering":11495,"stephanie":11496,"janeiro":11497,"para":11498,"unaware":11499,"nurses":11500,"noon":11501,"135":11502,"cam":11503,"hopefully":11504,"ranger":11505,"combine":11506,"sociology":11507,"polar":11508,"rica":11509,"##eer":11510,"neill":11511,"##sman":11512,"holocaust":11513,"##ip":11514,"doubled":11515,"lust":11516,"1828":11517,"109":11518,"decent":11519,"cooling":11520,"unveiled":11521,"##card":11522,"1829":11523,"nsw":11524,"homer":11525,"chapman":11526,"meyer":11527,"##gin":11528,"dive":11529,"mae":11530,"reagan":11531,"expertise":11532,"##gled":11533,"darwin":11534,"brooke":11535,"sided":11536,"prosecution":11537,"investigating":11538,"comprised":11539,"petroleum":11540,"genres":11541,"reluctant":11542,"differently":11543,"trilogy":11544,"johns":11545,"vegetables":11546,"corpse":11547,"highlighted":11548,"lounge":11549,"pension":11550,"unsuccessfully":11551,"elegant":11552,"aided":11553,"ivory":11554,"beatles":11555,"amelia":11556,"cain":11557,"dubai":11558,"sunny":11559,"immigrant":11560,"babe":11561,"click":11562,"##nder":11563,"underwater":11564,"pepper":11565,"combining":11566,"mumbled":11567,"atlas":11568,"horns":11569,"accessed":11570,"ballad":11571,"physicians":11572,"homeless":11573,"gestured":11574,"rpm":11575,"freak":11576,"louisville":11577,"corporations":11578,"patriots":11579,"prizes":11580,"rational":11581,"warn":11582,"modes":11583,"decorative":11584,"overnight":11585,"din":11586,"troubled":11587,"phantom":11588,"##ort":11589,"monarch":11590,"sheer":11591,"##dorf":11592,"generals":11593,"guidelines":11594,"organs":11595,"addresses":11596,"##zon":11597,"enhance":11598,"curling":11599,"parishes":11600,"cord":11601,"##kie":11602,"linux":11603,"caesar":11604,"deutsche":11605,"bavaria":11606,"##bia":11607,"coleman":11608,"cyclone":11609,"##eria":11610,"bacon":11611,"petty":11612,"##yama":11613,"##old":11614,"hampton":11615,"diagnosis":11616,"1824":11617,"throws":11618,"complexity":11619,"rita":11620,"disputed":11621,"##₃":11622,"pablo":11623,"##sch":11624,"marketed":11625,"trafficking":11626,"##ulus":11627,"examine":11628,"plague":11629,"formats":11630,"##oh":11631,"vault":11632,"faithful":11633,"##bourne":11634,"webster":11635,"##ox":11636,"highlights":11637,"##ient":11638,"##ann":11639,"phones":11640,"vacuum":11641,"sandwich":11642,"modeling":11643,"##gated":11644,"bolivia":11645,"clergy":11646,"qualities":11647,"isabel":11648,"##nas":11649,"##ars":11650,"wears":11651,"screams":11652,"reunited":11653,"annoyed":11654,"bra":11655,"##ancy":11656,"##rate":11657,"differential":11658,"transmitter":11659,"tattoo":11660,"container":11661,"poker":11662,"##och":11663,"excessive":11664,"resides":11665,"cowboys":11666,"##tum":11667,"augustus":11668,"trash":11669,"providers":11670,"statute":11671,"retreated":11672,"balcony":11673,"reversed":11674,"void":11675,"storey":11676,"preceded":11677,"masses":11678,"leap":11679,"laughs":11680,"neighborhoods":11681,"wards":11682,"schemes":11683,"falcon":11684,"santo":11685,"battlefield":11686,"pad":11687,"ronnie":11688,"thread":11689,"lesbian":11690,"venus":11691,"##dian":11692,"beg":11693,"sandstone":11694,"daylight":11695,"punched":11696,"gwen":11697,"analog":11698,"stroked":11699,"wwe":11700,"acceptable":11701,"measurements":11702,"dec":11703,"toxic":11704,"##kel":11705,"adequate":11706,"surgical":11707,"economist":11708,"parameters":11709,"varsity":11710,"##sberg":11711,"quantity":11712,"ella":11713,"##chy":11714,"##rton":11715,"countess":11716,"generating":11717,"precision":11718,"diamonds":11719,"expressway":11720,"ga":11721,"##ı":11722,"1821":11723,"uruguay":11724,"talents":11725,"galleries":11726,"expenses":11727,"scanned":11728,"colleague":11729,"outlets":11730,"ryder":11731,"lucien":11732,"##ila":11733,"paramount":11734,"##bon":11735,"syracuse":11736,"dim":11737,"fangs":11738,"gown":11739,"sweep":11740,"##sie":11741,"toyota":11742,"missionaries":11743,"websites":11744,"##nsis":11745,"sentences":11746,"adviser":11747,"val":11748,"trademark":11749,"spells":11750,"##plane":11751,"patience":11752,"starter":11753,"slim":11754,"##borg":11755,"toe":11756,"incredibly":11757,"shoots":11758,"elliot":11759,"nobility":11760,"##wyn":11761,"cowboy":11762,"endorsed":11763,"gardner":11764,"tendency":11765,"persuaded":11766,"organisms":11767,"emissions":11768,"kazakhstan":11769,"amused":11770,"boring":11771,"chips":11772,"themed":11773,"##hand":11774,"llc":11775,"constantinople":11776,"chasing":11777,"systematic":11778,"guatemala":11779,"borrowed":11780,"erin":11781,"carey":11782,"##hard":11783,"highlands":11784,"struggles":11785,"1810":11786,"##ifying":11787,"##ced":11788,"wong":11789,"exceptions":11790,"develops":11791,"enlarged":11792,"kindergarten":11793,"castro":11794,"##ern":11795,"##rina":11796,"leigh":11797,"zombie":11798,"juvenile":11799,"##most":11800,"consul":11801,"##nar":11802,"sailor":11803,"hyde":11804,"clarence":11805,"intensive":11806,"pinned":11807,"nasty":11808,"useless":11809,"jung":11810,"clayton":11811,"stuffed":11812,"exceptional":11813,"ix":11814,"apostolic":11815,"230":11816,"transactions":11817,"##dge":11818,"exempt":11819,"swinging":11820,"cove":11821,"religions":11822,"##ash":11823,"shields":11824,"dairy":11825,"bypass":11826,"190":11827,"pursuing":11828,"bug":11829,"joyce":11830,"bombay":11831,"chassis":11832,"southampton":11833,"chat":11834,"interact":11835,"redesignated":11836,"##pen":11837,"nascar":11838,"pray":11839,"salmon":11840,"rigid":11841,"regained":11842,"malaysian":11843,"grim":11844,"publicity":11845,"constituted":11846,"capturing":11847,"toilet":11848,"delegate":11849,"purely":11850,"tray":11851,"drift":11852,"loosely":11853,"striker":11854,"weakened":11855,"trinidad":11856,"mitch":11857,"itv":11858,"defines":11859,"transmitted":11860,"ming":11861,"scarlet":11862,"nodding":11863,"fitzgerald":11864,"fu":11865,"narrowly":11866,"sp":11867,"tooth":11868,"standings":11869,"virtue":11870,"##₁":11871,"##wara":11872,"##cting":11873,"chateau":11874,"gloves":11875,"lid":11876,"##nel":11877,"hurting":11878,"conservatory":11879,"##pel":11880,"sinclair":11881,"reopened":11882,"sympathy":11883,"nigerian":11884,"strode":11885,"advocated":11886,"optional":11887,"chronic":11888,"discharge":11889,"##rc":11890,"suck":11891,"compatible":11892,"laurel":11893,"stella":11894,"shi":11895,"fails":11896,"wage":11897,"dodge":11898,"128":11899,"informal":11900,"sorts":11901,"levi":11902,"buddha":11903,"villagers":11904,"##aka":11905,"chronicles":11906,"heavier":11907,"summoned":11908,"gateway":11909,"3000":11910,"eleventh":11911,"jewelry":11912,"translations":11913,"accordingly":11914,"seas":11915,"##ency":11916,"fiber":11917,"pyramid":11918,"cubic":11919,"dragging":11920,"##ista":11921,"caring":11922,"##ops":11923,"android":11924,"contacted":11925,"lunar":11926,"##dt":11927,"kai":11928,"lisbon":11929,"patted":11930,"1826":11931,"sacramento":11932,"theft":11933,"madagascar":11934,"subtropical":11935,"disputes":11936,"ta":11937,"holidays":11938,"piper":11939,"willow":11940,"mare":11941,"cane":11942,"itunes":11943,"newfoundland":11944,"benny":11945,"companions":11946,"dong":11947,"raj":11948,"observe":11949,"roar":11950,"charming":11951,"plaque":11952,"tibetan":11953,"fossils":11954,"enacted":11955,"manning":11956,"bubble":11957,"tina":11958,"tanzania":11959,"##eda":11960,"##hir":11961,"funk":11962,"swamp":11963,"deputies":11964,"cloak":11965,"ufc":11966,"scenario":11967,"par":11968,"scratch":11969,"metals":11970,"anthem":11971,"guru":11972,"engaging":11973,"specially":11974,"##boat":11975,"dialects":11976,"nineteen":11977,"cecil":11978,"duet":11979,"disability":11980,"messenger":11981,"unofficial":11982,"##lies":11983,"defunct":11984,"eds":11985,"moonlight":11986,"drainage":11987,"surname":11988,"puzzle":11989,"honda":11990,"switching":11991,"conservatives":11992,"mammals":11993,"knox":11994,"broadcaster":11995,"sidewalk":11996,"cope":11997,"##ried":11998,"benson":11999,"princes":12000,"peterson":12001,"##sal":12002,"bedford":12003,"sharks":12004,"eli":12005,"wreck":12006,"alberto":12007,"gasp":12008,"archaeology":12009,"lgbt":12010,"teaches":12011,"securities":12012,"madness":12013,"compromise":12014,"waving":12015,"coordination":12016,"davidson":12017,"visions":12018,"leased":12019,"possibilities":12020,"eighty":12021,"jun":12022,"fernandez":12023,"enthusiasm":12024,"assassin":12025,"sponsorship":12026,"reviewer":12027,"kingdoms":12028,"estonian":12029,"laboratories":12030,"##fy":12031,"##nal":12032,"applies":12033,"verb":12034,"celebrations":12035,"##zzo":12036,"rowing":12037,"lightweight":12038,"sadness":12039,"submit":12040,"mvp":12041,"balanced":12042,"dude":12043,"##vas":12044,"explicitly":12045,"metric":12046,"magnificent":12047,"mound":12048,"brett":12049,"mohammad":12050,"mistakes":12051,"irregular":12052,"##hing":12053,"##ass":12054,"sanders":12055,"betrayed":12056,"shipped":12057,"surge":12058,"##enburg":12059,"reporters":12060,"termed":12061,"georg":12062,"pity":12063,"verbal":12064,"bulls":12065,"abbreviated":12066,"enabling":12067,"appealed":12068,"##are":12069,"##atic":12070,"sicily":12071,"sting":12072,"heel":12073,"sweetheart":12074,"bart":12075,"spacecraft":12076,"brutal":12077,"monarchy":12078,"##tter":12079,"aberdeen":12080,"cameo":12081,"diane":12082,"##ub":12083,"survivor":12084,"clyde":12085,"##aries":12086,"complaint":12087,"##makers":12088,"clarinet":12089,"delicious":12090,"chilean":12091,"karnataka":12092,"coordinates":12093,"1818":12094,"panties":12095,"##rst":12096,"pretending":12097,"ar":12098,"dramatically":12099,"kiev":12100,"bella":12101,"tends":12102,"distances":12103,"113":12104,"catalog":12105,"launching":12106,"instances":12107,"telecommunications":12108,"portable":12109,"lindsay":12110,"vatican":12111,"##eim":12112,"angles":12113,"aliens":12114,"marker":12115,"stint":12116,"screens":12117,"bolton":12118,"##rne":12119,"judy":12120,"wool":12121,"benedict":12122,"plasma":12123,"europa":12124,"spark":12125,"imaging":12126,"filmmaker":12127,"swiftly":12128,"##een":12129,"contributor":12130,"##nor":12131,"opted":12132,"stamps":12133,"apologize":12134,"financing":12135,"butter":12136,"gideon":12137,"sophisticated":12138,"alignment":12139,"avery":12140,"chemicals":12141,"yearly":12142,"speculation":12143,"prominence":12144,"professionally":12145,"##ils":12146,"immortal":12147,"institutional":12148,"inception":12149,"wrists":12150,"identifying":12151,"tribunal":12152,"derives":12153,"gains":12154,"##wo":12155,"papal":12156,"preference":12157,"linguistic":12158,"vince":12159,"operative":12160,"brewery":12161,"##ont":12162,"unemployment":12163,"boyd":12164,"##ured":12165,"##outs":12166,"albeit":12167,"prophet":12168,"1813":12169,"bi":12170,"##rr":12171,"##face":12172,"##rad":12173,"quarterly":12174,"asteroid":12175,"cleaned":12176,"radius":12177,"temper":12178,"##llen":12179,"telugu":12180,"jerk":12181,"viscount":12182,"menu":12183,"##ote":12184,"glimpse":12185,"##aya":12186,"yacht":12187,"hawaiian":12188,"baden":12189,"##rl":12190,"laptop":12191,"readily":12192,"##gu":12193,"monetary":12194,"offshore":12195,"scots":12196,"watches":12197,"##yang":12198,"##arian":12199,"upgrade":12200,"needle":12201,"xbox":12202,"lea":12203,"encyclopedia":12204,"flank":12205,"fingertips":12206,"##pus":12207,"delight":12208,"teachings":12209,"confirm":12210,"roth":12211,"beaches":12212,"midway":12213,"winters":12214,"##iah":12215,"teasing":12216,"daytime":12217,"beverly":12218,"gambling":12219,"bonnie":12220,"##backs":12221,"regulated":12222,"clement":12223,"hermann":12224,"tricks":12225,"knot":12226,"##shing":12227,"##uring":12228,"##vre":12229,"detached":12230,"ecological":12231,"owed":12232,"specialty":12233,"byron":12234,"inventor":12235,"bats":12236,"stays":12237,"screened":12238,"unesco":12239,"midland":12240,"trim":12241,"affection":12242,"##ander":12243,"##rry":12244,"jess":12245,"thoroughly":12246,"feedback":12247,"##uma":12248,"chennai":12249,"strained":12250,"heartbeat":12251,"wrapping":12252,"overtime":12253,"pleaded":12254,"##sworth":12255,"mon":12256,"leisure":12257,"oclc":12258,"##tate":12259,"##ele":12260,"feathers":12261,"angelo":12262,"thirds":12263,"nuts":12264,"surveys":12265,"clever":12266,"gill":12267,"commentator":12268,"##dos":12269,"darren":12270,"rides":12271,"gibraltar":12272,"##nc":12273,"##mu":12274,"dissolution":12275,"dedication":12276,"shin":12277,"meals":12278,"saddle":12279,"elvis":12280,"reds":12281,"chaired":12282,"taller":12283,"appreciation":12284,"functioning":12285,"niece":12286,"favored":12287,"advocacy":12288,"robbie":12289,"criminals":12290,"suffolk":12291,"yugoslav":12292,"passport":12293,"constable":12294,"congressman":12295,"hastings":12296,"vera":12297,"##rov":12298,"consecrated":12299,"sparks":12300,"ecclesiastical":12301,"confined":12302,"##ovich":12303,"muller":12304,"floyd":12305,"nora":12306,"1822":12307,"paved":12308,"1827":12309,"cumberland":12310,"ned":12311,"saga":12312,"spiral":12313,"##flow":12314,"appreciated":12315,"yi":12316,"collaborative":12317,"treating":12318,"similarities":12319,"feminine":12320,"finishes":12321,"##ib":12322,"jade":12323,"import":12324,"##nse":12325,"##hot":12326,"champagne":12327,"mice":12328,"securing":12329,"celebrities":12330,"helsinki":12331,"attributes":12332,"##gos":12333,"cousins":12334,"phases":12335,"ache":12336,"lucia":12337,"gandhi":12338,"submission":12339,"vicar":12340,"spear":12341,"shine":12342,"tasmania":12343,"biting":12344,"detention":12345,"constitute":12346,"tighter":12347,"seasonal":12348,"##gus":12349,"terrestrial":12350,"matthews":12351,"##oka":12352,"effectiveness":12353,"parody":12354,"philharmonic":12355,"##onic":12356,"1816":12357,"strangers":12358,"encoded":12359,"consortium":12360,"guaranteed":12361,"regards":12362,"shifts":12363,"tortured":12364,"collision":12365,"supervisor":12366,"inform":12367,"broader":12368,"insight":12369,"theaters":12370,"armour":12371,"emeritus":12372,"blink":12373,"incorporates":12374,"mapping":12375,"##50":12376,"##ein":12377,"handball":12378,"flexible":12379,"##nta":12380,"substantially":12381,"generous":12382,"thief":12383,"##own":12384,"carr":12385,"loses":12386,"1793":12387,"prose":12388,"ucla":12389,"romeo":12390,"generic":12391,"metallic":12392,"realization":12393,"damages":12394,"mk":12395,"commissioners":12396,"zach":12397,"default":12398,"##ther":12399,"helicopters":12400,"lengthy":12401,"stems":12402,"spa":12403,"partnered":12404,"spectators":12405,"rogue":12406,"indication":12407,"penalties":12408,"teresa":12409,"1801":12410,"sen":12411,"##tric":12412,"dalton":12413,"##wich":12414,"irving":12415,"photographic":12416,"##vey":12417,"dell":12418,"deaf":12419,"peters":12420,"excluded":12421,"unsure":12422,"##vable":12423,"patterson":12424,"crawled":12425,"##zio":12426,"resided":12427,"whipped":12428,"latvia":12429,"slower":12430,"ecole":12431,"pipes":12432,"employers":12433,"maharashtra":12434,"comparable":12435,"va":12436,"textile":12437,"pageant":12438,"##gel":12439,"alphabet":12440,"binary":12441,"irrigation":12442,"chartered":12443,"choked":12444,"antoine":12445,"offs":12446,"waking":12447,"supplement":12448,"##wen":12449,"quantities":12450,"demolition":12451,"regain":12452,"locate":12453,"urdu":12454,"folks":12455,"alt":12456,"114":12457,"##mc":12458,"scary":12459,"andreas":12460,"whites":12461,"##ava":12462,"classrooms":12463,"mw":12464,"aesthetic":12465,"publishes":12466,"valleys":12467,"guides":12468,"cubs":12469,"johannes":12470,"bryant":12471,"conventions":12472,"affecting":12473,"##itt":12474,"drain":12475,"awesome":12476,"isolation":12477,"prosecutor":12478,"ambitious":12479,"apology":12480,"captive":12481,"downs":12482,"atmospheric":12483,"lorenzo":12484,"aisle":12485,"beef":12486,"foul":12487,"##onia":12488,"kidding":12489,"composite":12490,"disturbed":12491,"illusion":12492,"natives":12493,"##ffer":12494,"emi":12495,"rockets":12496,"riverside":12497,"wartime":12498,"painters":12499,"adolf":12500,"melted":12501,"##ail":12502,"uncertainty":12503,"simulation":12504,"hawks":12505,"progressed":12506,"meantime":12507,"builder":12508,"spray":12509,"breach":12510,"unhappy":12511,"regina":12512,"russians":12513,"##urg":12514,"determining":12515,"##tation":12516,"tram":12517,"1806":12518,"##quin":12519,"aging":12520,"##12":12521,"1823":12522,"garion":12523,"rented":12524,"mister":12525,"diaz":12526,"terminated":12527,"clip":12528,"1817":12529,"depend":12530,"nervously":12531,"disco":12532,"owe":12533,"defenders":12534,"shiva":12535,"notorious":12536,"disbelief":12537,"shiny":12538,"worcester":12539,"##gation":12540,"##yr":12541,"trailing":12542,"undertook":12543,"islander":12544,"belarus":12545,"limitations":12546,"watershed":12547,"fuller":12548,"overlooking":12549,"utilized":12550,"raphael":12551,"1819":12552,"synthetic":12553,"breakdown":12554,"klein":12555,"##nate":12556,"moaned":12557,"memoir":12558,"lamb":12559,"practicing":12560,"##erly":12561,"cellular":12562,"arrows":12563,"exotic":12564,"##graphy":12565,"witches":12566,"117":12567,"charted":12568,"rey":12569,"hut":12570,"hierarchy":12571,"subdivision":12572,"freshwater":12573,"giuseppe":12574,"aloud":12575,"reyes":12576,"qatar":12577,"marty":12578,"sideways":12579,"utterly":12580,"sexually":12581,"jude":12582,"prayers":12583,"mccarthy":12584,"softball":12585,"blend":12586,"damien":12587,"##gging":12588,"##metric":12589,"wholly":12590,"erupted":12591,"lebanese":12592,"negro":12593,"revenues":12594,"tasted":12595,"comparative":12596,"teamed":12597,"transaction":12598,"labeled":12599,"maori":12600,"sovereignty":12601,"parkway":12602,"trauma":12603,"gran":12604,"malay":12605,"121":12606,"advancement":12607,"descendant":12608,"2020":12609,"buzz":12610,"salvation":12611,"inventory":12612,"symbolic":12613,"##making":12614,"antarctica":12615,"mps":12616,"##gas":12617,"##bro":12618,"mohammed":12619,"myanmar":12620,"holt":12621,"submarines":12622,"tones":12623,"##lman":12624,"locker":12625,"patriarch":12626,"bangkok":12627,"emerson":12628,"remarks":12629,"predators":12630,"kin":12631,"afghan":12632,"confession":12633,"norwich":12634,"rental":12635,"emerge":12636,"advantages":12637,"##zel":12638,"rca":12639,"##hold":12640,"shortened":12641,"storms":12642,"aidan":12643,"##matic":12644,"autonomy":12645,"compliance":12646,"##quet":12647,"dudley":12648,"atp":12649,"##osis":12650,"1803":12651,"motto":12652,"documentation":12653,"summary":12654,"professors":12655,"spectacular":12656,"christina":12657,"archdiocese":12658,"flashing":12659,"innocence":12660,"remake":12661,"##dell":12662,"psychic":12663,"reef":12664,"scare":12665,"employ":12666,"rs":12667,"sticks":12668,"meg":12669,"gus":12670,"leans":12671,"##ude":12672,"accompany":12673,"bergen":12674,"tomas":12675,"##iko":12676,"doom":12677,"wages":12678,"pools":12679,"##nch":12680,"##bes":12681,"breasts":12682,"scholarly":12683,"alison":12684,"outline":12685,"brittany":12686,"breakthrough":12687,"willis":12688,"realistic":12689,"##cut":12690,"##boro":12691,"competitor":12692,"##stan":12693,"pike":12694,"picnic":12695,"icon":12696,"designing":12697,"commercials":12698,"washing":12699,"villain":12700,"skiing":12701,"micro":12702,"costumes":12703,"auburn":12704,"halted":12705,"executives":12706,"##hat":12707,"logistics":12708,"cycles":12709,"vowel":12710,"applicable":12711,"barrett":12712,"exclaimed":12713,"eurovision":12714,"eternity":12715,"ramon":12716,"##umi":12717,"##lls":12718,"modifications":12719,"sweeping":12720,"disgust":12721,"##uck":12722,"torch":12723,"aviv":12724,"ensuring":12725,"rude":12726,"dusty":12727,"sonic":12728,"donovan":12729,"outskirts":12730,"cu":12731,"pathway":12732,"##band":12733,"##gun":12734,"##lines":12735,"disciplines":12736,"acids":12737,"cadet":12738,"paired":12739,"##40":12740,"sketches":12741,"##sive":12742,"marriages":12743,"##⁺":12744,"folding":12745,"peers":12746,"slovak":12747,"implies":12748,"admired":12749,"##beck":12750,"1880s":12751,"leopold":12752,"instinct":12753,"attained":12754,"weston":12755,"megan":12756,"horace":12757,"##ination":12758,"dorsal":12759,"ingredients":12760,"evolutionary":12761,"##its":12762,"complications":12763,"deity":12764,"lethal":12765,"brushing":12766,"levy":12767,"deserted":12768,"institutes":12769,"posthumously":12770,"delivering":12771,"telescope":12772,"coronation":12773,"motivated":12774,"rapids":12775,"luc":12776,"flicked":12777,"pays":12778,"volcano":12779,"tanner":12780,"weighed":12781,"##nica":12782,"crowds":12783,"frankie":12784,"gifted":12785,"addressing":12786,"granddaughter":12787,"winding":12788,"##rna":12789,"constantine":12790,"gomez":12791,"##front":12792,"landscapes":12793,"rudolf":12794,"anthropology":12795,"slate":12796,"werewolf":12797,"##lio":12798,"astronomy":12799,"circa":12800,"rouge":12801,"dreaming":12802,"sack":12803,"knelt":12804,"drowned":12805,"naomi":12806,"prolific":12807,"tracked":12808,"freezing":12809,"herb":12810,"##dium":12811,"agony":12812,"randall":12813,"twisting":12814,"wendy":12815,"deposit":12816,"touches":12817,"vein":12818,"wheeler":12819,"##bbled":12820,"##bor":12821,"batted":12822,"retaining":12823,"tire":12824,"presently":12825,"compare":12826,"specification":12827,"daemon":12828,"nigel":12829,"##grave":12830,"merry":12831,"recommendation":12832,"czechoslovakia":12833,"sandra":12834,"ng":12835,"roma":12836,"##sts":12837,"lambert":12838,"inheritance":12839,"sheikh":12840,"winchester":12841,"cries":12842,"examining":12843,"##yle":12844,"comeback":12845,"cuisine":12846,"nave":12847,"##iv":12848,"ko":12849,"retrieve":12850,"tomatoes":12851,"barker":12852,"polished":12853,"defining":12854,"irene":12855,"lantern":12856,"personalities":12857,"begging":12858,"tract":12859,"swore":12860,"1809":12861,"175":12862,"##gic":12863,"omaha":12864,"brotherhood":12865,"##rley":12866,"haiti":12867,"##ots":12868,"exeter":12869,"##ete":12870,"##zia":12871,"steele":12872,"dumb":12873,"pearson":12874,"210":12875,"surveyed":12876,"elisabeth":12877,"trends":12878,"##ef":12879,"fritz":12880,"##rf":12881,"premium":12882,"bugs":12883,"fraction":12884,"calmly":12885,"viking":12886,"##birds":12887,"tug":12888,"inserted":12889,"unusually":12890,"##ield":12891,"confronted":12892,"distress":12893,"crashing":12894,"brent":12895,"turks":12896,"resign":12897,"##olo":12898,"cambodia":12899,"gabe":12900,"sauce":12901,"##kal":12902,"evelyn":12903,"116":12904,"extant":12905,"clusters":12906,"quarry":12907,"teenagers":12908,"luna":12909,"##lers":12910,"##ister":12911,"affiliation":12912,"drill":12913,"##ashi":12914,"panthers":12915,"scenic":12916,"libya":12917,"anita":12918,"strengthen":12919,"inscriptions":12920,"##cated":12921,"lace":12922,"sued":12923,"judith":12924,"riots":12925,"##uted":12926,"mint":12927,"##eta":12928,"preparations":12929,"midst":12930,"dub":12931,"challenger":12932,"##vich":12933,"mock":12934,"cf":12935,"displaced":12936,"wicket":12937,"breaths":12938,"enables":12939,"schmidt":12940,"analyst":12941,"##lum":12942,"ag":12943,"highlight":12944,"automotive":12945,"axe":12946,"josef":12947,"newark":12948,"sufficiently":12949,"resembles":12950,"50th":12951,"##pal":12952,"flushed":12953,"mum":12954,"traits":12955,"##ante":12956,"commodore":12957,"incomplete":12958,"warming":12959,"titular":12960,"ceremonial":12961,"ethical":12962,"118":12963,"celebrating":12964,"eighteenth":12965,"cao":12966,"lima":12967,"medalist":12968,"mobility":12969,"strips":12970,"snakes":12971,"##city":12972,"miniature":12973,"zagreb":12974,"barton":12975,"escapes":12976,"umbrella":12977,"automated":12978,"doubted":12979,"differs":12980,"cooled":12981,"georgetown":12982,"dresden":12983,"cooked":12984,"fade":12985,"wyatt":12986,"rna":12987,"jacobs":12988,"carlton":12989,"abundant":12990,"stereo":12991,"boost":12992,"madras":12993,"inning":12994,"##hia":12995,"spur":12996,"ip":12997,"malayalam":12998,"begged":12999,"osaka":13000,"groan":13001,"escaping":13002,"charging":13003,"dose":13004,"vista":13005,"##aj":13006,"bud":13007,"papa":13008,"communists":13009,"advocates":13010,"edged":13011,"tri":13012,"##cent":13013,"resemble":13014,"peaking":13015,"necklace":13016,"fried":13017,"montenegro":13018,"saxony":13019,"goose":13020,"glances":13021,"stuttgart":13022,"curator":13023,"recruit":13024,"grocery":13025,"sympathetic":13026,"##tting":13027,"##fort":13028,"127":13029,"lotus":13030,"randolph":13031,"ancestor":13032,"##rand":13033,"succeeding":13034,"jupiter":13035,"1798":13036,"macedonian":13037,"##heads":13038,"hiking":13039,"1808":13040,"handing":13041,"fischer":13042,"##itive":13043,"garbage":13044,"node":13045,"##pies":13046,"prone":13047,"singular":13048,"papua":13049,"inclined":13050,"attractions":13051,"italia":13052,"pouring":13053,"motioned":13054,"grandma":13055,"garnered":13056,"jacksonville":13057,"corp":13058,"ego":13059,"ringing":13060,"aluminum":13061,"##hausen":13062,"ordering":13063,"##foot":13064,"drawer":13065,"traders":13066,"synagogue":13067,"##play":13068,"##kawa":13069,"resistant":13070,"wandering":13071,"fragile":13072,"fiona":13073,"teased":13074,"var":13075,"hardcore":13076,"soaked":13077,"jubilee":13078,"decisive":13079,"exposition":13080,"mercer":13081,"poster":13082,"valencia":13083,"hale":13084,"kuwait":13085,"1811":13086,"##ises":13087,"##wr":13088,"##eed":13089,"tavern":13090,"gamma":13091,"122":13092,"johan":13093,"##uer":13094,"airways":13095,"amino":13096,"gil":13097,"##ury":13098,"vocational":13099,"domains":13100,"torres":13101,"##sp":13102,"generator":13103,"folklore":13104,"outcomes":13105,"##keeper":13106,"canberra":13107,"shooter":13108,"fl":13109,"beams":13110,"confrontation":13111,"##lling":13112,"##gram":13113,"feb":13114,"aligned":13115,"forestry":13116,"pipeline":13117,"jax":13118,"motorway":13119,"conception":13120,"decay":13121,"##tos":13122,"coffin":13123,"##cott":13124,"stalin":13125,"1805":13126,"escorted":13127,"minded":13128,"##nam":13129,"sitcom":13130,"purchasing":13131,"twilight":13132,"veronica":13133,"additions":13134,"passive":13135,"tensions":13136,"straw":13137,"123":13138,"frequencies":13139,"1804":13140,"refugee":13141,"cultivation":13142,"##iate":13143,"christie":13144,"clary":13145,"bulletin":13146,"crept":13147,"disposal":13148,"##rich":13149,"##zong":13150,"processor":13151,"crescent":13152,"##rol":13153,"bmw":13154,"emphasized":13155,"whale":13156,"nazis":13157,"aurora":13158,"##eng":13159,"dwelling":13160,"hauled":13161,"sponsors":13162,"toledo":13163,"mega":13164,"ideology":13165,"theatres":13166,"tessa":13167,"cerambycidae":13168,"saves":13169,"turtle":13170,"cone":13171,"suspects":13172,"kara":13173,"rusty":13174,"yelling":13175,"greeks":13176,"mozart":13177,"shades":13178,"cocked":13179,"participant":13180,"##tro":13181,"shire":13182,"spit":13183,"freeze":13184,"necessity":13185,"##cos":13186,"inmates":13187,"nielsen":13188,"councillors":13189,"loaned":13190,"uncommon":13191,"omar":13192,"peasants":13193,"botanical":13194,"offspring":13195,"daniels":13196,"formations":13197,"jokes":13198,"1794":13199,"pioneers":13200,"sigma":13201,"licensing":13202,"##sus":13203,"wheelchair":13204,"polite":13205,"1807":13206,"liquor":13207,"pratt":13208,"trustee":13209,"##uta":13210,"forewings":13211,"balloon":13212,"##zz":13213,"kilometre":13214,"camping":13215,"explicit":13216,"casually":13217,"shawn":13218,"foolish":13219,"teammates":13220,"nm":13221,"hassan":13222,"carrie":13223,"judged":13224,"satisfy":13225,"vanessa":13226,"knives":13227,"selective":13228,"cnn":13229,"flowed":13230,"##lice":13231,"eclipse":13232,"stressed":13233,"eliza":13234,"mathematician":13235,"cease":13236,"cultivated":13237,"##roy":13238,"commissions":13239,"browns":13240,"##ania":13241,"destroyers":13242,"sheridan":13243,"meadow":13244,"##rius":13245,"minerals":13246,"##cial":13247,"downstream":13248,"clash":13249,"gram":13250,"memoirs":13251,"ventures":13252,"baha":13253,"seymour":13254,"archie":13255,"midlands":13256,"edith":13257,"fare":13258,"flynn":13259,"invite":13260,"canceled":13261,"tiles":13262,"stabbed":13263,"boulder":13264,"incorporate":13265,"amended":13266,"camden":13267,"facial":13268,"mollusk":13269,"unreleased":13270,"descriptions":13271,"yoga":13272,"grabs":13273,"550":13274,"raises":13275,"ramp":13276,"shiver":13277,"##rose":13278,"coined":13279,"pioneering":13280,"tunes":13281,"qing":13282,"warwick":13283,"tops":13284,"119":13285,"melanie":13286,"giles":13287,"##rous":13288,"wandered":13289,"##inal":13290,"annexed":13291,"nov":13292,"30th":13293,"unnamed":13294,"##ished":13295,"organizational":13296,"airplane":13297,"normandy":13298,"stoke":13299,"whistle":13300,"blessing":13301,"violations":13302,"chased":13303,"holders":13304,"shotgun":13305,"##ctic":13306,"outlet":13307,"reactor":13308,"##vik":13309,"tires":13310,"tearing":13311,"shores":13312,"fortified":13313,"mascot":13314,"constituencies":13315,"nc":13316,"columnist":13317,"productive":13318,"tibet":13319,"##rta":13320,"lineage":13321,"hooked":13322,"oct":13323,"tapes":13324,"judging":13325,"cody":13326,"##gger":13327,"hansen":13328,"kashmir":13329,"triggered":13330,"##eva":13331,"solved":13332,"cliffs":13333,"##tree":13334,"resisted":13335,"anatomy":13336,"protesters":13337,"transparent":13338,"implied":13339,"##iga":13340,"injection":13341,"mattress":13342,"excluding":13343,"##mbo":13344,"defenses":13345,"helpless":13346,"devotion":13347,"##elli":13348,"growl":13349,"liberals":13350,"weber":13351,"phenomena":13352,"atoms":13353,"plug":13354,"##iff":13355,"mortality":13356,"apprentice":13357,"howe":13358,"convincing":13359,"aaa":13360,"swimmer":13361,"barber":13362,"leone":13363,"promptly":13364,"sodium":13365,"def":13366,"nowadays":13367,"arise":13368,"##oning":13369,"gloucester":13370,"corrected":13371,"dignity":13372,"norm":13373,"erie":13374,"##ders":13375,"elders":13376,"evacuated":13377,"sylvia":13378,"compression":13379,"##yar":13380,"hartford":13381,"pose":13382,"backpack":13383,"reasoning":13384,"accepts":13385,"24th":13386,"wipe":13387,"millimetres":13388,"marcel":13389,"##oda":13390,"dodgers":13391,"albion":13392,"1790":13393,"overwhelmed":13394,"aerospace":13395,"oaks":13396,"1795":13397,"showcase":13398,"acknowledge":13399,"recovering":13400,"nolan":13401,"ashe":13402,"hurts":13403,"geology":13404,"fashioned":13405,"disappearance":13406,"farewell":13407,"swollen":13408,"shrug":13409,"marquis":13410,"wimbledon":13411,"124":13412,"rue":13413,"1792":13414,"commemorate":13415,"reduces":13416,"experiencing":13417,"inevitable":13418,"calcutta":13419,"intel":13420,"##court":13421,"murderer":13422,"sticking":13423,"fisheries":13424,"imagery":13425,"bloom":13426,"280":13427,"brake":13428,"##inus":13429,"gustav":13430,"hesitation":13431,"memorable":13432,"po":13433,"viral":13434,"beans":13435,"accidents":13436,"tunisia":13437,"antenna":13438,"spilled":13439,"consort":13440,"treatments":13441,"aye":13442,"perimeter":13443,"##gard":13444,"donation":13445,"hostage":13446,"migrated":13447,"banker":13448,"addiction":13449,"apex":13450,"lil":13451,"trout":13452,"##ously":13453,"conscience":13454,"##nova":13455,"rams":13456,"sands":13457,"genome":13458,"passionate":13459,"troubles":13460,"##lets":13461,"##set":13462,"amid":13463,"##ibility":13464,"##ret":13465,"higgins":13466,"exceed":13467,"vikings":13468,"##vie":13469,"payne":13470,"##zan":13471,"muscular":13472,"##ste":13473,"defendant":13474,"sucking":13475,"##wal":13476,"ibrahim":13477,"fuselage":13478,"claudia":13479,"vfl":13480,"europeans":13481,"snails":13482,"interval":13483,"##garh":13484,"preparatory":13485,"statewide":13486,"tasked":13487,"lacrosse":13488,"viktor":13489,"##lation":13490,"angola":13491,"##hra":13492,"flint":13493,"implications":13494,"employs":13495,"teens":13496,"patrons":13497,"stall":13498,"weekends":13499,"barriers":13500,"scrambled":13501,"nucleus":13502,"tehran":13503,"jenna":13504,"parsons":13505,"lifelong":13506,"robots":13507,"displacement":13508,"5000":13509,"##bles":13510,"precipitation":13511,"##gt":13512,"knuckles":13513,"clutched":13514,"1802":13515,"marrying":13516,"ecology":13517,"marx":13518,"accusations":13519,"declare":13520,"scars":13521,"kolkata":13522,"mat":13523,"meadows":13524,"bermuda":13525,"skeleton":13526,"finalists":13527,"vintage":13528,"crawl":13529,"coordinate":13530,"affects":13531,"subjected":13532,"orchestral":13533,"mistaken":13534,"##tc":13535,"mirrors":13536,"dipped":13537,"relied":13538,"260":13539,"arches":13540,"candle":13541,"##nick":13542,"incorporating":13543,"wildly":13544,"fond":13545,"basilica":13546,"owl":13547,"fringe":13548,"rituals":13549,"whispering":13550,"stirred":13551,"feud":13552,"tertiary":13553,"slick":13554,"goat":13555,"honorable":13556,"whereby":13557,"skip":13558,"ricardo":13559,"stripes":13560,"parachute":13561,"adjoining":13562,"submerged":13563,"synthesizer":13564,"##gren":13565,"intend":13566,"positively":13567,"ninety":13568,"phi":13569,"beaver":13570,"partition":13571,"fellows":13572,"alexis":13573,"prohibition":13574,"carlisle":13575,"bizarre":13576,"fraternity":13577,"##bre":13578,"doubts":13579,"icy":13580,"cbc":13581,"aquatic":13582,"sneak":13583,"sonny":13584,"combines":13585,"airports":13586,"crude":13587,"supervised":13588,"spatial":13589,"merge":13590,"alfonso":13591,"##bic":13592,"corrupt":13593,"scan":13594,"undergo":13595,"##ams":13596,"disabilities":13597,"colombian":13598,"comparing":13599,"dolphins":13600,"perkins":13601,"##lish":13602,"reprinted":13603,"unanimous":13604,"bounced":13605,"hairs":13606,"underworld":13607,"midwest":13608,"semester":13609,"bucket":13610,"paperback":13611,"miniseries":13612,"coventry":13613,"demise":13614,"##leigh":13615,"demonstrations":13616,"sensor":13617,"rotating":13618,"yan":13619,"##hler":13620,"arrange":13621,"soils":13622,"##idge":13623,"hyderabad":13624,"labs":13625,"##dr":13626,"brakes":13627,"grandchildren":13628,"##nde":13629,"negotiated":13630,"rover":13631,"ferrari":13632,"continuation":13633,"directorate":13634,"augusta":13635,"stevenson":13636,"counterpart":13637,"gore":13638,"##rda":13639,"nursery":13640,"rican":13641,"ave":13642,"collectively":13643,"broadly":13644,"pastoral":13645,"repertoire":13646,"asserted":13647,"discovering":13648,"nordic":13649,"styled":13650,"fiba":13651,"cunningham":13652,"harley":13653,"middlesex":13654,"survives":13655,"tumor":13656,"tempo":13657,"zack":13658,"aiming":13659,"lok":13660,"urgent":13661,"##rade":13662,"##nto":13663,"devils":13664,"##ement":13665,"contractor":13666,"turin":13667,"##wl":13668,"##ool":13669,"bliss":13670,"repaired":13671,"simmons":13672,"moan":13673,"astronomical":13674,"cr":13675,"negotiate":13676,"lyric":13677,"1890s":13678,"lara":13679,"bred":13680,"clad":13681,"angus":13682,"pbs":13683,"##ience":13684,"engineered":13685,"posed":13686,"##lk":13687,"hernandez":13688,"possessions":13689,"elbows":13690,"psychiatric":13691,"strokes":13692,"confluence":13693,"electorate":13694,"lifts":13695,"campuses":13696,"lava":13697,"alps":13698,"##ep":13699,"##ution":13700,"##date":13701,"physicist":13702,"woody":13703,"##page":13704,"##ographic":13705,"##itis":13706,"juliet":13707,"reformation":13708,"sparhawk":13709,"320":13710,"complement":13711,"suppressed":13712,"jewel":13713,"##½":13714,"floated":13715,"##kas":13716,"continuity":13717,"sadly":13718,"##ische":13719,"inability":13720,"melting":13721,"scanning":13722,"paula":13723,"flour":13724,"judaism":13725,"safer":13726,"vague":13727,"##lm":13728,"solving":13729,"curb":13730,"##stown":13731,"financially":13732,"gable":13733,"bees":13734,"expired":13735,"miserable":13736,"cassidy":13737,"dominion":13738,"1789":13739,"cupped":13740,"145":13741,"robbery":13742,"facto":13743,"amos":13744,"warden":13745,"resume":13746,"tallest":13747,"marvin":13748,"ing":13749,"pounded":13750,"usd":13751,"declaring":13752,"gasoline":13753,"##aux":13754,"darkened":13755,"270":13756,"650":13757,"sophomore":13758,"##mere":13759,"erection":13760,"gossip":13761,"televised":13762,"risen":13763,"dial":13764,"##eu":13765,"pillars":13766,"##link":13767,"passages":13768,"profound":13769,"##tina":13770,"arabian":13771,"ashton":13772,"silicon":13773,"nail":13774,"##ead":13775,"##lated":13776,"##wer":13777,"##hardt":13778,"fleming":13779,"firearms":13780,"ducked":13781,"circuits":13782,"blows":13783,"waterloo":13784,"titans":13785,"##lina":13786,"atom":13787,"fireplace":13788,"cheshire":13789,"financed":13790,"activation":13791,"algorithms":13792,"##zzi":13793,"constituent":13794,"catcher":13795,"cherokee":13796,"partnerships":13797,"sexuality":13798,"platoon":13799,"tragic":13800,"vivian":13801,"guarded":13802,"whiskey":13803,"meditation":13804,"poetic":13805,"##late":13806,"##nga":13807,"##ake":13808,"porto":13809,"listeners":13810,"dominance":13811,"kendra":13812,"mona":13813,"chandler":13814,"factions":13815,"22nd":13816,"salisbury":13817,"attitudes":13818,"derivative":13819,"##ido":13820,"##haus":13821,"intake":13822,"paced":13823,"javier":13824,"illustrator":13825,"barrels":13826,"bias":13827,"cockpit":13828,"burnett":13829,"dreamed":13830,"ensuing":13831,"##anda":13832,"receptors":13833,"someday":13834,"hawkins":13835,"mattered":13836,"##lal":13837,"slavic":13838,"1799":13839,"jesuit":13840,"cameroon":13841,"wasted":13842,"tai":13843,"wax":13844,"lowering":13845,"victorious":13846,"freaking":13847,"outright":13848,"hancock":13849,"librarian":13850,"sensing":13851,"bald":13852,"calcium":13853,"myers":13854,"tablet":13855,"announcing":13856,"barack":13857,"shipyard":13858,"pharmaceutical":13859,"##uan":13860,"greenwich":13861,"flush":13862,"medley":13863,"patches":13864,"wolfgang":13865,"pt":13866,"speeches":13867,"acquiring":13868,"exams":13869,"nikolai":13870,"##gg":13871,"hayden":13872,"kannada":13873,"##type":13874,"reilly":13875,"##pt":13876,"waitress":13877,"abdomen":13878,"devastated":13879,"capped":13880,"pseudonym":13881,"pharmacy":13882,"fulfill":13883,"paraguay":13884,"1796":13885,"clicked":13886,"##trom":13887,"archipelago":13888,"syndicated":13889,"##hman":13890,"lumber":13891,"orgasm":13892,"rejection":13893,"clifford":13894,"lorraine":13895,"advent":13896,"mafia":13897,"rodney":13898,"brock":13899,"##ght":13900,"##used":13901,"##elia":13902,"cassette":13903,"chamberlain":13904,"despair":13905,"mongolia":13906,"sensors":13907,"developmental":13908,"upstream":13909,"##eg":13910,"##alis":13911,"spanning":13912,"165":13913,"trombone":13914,"basque":13915,"seeded":13916,"interred":13917,"renewable":13918,"rhys":13919,"leapt":13920,"revision":13921,"molecule":13922,"##ages":13923,"chord":13924,"vicious":13925,"nord":13926,"shivered":13927,"23rd":13928,"arlington":13929,"debts":13930,"corpus":13931,"sunrise":13932,"bays":13933,"blackburn":13934,"centimetres":13935,"##uded":13936,"shuddered":13937,"gm":13938,"strangely":13939,"gripping":13940,"cartoons":13941,"isabelle":13942,"orbital":13943,"##ppa":13944,"seals":13945,"proving":13946,"##lton":13947,"refusal":13948,"strengthened":13949,"bust":13950,"assisting":13951,"baghdad":13952,"batsman":13953,"portrayal":13954,"mara":13955,"pushes":13956,"spears":13957,"og":13958,"##cock":13959,"reside":13960,"nathaniel":13961,"brennan":13962,"1776":13963,"confirmation":13964,"caucus":13965,"##worthy":13966,"markings":13967,"yemen":13968,"nobles":13969,"ku":13970,"lazy":13971,"viewer":13972,"catalan":13973,"encompasses":13974,"sawyer":13975,"##fall":13976,"sparked":13977,"substances":13978,"patents":13979,"braves":13980,"arranger":13981,"evacuation":13982,"sergio":13983,"persuade":13984,"dover":13985,"tolerance":13986,"penguin":13987,"cum":13988,"jockey":13989,"insufficient":13990,"townships":13991,"occupying":13992,"declining":13993,"plural":13994,"processed":13995,"projection":13996,"puppet":13997,"flanders":13998,"introduces":13999,"liability":14000,"##yon":14001,"gymnastics":14002,"antwerp":14003,"taipei":14004,"hobart":14005,"candles":14006,"jeep":14007,"wes":14008,"observers":14009,"126":14010,"chaplain":14011,"bundle":14012,"glorious":14013,"##hine":14014,"hazel":14015,"flung":14016,"sol":14017,"excavations":14018,"dumped":14019,"stares":14020,"sh":14021,"bangalore":14022,"triangular":14023,"icelandic":14024,"intervals":14025,"expressing":14026,"turbine":14027,"##vers":14028,"songwriting":14029,"crafts":14030,"##igo":14031,"jasmine":14032,"ditch":14033,"rite":14034,"##ways":14035,"entertaining":14036,"comply":14037,"sorrow":14038,"wrestlers":14039,"basel":14040,"emirates":14041,"marian":14042,"rivera":14043,"helpful":14044,"##some":14045,"caution":14046,"downward":14047,"networking":14048,"##atory":14049,"##tered":14050,"darted":14051,"genocide":14052,"emergence":14053,"replies":14054,"specializing":14055,"spokesman":14056,"convenient":14057,"unlocked":14058,"fading":14059,"augustine":14060,"concentrations":14061,"resemblance":14062,"elijah":14063,"investigator":14064,"andhra":14065,"##uda":14066,"promotes":14067,"bean":14068,"##rrell":14069,"fleeing":14070,"wan":14071,"simone":14072,"announcer":14073,"##ame":14074,"##bby":14075,"lydia":14076,"weaver":14077,"132":14078,"residency":14079,"modification":14080,"##fest":14081,"stretches":14082,"##ast":14083,"alternatively":14084,"nat":14085,"lowe":14086,"lacks":14087,"##ented":14088,"pam":14089,"tile":14090,"concealed":14091,"inferior":14092,"abdullah":14093,"residences":14094,"tissues":14095,"vengeance":14096,"##ided":14097,"moisture":14098,"peculiar":14099,"groove":14100,"zip":14101,"bologna":14102,"jennings":14103,"ninja":14104,"oversaw":14105,"zombies":14106,"pumping":14107,"batch":14108,"livingston":14109,"emerald":14110,"installations":14111,"1797":14112,"peel":14113,"nitrogen":14114,"rama":14115,"##fying":14116,"##star":14117,"schooling":14118,"strands":14119,"responding":14120,"werner":14121,"##ost":14122,"lime":14123,"casa":14124,"accurately":14125,"targeting":14126,"##rod":14127,"underway":14128,"##uru":14129,"hemisphere":14130,"lester":14131,"##yard":14132,"occupies":14133,"2d":14134,"griffith":14135,"angrily":14136,"reorganized":14137,"##owing":14138,"courtney":14139,"deposited":14140,"##dd":14141,"##30":14142,"estadio":14143,"##ifies":14144,"dunn":14145,"exiled":14146,"##ying":14147,"checks":14148,"##combe":14149,"##о":14150,"##fly":14151,"successes":14152,"unexpectedly":14153,"blu":14154,"assessed":14155,"##flower":14156,"##ه":14157,"observing":14158,"sacked":14159,"spiders":14160,"kn":14161,"##tail":14162,"mu":14163,"nodes":14164,"prosperity":14165,"audrey":14166,"divisional":14167,"155":14168,"broncos":14169,"tangled":14170,"adjust":14171,"feeds":14172,"erosion":14173,"paolo":14174,"surf":14175,"directory":14176,"snatched":14177,"humid":14178,"admiralty":14179,"screwed":14180,"gt":14181,"reddish":14182,"##nese":14183,"modules":14184,"trench":14185,"lamps":14186,"bind":14187,"leah":14188,"bucks":14189,"competes":14190,"##nz":14191,"##form":14192,"transcription":14193,"##uc":14194,"isles":14195,"violently":14196,"clutching":14197,"pga":14198,"cyclist":14199,"inflation":14200,"flats":14201,"ragged":14202,"unnecessary":14203,"##hian":14204,"stubborn":14205,"coordinated":14206,"harriet":14207,"baba":14208,"disqualified":14209,"330":14210,"insect":14211,"wolfe":14212,"##fies":14213,"reinforcements":14214,"rocked":14215,"duel":14216,"winked":14217,"embraced":14218,"bricks":14219,"##raj":14220,"hiatus":14221,"defeats":14222,"pending":14223,"brightly":14224,"jealousy":14225,"##xton":14226,"##hm":14227,"##uki":14228,"lena":14229,"gdp":14230,"colorful":14231,"##dley":14232,"stein":14233,"kidney":14234,"##shu":14235,"underwear":14236,"wanderers":14237,"##haw":14238,"##icus":14239,"guardians":14240,"m³":14241,"roared":14242,"habits":14243,"##wise":14244,"permits":14245,"gp":14246,"uranium":14247,"punished":14248,"disguise":14249,"bundesliga":14250,"elise":14251,"dundee":14252,"erotic":14253,"partisan":14254,"pi":14255,"collectors":14256,"float":14257,"individually":14258,"rendering":14259,"behavioral":14260,"bucharest":14261,"ser":14262,"hare":14263,"valerie":14264,"corporal":14265,"nutrition":14266,"proportional":14267,"##isa":14268,"immense":14269,"##kis":14270,"pavement":14271,"##zie":14272,"##eld":14273,"sutherland":14274,"crouched":14275,"1775":14276,"##lp":14277,"suzuki":14278,"trades":14279,"endurance":14280,"operas":14281,"crosby":14282,"prayed":14283,"priory":14284,"rory":14285,"socially":14286,"##urn":14287,"gujarat":14288,"##pu":14289,"walton":14290,"cube":14291,"pasha":14292,"privilege":14293,"lennon":14294,"floods":14295,"thorne":14296,"waterfall":14297,"nipple":14298,"scouting":14299,"approve":14300,"##lov":14301,"minorities":14302,"voter":14303,"dwight":14304,"extensions":14305,"assure":14306,"ballroom":14307,"slap":14308,"dripping":14309,"privileges":14310,"rejoined":14311,"confessed":14312,"demonstrating":14313,"patriotic":14314,"yell":14315,"investor":14316,"##uth":14317,"pagan":14318,"slumped":14319,"squares":14320,"##cle":14321,"##kins":14322,"confront":14323,"bert":14324,"embarrassment":14325,"##aid":14326,"aston":14327,"urging":14328,"sweater":14329,"starr":14330,"yuri":14331,"brains":14332,"williamson":14333,"commuter":14334,"mortar":14335,"structured":14336,"selfish":14337,"exports":14338,"##jon":14339,"cds":14340,"##him":14341,"unfinished":14342,"##rre":14343,"mortgage":14344,"destinations":14345,"##nagar":14346,"canoe":14347,"solitary":14348,"buchanan":14349,"delays":14350,"magistrate":14351,"fk":14352,"##pling":14353,"motivation":14354,"##lier":14355,"##vier":14356,"recruiting":14357,"assess":14358,"##mouth":14359,"malik":14360,"antique":14361,"1791":14362,"pius":14363,"rahman":14364,"reich":14365,"tub":14366,"zhou":14367,"smashed":14368,"airs":14369,"galway":14370,"xii":14371,"conditioning":14372,"honduras":14373,"discharged":14374,"dexter":14375,"##pf":14376,"lionel":14377,"129":14378,"debates":14379,"lemon":14380,"tiffany":14381,"volunteered":14382,"dom":14383,"dioxide":14384,"procession":14385,"devi":14386,"sic":14387,"tremendous":14388,"advertisements":14389,"colts":14390,"transferring":14391,"verdict":14392,"hanover":14393,"decommissioned":14394,"utter":14395,"relate":14396,"pac":14397,"racism":14398,"##top":14399,"beacon":14400,"limp":14401,"similarity":14402,"terra":14403,"occurrence":14404,"ant":14405,"##how":14406,"becky":14407,"capt":14408,"updates":14409,"armament":14410,"richie":14411,"pal":14412,"##graph":14413,"halloween":14414,"mayo":14415,"##ssen":14416,"##bone":14417,"cara":14418,"serena":14419,"fcc":14420,"dolls":14421,"obligations":14422,"##dling":14423,"violated":14424,"lafayette":14425,"jakarta":14426,"exploitation":14427,"##ime":14428,"infamous":14429,"iconic":14430,"##lah":14431,"##park":14432,"kitty":14433,"moody":14434,"reginald":14435,"dread":14436,"spill":14437,"crystals":14438,"olivier":14439,"modeled":14440,"bluff":14441,"equilibrium":14442,"separating":14443,"notices":14444,"ordnance":14445,"extinction":14446,"onset":14447,"cosmic":14448,"attachment":14449,"sammy":14450,"expose":14451,"privy":14452,"anchored":14453,"##bil":14454,"abbott":14455,"admits":14456,"bending":14457,"baritone":14458,"emmanuel":14459,"policeman":14460,"vaughan":14461,"winged":14462,"climax":14463,"dresses":14464,"denny":14465,"polytechnic":14466,"mohamed":14467,"burmese":14468,"authentic":14469,"nikki":14470,"genetics":14471,"grandparents":14472,"homestead":14473,"gaza":14474,"postponed":14475,"metacritic":14476,"una":14477,"##sby":14478,"##bat":14479,"unstable":14480,"dissertation":14481,"##rial":14482,"##cian":14483,"curls":14484,"obscure":14485,"uncovered":14486,"bronx":14487,"praying":14488,"disappearing":14489,"##hoe":14490,"prehistoric":14491,"coke":14492,"turret":14493,"mutations":14494,"nonprofit":14495,"pits":14496,"monaco":14497,"##ي":14498,"##usion":14499,"prominently":14500,"dispatched":14501,"podium":14502,"##mir":14503,"uci":14504,"##uation":14505,"133":14506,"fortifications":14507,"birthplace":14508,"kendall":14509,"##lby":14510,"##oll":14511,"preacher":14512,"rack":14513,"goodman":14514,"##rman":14515,"persistent":14516,"##ott":14517,"countless":14518,"jaime":14519,"recorder":14520,"lexington":14521,"persecution":14522,"jumps":14523,"renewal":14524,"wagons":14525,"##11":14526,"crushing":14527,"##holder":14528,"decorations":14529,"##lake":14530,"abundance":14531,"wrath":14532,"laundry":14533,"£1":14534,"garde":14535,"##rp":14536,"jeanne":14537,"beetles":14538,"peasant":14539,"##sl":14540,"splitting":14541,"caste":14542,"sergei":14543,"##rer":14544,"##ema":14545,"scripts":14546,"##ively":14547,"rub":14548,"satellites":14549,"##vor":14550,"inscribed":14551,"verlag":14552,"scrapped":14553,"gale":14554,"packages":14555,"chick":14556,"potato":14557,"slogan":14558,"kathleen":14559,"arabs":14560,"##culture":14561,"counterparts":14562,"reminiscent":14563,"choral":14564,"##tead":14565,"rand":14566,"retains":14567,"bushes":14568,"dane":14569,"accomplish":14570,"courtesy":14571,"closes":14572,"##oth":14573,"slaughter":14574,"hague":14575,"krakow":14576,"lawson":14577,"tailed":14578,"elias":14579,"ginger":14580,"##ttes":14581,"canopy":14582,"betrayal":14583,"rebuilding":14584,"turf":14585,"##hof":14586,"frowning":14587,"allegiance":14588,"brigades":14589,"kicks":14590,"rebuild":14591,"polls":14592,"alias":14593,"nationalism":14594,"td":14595,"rowan":14596,"audition":14597,"bowie":14598,"fortunately":14599,"recognizes":14600,"harp":14601,"dillon":14602,"horrified":14603,"##oro":14604,"renault":14605,"##tics":14606,"ropes":14607,"##α":14608,"presumed":14609,"rewarded":14610,"infrared":14611,"wiping":14612,"accelerated":14613,"illustration":14614,"##rid":14615,"presses":14616,"practitioners":14617,"badminton":14618,"##iard":14619,"detained":14620,"##tera":14621,"recognizing":14622,"relates":14623,"misery":14624,"##sies":14625,"##tly":14626,"reproduction":14627,"piercing":14628,"potatoes":14629,"thornton":14630,"esther":14631,"manners":14632,"hbo":14633,"##aan":14634,"ours":14635,"bullshit":14636,"ernie":14637,"perennial":14638,"sensitivity":14639,"illuminated":14640,"rupert":14641,"##jin":14642,"##iss":14643,"##ear":14644,"rfc":14645,"nassau":14646,"##dock":14647,"staggered":14648,"socialism":14649,"##haven":14650,"appointments":14651,"nonsense":14652,"prestige":14653,"sharma":14654,"haul":14655,"##tical":14656,"solidarity":14657,"gps":14658,"##ook":14659,"##rata":14660,"igor":14661,"pedestrian":14662,"##uit":14663,"baxter":14664,"tenants":14665,"wires":14666,"medication":14667,"unlimited":14668,"guiding":14669,"impacts":14670,"diabetes":14671,"##rama":14672,"sasha":14673,"pas":14674,"clive":14675,"extraction":14676,"131":14677,"continually":14678,"constraints":14679,"##bilities":14680,"sonata":14681,"hunted":14682,"sixteenth":14683,"chu":14684,"planting":14685,"quote":14686,"mayer":14687,"pretended":14688,"abs":14689,"spat":14690,"##hua":14691,"ceramic":14692,"##cci":14693,"curtains":14694,"pigs":14695,"pitching":14696,"##dad":14697,"latvian":14698,"sore":14699,"dayton":14700,"##sted":14701,"##qi":14702,"patrols":14703,"slice":14704,"playground":14705,"##nted":14706,"shone":14707,"stool":14708,"apparatus":14709,"inadequate":14710,"mates":14711,"treason":14712,"##ija":14713,"desires":14714,"##liga":14715,"##croft":14716,"somalia":14717,"laurent":14718,"mir":14719,"leonardo":14720,"oracle":14721,"grape":14722,"obliged":14723,"chevrolet":14724,"thirteenth":14725,"stunning":14726,"enthusiastic":14727,"##ede":14728,"accounted":14729,"concludes":14730,"currents":14731,"basil":14732,"##kovic":14733,"drought":14734,"##rica":14735,"mai":14736,"##aire":14737,"shove":14738,"posting":14739,"##shed":14740,"pilgrimage":14741,"humorous":14742,"packing":14743,"fry":14744,"pencil":14745,"wines":14746,"smells":14747,"144":14748,"marilyn":14749,"aching":14750,"newest":14751,"clung":14752,"bon":14753,"neighbours":14754,"sanctioned":14755,"##pie":14756,"mug":14757,"##stock":14758,"drowning":14759,"##mma":14760,"hydraulic":14761,"##vil":14762,"hiring":14763,"reminder":14764,"lilly":14765,"investigators":14766,"##ncies":14767,"sour":14768,"##eous":14769,"compulsory":14770,"packet":14771,"##rion":14772,"##graphic":14773,"##elle":14774,"cannes":14775,"##inate":14776,"depressed":14777,"##rit":14778,"heroic":14779,"importantly":14780,"theresa":14781,"##tled":14782,"conway":14783,"saturn":14784,"marginal":14785,"rae":14786,"##xia":14787,"corresponds":14788,"royce":14789,"pact":14790,"jasper":14791,"explosives":14792,"packaging":14793,"aluminium":14794,"##ttered":14795,"denotes":14796,"rhythmic":14797,"spans":14798,"assignments":14799,"hereditary":14800,"outlined":14801,"originating":14802,"sundays":14803,"lad":14804,"reissued":14805,"greeting":14806,"beatrice":14807,"##dic":14808,"pillar":14809,"marcos":14810,"plots":14811,"handbook":14812,"alcoholic":14813,"judiciary":14814,"avant":14815,"slides":14816,"extract":14817,"masculine":14818,"blur":14819,"##eum":14820,"##force":14821,"homage":14822,"trembled":14823,"owens":14824,"hymn":14825,"trey":14826,"omega":14827,"signaling":14828,"socks":14829,"accumulated":14830,"reacted":14831,"attic":14832,"theo":14833,"lining":14834,"angie":14835,"distraction":14836,"primera":14837,"talbot":14838,"##key":14839,"1200":14840,"ti":14841,"creativity":14842,"billed":14843,"##hey":14844,"deacon":14845,"eduardo":14846,"identifies":14847,"proposition":14848,"dizzy":14849,"gunner":14850,"hogan":14851,"##yam":14852,"##pping":14853,"##hol":14854,"ja":14855,"##chan":14856,"jensen":14857,"reconstructed":14858,"##berger":14859,"clearance":14860,"darius":14861,"##nier":14862,"abe":14863,"harlem":14864,"plea":14865,"dei":14866,"circled":14867,"emotionally":14868,"notation":14869,"fascist":14870,"neville":14871,"exceeded":14872,"upwards":14873,"viable":14874,"ducks":14875,"##fo":14876,"workforce":14877,"racer":14878,"limiting":14879,"shri":14880,"##lson":14881,"possesses":14882,"1600":14883,"kerr":14884,"moths":14885,"devastating":14886,"laden":14887,"disturbing":14888,"locking":14889,"##cture":14890,"gal":14891,"fearing":14892,"accreditation":14893,"flavor":14894,"aide":14895,"1870s":14896,"mountainous":14897,"##baum":14898,"melt":14899,"##ures":14900,"motel":14901,"texture":14902,"servers":14903,"soda":14904,"##mb":14905,"herd":14906,"##nium":14907,"erect":14908,"puzzled":14909,"hum":14910,"peggy":14911,"examinations":14912,"gould":14913,"testified":14914,"geoff":14915,"ren":14916,"devised":14917,"sacks":14918,"##law":14919,"denial":14920,"posters":14921,"grunted":14922,"cesar":14923,"tutor":14924,"ec":14925,"gerry":14926,"offerings":14927,"byrne":14928,"falcons":14929,"combinations":14930,"ct":14931,"incoming":14932,"pardon":14933,"rocking":14934,"26th":14935,"avengers":14936,"flared":14937,"mankind":14938,"seller":14939,"uttar":14940,"loch":14941,"nadia":14942,"stroking":14943,"exposing":14944,"##hd":14945,"fertile":14946,"ancestral":14947,"instituted":14948,"##has":14949,"noises":14950,"prophecy":14951,"taxation":14952,"eminent":14953,"vivid":14954,"pol":14955,"##bol":14956,"dart":14957,"indirect":14958,"multimedia":14959,"notebook":14960,"upside":14961,"displaying":14962,"adrenaline":14963,"referenced":14964,"geometric":14965,"##iving":14966,"progression":14967,"##ddy":14968,"blunt":14969,"announce":14970,"##far":14971,"implementing":14972,"##lav":14973,"aggression":14974,"liaison":14975,"cooler":14976,"cares":14977,"headache":14978,"plantations":14979,"gorge":14980,"dots":14981,"impulse":14982,"thickness":14983,"ashamed":14984,"averaging":14985,"kathy":14986,"obligation":14987,"precursor":14988,"137":14989,"fowler":14990,"symmetry":14991,"thee":14992,"225":14993,"hears":14994,"##rai":14995,"undergoing":14996,"ads":14997,"butcher":14998,"bowler":14999,"##lip":15000,"cigarettes":15001,"subscription":15002,"goodness":15003,"##ically":15004,"browne":15005,"##hos":15006,"##tech":15007,"kyoto":15008,"donor":15009,"##erty":15010,"damaging":15011,"friction":15012,"drifting":15013,"expeditions":15014,"hardened":15015,"prostitution":15016,"152":15017,"fauna":15018,"blankets":15019,"claw":15020,"tossing":15021,"snarled":15022,"butterflies":15023,"recruits":15024,"investigative":15025,"coated":15026,"healed":15027,"138":15028,"communal":15029,"hai":15030,"xiii":15031,"academics":15032,"boone":15033,"psychologist":15034,"restless":15035,"lahore":15036,"stephens":15037,"mba":15038,"brendan":15039,"foreigners":15040,"printer":15041,"##pc":15042,"ached":15043,"explode":15044,"27th":15045,"deed":15046,"scratched":15047,"dared":15048,"##pole":15049,"cardiac":15050,"1780":15051,"okinawa":15052,"proto":15053,"commando":15054,"compelled":15055,"oddly":15056,"electrons":15057,"##base":15058,"replica":15059,"thanksgiving":15060,"##rist":15061,"sheila":15062,"deliberate":15063,"stafford":15064,"tidal":15065,"representations":15066,"hercules":15067,"ou":15068,"##path":15069,"##iated":15070,"kidnapping":15071,"lenses":15072,"##tling":15073,"deficit":15074,"samoa":15075,"mouths":15076,"consuming":15077,"computational":15078,"maze":15079,"granting":15080,"smirk":15081,"razor":15082,"fixture":15083,"ideals":15084,"inviting":15085,"aiden":15086,"nominal":15087,"##vs":15088,"issuing":15089,"julio":15090,"pitt":15091,"ramsey":15092,"docks":15093,"##oss":15094,"exhaust":15095,"##owed":15096,"bavarian":15097,"draped":15098,"anterior":15099,"mating":15100,"ethiopian":15101,"explores":15102,"noticing":15103,"##nton":15104,"discarded":15105,"convenience":15106,"hoffman":15107,"endowment":15108,"beasts":15109,"cartridge":15110,"mormon":15111,"paternal":15112,"probe":15113,"sleeves":15114,"interfere":15115,"lump":15116,"deadline":15117,"##rail":15118,"jenks":15119,"bulldogs":15120,"scrap":15121,"alternating":15122,"justified":15123,"reproductive":15124,"nam":15125,"seize":15126,"descending":15127,"secretariat":15128,"kirby":15129,"coupe":15130,"grouped":15131,"smash":15132,"panther":15133,"sedan":15134,"tapping":15135,"##18":15136,"lola":15137,"cheer":15138,"germanic":15139,"unfortunate":15140,"##eter":15141,"unrelated":15142,"##fan":15143,"subordinate":15144,"##sdale":15145,"suzanne":15146,"advertisement":15147,"##ility":15148,"horsepower":15149,"##lda":15150,"cautiously":15151,"discourse":15152,"luigi":15153,"##mans":15154,"##fields":15155,"noun":15156,"prevalent":15157,"mao":15158,"schneider":15159,"everett":15160,"surround":15161,"governorate":15162,"kira":15163,"##avia":15164,"westward":15165,"##take":15166,"misty":15167,"rails":15168,"sustainability":15169,"134":15170,"unused":15171,"##rating":15172,"packs":15173,"toast":15174,"unwilling":15175,"regulate":15176,"thy":15177,"suffrage":15178,"nile":15179,"awe":15180,"assam":15181,"definitions":15182,"travelers":15183,"affordable":15184,"##rb":15185,"conferred":15186,"sells":15187,"undefeated":15188,"beneficial":15189,"torso":15190,"basal":15191,"repeating":15192,"remixes":15193,"##pass":15194,"bahrain":15195,"cables":15196,"fang":15197,"##itated":15198,"excavated":15199,"numbering":15200,"statutory":15201,"##rey":15202,"deluxe":15203,"##lian":15204,"forested":15205,"ramirez":15206,"derbyshire":15207,"zeus":15208,"slamming":15209,"transfers":15210,"astronomer":15211,"banana":15212,"lottery":15213,"berg":15214,"histories":15215,"bamboo":15216,"##uchi":15217,"resurrection":15218,"posterior":15219,"bowls":15220,"vaguely":15221,"##thi":15222,"thou":15223,"preserving":15224,"tensed":15225,"offence":15226,"##inas":15227,"meyrick":15228,"callum":15229,"ridden":15230,"watt":15231,"langdon":15232,"tying":15233,"lowland":15234,"snorted":15235,"daring":15236,"truman":15237,"##hale":15238,"##girl":15239,"aura":15240,"overly":15241,"filing":15242,"weighing":15243,"goa":15244,"infections":15245,"philanthropist":15246,"saunders":15247,"eponymous":15248,"##owski":15249,"latitude":15250,"perspectives":15251,"reviewing":15252,"mets":15253,"commandant":15254,"radial":15255,"##kha":15256,"flashlight":15257,"reliability":15258,"koch":15259,"vowels":15260,"amazed":15261,"ada":15262,"elaine":15263,"supper":15264,"##rth":15265,"##encies":15266,"predator":15267,"debated":15268,"soviets":15269,"cola":15270,"##boards":15271,"##nah":15272,"compartment":15273,"crooked":15274,"arbitrary":15275,"fourteenth":15276,"##ctive":15277,"havana":15278,"majors":15279,"steelers":15280,"clips":15281,"profitable":15282,"ambush":15283,"exited":15284,"packers":15285,"##tile":15286,"nude":15287,"cracks":15288,"fungi":15289,"##е":15290,"limb":15291,"trousers":15292,"josie":15293,"shelby":15294,"tens":15295,"frederic":15296,"##ος":15297,"definite":15298,"smoothly":15299,"constellation":15300,"insult":15301,"baton":15302,"discs":15303,"lingering":15304,"##nco":15305,"conclusions":15306,"lent":15307,"staging":15308,"becker":15309,"grandpa":15310,"shaky":15311,"##tron":15312,"einstein":15313,"obstacles":15314,"sk":15315,"adverse":15316,"elle":15317,"economically":15318,"##moto":15319,"mccartney":15320,"thor":15321,"dismissal":15322,"motions":15323,"readings":15324,"nostrils":15325,"treatise":15326,"##pace":15327,"squeezing":15328,"evidently":15329,"prolonged":15330,"1783":15331,"venezuelan":15332,"je":15333,"marguerite":15334,"beirut":15335,"takeover":15336,"shareholders":15337,"##vent":15338,"denise":15339,"digit":15340,"airplay":15341,"norse":15342,"##bbling":15343,"imaginary":15344,"pills":15345,"hubert":15346,"blaze":15347,"vacated":15348,"eliminating":15349,"##ello":15350,"vine":15351,"mansfield":15352,"##tty":15353,"retrospective":15354,"barrow":15355,"borne":15356,"clutch":15357,"bail":15358,"forensic":15359,"weaving":15360,"##nett":15361,"##witz":15362,"desktop":15363,"citadel":15364,"promotions":15365,"worrying":15366,"dorset":15367,"ieee":15368,"subdivided":15369,"##iating":15370,"manned":15371,"expeditionary":15372,"pickup":15373,"synod":15374,"chuckle":15375,"185":15376,"barney":15377,"##rz":15378,"##ffin":15379,"functionality":15380,"karachi":15381,"litigation":15382,"meanings":15383,"uc":15384,"lick":15385,"turbo":15386,"anders":15387,"##ffed":15388,"execute":15389,"curl":15390,"oppose":15391,"ankles":15392,"typhoon":15393,"##د":15394,"##ache":15395,"##asia":15396,"linguistics":15397,"compassion":15398,"pressures":15399,"grazing":15400,"perfection":15401,"##iting":15402,"immunity":15403,"monopoly":15404,"muddy":15405,"backgrounds":15406,"136":15407,"namibia":15408,"francesca":15409,"monitors":15410,"attracting":15411,"stunt":15412,"tuition":15413,"##ии":15414,"vegetable":15415,"##mates":15416,"##quent":15417,"mgm":15418,"jen":15419,"complexes":15420,"forts":15421,"##ond":15422,"cellar":15423,"bites":15424,"seventeenth":15425,"royals":15426,"flemish":15427,"failures":15428,"mast":15429,"charities":15430,"##cular":15431,"peruvian":15432,"capitals":15433,"macmillan":15434,"ipswich":15435,"outward":15436,"frigate":15437,"postgraduate":15438,"folds":15439,"employing":15440,"##ouse":15441,"concurrently":15442,"fiery":15443,"##tai":15444,"contingent":15445,"nightmares":15446,"monumental":15447,"nicaragua":15448,"##kowski":15449,"lizard":15450,"mal":15451,"fielding":15452,"gig":15453,"reject":15454,"##pad":15455,"harding":15456,"##ipe":15457,"coastline":15458,"##cin":15459,"##nos":15460,"beethoven":15461,"humphrey":15462,"innovations":15463,"##tam":15464,"##nge":15465,"norris":15466,"doris":15467,"solicitor":15468,"huang":15469,"obey":15470,"141":15471,"##lc":15472,"niagara":15473,"##tton":15474,"shelves":15475,"aug":15476,"bourbon":15477,"curry":15478,"nightclub":15479,"specifications":15480,"hilton":15481,"##ndo":15482,"centennial":15483,"dispersed":15484,"worm":15485,"neglected":15486,"briggs":15487,"sm":15488,"font":15489,"kuala":15490,"uneasy":15491,"plc":15492,"##nstein":15493,"##bound":15494,"##aking":15495,"##burgh":15496,"awaiting":15497,"pronunciation":15498,"##bbed":15499,"##quest":15500,"eh":15501,"optimal":15502,"zhu":15503,"raped":15504,"greens":15505,"presided":15506,"brenda":15507,"worries":15508,"##life":15509,"venetian":15510,"marxist":15511,"turnout":15512,"##lius":15513,"refined":15514,"braced":15515,"sins":15516,"grasped":15517,"sunderland":15518,"nickel":15519,"speculated":15520,"lowell":15521,"cyrillic":15522,"communism":15523,"fundraising":15524,"resembling":15525,"colonists":15526,"mutant":15527,"freddie":15528,"usc":15529,"##mos":15530,"gratitude":15531,"##run":15532,"mural":15533,"##lous":15534,"chemist":15535,"wi":15536,"reminds":15537,"28th":15538,"steals":15539,"tess":15540,"pietro":15541,"##ingen":15542,"promoter":15543,"ri":15544,"microphone":15545,"honoured":15546,"rai":15547,"sant":15548,"##qui":15549,"feather":15550,"##nson":15551,"burlington":15552,"kurdish":15553,"terrorists":15554,"deborah":15555,"sickness":15556,"##wed":15557,"##eet":15558,"hazard":15559,"irritated":15560,"desperation":15561,"veil":15562,"clarity":15563,"##rik":15564,"jewels":15565,"xv":15566,"##gged":15567,"##ows":15568,"##cup":15569,"berkshire":15570,"unfair":15571,"mysteries":15572,"orchid":15573,"winced":15574,"exhaustion":15575,"renovations":15576,"stranded":15577,"obe":15578,"infinity":15579,"##nies":15580,"adapt":15581,"redevelopment":15582,"thanked":15583,"registry":15584,"olga":15585,"domingo":15586,"noir":15587,"tudor":15588,"ole":15589,"##atus":15590,"commenting":15591,"behaviors":15592,"##ais":15593,"crisp":15594,"pauline":15595,"probable":15596,"stirling":15597,"wigan":15598,"##bian":15599,"paralympics":15600,"panting":15601,"surpassed":15602,"##rew":15603,"luca":15604,"barred":15605,"pony":15606,"famed":15607,"##sters":15608,"cassandra":15609,"waiter":15610,"carolyn":15611,"exported":15612,"##orted":15613,"andres":15614,"destructive":15615,"deeds":15616,"jonah":15617,"castles":15618,"vacancy":15619,"suv":15620,"##glass":15621,"1788":15622,"orchard":15623,"yep":15624,"famine":15625,"belarusian":15626,"sprang":15627,"##forth":15628,"skinny":15629,"##mis":15630,"administrators":15631,"rotterdam":15632,"zambia":15633,"zhao":15634,"boiler":15635,"discoveries":15636,"##ride":15637,"##physics":15638,"lucius":15639,"disappointing":15640,"outreach":15641,"spoon":15642,"##frame":15643,"qualifications":15644,"unanimously":15645,"enjoys":15646,"regency":15647,"##iidae":15648,"stade":15649,"realism":15650,"veterinary":15651,"rodgers":15652,"dump":15653,"alain":15654,"chestnut":15655,"castile":15656,"censorship":15657,"rumble":15658,"gibbs":15659,"##itor":15660,"communion":15661,"reggae":15662,"inactivated":15663,"logs":15664,"loads":15665,"##houses":15666,"homosexual":15667,"##iano":15668,"ale":15669,"informs":15670,"##cas":15671,"phrases":15672,"plaster":15673,"linebacker":15674,"ambrose":15675,"kaiser":15676,"fascinated":15677,"850":15678,"limerick":15679,"recruitment":15680,"forge":15681,"mastered":15682,"##nding":15683,"leinster":15684,"rooted":15685,"threaten":15686,"##strom":15687,"borneo":15688,"##hes":15689,"suggestions":15690,"scholarships":15691,"propeller":15692,"documentaries":15693,"patronage":15694,"coats":15695,"constructing":15696,"invest":15697,"neurons":15698,"comet":15699,"entirety":15700,"shouts":15701,"identities":15702,"annoying":15703,"unchanged":15704,"wary":15705,"##antly":15706,"##ogy":15707,"neat":15708,"oversight":15709,"##kos":15710,"phillies":15711,"replay":15712,"constance":15713,"##kka":15714,"incarnation":15715,"humble":15716,"skies":15717,"minus":15718,"##acy":15719,"smithsonian":15720,"##chel":15721,"guerrilla":15722,"jar":15723,"cadets":15724,"##plate":15725,"surplus":15726,"audit":15727,"##aru":15728,"cracking":15729,"joanna":15730,"louisa":15731,"pacing":15732,"##lights":15733,"intentionally":15734,"##iri":15735,"diner":15736,"nwa":15737,"imprint":15738,"australians":15739,"tong":15740,"unprecedented":15741,"bunker":15742,"naive":15743,"specialists":15744,"ark":15745,"nichols":15746,"railing":15747,"leaked":15748,"pedal":15749,"##uka":15750,"shrub":15751,"longing":15752,"roofs":15753,"v8":15754,"captains":15755,"neural":15756,"tuned":15757,"##ntal":15758,"##jet":15759,"emission":15760,"medina":15761,"frantic":15762,"codex":15763,"definitive":15764,"sid":15765,"abolition":15766,"intensified":15767,"stocks":15768,"enrique":15769,"sustain":15770,"genoa":15771,"oxide":15772,"##written":15773,"clues":15774,"cha":15775,"##gers":15776,"tributaries":15777,"fragment":15778,"venom":15779,"##rity":15780,"##ente":15781,"##sca":15782,"muffled":15783,"vain":15784,"sire":15785,"laos":15786,"##ingly":15787,"##hana":15788,"hastily":15789,"snapping":15790,"surfaced":15791,"sentiment":15792,"motive":15793,"##oft":15794,"contests":15795,"approximate":15796,"mesa":15797,"luckily":15798,"dinosaur":15799,"exchanges":15800,"propelled":15801,"accord":15802,"bourne":15803,"relieve":15804,"tow":15805,"masks":15806,"offended":15807,"##ues":15808,"cynthia":15809,"##mmer":15810,"rains":15811,"bartender":15812,"zinc":15813,"reviewers":15814,"lois":15815,"##sai":15816,"legged":15817,"arrogant":15818,"rafe":15819,"rosie":15820,"comprise":15821,"handicap":15822,"blockade":15823,"inlet":15824,"lagoon":15825,"copied":15826,"drilling":15827,"shelley":15828,"petals":15829,"##inian":15830,"mandarin":15831,"obsolete":15832,"##inated":15833,"onward":15834,"arguably":15835,"productivity":15836,"cindy":15837,"praising":15838,"seldom":15839,"busch":15840,"discusses":15841,"raleigh":15842,"shortage":15843,"ranged":15844,"stanton":15845,"encouragement":15846,"firstly":15847,"conceded":15848,"overs":15849,"temporal":15850,"##uke":15851,"cbe":15852,"##bos":15853,"woo":15854,"certainty":15855,"pumps":15856,"##pton":15857,"stalked":15858,"##uli":15859,"lizzie":15860,"periodic":15861,"thieves":15862,"weaker":15863,"##night":15864,"gases":15865,"shoving":15866,"chooses":15867,"wc":15868,"##chemical":15869,"prompting":15870,"weights":15871,"##kill":15872,"robust":15873,"flanked":15874,"sticky":15875,"hu":15876,"tuberculosis":15877,"##eb":15878,"##eal":15879,"christchurch":15880,"resembled":15881,"wallet":15882,"reese":15883,"inappropriate":15884,"pictured":15885,"distract":15886,"fixing":15887,"fiddle":15888,"giggled":15889,"burger":15890,"heirs":15891,"hairy":15892,"mechanic":15893,"torque":15894,"apache":15895,"obsessed":15896,"chiefly":15897,"cheng":15898,"logging":15899,"##tag":15900,"extracted":15901,"meaningful":15902,"numb":15903,"##vsky":15904,"gloucestershire":15905,"reminding":15906,"##bay":15907,"unite":15908,"##lit":15909,"breeds":15910,"diminished":15911,"clown":15912,"glove":15913,"1860s":15914,"##ن":15915,"##ug":15916,"archibald":15917,"focal":15918,"freelance":15919,"sliced":15920,"depiction":15921,"##yk":15922,"organism":15923,"switches":15924,"sights":15925,"stray":15926,"crawling":15927,"##ril":15928,"lever":15929,"leningrad":15930,"interpretations":15931,"loops":15932,"anytime":15933,"reel":15934,"alicia":15935,"delighted":15936,"##ech":15937,"inhaled":15938,"xiv":15939,"suitcase":15940,"bernie":15941,"vega":15942,"licenses":15943,"northampton":15944,"exclusion":15945,"induction":15946,"monasteries":15947,"racecourse":15948,"homosexuality":15949,"##right":15950,"##sfield":15951,"##rky":15952,"dimitri":15953,"michele":15954,"alternatives":15955,"ions":15956,"commentators":15957,"genuinely":15958,"objected":15959,"pork":15960,"hospitality":15961,"fencing":15962,"stephan":15963,"warships":15964,"peripheral":15965,"wit":15966,"drunken":15967,"wrinkled":15968,"quentin":15969,"spends":15970,"departing":15971,"chung":15972,"numerical":15973,"spokesperson":15974,"##zone":15975,"johannesburg":15976,"caliber":15977,"killers":15978,"##udge":15979,"assumes":15980,"neatly":15981,"demographic":15982,"abigail":15983,"bloc":15984,"##vel":15985,"mounting":15986,"##lain":15987,"bentley":15988,"slightest":15989,"xu":15990,"recipients":15991,"##jk":15992,"merlin":15993,"##writer":15994,"seniors":15995,"prisons":15996,"blinking":15997,"hindwings":15998,"flickered":15999,"kappa":16000,"##hel":16001,"80s":16002,"strengthening":16003,"appealing":16004,"brewing":16005,"gypsy":16006,"mali":16007,"lashes":16008,"hulk":16009,"unpleasant":16010,"harassment":16011,"bio":16012,"treaties":16013,"predict":16014,"instrumentation":16015,"pulp":16016,"troupe":16017,"boiling":16018,"mantle":16019,"##ffe":16020,"ins":16021,"##vn":16022,"dividing":16023,"handles":16024,"verbs":16025,"##onal":16026,"coconut":16027,"senegal":16028,"340":16029,"thorough":16030,"gum":16031,"momentarily":16032,"##sto":16033,"cocaine":16034,"panicked":16035,"destined":16036,"##turing":16037,"teatro":16038,"denying":16039,"weary":16040,"captained":16041,"mans":16042,"##hawks":16043,"##code":16044,"wakefield":16045,"bollywood":16046,"thankfully":16047,"##16":16048,"cyril":16049,"##wu":16050,"amendments":16051,"##bahn":16052,"consultation":16053,"stud":16054,"reflections":16055,"kindness":16056,"1787":16057,"internally":16058,"##ovo":16059,"tex":16060,"mosaic":16061,"distribute":16062,"paddy":16063,"seeming":16064,"143":16065,"##hic":16066,"piers":16067,"##15":16068,"##mura":16069,"##verse":16070,"popularly":16071,"winger":16072,"kang":16073,"sentinel":16074,"mccoy":16075,"##anza":16076,"covenant":16077,"##bag":16078,"verge":16079,"fireworks":16080,"suppress":16081,"thrilled":16082,"dominate":16083,"##jar":16084,"swansea":16085,"##60":16086,"142":16087,"reconciliation":16088,"##ndi":16089,"stiffened":16090,"cue":16091,"dorian":16092,"##uf":16093,"damascus":16094,"amor":16095,"ida":16096,"foremost":16097,"##aga":16098,"porsche":16099,"unseen":16100,"dir":16101,"##had":16102,"##azi":16103,"stony":16104,"lexi":16105,"melodies":16106,"##nko":16107,"angular":16108,"integer":16109,"podcast":16110,"ants":16111,"inherent":16112,"jaws":16113,"justify":16114,"persona":16115,"##olved":16116,"josephine":16117,"##nr":16118,"##ressed":16119,"customary":16120,"flashes":16121,"gala":16122,"cyrus":16123,"glaring":16124,"backyard":16125,"ariel":16126,"physiology":16127,"greenland":16128,"html":16129,"stir":16130,"avon":16131,"atletico":16132,"finch":16133,"methodology":16134,"ked":16135,"##lent":16136,"mas":16137,"catholicism":16138,"townsend":16139,"branding":16140,"quincy":16141,"fits":16142,"containers":16143,"1777":16144,"ashore":16145,"aragon":16146,"##19":16147,"forearm":16148,"poisoning":16149,"##sd":16150,"adopting":16151,"conquer":16152,"grinding":16153,"amnesty":16154,"keller":16155,"finances":16156,"evaluate":16157,"forged":16158,"lankan":16159,"instincts":16160,"##uto":16161,"guam":16162,"bosnian":16163,"photographed":16164,"workplace":16165,"desirable":16166,"protector":16167,"##dog":16168,"allocation":16169,"intently":16170,"encourages":16171,"willy":16172,"##sten":16173,"bodyguard":16174,"electro":16175,"brighter":16176,"##ν":16177,"bihar":16178,"##chev":16179,"lasts":16180,"opener":16181,"amphibious":16182,"sal":16183,"verde":16184,"arte":16185,"##cope":16186,"captivity":16187,"vocabulary":16188,"yields":16189,"##tted":16190,"agreeing":16191,"desmond":16192,"pioneered":16193,"##chus":16194,"strap":16195,"campaigned":16196,"railroads":16197,"##ович":16198,"emblem":16199,"##dre":16200,"stormed":16201,"501":16202,"##ulous":16203,"marijuana":16204,"northumberland":16205,"##gn":16206,"##nath":16207,"bowen":16208,"landmarks":16209,"beaumont":16210,"##qua":16211,"danube":16212,"##bler":16213,"attorneys":16214,"th":16215,"ge":16216,"flyers":16217,"critique":16218,"villains":16219,"cass":16220,"mutation":16221,"acc":16222,"##0s":16223,"colombo":16224,"mckay":16225,"motif":16226,"sampling":16227,"concluding":16228,"syndicate":16229,"##rell":16230,"neon":16231,"stables":16232,"ds":16233,"warnings":16234,"clint":16235,"mourning":16236,"wilkinson":16237,"##tated":16238,"merrill":16239,"leopard":16240,"evenings":16241,"exhaled":16242,"emil":16243,"sonia":16244,"ezra":16245,"discrete":16246,"stove":16247,"farrell":16248,"fifteenth":16249,"prescribed":16250,"superhero":16251,"##rier":16252,"worms":16253,"helm":16254,"wren":16255,"##duction":16256,"##hc":16257,"expo":16258,"##rator":16259,"hq":16260,"unfamiliar":16261,"antony":16262,"prevents":16263,"acceleration":16264,"fiercely":16265,"mari":16266,"painfully":16267,"calculations":16268,"cheaper":16269,"ign":16270,"clifton":16271,"irvine":16272,"davenport":16273,"mozambique":16274,"##np":16275,"pierced":16276,"##evich":16277,"wonders":16278,"##wig":16279,"##cate":16280,"##iling":16281,"crusade":16282,"ware":16283,"##uel":16284,"enzymes":16285,"reasonably":16286,"mls":16287,"##coe":16288,"mater":16289,"ambition":16290,"bunny":16291,"eliot":16292,"kernel":16293,"##fin":16294,"asphalt":16295,"headmaster":16296,"torah":16297,"aden":16298,"lush":16299,"pins":16300,"waived":16301,"##care":16302,"##yas":16303,"joao":16304,"substrate":16305,"enforce":16306,"##grad":16307,"##ules":16308,"alvarez":16309,"selections":16310,"epidemic":16311,"tempted":16312,"##bit":16313,"bremen":16314,"translates":16315,"ensured":16316,"waterfront":16317,"29th":16318,"forrest":16319,"manny":16320,"malone":16321,"kramer":16322,"reigning":16323,"cookies":16324,"simpler":16325,"absorption":16326,"205":16327,"engraved":16328,"##ffy":16329,"evaluated":16330,"1778":16331,"haze":16332,"146":16333,"comforting":16334,"crossover":16335,"##abe":16336,"thorn":16337,"##rift":16338,"##imo":16339,"##pop":16340,"suppression":16341,"fatigue":16342,"cutter":16343,"##tr":16344,"201":16345,"wurttemberg":16346,"##orf":16347,"enforced":16348,"hovering":16349,"proprietary":16350,"gb":16351,"samurai":16352,"syllable":16353,"ascent":16354,"lacey":16355,"tick":16356,"lars":16357,"tractor":16358,"merchandise":16359,"rep":16360,"bouncing":16361,"defendants":16362,"##yre":16363,"huntington":16364,"##ground":16365,"##oko":16366,"standardized":16367,"##hor":16368,"##hima":16369,"assassinated":16370,"nu":16371,"predecessors":16372,"rainy":16373,"liar":16374,"assurance":16375,"lyrical":16376,"##uga":16377,"secondly":16378,"flattened":16379,"ios":16380,"parameter":16381,"undercover":16382,"##mity":16383,"bordeaux":16384,"punish":16385,"ridges":16386,"markers":16387,"exodus":16388,"inactive":16389,"hesitate":16390,"debbie":16391,"nyc":16392,"pledge":16393,"savoy":16394,"nagar":16395,"offset":16396,"organist":16397,"##tium":16398,"hesse":16399,"marin":16400,"converting":16401,"##iver":16402,"diagram":16403,"propulsion":16404,"pu":16405,"validity":16406,"reverted":16407,"supportive":16408,"##dc":16409,"ministries":16410,"clans":16411,"responds":16412,"proclamation":16413,"##inae":16414,"##ø":16415,"##rea":16416,"ein":16417,"pleading":16418,"patriot":16419,"sf":16420,"birch":16421,"islanders":16422,"strauss":16423,"hates":16424,"##dh":16425,"brandenburg":16426,"concession":16427,"rd":16428,"##ob":16429,"1900s":16430,"killings":16431,"textbook":16432,"antiquity":16433,"cinematography":16434,"wharf":16435,"embarrassing":16436,"setup":16437,"creed":16438,"farmland":16439,"inequality":16440,"centred":16441,"signatures":16442,"fallon":16443,"370":16444,"##ingham":16445,"##uts":16446,"ceylon":16447,"gazing":16448,"directive":16449,"laurie":16450,"##tern":16451,"globally":16452,"##uated":16453,"##dent":16454,"allah":16455,"excavation":16456,"threads":16457,"##cross":16458,"148":16459,"frantically":16460,"icc":16461,"utilize":16462,"determines":16463,"respiratory":16464,"thoughtful":16465,"receptions":16466,"##dicate":16467,"merging":16468,"chandra":16469,"seine":16470,"147":16471,"builders":16472,"builds":16473,"diagnostic":16474,"dev":16475,"visibility":16476,"goddamn":16477,"analyses":16478,"dhaka":16479,"cho":16480,"proves":16481,"chancel":16482,"concurrent":16483,"curiously":16484,"canadians":16485,"pumped":16486,"restoring":16487,"1850s":16488,"turtles":16489,"jaguar":16490,"sinister":16491,"spinal":16492,"traction":16493,"declan":16494,"vows":16495,"1784":16496,"glowed":16497,"capitalism":16498,"swirling":16499,"install":16500,"universidad":16501,"##lder":16502,"##oat":16503,"soloist":16504,"##genic":16505,"##oor":16506,"coincidence":16507,"beginnings":16508,"nissan":16509,"dip":16510,"resorts":16511,"caucasus":16512,"combustion":16513,"infectious":16514,"##eno":16515,"pigeon":16516,"serpent":16517,"##itating":16518,"conclude":16519,"masked":16520,"salad":16521,"jew":16522,"##gr":16523,"surreal":16524,"toni":16525,"##wc":16526,"harmonica":16527,"151":16528,"##gins":16529,"##etic":16530,"##coat":16531,"fishermen":16532,"intending":16533,"bravery":16534,"##wave":16535,"klaus":16536,"titan":16537,"wembley":16538,"taiwanese":16539,"ransom":16540,"40th":16541,"incorrect":16542,"hussein":16543,"eyelids":16544,"jp":16545,"cooke":16546,"dramas":16547,"utilities":16548,"##etta":16549,"##print":16550,"eisenhower":16551,"principally":16552,"granada":16553,"lana":16554,"##rak":16555,"openings":16556,"concord":16557,"##bl":16558,"bethany":16559,"connie":16560,"morality":16561,"sega":16562,"##mons":16563,"##nard":16564,"earnings":16565,"##kara":16566,"##cine":16567,"wii":16568,"communes":16569,"##rel":16570,"coma":16571,"composing":16572,"softened":16573,"severed":16574,"grapes":16575,"##17":16576,"nguyen":16577,"analyzed":16578,"warlord":16579,"hubbard":16580,"heavenly":16581,"behave":16582,"slovenian":16583,"##hit":16584,"##ony":16585,"hailed":16586,"filmmakers":16587,"trance":16588,"caldwell":16589,"skye":16590,"unrest":16591,"coward":16592,"likelihood":16593,"##aging":16594,"bern":16595,"sci":16596,"taliban":16597,"honolulu":16598,"propose":16599,"##wang":16600,"1700":16601,"browser":16602,"imagining":16603,"cobra":16604,"contributes":16605,"dukes":16606,"instinctively":16607,"conan":16608,"violinist":16609,"##ores":16610,"accessories":16611,"gradual":16612,"##amp":16613,"quotes":16614,"sioux":16615,"##dating":16616,"undertake":16617,"intercepted":16618,"sparkling":16619,"compressed":16620,"139":16621,"fungus":16622,"tombs":16623,"haley":16624,"imposing":16625,"rests":16626,"degradation":16627,"lincolnshire":16628,"retailers":16629,"wetlands":16630,"tulsa":16631,"distributor":16632,"dungeon":16633,"nun":16634,"greenhouse":16635,"convey":16636,"atlantis":16637,"aft":16638,"exits":16639,"oman":16640,"dresser":16641,"lyons":16642,"##sti":16643,"joking":16644,"eddy":16645,"judgement":16646,"omitted":16647,"digits":16648,"##cts":16649,"##game":16650,"juniors":16651,"##rae":16652,"cents":16653,"stricken":16654,"une":16655,"##ngo":16656,"wizards":16657,"weir":16658,"breton":16659,"nan":16660,"technician":16661,"fibers":16662,"liking":16663,"royalty":16664,"##cca":16665,"154":16666,"persia":16667,"terribly":16668,"magician":16669,"##rable":16670,"##unt":16671,"vance":16672,"cafeteria":16673,"booker":16674,"camille":16675,"warmer":16676,"##static":16677,"consume":16678,"cavern":16679,"gaps":16680,"compass":16681,"contemporaries":16682,"foyer":16683,"soothing":16684,"graveyard":16685,"maj":16686,"plunged":16687,"blush":16688,"##wear":16689,"cascade":16690,"demonstrates":16691,"ordinance":16692,"##nov":16693,"boyle":16694,"##lana":16695,"rockefeller":16696,"shaken":16697,"banjo":16698,"izzy":16699,"##ense":16700,"breathless":16701,"vines":16702,"##32":16703,"##eman":16704,"alterations":16705,"chromosome":16706,"dwellings":16707,"feudal":16708,"mole":16709,"153":16710,"catalonia":16711,"relics":16712,"tenant":16713,"mandated":16714,"##fm":16715,"fridge":16716,"hats":16717,"honesty":16718,"patented":16719,"raul":16720,"heap":16721,"cruisers":16722,"accusing":16723,"enlightenment":16724,"infants":16725,"wherein":16726,"chatham":16727,"contractors":16728,"zen":16729,"affinity":16730,"hc":16731,"osborne":16732,"piston":16733,"156":16734,"traps":16735,"maturity":16736,"##rana":16737,"lagos":16738,"##zal":16739,"peering":16740,"##nay":16741,"attendant":16742,"dealers":16743,"protocols":16744,"subset":16745,"prospects":16746,"biographical":16747,"##cre":16748,"artery":16749,"##zers":16750,"insignia":16751,"nuns":16752,"endured":16753,"##eration":16754,"recommend":16755,"schwartz":16756,"serbs":16757,"berger":16758,"cromwell":16759,"crossroads":16760,"##ctor":16761,"enduring":16762,"clasped":16763,"grounded":16764,"##bine":16765,"marseille":16766,"twitched":16767,"abel":16768,"choke":16769,"https":16770,"catalyst":16771,"moldova":16772,"italians":16773,"##tist":16774,"disastrous":16775,"wee":16776,"##oured":16777,"##nti":16778,"wwf":16779,"nope":16780,"##piration":16781,"##asa":16782,"expresses":16783,"thumbs":16784,"167":16785,"##nza":16786,"coca":16787,"1781":16788,"cheating":16789,"##ption":16790,"skipped":16791,"sensory":16792,"heidelberg":16793,"spies":16794,"satan":16795,"dangers":16796,"semifinal":16797,"202":16798,"bohemia":16799,"whitish":16800,"confusing":16801,"shipbuilding":16802,"relies":16803,"surgeons":16804,"landings":16805,"ravi":16806,"baku":16807,"moor":16808,"suffix":16809,"alejandro":16810,"##yana":16811,"litre":16812,"upheld":16813,"##unk":16814,"rajasthan":16815,"##rek":16816,"coaster":16817,"insists":16818,"posture":16819,"scenarios":16820,"etienne":16821,"favoured":16822,"appoint":16823,"transgender":16824,"elephants":16825,"poked":16826,"greenwood":16827,"defences":16828,"fulfilled":16829,"militant":16830,"somali":16831,"1758":16832,"chalk":16833,"potent":16834,"##ucci":16835,"migrants":16836,"wink":16837,"assistants":16838,"nos":16839,"restriction":16840,"activism":16841,"niger":16842,"##ario":16843,"colon":16844,"shaun":16845,"##sat":16846,"daphne":16847,"##erated":16848,"swam":16849,"congregations":16850,"reprise":16851,"considerations":16852,"magnet":16853,"playable":16854,"xvi":16855,"##р":16856,"overthrow":16857,"tobias":16858,"knob":16859,"chavez":16860,"coding":16861,"##mers":16862,"propped":16863,"katrina":16864,"orient":16865,"newcomer":16866,"##suke":16867,"temperate":16868,"##pool":16869,"farmhouse":16870,"interrogation":16871,"##vd":16872,"committing":16873,"##vert":16874,"forthcoming":16875,"strawberry":16876,"joaquin":16877,"macau":16878,"ponds":16879,"shocking":16880,"siberia":16881,"##cellular":16882,"chant":16883,"contributors":16884,"##nant":16885,"##ologists":16886,"sped":16887,"absorb":16888,"hail":16889,"1782":16890,"spared":16891,"##hore":16892,"barbados":16893,"karate":16894,"opus":16895,"originates":16896,"saul":16897,"##xie":16898,"evergreen":16899,"leaped":16900,"##rock":16901,"correlation":16902,"exaggerated":16903,"weekday":16904,"unification":16905,"bump":16906,"tracing":16907,"brig":16908,"afb":16909,"pathways":16910,"utilizing":16911,"##ners":16912,"mod":16913,"mb":16914,"disturbance":16915,"kneeling":16916,"##stad":16917,"##guchi":16918,"100th":16919,"pune":16920,"##thy":16921,"decreasing":16922,"168":16923,"manipulation":16924,"miriam":16925,"academia":16926,"ecosystem":16927,"occupational":16928,"rbi":16929,"##lem":16930,"rift":16931,"##14":16932,"rotary":16933,"stacked":16934,"incorporation":16935,"awakening":16936,"generators":16937,"guerrero":16938,"racist":16939,"##omy":16940,"cyber":16941,"derivatives":16942,"culminated":16943,"allie":16944,"annals":16945,"panzer":16946,"sainte":16947,"wikipedia":16948,"pops":16949,"zu":16950,"austro":16951,"##vate":16952,"algerian":16953,"politely":16954,"nicholson":16955,"mornings":16956,"educate":16957,"tastes":16958,"thrill":16959,"dartmouth":16960,"##gating":16961,"db":16962,"##jee":16963,"regan":16964,"differing":16965,"concentrating":16966,"choreography":16967,"divinity":16968,"##media":16969,"pledged":16970,"alexandre":16971,"routing":16972,"gregor":16973,"madeline":16974,"##idal":16975,"apocalypse":16976,"##hora":16977,"gunfire":16978,"culminating":16979,"elves":16980,"fined":16981,"liang":16982,"lam":16983,"programmed":16984,"tar":16985,"guessing":16986,"transparency":16987,"gabrielle":16988,"##gna":16989,"cancellation":16990,"flexibility":16991,"##lining":16992,"accession":16993,"shea":16994,"stronghold":16995,"nets":16996,"specializes":16997,"##rgan":16998,"abused":16999,"hasan":17000,"sgt":17001,"ling":17002,"exceeding":17003,"##₄":17004,"admiration":17005,"supermarket":17006,"##ark":17007,"photographers":17008,"specialised":17009,"tilt":17010,"resonance":17011,"hmm":17012,"perfume":17013,"380":17014,"sami":17015,"threatens":17016,"garland":17017,"botany":17018,"guarding":17019,"boiled":17020,"greet":17021,"puppy":17022,"russo":17023,"supplier":17024,"wilmington":17025,"vibrant":17026,"vijay":17027,"##bius":17028,"paralympic":17029,"grumbled":17030,"paige":17031,"faa":17032,"licking":17033,"margins":17034,"hurricanes":17035,"##gong":17036,"fest":17037,"grenade":17038,"ripping":17039,"##uz":17040,"counseling":17041,"weigh":17042,"##sian":17043,"needles":17044,"wiltshire":17045,"edison":17046,"costly":17047,"##not":17048,"fulton":17049,"tramway":17050,"redesigned":17051,"staffordshire":17052,"cache":17053,"gasping":17054,"watkins":17055,"sleepy":17056,"candidacy":17057,"##group":17058,"monkeys":17059,"timeline":17060,"throbbing":17061,"##bid":17062,"##sos":17063,"berth":17064,"uzbekistan":17065,"vanderbilt":17066,"bothering":17067,"overturned":17068,"ballots":17069,"gem":17070,"##iger":17071,"sunglasses":17072,"subscribers":17073,"hooker":17074,"compelling":17075,"ang":17076,"exceptionally":17077,"saloon":17078,"stab":17079,"##rdi":17080,"carla":17081,"terrifying":17082,"rom":17083,"##vision":17084,"coil":17085,"##oids":17086,"satisfying":17087,"vendors":17088,"31st":17089,"mackay":17090,"deities":17091,"overlooked":17092,"ambient":17093,"bahamas":17094,"felipe":17095,"olympia":17096,"whirled":17097,"botanist":17098,"advertised":17099,"tugging":17100,"##dden":17101,"disciples":17102,"morales":17103,"unionist":17104,"rites":17105,"foley":17106,"morse":17107,"motives":17108,"creepy":17109,"##₀":17110,"soo":17111,"##sz":17112,"bargain":17113,"highness":17114,"frightening":17115,"turnpike":17116,"tory":17117,"reorganization":17118,"##cer":17119,"depict":17120,"biographer":17121,"##walk":17122,"unopposed":17123,"manifesto":17124,"##gles":17125,"institut":17126,"emile":17127,"accidental":17128,"kapoor":17129,"##dam":17130,"kilkenny":17131,"cortex":17132,"lively":17133,"##13":17134,"romanesque":17135,"jain":17136,"shan":17137,"cannons":17138,"##ood":17139,"##ske":17140,"petrol":17141,"echoing":17142,"amalgamated":17143,"disappears":17144,"cautious":17145,"proposes":17146,"sanctions":17147,"trenton":17148,"##ر":17149,"flotilla":17150,"aus":17151,"contempt":17152,"tor":17153,"canary":17154,"cote":17155,"theirs":17156,"##hun":17157,"conceptual":17158,"deleted":17159,"fascinating":17160,"paso":17161,"blazing":17162,"elf":17163,"honourable":17164,"hutchinson":17165,"##eiro":17166,"##outh":17167,"##zin":17168,"surveyor":17169,"tee":17170,"amidst":17171,"wooded":17172,"reissue":17173,"intro":17174,"##ono":17175,"cobb":17176,"shelters":17177,"newsletter":17178,"hanson":17179,"brace":17180,"encoding":17181,"confiscated":17182,"dem":17183,"caravan":17184,"marino":17185,"scroll":17186,"melodic":17187,"cows":17188,"imam":17189,"##adi":17190,"##aneous":17191,"northward":17192,"searches":17193,"biodiversity":17194,"cora":17195,"310":17196,"roaring":17197,"##bers":17198,"connell":17199,"theologian":17200,"halo":17201,"compose":17202,"pathetic":17203,"unmarried":17204,"dynamo":17205,"##oot":17206,"az":17207,"calculation":17208,"toulouse":17209,"deserves":17210,"humour":17211,"nr":17212,"forgiveness":17213,"tam":17214,"undergone":17215,"martyr":17216,"pamela":17217,"myths":17218,"whore":17219,"counselor":17220,"hicks":17221,"290":17222,"heavens":17223,"battleship":17224,"electromagnetic":17225,"##bbs":17226,"stellar":17227,"establishments":17228,"presley":17229,"hopped":17230,"##chin":17231,"temptation":17232,"90s":17233,"wills":17234,"nas":17235,"##yuan":17236,"nhs":17237,"##nya":17238,"seminars":17239,"##yev":17240,"adaptations":17241,"gong":17242,"asher":17243,"lex":17244,"indicator":17245,"sikh":17246,"tobago":17247,"cites":17248,"goin":17249,"##yte":17250,"satirical":17251,"##gies":17252,"characterised":17253,"correspond":17254,"bubbles":17255,"lure":17256,"participates":17257,"##vid":17258,"eruption":17259,"skate":17260,"therapeutic":17261,"1785":17262,"canals":17263,"wholesale":17264,"defaulted":17265,"sac":17266,"460":17267,"petit":17268,"##zzled":17269,"virgil":17270,"leak":17271,"ravens":17272,"256":17273,"portraying":17274,"##yx":17275,"ghetto":17276,"creators":17277,"dams":17278,"portray":17279,"vicente":17280,"##rington":17281,"fae":17282,"namesake":17283,"bounty":17284,"##arium":17285,"joachim":17286,"##ota":17287,"##iser":17288,"aforementioned":17289,"axle":17290,"snout":17291,"depended":17292,"dismantled":17293,"reuben":17294,"480":17295,"##ibly":17296,"gallagher":17297,"##lau":17298,"##pd":17299,"earnest":17300,"##ieu":17301,"##iary":17302,"inflicted":17303,"objections":17304,"##llar":17305,"asa":17306,"gritted":17307,"##athy":17308,"jericho":17309,"##sea":17310,"##was":17311,"flick":17312,"underside":17313,"ceramics":17314,"undead":17315,"substituted":17316,"195":17317,"eastward":17318,"undoubtedly":17319,"wheeled":17320,"chimney":17321,"##iche":17322,"guinness":17323,"cb":17324,"##ager":17325,"siding":17326,"##bell":17327,"traitor":17328,"baptiste":17329,"disguised":17330,"inauguration":17331,"149":17332,"tipperary":17333,"choreographer":17334,"perched":17335,"warmed":17336,"stationary":17337,"eco":17338,"##ike":17339,"##ntes":17340,"bacterial":17341,"##aurus":17342,"flores":17343,"phosphate":17344,"##core":17345,"attacker":17346,"invaders":17347,"alvin":17348,"intersects":17349,"a1":17350,"indirectly":17351,"immigrated":17352,"businessmen":17353,"cornelius":17354,"valves":17355,"narrated":17356,"pill":17357,"sober":17358,"ul":17359,"nationale":17360,"monastic":17361,"applicants":17362,"scenery":17363,"##jack":17364,"161":17365,"motifs":17366,"constitutes":17367,"cpu":17368,"##osh":17369,"jurisdictions":17370,"sd":17371,"tuning":17372,"irritation":17373,"woven":17374,"##uddin":17375,"fertility":17376,"gao":17377,"##erie":17378,"antagonist":17379,"impatient":17380,"glacial":17381,"hides":17382,"boarded":17383,"denominations":17384,"interception":17385,"##jas":17386,"cookie":17387,"nicola":17388,"##tee":17389,"algebraic":17390,"marquess":17391,"bahn":17392,"parole":17393,"buyers":17394,"bait":17395,"turbines":17396,"paperwork":17397,"bestowed":17398,"natasha":17399,"renee":17400,"oceans":17401,"purchases":17402,"157":17403,"vaccine":17404,"215":17405,"##tock":17406,"fixtures":17407,"playhouse":17408,"integrate":17409,"jai":17410,"oswald":17411,"intellectuals":17412,"##cky":17413,"booked":17414,"nests":17415,"mortimer":17416,"##isi":17417,"obsession":17418,"sept":17419,"##gler":17420,"##sum":17421,"440":17422,"scrutiny":17423,"simultaneous":17424,"squinted":17425,"##shin":17426,"collects":17427,"oven":17428,"shankar":17429,"penned":17430,"remarkably":17431,"##я":17432,"slips":17433,"luggage":17434,"spectral":17435,"1786":17436,"collaborations":17437,"louie":17438,"consolidation":17439,"##ailed":17440,"##ivating":17441,"420":17442,"hoover":17443,"blackpool":17444,"harness":17445,"ignition":17446,"vest":17447,"tails":17448,"belmont":17449,"mongol":17450,"skinner":17451,"##nae":17452,"visually":17453,"mage":17454,"derry":17455,"##tism":17456,"##unce":17457,"stevie":17458,"transitional":17459,"##rdy":17460,"redskins":17461,"drying":17462,"prep":17463,"prospective":17464,"##21":17465,"annoyance":17466,"oversee":17467,"##loaded":17468,"fills":17469,"##books":17470,"##iki":17471,"announces":17472,"fda":17473,"scowled":17474,"respects":17475,"prasad":17476,"mystic":17477,"tucson":17478,"##vale":17479,"revue":17480,"springer":17481,"bankrupt":17482,"1772":17483,"aristotle":17484,"salvatore":17485,"habsburg":17486,"##geny":17487,"dal":17488,"natal":17489,"nut":17490,"pod":17491,"chewing":17492,"darts":17493,"moroccan":17494,"walkover":17495,"rosario":17496,"lenin":17497,"punjabi":17498,"##ße":17499,"grossed":17500,"scattering":17501,"wired":17502,"invasive":17503,"hui":17504,"polynomial":17505,"corridors":17506,"wakes":17507,"gina":17508,"portrays":17509,"##cratic":17510,"arid":17511,"retreating":17512,"erich":17513,"irwin":17514,"sniper":17515,"##dha":17516,"linen":17517,"lindsey":17518,"maneuver":17519,"butch":17520,"shutting":17521,"socio":17522,"bounce":17523,"commemorative":17524,"postseason":17525,"jeremiah":17526,"pines":17527,"275":17528,"mystical":17529,"beads":17530,"bp":17531,"abbas":17532,"furnace":17533,"bidding":17534,"consulted":17535,"assaulted":17536,"empirical":17537,"rubble":17538,"enclosure":17539,"sob":17540,"weakly":17541,"cancel":17542,"polly":17543,"yielded":17544,"##emann":17545,"curly":17546,"prediction":17547,"battered":17548,"70s":17549,"vhs":17550,"jacqueline":17551,"render":17552,"sails":17553,"barked":17554,"detailing":17555,"grayson":17556,"riga":17557,"sloane":17558,"raging":17559,"##yah":17560,"herbs":17561,"bravo":17562,"##athlon":17563,"alloy":17564,"giggle":17565,"imminent":17566,"suffers":17567,"assumptions":17568,"waltz":17569,"##itate":17570,"accomplishments":17571,"##ited":17572,"bathing":17573,"remixed":17574,"deception":17575,"prefix":17576,"##emia":17577,"deepest":17578,"##tier":17579,"##eis":17580,"balkan":17581,"frogs":17582,"##rong":17583,"slab":17584,"##pate":17585,"philosophers":17586,"peterborough":17587,"grains":17588,"imports":17589,"dickinson":17590,"rwanda":17591,"##atics":17592,"1774":17593,"dirk":17594,"lan":17595,"tablets":17596,"##rove":17597,"clone":17598,"##rice":17599,"caretaker":17600,"hostilities":17601,"mclean":17602,"##gre":17603,"regimental":17604,"treasures":17605,"norms":17606,"impose":17607,"tsar":17608,"tango":17609,"diplomacy":17610,"variously":17611,"complain":17612,"192":17613,"recognise":17614,"arrests":17615,"1779":17616,"celestial":17617,"pulitzer":17618,"##dus":17619,"bing":17620,"libretto":17621,"##moor":17622,"adele":17623,"splash":17624,"##rite":17625,"expectation":17626,"lds":17627,"confronts":17628,"##izer":17629,"spontaneous":17630,"harmful":17631,"wedge":17632,"entrepreneurs":17633,"buyer":17634,"##ope":17635,"bilingual":17636,"translate":17637,"rugged":17638,"conner":17639,"circulated":17640,"uae":17641,"eaton":17642,"##gra":17643,"##zzle":17644,"lingered":17645,"lockheed":17646,"vishnu":17647,"reelection":17648,"alonso":17649,"##oom":17650,"joints":17651,"yankee":17652,"headline":17653,"cooperate":17654,"heinz":17655,"laureate":17656,"invading":17657,"##sford":17658,"echoes":17659,"scandinavian":17660,"##dham":17661,"hugging":17662,"vitamin":17663,"salute":17664,"micah":17665,"hind":17666,"trader":17667,"##sper":17668,"radioactive":17669,"##ndra":17670,"militants":17671,"poisoned":17672,"ratified":17673,"remark":17674,"campeonato":17675,"deprived":17676,"wander":17677,"prop":17678,"##dong":17679,"outlook":17680,"##tani":17681,"##rix":17682,"##eye":17683,"chiang":17684,"darcy":17685,"##oping":17686,"mandolin":17687,"spice":17688,"statesman":17689,"babylon":17690,"182":17691,"walled":17692,"forgetting":17693,"afro":17694,"##cap":17695,"158":17696,"giorgio":17697,"buffer":17698,"##polis":17699,"planetary":17700,"##gis":17701,"overlap":17702,"terminals":17703,"kinda":17704,"centenary":17705,"##bir":17706,"arising":17707,"manipulate":17708,"elm":17709,"ke":17710,"1770":17711,"ak":17712,"##tad":17713,"chrysler":17714,"mapped":17715,"moose":17716,"pomeranian":17717,"quad":17718,"macarthur":17719,"assemblies":17720,"shoreline":17721,"recalls":17722,"stratford":17723,"##rted":17724,"noticeable":17725,"##evic":17726,"imp":17727,"##rita":17728,"##sque":17729,"accustomed":17730,"supplying":17731,"tents":17732,"disgusted":17733,"vogue":17734,"sipped":17735,"filters":17736,"khz":17737,"reno":17738,"selecting":17739,"luftwaffe":17740,"mcmahon":17741,"tyne":17742,"masterpiece":17743,"carriages":17744,"collided":17745,"dunes":17746,"exercised":17747,"flare":17748,"remembers":17749,"muzzle":17750,"##mobile":17751,"heck":17752,"##rson":17753,"burgess":17754,"lunged":17755,"middleton":17756,"boycott":17757,"bilateral":17758,"##sity":17759,"hazardous":17760,"lumpur":17761,"multiplayer":17762,"spotlight":17763,"jackets":17764,"goldman":17765,"liege":17766,"porcelain":17767,"rag":17768,"waterford":17769,"benz":17770,"attracts":17771,"hopeful":17772,"battling":17773,"ottomans":17774,"kensington":17775,"baked":17776,"hymns":17777,"cheyenne":17778,"lattice":17779,"levine":17780,"borrow":17781,"polymer":17782,"clashes":17783,"michaels":17784,"monitored":17785,"commitments":17786,"denounced":17787,"##25":17788,"##von":17789,"cavity":17790,"##oney":17791,"hobby":17792,"akin":17793,"##holders":17794,"futures":17795,"intricate":17796,"cornish":17797,"patty":17798,"##oned":17799,"illegally":17800,"dolphin":17801,"##lag":17802,"barlow":17803,"yellowish":17804,"maddie":17805,"apologized":17806,"luton":17807,"plagued":17808,"##puram":17809,"nana":17810,"##rds":17811,"sway":17812,"fanny":17813,"łodz":17814,"##rino":17815,"psi":17816,"suspicions":17817,"hanged":17818,"##eding":17819,"initiate":17820,"charlton":17821,"##por":17822,"nak":17823,"competent":17824,"235":17825,"analytical":17826,"annex":17827,"wardrobe":17828,"reservations":17829,"##rma":17830,"sect":17831,"162":17832,"fairfax":17833,"hedge":17834,"piled":17835,"buckingham":17836,"uneven":17837,"bauer":17838,"simplicity":17839,"snyder":17840,"interpret":17841,"accountability":17842,"donors":17843,"moderately":17844,"byrd":17845,"continents":17846,"##cite":17847,"##max":17848,"disciple":17849,"hr":17850,"jamaican":17851,"ping":17852,"nominees":17853,"##uss":17854,"mongolian":17855,"diver":17856,"attackers":17857,"eagerly":17858,"ideological":17859,"pillows":17860,"miracles":17861,"apartheid":17862,"revolver":17863,"sulfur":17864,"clinics":17865,"moran":17866,"163":17867,"##enko":17868,"ile":17869,"katy":17870,"rhetoric":17871,"##icated":17872,"chronology":17873,"recycling":17874,"##hrer":17875,"elongated":17876,"mughal":17877,"pascal":17878,"profiles":17879,"vibration":17880,"databases":17881,"domination":17882,"##fare":17883,"##rant":17884,"matthias":17885,"digest":17886,"rehearsal":17887,"polling":17888,"weiss":17889,"initiation":17890,"reeves":17891,"clinging":17892,"flourished":17893,"impress":17894,"ngo":17895,"##hoff":17896,"##ume":17897,"buckley":17898,"symposium":17899,"rhythms":17900,"weed":17901,"emphasize":17902,"transforming":17903,"##taking":17904,"##gence":17905,"##yman":17906,"accountant":17907,"analyze":17908,"flicker":17909,"foil":17910,"priesthood":17911,"voluntarily":17912,"decreases":17913,"##80":17914,"##hya":17915,"slater":17916,"sv":17917,"charting":17918,"mcgill":17919,"##lde":17920,"moreno":17921,"##iu":17922,"besieged":17923,"zur":17924,"robes":17925,"##phic":17926,"admitting":17927,"api":17928,"deported":17929,"turmoil":17930,"peyton":17931,"earthquakes":17932,"##ares":17933,"nationalists":17934,"beau":17935,"clair":17936,"brethren":17937,"interrupt":17938,"welch":17939,"curated":17940,"galerie":17941,"requesting":17942,"164":17943,"##ested":17944,"impending":17945,"steward":17946,"viper":17947,"##vina":17948,"complaining":17949,"beautifully":17950,"brandy":17951,"foam":17952,"nl":17953,"1660":17954,"##cake":17955,"alessandro":17956,"punches":17957,"laced":17958,"explanations":17959,"##lim":17960,"attribute":17961,"clit":17962,"reggie":17963,"discomfort":17964,"##cards":17965,"smoothed":17966,"whales":17967,"##cene":17968,"adler":17969,"countered":17970,"duffy":17971,"disciplinary":17972,"widening":17973,"recipe":17974,"reliance":17975,"conducts":17976,"goats":17977,"gradient":17978,"preaching":17979,"##shaw":17980,"matilda":17981,"quasi":17982,"striped":17983,"meridian":17984,"cannabis":17985,"cordoba":17986,"certificates":17987,"##agh":17988,"##tering":17989,"graffiti":17990,"hangs":17991,"pilgrims":17992,"repeats":17993,"##ych":17994,"revive":17995,"urine":17996,"etat":17997,"##hawk":17998,"fueled":17999,"belts":18000,"fuzzy":18001,"susceptible":18002,"##hang":18003,"mauritius":18004,"salle":18005,"sincere":18006,"beers":18007,"hooks":18008,"##cki":18009,"arbitration":18010,"entrusted":18011,"advise":18012,"sniffed":18013,"seminar":18014,"junk":18015,"donnell":18016,"processors":18017,"principality":18018,"strapped":18019,"celia":18020,"mendoza":18021,"everton":18022,"fortunes":18023,"prejudice":18024,"starving":18025,"reassigned":18026,"steamer":18027,"##lund":18028,"tuck":18029,"evenly":18030,"foreman":18031,"##ffen":18032,"dans":18033,"375":18034,"envisioned":18035,"slit":18036,"##xy":18037,"baseman":18038,"liberia":18039,"rosemary":18040,"##weed":18041,"electrified":18042,"periodically":18043,"potassium":18044,"stride":18045,"contexts":18046,"sperm":18047,"slade":18048,"mariners":18049,"influx":18050,"bianca":18051,"subcommittee":18052,"##rane":18053,"spilling":18054,"icao":18055,"estuary":18056,"##nock":18057,"delivers":18058,"iphone":18059,"##ulata":18060,"isa":18061,"mira":18062,"bohemian":18063,"dessert":18064,"##sbury":18065,"welcoming":18066,"proudly":18067,"slowing":18068,"##chs":18069,"musee":18070,"ascension":18071,"russ":18072,"##vian":18073,"waits":18074,"##psy":18075,"africans":18076,"exploit":18077,"##morphic":18078,"gov":18079,"eccentric":18080,"crab":18081,"peck":18082,"##ull":18083,"entrances":18084,"formidable":18085,"marketplace":18086,"groom":18087,"bolted":18088,"metabolism":18089,"patton":18090,"robbins":18091,"courier":18092,"payload":18093,"endure":18094,"##ifier":18095,"andes":18096,"refrigerator":18097,"##pr":18098,"ornate":18099,"##uca":18100,"ruthless":18101,"illegitimate":18102,"masonry":18103,"strasbourg":18104,"bikes":18105,"adobe":18106,"##³":18107,"apples":18108,"quintet":18109,"willingly":18110,"niche":18111,"bakery":18112,"corpses":18113,"energetic":18114,"##cliffe":18115,"##sser":18116,"##ards":18117,"177":18118,"centimeters":18119,"centro":18120,"fuscous":18121,"cretaceous":18122,"rancho":18123,"##yde":18124,"andrei":18125,"telecom":18126,"tottenham":18127,"oasis":18128,"ordination":18129,"vulnerability":18130,"presiding":18131,"corey":18132,"cp":18133,"penguins":18134,"sims":18135,"##pis":18136,"malawi":18137,"piss":18138,"##48":18139,"correction":18140,"##cked":18141,"##ffle":18142,"##ryn":18143,"countdown":18144,"detectives":18145,"psychiatrist":18146,"psychedelic":18147,"dinosaurs":18148,"blouse":18149,"##get":18150,"choi":18151,"vowed":18152,"##oz":18153,"randomly":18154,"##pol":18155,"49ers":18156,"scrub":18157,"blanche":18158,"bruins":18159,"dusseldorf":18160,"##using":18161,"unwanted":18162,"##ums":18163,"212":18164,"dominique":18165,"elevations":18166,"headlights":18167,"om":18168,"laguna":18169,"##oga":18170,"1750":18171,"famously":18172,"ignorance":18173,"shrewsbury":18174,"##aine":18175,"ajax":18176,"breuning":18177,"che":18178,"confederacy":18179,"greco":18180,"overhaul":18181,"##screen":18182,"paz":18183,"skirts":18184,"disagreement":18185,"cruelty":18186,"jagged":18187,"phoebe":18188,"shifter":18189,"hovered":18190,"viruses":18191,"##wes":18192,"mandy":18193,"##lined":18194,"##gc":18195,"landlord":18196,"squirrel":18197,"dashed":18198,"##ι":18199,"ornamental":18200,"gag":18201,"wally":18202,"grange":18203,"literal":18204,"spurs":18205,"undisclosed":18206,"proceeding":18207,"yin":18208,"##text":18209,"billie":18210,"orphan":18211,"spanned":18212,"humidity":18213,"indy":18214,"weighted":18215,"presentations":18216,"explosions":18217,"lucian":18218,"##tary":18219,"vaughn":18220,"hindus":18221,"##anga":18222,"##hell":18223,"psycho":18224,"171":18225,"daytona":18226,"protects":18227,"efficiently":18228,"rematch":18229,"sly":18230,"tandem":18231,"##oya":18232,"rebranded":18233,"impaired":18234,"hee":18235,"metropolis":18236,"peach":18237,"godfrey":18238,"diaspora":18239,"ethnicity":18240,"prosperous":18241,"gleaming":18242,"dar":18243,"grossing":18244,"playback":18245,"##rden":18246,"stripe":18247,"pistols":18248,"##tain":18249,"births":18250,"labelled":18251,"##cating":18252,"172":18253,"rudy":18254,"alba":18255,"##onne":18256,"aquarium":18257,"hostility":18258,"##gb":18259,"##tase":18260,"shudder":18261,"sumatra":18262,"hardest":18263,"lakers":18264,"consonant":18265,"creeping":18266,"demos":18267,"homicide":18268,"capsule":18269,"zeke":18270,"liberties":18271,"expulsion":18272,"pueblo":18273,"##comb":18274,"trait":18275,"transporting":18276,"##ddin":18277,"##neck":18278,"##yna":18279,"depart":18280,"gregg":18281,"mold":18282,"ledge":18283,"hangar":18284,"oldham":18285,"playboy":18286,"termination":18287,"analysts":18288,"gmbh":18289,"romero":18290,"##itic":18291,"insist":18292,"cradle":18293,"filthy":18294,"brightness":18295,"slash":18296,"shootout":18297,"deposed":18298,"bordering":18299,"##truct":18300,"isis":18301,"microwave":18302,"tumbled":18303,"sheltered":18304,"cathy":18305,"werewolves":18306,"messy":18307,"andersen":18308,"convex":18309,"clapped":18310,"clinched":18311,"satire":18312,"wasting":18313,"edo":18314,"vc":18315,"rufus":18316,"##jak":18317,"mont":18318,"##etti":18319,"poznan":18320,"##keeping":18321,"restructuring":18322,"transverse":18323,"##rland":18324,"azerbaijani":18325,"slovene":18326,"gestures":18327,"roommate":18328,"choking":18329,"shear":18330,"##quist":18331,"vanguard":18332,"oblivious":18333,"##hiro":18334,"disagreed":18335,"baptism":18336,"##lich":18337,"coliseum":18338,"##aceae":18339,"salvage":18340,"societe":18341,"cory":18342,"locke":18343,"relocation":18344,"relying":18345,"versailles":18346,"ahl":18347,"swelling":18348,"##elo":18349,"cheerful":18350,"##word":18351,"##edes":18352,"gin":18353,"sarajevo":18354,"obstacle":18355,"diverted":18356,"##nac":18357,"messed":18358,"thoroughbred":18359,"fluttered":18360,"utrecht":18361,"chewed":18362,"acquaintance":18363,"assassins":18364,"dispatch":18365,"mirza":18366,"##wart":18367,"nike":18368,"salzburg":18369,"swell":18370,"yen":18371,"##gee":18372,"idle":18373,"ligue":18374,"samson":18375,"##nds":18376,"##igh":18377,"playful":18378,"spawned":18379,"##cise":18380,"tease":18381,"##case":18382,"burgundy":18383,"##bot":18384,"stirring":18385,"skeptical":18386,"interceptions":18387,"marathi":18388,"##dies":18389,"bedrooms":18390,"aroused":18391,"pinch":18392,"##lik":18393,"preferences":18394,"tattoos":18395,"buster":18396,"digitally":18397,"projecting":18398,"rust":18399,"##ital":18400,"kitten":18401,"priorities":18402,"addison":18403,"pseudo":18404,"##guard":18405,"dusk":18406,"icons":18407,"sermon":18408,"##psis":18409,"##iba":18410,"bt":18411,"##lift":18412,"##xt":18413,"ju":18414,"truce":18415,"rink":18416,"##dah":18417,"##wy":18418,"defects":18419,"psychiatry":18420,"offences":18421,"calculate":18422,"glucose":18423,"##iful":18424,"##rized":18425,"##unda":18426,"francaise":18427,"##hari":18428,"richest":18429,"warwickshire":18430,"carly":18431,"1763":18432,"purity":18433,"redemption":18434,"lending":18435,"##cious":18436,"muse":18437,"bruises":18438,"cerebral":18439,"aero":18440,"carving":18441,"##name":18442,"preface":18443,"terminology":18444,"invade":18445,"monty":18446,"##int":18447,"anarchist":18448,"blurred":18449,"##iled":18450,"rossi":18451,"treats":18452,"guts":18453,"shu":18454,"foothills":18455,"ballads":18456,"undertaking":18457,"premise":18458,"cecilia":18459,"affiliates":18460,"blasted":18461,"conditional":18462,"wilder":18463,"minors":18464,"drone":18465,"rudolph":18466,"buffy":18467,"swallowing":18468,"horton":18469,"attested":18470,"##hop":18471,"rutherford":18472,"howell":18473,"primetime":18474,"livery":18475,"penal":18476,"##bis":18477,"minimize":18478,"hydro":18479,"wrecked":18480,"wrought":18481,"palazzo":18482,"##gling":18483,"cans":18484,"vernacular":18485,"friedman":18486,"nobleman":18487,"shale":18488,"walnut":18489,"danielle":18490,"##ection":18491,"##tley":18492,"sears":18493,"##kumar":18494,"chords":18495,"lend":18496,"flipping":18497,"streamed":18498,"por":18499,"dracula":18500,"gallons":18501,"sacrifices":18502,"gamble":18503,"orphanage":18504,"##iman":18505,"mckenzie":18506,"##gible":18507,"boxers":18508,"daly":18509,"##balls":18510,"##ان":18511,"208":18512,"##ific":18513,"##rative":18514,"##iq":18515,"exploited":18516,"slated":18517,"##uity":18518,"circling":18519,"hillary":18520,"pinched":18521,"goldberg":18522,"provost":18523,"campaigning":18524,"lim":18525,"piles":18526,"ironically":18527,"jong":18528,"mohan":18529,"successors":18530,"usaf":18531,"##tem":18532,"##ught":18533,"autobiographical":18534,"haute":18535,"preserves":18536,"##ending":18537,"acquitted":18538,"comparisons":18539,"203":18540,"hydroelectric":18541,"gangs":18542,"cypriot":18543,"torpedoes":18544,"rushes":18545,"chrome":18546,"derive":18547,"bumps":18548,"instability":18549,"fiat":18550,"pets":18551,"##mbe":18552,"silas":18553,"dye":18554,"reckless":18555,"settler":18556,"##itation":18557,"info":18558,"heats":18559,"##writing":18560,"176":18561,"canonical":18562,"maltese":18563,"fins":18564,"mushroom":18565,"stacy":18566,"aspen":18567,"avid":18568,"##kur":18569,"##loading":18570,"vickers":18571,"gaston":18572,"hillside":18573,"statutes":18574,"wilde":18575,"gail":18576,"kung":18577,"sabine":18578,"comfortably":18579,"motorcycles":18580,"##rgo":18581,"169":18582,"pneumonia":18583,"fetch":18584,"##sonic":18585,"axel":18586,"faintly":18587,"parallels":18588,"##oop":18589,"mclaren":18590,"spouse":18591,"compton":18592,"interdisciplinary":18593,"miner":18594,"##eni":18595,"181":18596,"clamped":18597,"##chal":18598,"##llah":18599,"separates":18600,"versa":18601,"##mler":18602,"scarborough":18603,"labrador":18604,"##lity":18605,"##osing":18606,"rutgers":18607,"hurdles":18608,"como":18609,"166":18610,"burt":18611,"divers":18612,"##100":18613,"wichita":18614,"cade":18615,"coincided":18616,"##erson":18617,"bruised":18618,"mla":18619,"##pper":18620,"vineyard":18621,"##ili":18622,"##brush":18623,"notch":18624,"mentioning":18625,"jase":18626,"hearted":18627,"kits":18628,"doe":18629,"##acle":18630,"pomerania":18631,"##ady":18632,"ronan":18633,"seizure":18634,"pavel":18635,"problematic":18636,"##zaki":18637,"domenico":18638,"##ulin":18639,"catering":18640,"penelope":18641,"dependence":18642,"parental":18643,"emilio":18644,"ministerial":18645,"atkinson":18646,"##bolic":18647,"clarkson":18648,"chargers":18649,"colby":18650,"grill":18651,"peeked":18652,"arises":18653,"summon":18654,"##aged":18655,"fools":18656,"##grapher":18657,"faculties":18658,"qaeda":18659,"##vial":18660,"garner":18661,"refurbished":18662,"##hwa":18663,"geelong":18664,"disasters":18665,"nudged":18666,"bs":18667,"shareholder":18668,"lori":18669,"algae":18670,"reinstated":18671,"rot":18672,"##ades":18673,"##nous":18674,"invites":18675,"stainless":18676,"183":18677,"inclusive":18678,"##itude":18679,"diocesan":18680,"til":18681,"##icz":18682,"denomination":18683,"##xa":18684,"benton":18685,"floral":18686,"registers":18687,"##ider":18688,"##erman":18689,"##kell":18690,"absurd":18691,"brunei":18692,"guangzhou":18693,"hitter":18694,"retaliation":18695,"##uled":18696,"##eve":18697,"blanc":18698,"nh":18699,"consistency":18700,"contamination":18701,"##eres":18702,"##rner":18703,"dire":18704,"palermo":18705,"broadcasters":18706,"diaries":18707,"inspire":18708,"vols":18709,"brewer":18710,"tightening":18711,"ky":18712,"mixtape":18713,"hormone":18714,"##tok":18715,"stokes":18716,"##color":18717,"##dly":18718,"##ssi":18719,"pg":18720,"##ometer":18721,"##lington":18722,"sanitation":18723,"##tility":18724,"intercontinental":18725,"apps":18726,"##adt":18727,"¹⁄₂":18728,"cylinders":18729,"economies":18730,"favourable":18731,"unison":18732,"croix":18733,"gertrude":18734,"odyssey":18735,"vanity":18736,"dangling":18737,"##logists":18738,"upgrades":18739,"dice":18740,"middleweight":18741,"practitioner":18742,"##ight":18743,"206":18744,"henrik":18745,"parlor":18746,"orion":18747,"angered":18748,"lac":18749,"python":18750,"blurted":18751,"##rri":18752,"sensual":18753,"intends":18754,"swings":18755,"angled":18756,"##phs":18757,"husky":18758,"attain":18759,"peerage":18760,"precinct":18761,"textiles":18762,"cheltenham":18763,"shuffled":18764,"dai":18765,"confess":18766,"tasting":18767,"bhutan":18768,"##riation":18769,"tyrone":18770,"segregation":18771,"abrupt":18772,"ruiz":18773,"##rish":18774,"smirked":18775,"blackwell":18776,"confidential":18777,"browning":18778,"amounted":18779,"##put":18780,"vase":18781,"scarce":18782,"fabulous":18783,"raided":18784,"staple":18785,"guyana":18786,"unemployed":18787,"glider":18788,"shay":18789,"##tow":18790,"carmine":18791,"troll":18792,"intervene":18793,"squash":18794,"superstar":18795,"##uce":18796,"cylindrical":18797,"len":18798,"roadway":18799,"researched":18800,"handy":18801,"##rium":18802,"##jana":18803,"meta":18804,"lao":18805,"declares":18806,"##rring":18807,"##tadt":18808,"##elin":18809,"##kova":18810,"willem":18811,"shrubs":18812,"napoleonic":18813,"realms":18814,"skater":18815,"qi":18816,"volkswagen":18817,"##ł":18818,"tad":18819,"hara":18820,"archaeologist":18821,"awkwardly":18822,"eerie":18823,"##kind":18824,"wiley":18825,"##heimer":18826,"##24":18827,"titus":18828,"organizers":18829,"cfl":18830,"crusaders":18831,"lama":18832,"usb":18833,"vent":18834,"enraged":18835,"thankful":18836,"occupants":18837,"maximilian":18838,"##gaard":18839,"possessing":18840,"textbooks":18841,"##oran":18842,"collaborator":18843,"quaker":18844,"##ulo":18845,"avalanche":18846,"mono":18847,"silky":18848,"straits":18849,"isaiah":18850,"mustang":18851,"surged":18852,"resolutions":18853,"potomac":18854,"descend":18855,"cl":18856,"kilograms":18857,"plato":18858,"strains":18859,"saturdays":18860,"##olin":18861,"bernstein":18862,"##ype":18863,"holstein":18864,"ponytail":18865,"##watch":18866,"belize":18867,"conversely":18868,"heroine":18869,"perpetual":18870,"##ylus":18871,"charcoal":18872,"piedmont":18873,"glee":18874,"negotiating":18875,"backdrop":18876,"prologue":18877,"##jah":18878,"##mmy":18879,"pasadena":18880,"climbs":18881,"ramos":18882,"sunni":18883,"##holm":18884,"##tner":18885,"##tri":18886,"anand":18887,"deficiency":18888,"hertfordshire":18889,"stout":18890,"##avi":18891,"aperture":18892,"orioles":18893,"##irs":18894,"doncaster":18895,"intrigued":18896,"bombed":18897,"coating":18898,"otis":18899,"##mat":18900,"cocktail":18901,"##jit":18902,"##eto":18903,"amir":18904,"arousal":18905,"sar":18906,"##proof":18907,"##act":18908,"##ories":18909,"dixie":18910,"pots":18911,"##bow":18912,"whereabouts":18913,"159":18914,"##fted":18915,"drains":18916,"bullying":18917,"cottages":18918,"scripture":18919,"coherent":18920,"fore":18921,"poe":18922,"appetite":18923,"##uration":18924,"sampled":18925,"##ators":18926,"##dp":18927,"derrick":18928,"rotor":18929,"jays":18930,"peacock":18931,"installment":18932,"##rro":18933,"advisors":18934,"##coming":18935,"rodeo":18936,"scotch":18937,"##mot":18938,"##db":18939,"##fen":18940,"##vant":18941,"ensued":18942,"rodrigo":18943,"dictatorship":18944,"martyrs":18945,"twenties":18946,"##н":18947,"towed":18948,"incidence":18949,"marta":18950,"rainforest":18951,"sai":18952,"scaled":18953,"##cles":18954,"oceanic":18955,"qualifiers":18956,"symphonic":18957,"mcbride":18958,"dislike":18959,"generalized":18960,"aubrey":18961,"colonization":18962,"##iation":18963,"##lion":18964,"##ssing":18965,"disliked":18966,"lublin":18967,"salesman":18968,"##ulates":18969,"spherical":18970,"whatsoever":18971,"sweating":18972,"avalon":18973,"contention":18974,"punt":18975,"severity":18976,"alderman":18977,"atari":18978,"##dina":18979,"##grant":18980,"##rop":18981,"scarf":18982,"seville":18983,"vertices":18984,"annexation":18985,"fairfield":18986,"fascination":18987,"inspiring":18988,"launches":18989,"palatinate":18990,"regretted":18991,"##rca":18992,"feral":18993,"##iom":18994,"elk":18995,"nap":18996,"olsen":18997,"reddy":18998,"yong":18999,"##leader":19000,"##iae":19001,"garment":19002,"transports":19003,"feng":19004,"gracie":19005,"outrage":19006,"viceroy":19007,"insides":19008,"##esis":19009,"breakup":19010,"grady":19011,"organizer":19012,"softer":19013,"grimaced":19014,"222":19015,"murals":19016,"galicia":19017,"arranging":19018,"vectors":19019,"##rsten":19020,"bas":19021,"##sb":19022,"##cens":19023,"sloan":19024,"##eka":19025,"bitten":19026,"ara":19027,"fender":19028,"nausea":19029,"bumped":19030,"kris":19031,"banquet":19032,"comrades":19033,"detector":19034,"persisted":19035,"##llan":19036,"adjustment":19037,"endowed":19038,"cinemas":19039,"##shot":19040,"sellers":19041,"##uman":19042,"peek":19043,"epa":19044,"kindly":19045,"neglect":19046,"simpsons":19047,"talon":19048,"mausoleum":19049,"runaway":19050,"hangul":19051,"lookout":19052,"##cic":19053,"rewards":19054,"coughed":19055,"acquainted":19056,"chloride":19057,"##ald":19058,"quicker":19059,"accordion":19060,"neolithic":19061,"##qa":19062,"artemis":19063,"coefficient":19064,"lenny":19065,"pandora":19066,"tx":19067,"##xed":19068,"ecstasy":19069,"litter":19070,"segunda":19071,"chairperson":19072,"gemma":19073,"hiss":19074,"rumor":19075,"vow":19076,"nasal":19077,"antioch":19078,"compensate":19079,"patiently":19080,"transformers":19081,"##eded":19082,"judo":19083,"morrow":19084,"penis":19085,"posthumous":19086,"philips":19087,"bandits":19088,"husbands":19089,"denote":19090,"flaming":19091,"##any":19092,"##phones":19093,"langley":19094,"yorker":19095,"1760":19096,"walters":19097,"##uo":19098,"##kle":19099,"gubernatorial":19100,"fatty":19101,"samsung":19102,"leroy":19103,"outlaw":19104,"##nine":19105,"unpublished":19106,"poole":19107,"jakob":19108,"##ᵢ":19109,"##ₙ":19110,"crete":19111,"distorted":19112,"superiority":19113,"##dhi":19114,"intercept":19115,"crust":19116,"mig":19117,"claus":19118,"crashes":19119,"positioning":19120,"188":19121,"stallion":19122,"301":19123,"frontal":19124,"armistice":19125,"##estinal":19126,"elton":19127,"aj":19128,"encompassing":19129,"camel":19130,"commemorated":19131,"malaria":19132,"woodward":19133,"calf":19134,"cigar":19135,"penetrate":19136,"##oso":19137,"willard":19138,"##rno":19139,"##uche":19140,"illustrate":19141,"amusing":19142,"convergence":19143,"noteworthy":19144,"##lma":19145,"##rva":19146,"journeys":19147,"realise":19148,"manfred":19149,"##sable":19150,"410":19151,"##vocation":19152,"hearings":19153,"fiance":19154,"##posed":19155,"educators":19156,"provoked":19157,"adjusting":19158,"##cturing":19159,"modular":19160,"stockton":19161,"paterson":19162,"vlad":19163,"rejects":19164,"electors":19165,"selena":19166,"maureen":19167,"##tres":19168,"uber":19169,"##rce":19170,"swirled":19171,"##num":19172,"proportions":19173,"nanny":19174,"pawn":19175,"naturalist":19176,"parma":19177,"apostles":19178,"awoke":19179,"ethel":19180,"wen":19181,"##bey":19182,"monsoon":19183,"overview":19184,"##inating":19185,"mccain":19186,"rendition":19187,"risky":19188,"adorned":19189,"##ih":19190,"equestrian":19191,"germain":19192,"nj":19193,"conspicuous":19194,"confirming":19195,"##yoshi":19196,"shivering":19197,"##imeter":19198,"milestone":19199,"rumours":19200,"flinched":19201,"bounds":19202,"smacked":19203,"token":19204,"##bei":19205,"lectured":19206,"automobiles":19207,"##shore":19208,"impacted":19209,"##iable":19210,"nouns":19211,"nero":19212,"##leaf":19213,"ismail":19214,"prostitute":19215,"trams":19216,"##lace":19217,"bridget":19218,"sud":19219,"stimulus":19220,"impressions":19221,"reins":19222,"revolves":19223,"##oud":19224,"##gned":19225,"giro":19226,"honeymoon":19227,"##swell":19228,"criterion":19229,"##sms":19230,"##uil":19231,"libyan":19232,"prefers":19233,"##osition":19234,"211":19235,"preview":19236,"sucks":19237,"accusation":19238,"bursts":19239,"metaphor":19240,"diffusion":19241,"tolerate":19242,"faye":19243,"betting":19244,"cinematographer":19245,"liturgical":19246,"specials":19247,"bitterly":19248,"humboldt":19249,"##ckle":19250,"flux":19251,"rattled":19252,"##itzer":19253,"archaeologists":19254,"odor":19255,"authorised":19256,"marshes":19257,"discretion":19258,"##ов":19259,"alarmed":19260,"archaic":19261,"inverse":19262,"##leton":19263,"explorers":19264,"##pine":19265,"drummond":19266,"tsunami":19267,"woodlands":19268,"##minate":19269,"##tland":19270,"booklet":19271,"insanity":19272,"owning":19273,"insert":19274,"crafted":19275,"calculus":19276,"##tore":19277,"receivers":19278,"##bt":19279,"stung":19280,"##eca":19281,"##nched":19282,"prevailing":19283,"travellers":19284,"eyeing":19285,"lila":19286,"graphs":19287,"##borne":19288,"178":19289,"julien":19290,"##won":19291,"morale":19292,"adaptive":19293,"therapist":19294,"erica":19295,"cw":19296,"libertarian":19297,"bowman":19298,"pitches":19299,"vita":19300,"##ional":19301,"crook":19302,"##ads":19303,"##entation":19304,"caledonia":19305,"mutiny":19306,"##sible":19307,"1840s":19308,"automation":19309,"##ß":19310,"flock":19311,"##pia":19312,"ironic":19313,"pathology":19314,"##imus":19315,"remarried":19316,"##22":19317,"joker":19318,"withstand":19319,"energies":19320,"##att":19321,"shropshire":19322,"hostages":19323,"madeleine":19324,"tentatively":19325,"conflicting":19326,"mateo":19327,"recipes":19328,"euros":19329,"ol":19330,"mercenaries":19331,"nico":19332,"##ndon":19333,"albuquerque":19334,"augmented":19335,"mythical":19336,"bel":19337,"freud":19338,"##child":19339,"cough":19340,"##lica":19341,"365":19342,"freddy":19343,"lillian":19344,"genetically":19345,"nuremberg":19346,"calder":19347,"209":19348,"bonn":19349,"outdoors":19350,"paste":19351,"suns":19352,"urgency":19353,"vin":19354,"restraint":19355,"tyson":19356,"##cera":19357,"##selle":19358,"barrage":19359,"bethlehem":19360,"kahn":19361,"##par":19362,"mounts":19363,"nippon":19364,"barony":19365,"happier":19366,"ryu":19367,"makeshift":19368,"sheldon":19369,"blushed":19370,"castillo":19371,"barking":19372,"listener":19373,"taped":19374,"bethel":19375,"fluent":19376,"headlines":19377,"pornography":19378,"rum":19379,"disclosure":19380,"sighing":19381,"mace":19382,"doubling":19383,"gunther":19384,"manly":19385,"##plex":19386,"rt":19387,"interventions":19388,"physiological":19389,"forwards":19390,"emerges":19391,"##tooth":19392,"##gny":19393,"compliment":19394,"rib":19395,"recession":19396,"visibly":19397,"barge":19398,"faults":19399,"connector":19400,"exquisite":19401,"prefect":19402,"##rlin":19403,"patio":19404,"##cured":19405,"elevators":19406,"brandt":19407,"italics":19408,"pena":19409,"173":19410,"wasp":19411,"satin":19412,"ea":19413,"botswana":19414,"graceful":19415,"respectable":19416,"##jima":19417,"##rter":19418,"##oic":19419,"franciscan":19420,"generates":19421,"##dl":19422,"alfredo":19423,"disgusting":19424,"##olate":19425,"##iously":19426,"sherwood":19427,"warns":19428,"cod":19429,"promo":19430,"cheryl":19431,"sino":19432,"##ة":19433,"##escu":19434,"twitch":19435,"##zhi":19436,"brownish":19437,"thom":19438,"ortiz":19439,"##dron":19440,"densely":19441,"##beat":19442,"carmel":19443,"reinforce":19444,"##bana":19445,"187":19446,"anastasia":19447,"downhill":19448,"vertex":19449,"contaminated":19450,"remembrance":19451,"harmonic":19452,"homework":19453,"##sol":19454,"fiancee":19455,"gears":19456,"olds":19457,"angelica":19458,"loft":19459,"ramsay":19460,"quiz":19461,"colliery":19462,"sevens":19463,"##cape":19464,"autism":19465,"##hil":19466,"walkway":19467,"##boats":19468,"ruben":19469,"abnormal":19470,"ounce":19471,"khmer":19472,"##bbe":19473,"zachary":19474,"bedside":19475,"morphology":19476,"punching":19477,"##olar":19478,"sparrow":19479,"convinces":19480,"##35":19481,"hewitt":19482,"queer":19483,"remastered":19484,"rods":19485,"mabel":19486,"solemn":19487,"notified":19488,"lyricist":19489,"symmetric":19490,"##xide":19491,"174":19492,"encore":19493,"passports":19494,"wildcats":19495,"##uni":19496,"baja":19497,"##pac":19498,"mildly":19499,"##ease":19500,"bleed":19501,"commodity":19502,"mounds":19503,"glossy":19504,"orchestras":19505,"##omo":19506,"damian":19507,"prelude":19508,"ambitions":19509,"##vet":19510,"awhile":19511,"remotely":19512,"##aud":19513,"asserts":19514,"imply":19515,"##iques":19516,"distinctly":19517,"modelling":19518,"remedy":19519,"##dded":19520,"windshield":19521,"dani":19522,"xiao":19523,"##endra":19524,"audible":19525,"powerplant":19526,"1300":19527,"invalid":19528,"elemental":19529,"acquisitions":19530,"##hala":19531,"immaculate":19532,"libby":19533,"plata":19534,"smuggling":19535,"ventilation":19536,"denoted":19537,"minh":19538,"##morphism":19539,"430":19540,"differed":19541,"dion":19542,"kelley":19543,"lore":19544,"mocking":19545,"sabbath":19546,"spikes":19547,"hygiene":19548,"drown":19549,"runoff":19550,"stylized":19551,"tally":19552,"liberated":19553,"aux":19554,"interpreter":19555,"righteous":19556,"aba":19557,"siren":19558,"reaper":19559,"pearce":19560,"millie":19561,"##cier":19562,"##yra":19563,"gaius":19564,"##iso":19565,"captures":19566,"##ttering":19567,"dorm":19568,"claudio":19569,"##sic":19570,"benches":19571,"knighted":19572,"blackness":19573,"##ored":19574,"discount":19575,"fumble":19576,"oxidation":19577,"routed":19578,"##ς":19579,"novak":19580,"perpendicular":19581,"spoiled":19582,"fracture":19583,"splits":19584,"##urt":19585,"pads":19586,"topology":19587,"##cats":19588,"axes":19589,"fortunate":19590,"offenders":19591,"protestants":19592,"esteem":19593,"221":19594,"broadband":19595,"convened":19596,"frankly":19597,"hound":19598,"prototypes":19599,"isil":19600,"facilitated":19601,"keel":19602,"##sher":19603,"sahara":19604,"awaited":19605,"bubba":19606,"orb":19607,"prosecutors":19608,"186":19609,"hem":19610,"520":19611,"##xing":19612,"relaxing":19613,"remnant":19614,"romney":19615,"sorted":19616,"slalom":19617,"stefano":19618,"ulrich":19619,"##active":19620,"exemption":19621,"folder":19622,"pauses":19623,"foliage":19624,"hitchcock":19625,"epithet":19626,"204":19627,"criticisms":19628,"##aca":19629,"ballistic":19630,"brody":19631,"hinduism":19632,"chaotic":19633,"youths":19634,"equals":19635,"##pala":19636,"pts":19637,"thicker":19638,"analogous":19639,"capitalist":19640,"improvised":19641,"overseeing":19642,"sinatra":19643,"ascended":19644,"beverage":19645,"##tl":19646,"straightforward":19647,"##kon":19648,"curran":19649,"##west":19650,"bois":19651,"325":19652,"induce":19653,"surveying":19654,"emperors":19655,"sax":19656,"unpopular":19657,"##kk":19658,"cartoonist":19659,"fused":19660,"##mble":19661,"unto":19662,"##yuki":19663,"localities":19664,"##cko":19665,"##ln":19666,"darlington":19667,"slain":19668,"academie":19669,"lobbying":19670,"sediment":19671,"puzzles":19672,"##grass":19673,"defiance":19674,"dickens":19675,"manifest":19676,"tongues":19677,"alumnus":19678,"arbor":19679,"coincide":19680,"184":19681,"appalachian":19682,"mustafa":19683,"examiner":19684,"cabaret":19685,"traumatic":19686,"yves":19687,"bracelet":19688,"draining":19689,"heroin":19690,"magnum":19691,"baths":19692,"odessa":19693,"consonants":19694,"mitsubishi":19695,"##gua":19696,"kellan":19697,"vaudeville":19698,"##fr":19699,"joked":19700,"null":19701,"straps":19702,"probation":19703,"##ław":19704,"ceded":19705,"interfaces":19706,"##pas":19707,"##zawa":19708,"blinding":19709,"viet":19710,"224":19711,"rothschild":19712,"museo":19713,"640":19714,"huddersfield":19715,"##vr":19716,"tactic":19717,"##storm":19718,"brackets":19719,"dazed":19720,"incorrectly":19721,"##vu":19722,"reg":19723,"glazed":19724,"fearful":19725,"manifold":19726,"benefited":19727,"irony":19728,"##sun":19729,"stumbling":19730,"##rte":19731,"willingness":19732,"balkans":19733,"mei":19734,"wraps":19735,"##aba":19736,"injected":19737,"##lea":19738,"gu":19739,"syed":19740,"harmless":19741,"##hammer":19742,"bray":19743,"takeoff":19744,"poppy":19745,"timor":19746,"cardboard":19747,"astronaut":19748,"purdue":19749,"weeping":19750,"southbound":19751,"cursing":19752,"stalls":19753,"diagonal":19754,"##neer":19755,"lamar":19756,"bryce":19757,"comte":19758,"weekdays":19759,"harrington":19760,"##uba":19761,"negatively":19762,"##see":19763,"lays":19764,"grouping":19765,"##cken":19766,"##henko":19767,"affirmed":19768,"halle":19769,"modernist":19770,"##lai":19771,"hodges":19772,"smelling":19773,"aristocratic":19774,"baptized":19775,"dismiss":19776,"justification":19777,"oilers":19778,"##now":19779,"coupling":19780,"qin":19781,"snack":19782,"healer":19783,"##qing":19784,"gardener":19785,"layla":19786,"battled":19787,"formulated":19788,"stephenson":19789,"gravitational":19790,"##gill":19791,"##jun":19792,"1768":19793,"granny":19794,"coordinating":19795,"suites":19796,"##cd":19797,"##ioned":19798,"monarchs":19799,"##cote":19800,"##hips":19801,"sep":19802,"blended":19803,"apr":19804,"barrister":19805,"deposition":19806,"fia":19807,"mina":19808,"policemen":19809,"paranoid":19810,"##pressed":19811,"churchyard":19812,"covert":19813,"crumpled":19814,"creep":19815,"abandoning":19816,"tr":19817,"transmit":19818,"conceal":19819,"barr":19820,"understands":19821,"readiness":19822,"spire":19823,"##cology":19824,"##enia":19825,"##erry":19826,"610":19827,"startling":19828,"unlock":19829,"vida":19830,"bowled":19831,"slots":19832,"##nat":19833,"##islav":19834,"spaced":19835,"trusting":19836,"admire":19837,"rig":19838,"##ink":19839,"slack":19840,"##70":19841,"mv":19842,"207":19843,"casualty":19844,"##wei":19845,"classmates":19846,"##odes":19847,"##rar":19848,"##rked":19849,"amherst":19850,"furnished":19851,"evolve":19852,"foundry":19853,"menace":19854,"mead":19855,"##lein":19856,"flu":19857,"wesleyan":19858,"##kled":19859,"monterey":19860,"webber":19861,"##vos":19862,"wil":19863,"##mith":19864,"##на":19865,"bartholomew":19866,"justices":19867,"restrained":19868,"##cke":19869,"amenities":19870,"191":19871,"mediated":19872,"sewage":19873,"trenches":19874,"ml":19875,"mainz":19876,"##thus":19877,"1800s":19878,"##cula":19879,"##inski":19880,"caine":19881,"bonding":19882,"213":19883,"converts":19884,"spheres":19885,"superseded":19886,"marianne":19887,"crypt":19888,"sweaty":19889,"ensign":19890,"historia":19891,"##br":19892,"spruce":19893,"##post":19894,"##ask":19895,"forks":19896,"thoughtfully":19897,"yukon":19898,"pamphlet":19899,"ames":19900,"##uter":19901,"karma":19902,"##yya":19903,"bryn":19904,"negotiation":19905,"sighs":19906,"incapable":19907,"##mbre":19908,"##ntial":19909,"actresses":19910,"taft":19911,"##mill":19912,"luce":19913,"prevailed":19914,"##amine":19915,"1773":19916,"motionless":19917,"envoy":19918,"testify":19919,"investing":19920,"sculpted":19921,"instructors":19922,"provence":19923,"kali":19924,"cullen":19925,"horseback":19926,"##while":19927,"goodwin":19928,"##jos":19929,"gaa":19930,"norte":19931,"##ldon":19932,"modify":19933,"wavelength":19934,"abd":19935,"214":19936,"skinned":19937,"sprinter":19938,"forecast":19939,"scheduling":19940,"marries":19941,"squared":19942,"tentative":19943,"##chman":19944,"boer":19945,"##isch":19946,"bolts":19947,"swap":19948,"fisherman":19949,"assyrian":19950,"impatiently":19951,"guthrie":19952,"martins":19953,"murdoch":19954,"194":19955,"tanya":19956,"nicely":19957,"dolly":19958,"lacy":19959,"med":19960,"##45":19961,"syn":19962,"decks":19963,"fashionable":19964,"millionaire":19965,"##ust":19966,"surfing":19967,"##ml":19968,"##ision":19969,"heaved":19970,"tammy":19971,"consulate":19972,"attendees":19973,"routinely":19974,"197":19975,"fuse":19976,"saxophonist":19977,"backseat":19978,"malaya":19979,"##lord":19980,"scowl":19981,"tau":19982,"##ishly":19983,"193":19984,"sighted":19985,"steaming":19986,"##rks":19987,"303":19988,"911":19989,"##holes":19990,"##hong":19991,"ching":19992,"##wife":19993,"bless":19994,"conserved":19995,"jurassic":19996,"stacey":19997,"unix":19998,"zion":19999,"chunk":20000,"rigorous":20001,"blaine":20002,"198":20003,"peabody":20004,"slayer":20005,"dismay":20006,"brewers":20007,"nz":20008,"##jer":20009,"det":20010,"##glia":20011,"glover":20012,"postwar":20013,"int":20014,"penetration":20015,"sylvester":20016,"imitation":20017,"vertically":20018,"airlift":20019,"heiress":20020,"knoxville":20021,"viva":20022,"##uin":20023,"390":20024,"macon":20025,"##rim":20026,"##fighter":20027,"##gonal":20028,"janice":20029,"##orescence":20030,"##wari":20031,"marius":20032,"belongings":20033,"leicestershire":20034,"196":20035,"blanco":20036,"inverted":20037,"preseason":20038,"sanity":20039,"sobbing":20040,"##due":20041,"##elt":20042,"##dled":20043,"collingwood":20044,"regeneration":20045,"flickering":20046,"shortest":20047,"##mount":20048,"##osi":20049,"feminism":20050,"##lat":20051,"sherlock":20052,"cabinets":20053,"fumbled":20054,"northbound":20055,"precedent":20056,"snaps":20057,"##mme":20058,"researching":20059,"##akes":20060,"guillaume":20061,"insights":20062,"manipulated":20063,"vapor":20064,"neighbour":20065,"sap":20066,"gangster":20067,"frey":20068,"f1":20069,"stalking":20070,"scarcely":20071,"callie":20072,"barnett":20073,"tendencies":20074,"audi":20075,"doomed":20076,"assessing":20077,"slung":20078,"panchayat":20079,"ambiguous":20080,"bartlett":20081,"##etto":20082,"distributing":20083,"violating":20084,"wolverhampton":20085,"##hetic":20086,"swami":20087,"histoire":20088,"##urus":20089,"liable":20090,"pounder":20091,"groin":20092,"hussain":20093,"larsen":20094,"popping":20095,"surprises":20096,"##atter":20097,"vie":20098,"curt":20099,"##station":20100,"mute":20101,"relocate":20102,"musicals":20103,"authorization":20104,"richter":20105,"##sef":20106,"immortality":20107,"tna":20108,"bombings":20109,"##press":20110,"deteriorated":20111,"yiddish":20112,"##acious":20113,"robbed":20114,"colchester":20115,"cs":20116,"pmid":20117,"ao":20118,"verified":20119,"balancing":20120,"apostle":20121,"swayed":20122,"recognizable":20123,"oxfordshire":20124,"retention":20125,"nottinghamshire":20126,"contender":20127,"judd":20128,"invitational":20129,"shrimp":20130,"uhf":20131,"##icient":20132,"cleaner":20133,"longitudinal":20134,"tanker":20135,"##mur":20136,"acronym":20137,"broker":20138,"koppen":20139,"sundance":20140,"suppliers":20141,"##gil":20142,"4000":20143,"clipped":20144,"fuels":20145,"petite":20146,"##anne":20147,"landslide":20148,"helene":20149,"diversion":20150,"populous":20151,"landowners":20152,"auspices":20153,"melville":20154,"quantitative":20155,"##xes":20156,"ferries":20157,"nicky":20158,"##llus":20159,"doo":20160,"haunting":20161,"roche":20162,"carver":20163,"downed":20164,"unavailable":20165,"##pathy":20166,"approximation":20167,"hiroshima":20168,"##hue":20169,"garfield":20170,"valle":20171,"comparatively":20172,"keyboardist":20173,"traveler":20174,"##eit":20175,"congestion":20176,"calculating":20177,"subsidiaries":20178,"##bate":20179,"serb":20180,"modernization":20181,"fairies":20182,"deepened":20183,"ville":20184,"averages":20185,"##lore":20186,"inflammatory":20187,"tonga":20188,"##itch":20189,"co₂":20190,"squads":20191,"##hea":20192,"gigantic":20193,"serum":20194,"enjoyment":20195,"retailer":20196,"verona":20197,"35th":20198,"cis":20199,"##phobic":20200,"magna":20201,"technicians":20202,"##vati":20203,"arithmetic":20204,"##sport":20205,"levin":20206,"##dation":20207,"amtrak":20208,"chow":20209,"sienna":20210,"##eyer":20211,"backstage":20212,"entrepreneurship":20213,"##otic":20214,"learnt":20215,"tao":20216,"##udy":20217,"worcestershire":20218,"formulation":20219,"baggage":20220,"hesitant":20221,"bali":20222,"sabotage":20223,"##kari":20224,"barren":20225,"enhancing":20226,"murmur":20227,"pl":20228,"freshly":20229,"putnam":20230,"syntax":20231,"aces":20232,"medicines":20233,"resentment":20234,"bandwidth":20235,"##sier":20236,"grins":20237,"chili":20238,"guido":20239,"##sei":20240,"framing":20241,"implying":20242,"gareth":20243,"lissa":20244,"genevieve":20245,"pertaining":20246,"admissions":20247,"geo":20248,"thorpe":20249,"proliferation":20250,"sato":20251,"bela":20252,"analyzing":20253,"parting":20254,"##gor":20255,"awakened":20256,"##isman":20257,"huddled":20258,"secrecy":20259,"##kling":20260,"hush":20261,"gentry":20262,"540":20263,"dungeons":20264,"##ego":20265,"coasts":20266,"##utz":20267,"sacrificed":20268,"##chule":20269,"landowner":20270,"mutually":20271,"prevalence":20272,"programmer":20273,"adolescent":20274,"disrupted":20275,"seaside":20276,"gee":20277,"trusts":20278,"vamp":20279,"georgie":20280,"##nesian":20281,"##iol":20282,"schedules":20283,"sindh":20284,"##market":20285,"etched":20286,"hm":20287,"sparse":20288,"bey":20289,"beaux":20290,"scratching":20291,"gliding":20292,"unidentified":20293,"216":20294,"collaborating":20295,"gems":20296,"jesuits":20297,"oro":20298,"accumulation":20299,"shaping":20300,"mbe":20301,"anal":20302,"##xin":20303,"231":20304,"enthusiasts":20305,"newscast":20306,"##egan":20307,"janata":20308,"dewey":20309,"parkinson":20310,"179":20311,"ankara":20312,"biennial":20313,"towering":20314,"dd":20315,"inconsistent":20316,"950":20317,"##chet":20318,"thriving":20319,"terminate":20320,"cabins":20321,"furiously":20322,"eats":20323,"advocating":20324,"donkey":20325,"marley":20326,"muster":20327,"phyllis":20328,"leiden":20329,"##user":20330,"grassland":20331,"glittering":20332,"iucn":20333,"loneliness":20334,"217":20335,"memorandum":20336,"armenians":20337,"##ddle":20338,"popularized":20339,"rhodesia":20340,"60s":20341,"lame":20342,"##illon":20343,"sans":20344,"bikini":20345,"header":20346,"orbits":20347,"##xx":20348,"##finger":20349,"##ulator":20350,"sharif":20351,"spines":20352,"biotechnology":20353,"strolled":20354,"naughty":20355,"yates":20356,"##wire":20357,"fremantle":20358,"milo":20359,"##mour":20360,"abducted":20361,"removes":20362,"##atin":20363,"humming":20364,"wonderland":20365,"##chrome":20366,"##ester":20367,"hume":20368,"pivotal":20369,"##rates":20370,"armand":20371,"grams":20372,"believers":20373,"elector":20374,"rte":20375,"apron":20376,"bis":20377,"scraped":20378,"##yria":20379,"endorsement":20380,"initials":20381,"##llation":20382,"eps":20383,"dotted":20384,"hints":20385,"buzzing":20386,"emigration":20387,"nearer":20388,"##tom":20389,"indicators":20390,"##ulu":20391,"coarse":20392,"neutron":20393,"protectorate":20394,"##uze":20395,"directional":20396,"exploits":20397,"pains":20398,"loire":20399,"1830s":20400,"proponents":20401,"guggenheim":20402,"rabbits":20403,"ritchie":20404,"305":20405,"hectare":20406,"inputs":20407,"hutton":20408,"##raz":20409,"verify":20410,"##ako":20411,"boilers":20412,"longitude":20413,"##lev":20414,"skeletal":20415,"yer":20416,"emilia":20417,"citrus":20418,"compromised":20419,"##gau":20420,"pokemon":20421,"prescription":20422,"paragraph":20423,"eduard":20424,"cadillac":20425,"attire":20426,"categorized":20427,"kenyan":20428,"weddings":20429,"charley":20430,"##bourg":20431,"entertain":20432,"monmouth":20433,"##lles":20434,"nutrients":20435,"davey":20436,"mesh":20437,"incentive":20438,"practised":20439,"ecosystems":20440,"kemp":20441,"subdued":20442,"overheard":20443,"##rya":20444,"bodily":20445,"maxim":20446,"##nius":20447,"apprenticeship":20448,"ursula":20449,"##fight":20450,"lodged":20451,"rug":20452,"silesian":20453,"unconstitutional":20454,"patel":20455,"inspected":20456,"coyote":20457,"unbeaten":20458,"##hak":20459,"34th":20460,"disruption":20461,"convict":20462,"parcel":20463,"##cl":20464,"##nham":20465,"collier":20466,"implicated":20467,"mallory":20468,"##iac":20469,"##lab":20470,"susannah":20471,"winkler":20472,"##rber":20473,"shia":20474,"phelps":20475,"sediments":20476,"graphical":20477,"robotic":20478,"##sner":20479,"adulthood":20480,"mart":20481,"smoked":20482,"##isto":20483,"kathryn":20484,"clarified":20485,"##aran":20486,"divides":20487,"convictions":20488,"oppression":20489,"pausing":20490,"burying":20491,"##mt":20492,"federico":20493,"mathias":20494,"eileen":20495,"##tana":20496,"kite":20497,"hunched":20498,"##acies":20499,"189":20500,"##atz":20501,"disadvantage":20502,"liza":20503,"kinetic":20504,"greedy":20505,"paradox":20506,"yokohama":20507,"dowager":20508,"trunks":20509,"ventured":20510,"##gement":20511,"gupta":20512,"vilnius":20513,"olaf":20514,"##thest":20515,"crimean":20516,"hopper":20517,"##ej":20518,"progressively":20519,"arturo":20520,"mouthed":20521,"arrondissement":20522,"##fusion":20523,"rubin":20524,"simulcast":20525,"oceania":20526,"##orum":20527,"##stra":20528,"##rred":20529,"busiest":20530,"intensely":20531,"navigator":20532,"cary":20533,"##vine":20534,"##hini":20535,"##bies":20536,"fife":20537,"rowe":20538,"rowland":20539,"posing":20540,"insurgents":20541,"shafts":20542,"lawsuits":20543,"activate":20544,"conor":20545,"inward":20546,"culturally":20547,"garlic":20548,"265":20549,"##eering":20550,"eclectic":20551,"##hui":20552,"##kee":20553,"##nl":20554,"furrowed":20555,"vargas":20556,"meteorological":20557,"rendezvous":20558,"##aus":20559,"culinary":20560,"commencement":20561,"##dition":20562,"quota":20563,"##notes":20564,"mommy":20565,"salaries":20566,"overlapping":20567,"mule":20568,"##iology":20569,"##mology":20570,"sums":20571,"wentworth":20572,"##isk":20573,"##zione":20574,"mainline":20575,"subgroup":20576,"##illy":20577,"hack":20578,"plaintiff":20579,"verdi":20580,"bulb":20581,"differentiation":20582,"engagements":20583,"multinational":20584,"supplemented":20585,"bertrand":20586,"caller":20587,"regis":20588,"##naire":20589,"##sler":20590,"##arts":20591,"##imated":20592,"blossom":20593,"propagation":20594,"kilometer":20595,"viaduct":20596,"vineyards":20597,"##uate":20598,"beckett":20599,"optimization":20600,"golfer":20601,"songwriters":20602,"seminal":20603,"semitic":20604,"thud":20605,"volatile":20606,"evolving":20607,"ridley":20608,"##wley":20609,"trivial":20610,"distributions":20611,"scandinavia":20612,"jiang":20613,"##ject":20614,"wrestled":20615,"insistence":20616,"##dio":20617,"emphasizes":20618,"napkin":20619,"##ods":20620,"adjunct":20621,"rhyme":20622,"##ricted":20623,"##eti":20624,"hopeless":20625,"surrounds":20626,"tremble":20627,"32nd":20628,"smoky":20629,"##ntly":20630,"oils":20631,"medicinal":20632,"padded":20633,"steer":20634,"wilkes":20635,"219":20636,"255":20637,"concessions":20638,"hue":20639,"uniquely":20640,"blinded":20641,"landon":20642,"yahoo":20643,"##lane":20644,"hendrix":20645,"commemorating":20646,"dex":20647,"specify":20648,"chicks":20649,"##ggio":20650,"intercity":20651,"1400":20652,"morley":20653,"##torm":20654,"highlighting":20655,"##oting":20656,"pang":20657,"oblique":20658,"stalled":20659,"##liner":20660,"flirting":20661,"newborn":20662,"1769":20663,"bishopric":20664,"shaved":20665,"232":20666,"currie":20667,"##ush":20668,"dharma":20669,"spartan":20670,"##ooped":20671,"favorites":20672,"smug":20673,"novella":20674,"sirens":20675,"abusive":20676,"creations":20677,"espana":20678,"##lage":20679,"paradigm":20680,"semiconductor":20681,"sheen":20682,"##rdo":20683,"##yen":20684,"##zak":20685,"nrl":20686,"renew":20687,"##pose":20688,"##tur":20689,"adjutant":20690,"marches":20691,"norma":20692,"##enity":20693,"ineffective":20694,"weimar":20695,"grunt":20696,"##gat":20697,"lordship":20698,"plotting":20699,"expenditure":20700,"infringement":20701,"lbs":20702,"refrain":20703,"av":20704,"mimi":20705,"mistakenly":20706,"postmaster":20707,"1771":20708,"##bara":20709,"ras":20710,"motorsports":20711,"tito":20712,"199":20713,"subjective":20714,"##zza":20715,"bully":20716,"stew":20717,"##kaya":20718,"prescott":20719,"1a":20720,"##raphic":20721,"##zam":20722,"bids":20723,"styling":20724,"paranormal":20725,"reeve":20726,"sneaking":20727,"exploding":20728,"katz":20729,"akbar":20730,"migrant":20731,"syllables":20732,"indefinitely":20733,"##ogical":20734,"destroys":20735,"replaces":20736,"applause":20737,"##phine":20738,"pest":20739,"##fide":20740,"218":20741,"articulated":20742,"bertie":20743,"##thing":20744,"##cars":20745,"##ptic":20746,"courtroom":20747,"crowley":20748,"aesthetics":20749,"cummings":20750,"tehsil":20751,"hormones":20752,"titanic":20753,"dangerously":20754,"##ibe":20755,"stadion":20756,"jaenelle":20757,"auguste":20758,"ciudad":20759,"##chu":20760,"mysore":20761,"partisans":20762,"##sio":20763,"lucan":20764,"philipp":20765,"##aly":20766,"debating":20767,"henley":20768,"interiors":20769,"##rano":20770,"##tious":20771,"homecoming":20772,"beyonce":20773,"usher":20774,"henrietta":20775,"prepares":20776,"weeds":20777,"##oman":20778,"ely":20779,"plucked":20780,"##pire":20781,"##dable":20782,"luxurious":20783,"##aq":20784,"artifact":20785,"password":20786,"pasture":20787,"juno":20788,"maddy":20789,"minsk":20790,"##dder":20791,"##ologies":20792,"##rone":20793,"assessments":20794,"martian":20795,"royalist":20796,"1765":20797,"examines":20798,"##mani":20799,"##rge":20800,"nino":20801,"223":20802,"parry":20803,"scooped":20804,"relativity":20805,"##eli":20806,"##uting":20807,"##cao":20808,"congregational":20809,"noisy":20810,"traverse":20811,"##agawa":20812,"strikeouts":20813,"nickelodeon":20814,"obituary":20815,"transylvania":20816,"binds":20817,"depictions":20818,"polk":20819,"trolley":20820,"##yed":20821,"##lard":20822,"breeders":20823,"##under":20824,"dryly":20825,"hokkaido":20826,"1762":20827,"strengths":20828,"stacks":20829,"bonaparte":20830,"connectivity":20831,"neared":20832,"prostitutes":20833,"stamped":20834,"anaheim":20835,"gutierrez":20836,"sinai":20837,"##zzling":20838,"bram":20839,"fresno":20840,"madhya":20841,"##86":20842,"proton":20843,"##lena":20844,"##llum":20845,"##phon":20846,"reelected":20847,"wanda":20848,"##anus":20849,"##lb":20850,"ample":20851,"distinguishing":20852,"##yler":20853,"grasping":20854,"sermons":20855,"tomato":20856,"bland":20857,"stimulation":20858,"avenues":20859,"##eux":20860,"spreads":20861,"scarlett":20862,"fern":20863,"pentagon":20864,"assert":20865,"baird":20866,"chesapeake":20867,"ir":20868,"calmed":20869,"distortion":20870,"fatalities":20871,"##olis":20872,"correctional":20873,"pricing":20874,"##astic":20875,"##gina":20876,"prom":20877,"dammit":20878,"ying":20879,"collaborate":20880,"##chia":20881,"welterweight":20882,"33rd":20883,"pointer":20884,"substitution":20885,"bonded":20886,"umpire":20887,"communicating":20888,"multitude":20889,"paddle":20890,"##obe":20891,"federally":20892,"intimacy":20893,"##insky":20894,"betray":20895,"ssr":20896,"##lett":20897,"##lean":20898,"##lves":20899,"##therapy":20900,"airbus":20901,"##tery":20902,"functioned":20903,"ud":20904,"bearer":20905,"biomedical":20906,"netflix":20907,"##hire":20908,"##nca":20909,"condom":20910,"brink":20911,"ik":20912,"##nical":20913,"macy":20914,"##bet":20915,"flap":20916,"gma":20917,"experimented":20918,"jelly":20919,"lavender":20920,"##icles":20921,"##ulia":20922,"munro":20923,"##mian":20924,"##tial":20925,"rye":20926,"##rle":20927,"60th":20928,"gigs":20929,"hottest":20930,"rotated":20931,"predictions":20932,"fuji":20933,"bu":20934,"##erence":20935,"##omi":20936,"barangay":20937,"##fulness":20938,"##sas":20939,"clocks":20940,"##rwood":20941,"##liness":20942,"cereal":20943,"roe":20944,"wight":20945,"decker":20946,"uttered":20947,"babu":20948,"onion":20949,"xml":20950,"forcibly":20951,"##df":20952,"petra":20953,"sarcasm":20954,"hartley":20955,"peeled":20956,"storytelling":20957,"##42":20958,"##xley":20959,"##ysis":20960,"##ffa":20961,"fibre":20962,"kiel":20963,"auditor":20964,"fig":20965,"harald":20966,"greenville":20967,"##berries":20968,"geographically":20969,"nell":20970,"quartz":20971,"##athic":20972,"cemeteries":20973,"##lr":20974,"crossings":20975,"nah":20976,"holloway":20977,"reptiles":20978,"chun":20979,"sichuan":20980,"snowy":20981,"660":20982,"corrections":20983,"##ivo":20984,"zheng":20985,"ambassadors":20986,"blacksmith":20987,"fielded":20988,"fluids":20989,"hardcover":20990,"turnover":20991,"medications":20992,"melvin":20993,"academies":20994,"##erton":20995,"ro":20996,"roach":20997,"absorbing":20998,"spaniards":20999,"colton":21000,"##founded":21001,"outsider":21002,"espionage":21003,"kelsey":21004,"245":21005,"edible":21006,"##ulf":21007,"dora":21008,"establishes":21009,"##sham":21010,"##tries":21011,"contracting":21012,"##tania":21013,"cinematic":21014,"costello":21015,"nesting":21016,"##uron":21017,"connolly":21018,"duff":21019,"##nology":21020,"mma":21021,"##mata":21022,"fergus":21023,"sexes":21024,"gi":21025,"optics":21026,"spectator":21027,"woodstock":21028,"banning":21029,"##hee":21030,"##fle":21031,"differentiate":21032,"outfielder":21033,"refinery":21034,"226":21035,"312":21036,"gerhard":21037,"horde":21038,"lair":21039,"drastically":21040,"##udi":21041,"landfall":21042,"##cheng":21043,"motorsport":21044,"odi":21045,"##achi":21046,"predominant":21047,"quay":21048,"skins":21049,"##ental":21050,"edna":21051,"harshly":21052,"complementary":21053,"murdering":21054,"##aves":21055,"wreckage":21056,"##90":21057,"ono":21058,"outstretched":21059,"lennox":21060,"munitions":21061,"galen":21062,"reconcile":21063,"470":21064,"scalp":21065,"bicycles":21066,"gillespie":21067,"questionable":21068,"rosenberg":21069,"guillermo":21070,"hostel":21071,"jarvis":21072,"kabul":21073,"volvo":21074,"opium":21075,"yd":21076,"##twined":21077,"abuses":21078,"decca":21079,"outpost":21080,"##cino":21081,"sensible":21082,"neutrality":21083,"##64":21084,"ponce":21085,"anchorage":21086,"atkins":21087,"turrets":21088,"inadvertently":21089,"disagree":21090,"libre":21091,"vodka":21092,"reassuring":21093,"weighs":21094,"##yal":21095,"glide":21096,"jumper":21097,"ceilings":21098,"repertory":21099,"outs":21100,"stain":21101,"##bial":21102,"envy":21103,"##ucible":21104,"smashing":21105,"heightened":21106,"policing":21107,"hyun":21108,"mixes":21109,"lai":21110,"prima":21111,"##ples":21112,"celeste":21113,"##bina":21114,"lucrative":21115,"intervened":21116,"kc":21117,"manually":21118,"##rned":21119,"stature":21120,"staffed":21121,"bun":21122,"bastards":21123,"nairobi":21124,"priced":21125,"##auer":21126,"thatcher":21127,"##kia":21128,"tripped":21129,"comune":21130,"##ogan":21131,"##pled":21132,"brasil":21133,"incentives":21134,"emanuel":21135,"hereford":21136,"musica":21137,"##kim":21138,"benedictine":21139,"biennale":21140,"##lani":21141,"eureka":21142,"gardiner":21143,"rb":21144,"knocks":21145,"sha":21146,"##ael":21147,"##elled":21148,"##onate":21149,"efficacy":21150,"ventura":21151,"masonic":21152,"sanford":21153,"maize":21154,"leverage":21155,"##feit":21156,"capacities":21157,"santana":21158,"##aur":21159,"novelty":21160,"vanilla":21161,"##cter":21162,"##tour":21163,"benin":21164,"##oir":21165,"##rain":21166,"neptune":21167,"drafting":21168,"tallinn":21169,"##cable":21170,"humiliation":21171,"##boarding":21172,"schleswig":21173,"fabian":21174,"bernardo":21175,"liturgy":21176,"spectacle":21177,"sweeney":21178,"pont":21179,"routledge":21180,"##tment":21181,"cosmos":21182,"ut":21183,"hilt":21184,"sleek":21185,"universally":21186,"##eville":21187,"##gawa":21188,"typed":21189,"##dry":21190,"favors":21191,"allegheny":21192,"glaciers":21193,"##rly":21194,"recalling":21195,"aziz":21196,"##log":21197,"parasite":21198,"requiem":21199,"auf":21200,"##berto":21201,"##llin":21202,"illumination":21203,"##breaker":21204,"##issa":21205,"festivities":21206,"bows":21207,"govern":21208,"vibe":21209,"vp":21210,"333":21211,"sprawled":21212,"larson":21213,"pilgrim":21214,"bwf":21215,"leaping":21216,"##rts":21217,"##ssel":21218,"alexei":21219,"greyhound":21220,"hoarse":21221,"##dler":21222,"##oration":21223,"seneca":21224,"##cule":21225,"gaping":21226,"##ulously":21227,"##pura":21228,"cinnamon":21229,"##gens":21230,"##rricular":21231,"craven":21232,"fantasies":21233,"houghton":21234,"engined":21235,"reigned":21236,"dictator":21237,"supervising":21238,"##oris":21239,"bogota":21240,"commentaries":21241,"unnatural":21242,"fingernails":21243,"spirituality":21244,"tighten":21245,"##tm":21246,"canadiens":21247,"protesting":21248,"intentional":21249,"cheers":21250,"sparta":21251,"##ytic":21252,"##iere":21253,"##zine":21254,"widen":21255,"belgarath":21256,"controllers":21257,"dodd":21258,"iaaf":21259,"navarre":21260,"##ication":21261,"defect":21262,"squire":21263,"steiner":21264,"whisky":21265,"##mins":21266,"560":21267,"inevitably":21268,"tome":21269,"##gold":21270,"chew":21271,"##uid":21272,"##lid":21273,"elastic":21274,"##aby":21275,"streaked":21276,"alliances":21277,"jailed":21278,"regal":21279,"##ined":21280,"##phy":21281,"czechoslovak":21282,"narration":21283,"absently":21284,"##uld":21285,"bluegrass":21286,"guangdong":21287,"quran":21288,"criticizing":21289,"hose":21290,"hari":21291,"##liest":21292,"##owa":21293,"skier":21294,"streaks":21295,"deploy":21296,"##lom":21297,"raft":21298,"bose":21299,"dialed":21300,"huff":21301,"##eira":21302,"haifa":21303,"simplest":21304,"bursting":21305,"endings":21306,"ib":21307,"sultanate":21308,"##titled":21309,"franks":21310,"whitman":21311,"ensures":21312,"sven":21313,"##ggs":21314,"collaborators":21315,"forster":21316,"organising":21317,"ui":21318,"banished":21319,"napier":21320,"injustice":21321,"teller":21322,"layered":21323,"thump":21324,"##otti":21325,"roc":21326,"battleships":21327,"evidenced":21328,"fugitive":21329,"sadie":21330,"robotics":21331,"##roud":21332,"equatorial":21333,"geologist":21334,"##iza":21335,"yielding":21336,"##bron":21337,"##sr":21338,"internationale":21339,"mecca":21340,"##diment":21341,"sbs":21342,"skyline":21343,"toad":21344,"uploaded":21345,"reflective":21346,"undrafted":21347,"lal":21348,"leafs":21349,"bayern":21350,"##dai":21351,"lakshmi":21352,"shortlisted":21353,"##stick":21354,"##wicz":21355,"camouflage":21356,"donate":21357,"af":21358,"christi":21359,"lau":21360,"##acio":21361,"disclosed":21362,"nemesis":21363,"1761":21364,"assemble":21365,"straining":21366,"northamptonshire":21367,"tal":21368,"##asi":21369,"bernardino":21370,"premature":21371,"heidi":21372,"42nd":21373,"coefficients":21374,"galactic":21375,"reproduce":21376,"buzzed":21377,"sensations":21378,"zionist":21379,"monsieur":21380,"myrtle":21381,"##eme":21382,"archery":21383,"strangled":21384,"musically":21385,"viewpoint":21386,"antiquities":21387,"bei":21388,"trailers":21389,"seahawks":21390,"cured":21391,"pee":21392,"preferring":21393,"tasmanian":21394,"lange":21395,"sul":21396,"##mail":21397,"##working":21398,"colder":21399,"overland":21400,"lucivar":21401,"massey":21402,"gatherings":21403,"haitian":21404,"##smith":21405,"disapproval":21406,"flaws":21407,"##cco":21408,"##enbach":21409,"1766":21410,"npr":21411,"##icular":21412,"boroughs":21413,"creole":21414,"forums":21415,"techno":21416,"1755":21417,"dent":21418,"abdominal":21419,"streetcar":21420,"##eson":21421,"##stream":21422,"procurement":21423,"gemini":21424,"predictable":21425,"##tya":21426,"acheron":21427,"christoph":21428,"feeder":21429,"fronts":21430,"vendor":21431,"bernhard":21432,"jammu":21433,"tumors":21434,"slang":21435,"##uber":21436,"goaltender":21437,"twists":21438,"curving":21439,"manson":21440,"vuelta":21441,"mer":21442,"peanut":21443,"confessions":21444,"pouch":21445,"unpredictable":21446,"allowance":21447,"theodor":21448,"vascular":21449,"##factory":21450,"bala":21451,"authenticity":21452,"metabolic":21453,"coughing":21454,"nanjing":21455,"##cea":21456,"pembroke":21457,"##bard":21458,"splendid":21459,"36th":21460,"ff":21461,"hourly":21462,"##ahu":21463,"elmer":21464,"handel":21465,"##ivate":21466,"awarding":21467,"thrusting":21468,"dl":21469,"experimentation":21470,"##hesion":21471,"##46":21472,"caressed":21473,"entertained":21474,"steak":21475,"##rangle":21476,"biologist":21477,"orphans":21478,"baroness":21479,"oyster":21480,"stepfather":21481,"##dridge":21482,"mirage":21483,"reefs":21484,"speeding":21485,"##31":21486,"barons":21487,"1764":21488,"227":21489,"inhabit":21490,"preached":21491,"repealed":21492,"##tral":21493,"honoring":21494,"boogie":21495,"captives":21496,"administer":21497,"johanna":21498,"##imate":21499,"gel":21500,"suspiciously":21501,"1767":21502,"sobs":21503,"##dington":21504,"backbone":21505,"hayward":21506,"garry":21507,"##folding":21508,"##nesia":21509,"maxi":21510,"##oof":21511,"##ppe":21512,"ellison":21513,"galileo":21514,"##stand":21515,"crimea":21516,"frenzy":21517,"amour":21518,"bumper":21519,"matrices":21520,"natalia":21521,"baking":21522,"garth":21523,"palestinians":21524,"##grove":21525,"smack":21526,"conveyed":21527,"ensembles":21528,"gardening":21529,"##manship":21530,"##rup":21531,"##stituting":21532,"1640":21533,"harvesting":21534,"topography":21535,"jing":21536,"shifters":21537,"dormitory":21538,"##carriage":21539,"##lston":21540,"ist":21541,"skulls":21542,"##stadt":21543,"dolores":21544,"jewellery":21545,"sarawak":21546,"##wai":21547,"##zier":21548,"fences":21549,"christy":21550,"confinement":21551,"tumbling":21552,"credibility":21553,"fir":21554,"stench":21555,"##bria":21556,"##plication":21557,"##nged":21558,"##sam":21559,"virtues":21560,"##belt":21561,"marjorie":21562,"pba":21563,"##eem":21564,"##made":21565,"celebrates":21566,"schooner":21567,"agitated":21568,"barley":21569,"fulfilling":21570,"anthropologist":21571,"##pro":21572,"restrict":21573,"novi":21574,"regulating":21575,"##nent":21576,"padres":21577,"##rani":21578,"##hesive":21579,"loyola":21580,"tabitha":21581,"milky":21582,"olson":21583,"proprietor":21584,"crambidae":21585,"guarantees":21586,"intercollegiate":21587,"ljubljana":21588,"hilda":21589,"##sko":21590,"ignorant":21591,"hooded":21592,"##lts":21593,"sardinia":21594,"##lidae":21595,"##vation":21596,"frontman":21597,"privileged":21598,"witchcraft":21599,"##gp":21600,"jammed":21601,"laude":21602,"poking":21603,"##than":21604,"bracket":21605,"amazement":21606,"yunnan":21607,"##erus":21608,"maharaja":21609,"linnaeus":21610,"264":21611,"commissioning":21612,"milano":21613,"peacefully":21614,"##logies":21615,"akira":21616,"rani":21617,"regulator":21618,"##36":21619,"grasses":21620,"##rance":21621,"luzon":21622,"crows":21623,"compiler":21624,"gretchen":21625,"seaman":21626,"edouard":21627,"tab":21628,"buccaneers":21629,"ellington":21630,"hamlets":21631,"whig":21632,"socialists":21633,"##anto":21634,"directorial":21635,"easton":21636,"mythological":21637,"##kr":21638,"##vary":21639,"rhineland":21640,"semantic":21641,"taut":21642,"dune":21643,"inventions":21644,"succeeds":21645,"##iter":21646,"replication":21647,"branched":21648,"##pired":21649,"jul":21650,"prosecuted":21651,"kangaroo":21652,"penetrated":21653,"##avian":21654,"middlesbrough":21655,"doses":21656,"bleak":21657,"madam":21658,"predatory":21659,"relentless":21660,"##vili":21661,"reluctance":21662,"##vir":21663,"hailey":21664,"crore":21665,"silvery":21666,"1759":21667,"monstrous":21668,"swimmers":21669,"transmissions":21670,"hawthorn":21671,"informing":21672,"##eral":21673,"toilets":21674,"caracas":21675,"crouch":21676,"kb":21677,"##sett":21678,"295":21679,"cartel":21680,"hadley":21681,"##aling":21682,"alexia":21683,"yvonne":21684,"##biology":21685,"cinderella":21686,"eton":21687,"superb":21688,"blizzard":21689,"stabbing":21690,"industrialist":21691,"maximus":21692,"##gm":21693,"##orus":21694,"groves":21695,"maud":21696,"clade":21697,"oversized":21698,"comedic":21699,"##bella":21700,"rosen":21701,"nomadic":21702,"fulham":21703,"montane":21704,"beverages":21705,"galaxies":21706,"redundant":21707,"swarm":21708,"##rot":21709,"##folia":21710,"##llis":21711,"buckinghamshire":21712,"fen":21713,"bearings":21714,"bahadur":21715,"##rom":21716,"gilles":21717,"phased":21718,"dynamite":21719,"faber":21720,"benoit":21721,"vip":21722,"##ount":21723,"##wd":21724,"booking":21725,"fractured":21726,"tailored":21727,"anya":21728,"spices":21729,"westwood":21730,"cairns":21731,"auditions":21732,"inflammation":21733,"steamed":21734,"##rocity":21735,"##acion":21736,"##urne":21737,"skyla":21738,"thereof":21739,"watford":21740,"torment":21741,"archdeacon":21742,"transforms":21743,"lulu":21744,"demeanor":21745,"fucked":21746,"serge":21747,"##sor":21748,"mckenna":21749,"minas":21750,"entertainer":21751,"##icide":21752,"caress":21753,"originate":21754,"residue":21755,"##sty":21756,"1740":21757,"##ilised":21758,"##org":21759,"beech":21760,"##wana":21761,"subsidies":21762,"##ghton":21763,"emptied":21764,"gladstone":21765,"ru":21766,"firefighters":21767,"voodoo":21768,"##rcle":21769,"het":21770,"nightingale":21771,"tamara":21772,"edmond":21773,"ingredient":21774,"weaknesses":21775,"silhouette":21776,"285":21777,"compatibility":21778,"withdrawing":21779,"hampson":21780,"##mona":21781,"anguish":21782,"giggling":21783,"##mber":21784,"bookstore":21785,"##jiang":21786,"southernmost":21787,"tilting":21788,"##vance":21789,"bai":21790,"economical":21791,"rf":21792,"briefcase":21793,"dreadful":21794,"hinted":21795,"projections":21796,"shattering":21797,"totaling":21798,"##rogate":21799,"analogue":21800,"indicted":21801,"periodical":21802,"fullback":21803,"##dman":21804,"haynes":21805,"##tenberg":21806,"##ffs":21807,"##ishment":21808,"1745":21809,"thirst":21810,"stumble":21811,"penang":21812,"vigorous":21813,"##ddling":21814,"##kor":21815,"##lium":21816,"octave":21817,"##ove":21818,"##enstein":21819,"##inen":21820,"##ones":21821,"siberian":21822,"##uti":21823,"cbn":21824,"repeal":21825,"swaying":21826,"##vington":21827,"khalid":21828,"tanaka":21829,"unicorn":21830,"otago":21831,"plastered":21832,"lobe":21833,"riddle":21834,"##rella":21835,"perch":21836,"##ishing":21837,"croydon":21838,"filtered":21839,"graeme":21840,"tripoli":21841,"##ossa":21842,"crocodile":21843,"##chers":21844,"sufi":21845,"mined":21846,"##tung":21847,"inferno":21848,"lsu":21849,"##phi":21850,"swelled":21851,"utilizes":21852,"£2":21853,"cale":21854,"periodicals":21855,"styx":21856,"hike":21857,"informally":21858,"coop":21859,"lund":21860,"##tidae":21861,"ala":21862,"hen":21863,"qui":21864,"transformations":21865,"disposed":21866,"sheath":21867,"chickens":21868,"##cade":21869,"fitzroy":21870,"sas":21871,"silesia":21872,"unacceptable":21873,"odisha":21874,"1650":21875,"sabrina":21876,"pe":21877,"spokane":21878,"ratios":21879,"athena":21880,"massage":21881,"shen":21882,"dilemma":21883,"##drum":21884,"##riz":21885,"##hul":21886,"corona":21887,"doubtful":21888,"niall":21889,"##pha":21890,"##bino":21891,"fines":21892,"cite":21893,"acknowledging":21894,"bangor":21895,"ballard":21896,"bathurst":21897,"##resh":21898,"huron":21899,"mustered":21900,"alzheimer":21901,"garments":21902,"kinase":21903,"tyre":21904,"warship":21905,"##cp":21906,"flashback":21907,"pulmonary":21908,"braun":21909,"cheat":21910,"kamal":21911,"cyclists":21912,"constructions":21913,"grenades":21914,"ndp":21915,"traveller":21916,"excuses":21917,"stomped":21918,"signalling":21919,"trimmed":21920,"futsal":21921,"mosques":21922,"relevance":21923,"##wine":21924,"wta":21925,"##23":21926,"##vah":21927,"##lter":21928,"hoc":21929,"##riding":21930,"optimistic":21931,"##´s":21932,"deco":21933,"sim":21934,"interacting":21935,"rejecting":21936,"moniker":21937,"waterways":21938,"##ieri":21939,"##oku":21940,"mayors":21941,"gdansk":21942,"outnumbered":21943,"pearls":21944,"##ended":21945,"##hampton":21946,"fairs":21947,"totals":21948,"dominating":21949,"262":21950,"notions":21951,"stairway":21952,"compiling":21953,"pursed":21954,"commodities":21955,"grease":21956,"yeast":21957,"##jong":21958,"carthage":21959,"griffiths":21960,"residual":21961,"amc":21962,"contraction":21963,"laird":21964,"sapphire":21965,"##marine":21966,"##ivated":21967,"amalgamation":21968,"dissolve":21969,"inclination":21970,"lyle":21971,"packaged":21972,"altitudes":21973,"suez":21974,"canons":21975,"graded":21976,"lurched":21977,"narrowing":21978,"boasts":21979,"guise":21980,"wed":21981,"enrico":21982,"##ovsky":21983,"rower":21984,"scarred":21985,"bree":21986,"cub":21987,"iberian":21988,"protagonists":21989,"bargaining":21990,"proposing":21991,"trainers":21992,"voyages":21993,"vans":21994,"fishes":21995,"##aea":21996,"##ivist":21997,"##verance":21998,"encryption":21999,"artworks":22000,"kazan":22001,"sabre":22002,"cleopatra":22003,"hepburn":22004,"rotting":22005,"supremacy":22006,"mecklenburg":22007,"##brate":22008,"burrows":22009,"hazards":22010,"outgoing":22011,"flair":22012,"organizes":22013,"##ctions":22014,"scorpion":22015,"##usions":22016,"boo":22017,"234":22018,"chevalier":22019,"dunedin":22020,"slapping":22021,"##34":22022,"ineligible":22023,"pensions":22024,"##38":22025,"##omic":22026,"manufactures":22027,"emails":22028,"bismarck":22029,"238":22030,"weakening":22031,"blackish":22032,"ding":22033,"mcgee":22034,"quo":22035,"##rling":22036,"northernmost":22037,"xx":22038,"manpower":22039,"greed":22040,"sampson":22041,"clicking":22042,"##ange":22043,"##horpe":22044,"##inations":22045,"##roving":22046,"torre":22047,"##eptive":22048,"##moral":22049,"symbolism":22050,"38th":22051,"asshole":22052,"meritorious":22053,"outfits":22054,"splashed":22055,"biographies":22056,"sprung":22057,"astros":22058,"##tale":22059,"302":22060,"737":22061,"filly":22062,"raoul":22063,"nw":22064,"tokugawa":22065,"linden":22066,"clubhouse":22067,"##apa":22068,"tracts":22069,"romano":22070,"##pio":22071,"putin":22072,"tags":22073,"##note":22074,"chained":22075,"dickson":22076,"gunshot":22077,"moe":22078,"gunn":22079,"rashid":22080,"##tails":22081,"zipper":22082,"##bas":22083,"##nea":22084,"contrasted":22085,"##ply":22086,"##udes":22087,"plum":22088,"pharaoh":22089,"##pile":22090,"aw":22091,"comedies":22092,"ingrid":22093,"sandwiches":22094,"subdivisions":22095,"1100":22096,"mariana":22097,"nokia":22098,"kamen":22099,"hz":22100,"delaney":22101,"veto":22102,"herring":22103,"##words":22104,"possessive":22105,"outlines":22106,"##roup":22107,"siemens":22108,"stairwell":22109,"rc":22110,"gallantry":22111,"messiah":22112,"palais":22113,"yells":22114,"233":22115,"zeppelin":22116,"##dm":22117,"bolivar":22118,"##cede":22119,"smackdown":22120,"mckinley":22121,"##mora":22122,"##yt":22123,"muted":22124,"geologic":22125,"finely":22126,"unitary":22127,"avatar":22128,"hamas":22129,"maynard":22130,"rees":22131,"bog":22132,"contrasting":22133,"##rut":22134,"liv":22135,"chico":22136,"disposition":22137,"pixel":22138,"##erate":22139,"becca":22140,"dmitry":22141,"yeshiva":22142,"narratives":22143,"##lva":22144,"##ulton":22145,"mercenary":22146,"sharpe":22147,"tempered":22148,"navigate":22149,"stealth":22150,"amassed":22151,"keynes":22152,"##lini":22153,"untouched":22154,"##rrie":22155,"havoc":22156,"lithium":22157,"##fighting":22158,"abyss":22159,"graf":22160,"southward":22161,"wolverine":22162,"balloons":22163,"implements":22164,"ngos":22165,"transitions":22166,"##icum":22167,"ambushed":22168,"concacaf":22169,"dormant":22170,"economists":22171,"##dim":22172,"costing":22173,"csi":22174,"rana":22175,"universite":22176,"boulders":22177,"verity":22178,"##llon":22179,"collin":22180,"mellon":22181,"misses":22182,"cypress":22183,"fluorescent":22184,"lifeless":22185,"spence":22186,"##ulla":22187,"crewe":22188,"shepard":22189,"pak":22190,"revelations":22191,"##م":22192,"jolly":22193,"gibbons":22194,"paw":22195,"##dro":22196,"##quel":22197,"freeing":22198,"##test":22199,"shack":22200,"fries":22201,"palatine":22202,"##51":22203,"##hiko":22204,"accompaniment":22205,"cruising":22206,"recycled":22207,"##aver":22208,"erwin":22209,"sorting":22210,"synthesizers":22211,"dyke":22212,"realities":22213,"sg":22214,"strides":22215,"enslaved":22216,"wetland":22217,"##ghan":22218,"competence":22219,"gunpowder":22220,"grassy":22221,"maroon":22222,"reactors":22223,"objection":22224,"##oms":22225,"carlson":22226,"gearbox":22227,"macintosh":22228,"radios":22229,"shelton":22230,"##sho":22231,"clergyman":22232,"prakash":22233,"254":22234,"mongols":22235,"trophies":22236,"oricon":22237,"228":22238,"stimuli":22239,"twenty20":22240,"cantonese":22241,"cortes":22242,"mirrored":22243,"##saurus":22244,"bhp":22245,"cristina":22246,"melancholy":22247,"##lating":22248,"enjoyable":22249,"nuevo":22250,"##wny":22251,"downfall":22252,"schumacher":22253,"##ind":22254,"banging":22255,"lausanne":22256,"rumbled":22257,"paramilitary":22258,"reflex":22259,"ax":22260,"amplitude":22261,"migratory":22262,"##gall":22263,"##ups":22264,"midi":22265,"barnard":22266,"lastly":22267,"sherry":22268,"##hp":22269,"##nall":22270,"keystone":22271,"##kra":22272,"carleton":22273,"slippery":22274,"##53":22275,"coloring":22276,"foe":22277,"socket":22278,"otter":22279,"##rgos":22280,"mats":22281,"##tose":22282,"consultants":22283,"bafta":22284,"bison":22285,"topping":22286,"##km":22287,"490":22288,"primal":22289,"abandonment":22290,"transplant":22291,"atoll":22292,"hideous":22293,"mort":22294,"pained":22295,"reproduced":22296,"tae":22297,"howling":22298,"##turn":22299,"unlawful":22300,"billionaire":22301,"hotter":22302,"poised":22303,"lansing":22304,"##chang":22305,"dinamo":22306,"retro":22307,"messing":22308,"nfc":22309,"domesday":22310,"##mina":22311,"blitz":22312,"timed":22313,"##athing":22314,"##kley":22315,"ascending":22316,"gesturing":22317,"##izations":22318,"signaled":22319,"tis":22320,"chinatown":22321,"mermaid":22322,"savanna":22323,"jameson":22324,"##aint":22325,"catalina":22326,"##pet":22327,"##hers":22328,"cochrane":22329,"cy":22330,"chatting":22331,"##kus":22332,"alerted":22333,"computation":22334,"mused":22335,"noelle":22336,"majestic":22337,"mohawk":22338,"campo":22339,"octagonal":22340,"##sant":22341,"##hend":22342,"241":22343,"aspiring":22344,"##mart":22345,"comprehend":22346,"iona":22347,"paralyzed":22348,"shimmering":22349,"swindon":22350,"rhone":22351,"##eley":22352,"reputed":22353,"configurations":22354,"pitchfork":22355,"agitation":22356,"francais":22357,"gillian":22358,"lipstick":22359,"##ilo":22360,"outsiders":22361,"pontifical":22362,"resisting":22363,"bitterness":22364,"sewer":22365,"rockies":22366,"##edd":22367,"##ucher":22368,"misleading":22369,"1756":22370,"exiting":22371,"galloway":22372,"##nging":22373,"risked":22374,"##heart":22375,"246":22376,"commemoration":22377,"schultz":22378,"##rka":22379,"integrating":22380,"##rsa":22381,"poses":22382,"shrieked":22383,"##weiler":22384,"guineas":22385,"gladys":22386,"jerking":22387,"owls":22388,"goldsmith":22389,"nightly":22390,"penetrating":22391,"##unced":22392,"lia":22393,"##33":22394,"ignited":22395,"betsy":22396,"##aring":22397,"##thorpe":22398,"follower":22399,"vigorously":22400,"##rave":22401,"coded":22402,"kiran":22403,"knit":22404,"zoology":22405,"tbilisi":22406,"##28":22407,"##bered":22408,"repository":22409,"govt":22410,"deciduous":22411,"dino":22412,"growling":22413,"##bba":22414,"enhancement":22415,"unleashed":22416,"chanting":22417,"pussy":22418,"biochemistry":22419,"##eric":22420,"kettle":22421,"repression":22422,"toxicity":22423,"nrhp":22424,"##arth":22425,"##kko":22426,"##bush":22427,"ernesto":22428,"commended":22429,"outspoken":22430,"242":22431,"mca":22432,"parchment":22433,"sms":22434,"kristen":22435,"##aton":22436,"bisexual":22437,"raked":22438,"glamour":22439,"navajo":22440,"a2":22441,"conditioned":22442,"showcased":22443,"##hma":22444,"spacious":22445,"youthful":22446,"##esa":22447,"usl":22448,"appliances":22449,"junta":22450,"brest":22451,"layne":22452,"conglomerate":22453,"enchanted":22454,"chao":22455,"loosened":22456,"picasso":22457,"circulating":22458,"inspect":22459,"montevideo":22460,"##centric":22461,"##kti":22462,"piazza":22463,"spurred":22464,"##aith":22465,"bari":22466,"freedoms":22467,"poultry":22468,"stamford":22469,"lieu":22470,"##ect":22471,"indigo":22472,"sarcastic":22473,"bahia":22474,"stump":22475,"attach":22476,"dvds":22477,"frankenstein":22478,"lille":22479,"approx":22480,"scriptures":22481,"pollen":22482,"##script":22483,"nmi":22484,"overseen":22485,"##ivism":22486,"tides":22487,"proponent":22488,"newmarket":22489,"inherit":22490,"milling":22491,"##erland":22492,"centralized":22493,"##rou":22494,"distributors":22495,"credentials":22496,"drawers":22497,"abbreviation":22498,"##lco":22499,"##xon":22500,"downing":22501,"uncomfortably":22502,"ripe":22503,"##oes":22504,"erase":22505,"franchises":22506,"##ever":22507,"populace":22508,"##bery":22509,"##khar":22510,"decomposition":22511,"pleas":22512,"##tet":22513,"daryl":22514,"sabah":22515,"##stle":22516,"##wide":22517,"fearless":22518,"genie":22519,"lesions":22520,"annette":22521,"##ogist":22522,"oboe":22523,"appendix":22524,"nair":22525,"dripped":22526,"petitioned":22527,"maclean":22528,"mosquito":22529,"parrot":22530,"rpg":22531,"hampered":22532,"1648":22533,"operatic":22534,"reservoirs":22535,"##tham":22536,"irrelevant":22537,"jolt":22538,"summarized":22539,"##fp":22540,"medallion":22541,"##taff":22542,"##−":22543,"clawed":22544,"harlow":22545,"narrower":22546,"goddard":22547,"marcia":22548,"bodied":22549,"fremont":22550,"suarez":22551,"altering":22552,"tempest":22553,"mussolini":22554,"porn":22555,"##isms":22556,"sweetly":22557,"oversees":22558,"walkers":22559,"solitude":22560,"grimly":22561,"shrines":22562,"hk":22563,"ich":22564,"supervisors":22565,"hostess":22566,"dietrich":22567,"legitimacy":22568,"brushes":22569,"expressive":22570,"##yp":22571,"dissipated":22572,"##rse":22573,"localized":22574,"systemic":22575,"##nikov":22576,"gettysburg":22577,"##js":22578,"##uaries":22579,"dialogues":22580,"muttering":22581,"251":22582,"housekeeper":22583,"sicilian":22584,"discouraged":22585,"##frey":22586,"beamed":22587,"kaladin":22588,"halftime":22589,"kidnap":22590,"##amo":22591,"##llet":22592,"1754":22593,"synonymous":22594,"depleted":22595,"instituto":22596,"insulin":22597,"reprised":22598,"##opsis":22599,"clashed":22600,"##ctric":22601,"interrupting":22602,"radcliffe":22603,"insisting":22604,"medici":22605,"1715":22606,"ejected":22607,"playfully":22608,"turbulent":22609,"##47":22610,"starvation":22611,"##rini":22612,"shipment":22613,"rebellious":22614,"petersen":22615,"verification":22616,"merits":22617,"##rified":22618,"cakes":22619,"##charged":22620,"1757":22621,"milford":22622,"shortages":22623,"spying":22624,"fidelity":22625,"##aker":22626,"emitted":22627,"storylines":22628,"harvested":22629,"seismic":22630,"##iform":22631,"cheung":22632,"kilda":22633,"theoretically":22634,"barbie":22635,"lynx":22636,"##rgy":22637,"##tius":22638,"goblin":22639,"mata":22640,"poisonous":22641,"##nburg":22642,"reactive":22643,"residues":22644,"obedience":22645,"##евич":22646,"conjecture":22647,"##rac":22648,"401":22649,"hating":22650,"sixties":22651,"kicker":22652,"moaning":22653,"motown":22654,"##bha":22655,"emancipation":22656,"neoclassical":22657,"##hering":22658,"consoles":22659,"ebert":22660,"professorship":22661,"##tures":22662,"sustaining":22663,"assaults":22664,"obeyed":22665,"affluent":22666,"incurred":22667,"tornadoes":22668,"##eber":22669,"##zow":22670,"emphasizing":22671,"highlanders":22672,"cheated":22673,"helmets":22674,"##ctus":22675,"internship":22676,"terence":22677,"bony":22678,"executions":22679,"legislators":22680,"berries":22681,"peninsular":22682,"tinged":22683,"##aco":22684,"1689":22685,"amplifier":22686,"corvette":22687,"ribbons":22688,"lavish":22689,"pennant":22690,"##lander":22691,"worthless":22692,"##chfield":22693,"##forms":22694,"mariano":22695,"pyrenees":22696,"expenditures":22697,"##icides":22698,"chesterfield":22699,"mandir":22700,"tailor":22701,"39th":22702,"sergey":22703,"nestled":22704,"willed":22705,"aristocracy":22706,"devotees":22707,"goodnight":22708,"raaf":22709,"rumored":22710,"weaponry":22711,"remy":22712,"appropriations":22713,"harcourt":22714,"burr":22715,"riaa":22716,"##lence":22717,"limitation":22718,"unnoticed":22719,"guo":22720,"soaking":22721,"swamps":22722,"##tica":22723,"collapsing":22724,"tatiana":22725,"descriptive":22726,"brigham":22727,"psalm":22728,"##chment":22729,"maddox":22730,"##lization":22731,"patti":22732,"caliph":22733,"##aja":22734,"akron":22735,"injuring":22736,"serra":22737,"##ganj":22738,"basins":22739,"##sari":22740,"astonished":22741,"launcher":22742,"##church":22743,"hilary":22744,"wilkins":22745,"sewing":22746,"##sf":22747,"stinging":22748,"##fia":22749,"##ncia":22750,"underwood":22751,"startup":22752,"##ition":22753,"compilations":22754,"vibrations":22755,"embankment":22756,"jurist":22757,"##nity":22758,"bard":22759,"juventus":22760,"groundwater":22761,"kern":22762,"palaces":22763,"helium":22764,"boca":22765,"cramped":22766,"marissa":22767,"soto":22768,"##worm":22769,"jae":22770,"princely":22771,"##ggy":22772,"faso":22773,"bazaar":22774,"warmly":22775,"##voking":22776,"229":22777,"pairing":22778,"##lite":22779,"##grate":22780,"##nets":22781,"wien":22782,"freaked":22783,"ulysses":22784,"rebirth":22785,"##alia":22786,"##rent":22787,"mummy":22788,"guzman":22789,"jimenez":22790,"stilled":22791,"##nitz":22792,"trajectory":22793,"tha":22794,"woken":22795,"archival":22796,"professions":22797,"##pts":22798,"##pta":22799,"hilly":22800,"shadowy":22801,"shrink":22802,"##bolt":22803,"norwood":22804,"glued":22805,"migrate":22806,"stereotypes":22807,"devoid":22808,"##pheus":22809,"625":22810,"evacuate":22811,"horrors":22812,"infancy":22813,"gotham":22814,"knowles":22815,"optic":22816,"downloaded":22817,"sachs":22818,"kingsley":22819,"parramatta":22820,"darryl":22821,"mor":22822,"##onale":22823,"shady":22824,"commence":22825,"confesses":22826,"kan":22827,"##meter":22828,"##placed":22829,"marlborough":22830,"roundabout":22831,"regents":22832,"frigates":22833,"io":22834,"##imating":22835,"gothenburg":22836,"revoked":22837,"carvings":22838,"clockwise":22839,"convertible":22840,"intruder":22841,"##sche":22842,"banged":22843,"##ogo":22844,"vicky":22845,"bourgeois":22846,"##mony":22847,"dupont":22848,"footing":22849,"##gum":22850,"pd":22851,"##real":22852,"buckle":22853,"yun":22854,"penthouse":22855,"sane":22856,"720":22857,"serviced":22858,"stakeholders":22859,"neumann":22860,"bb":22861,"##eers":22862,"comb":22863,"##gam":22864,"catchment":22865,"pinning":22866,"rallies":22867,"typing":22868,"##elles":22869,"forefront":22870,"freiburg":22871,"sweetie":22872,"giacomo":22873,"widowed":22874,"goodwill":22875,"worshipped":22876,"aspirations":22877,"midday":22878,"##vat":22879,"fishery":22880,"##trick":22881,"bournemouth":22882,"turk":22883,"243":22884,"hearth":22885,"ethanol":22886,"guadalajara":22887,"murmurs":22888,"sl":22889,"##uge":22890,"afforded":22891,"scripted":22892,"##hta":22893,"wah":22894,"##jn":22895,"coroner":22896,"translucent":22897,"252":22898,"memorials":22899,"puck":22900,"progresses":22901,"clumsy":22902,"##race":22903,"315":22904,"candace":22905,"recounted":22906,"##27":22907,"##slin":22908,"##uve":22909,"filtering":22910,"##mac":22911,"howl":22912,"strata":22913,"heron":22914,"leveled":22915,"##ays":22916,"dubious":22917,"##oja":22918,"##т":22919,"##wheel":22920,"citations":22921,"exhibiting":22922,"##laya":22923,"##mics":22924,"##pods":22925,"turkic":22926,"##lberg":22927,"injunction":22928,"##ennial":22929,"##mit":22930,"antibodies":22931,"##44":22932,"organise":22933,"##rigues":22934,"cardiovascular":22935,"cushion":22936,"inverness":22937,"##zquez":22938,"dia":22939,"cocoa":22940,"sibling":22941,"##tman":22942,"##roid":22943,"expanse":22944,"feasible":22945,"tunisian":22946,"algiers":22947,"##relli":22948,"rus":22949,"bloomberg":22950,"dso":22951,"westphalia":22952,"bro":22953,"tacoma":22954,"281":22955,"downloads":22956,"##ours":22957,"konrad":22958,"duran":22959,"##hdi":22960,"continuum":22961,"jett":22962,"compares":22963,"legislator":22964,"secession":22965,"##nable":22966,"##gues":22967,"##zuka":22968,"translating":22969,"reacher":22970,"##gley":22971,"##ła":22972,"aleppo":22973,"##agi":22974,"tc":22975,"orchards":22976,"trapping":22977,"linguist":22978,"versatile":22979,"drumming":22980,"postage":22981,"calhoun":22982,"superiors":22983,"##mx":22984,"barefoot":22985,"leary":22986,"##cis":22987,"ignacio":22988,"alfa":22989,"kaplan":22990,"##rogen":22991,"bratislava":22992,"mori":22993,"##vot":22994,"disturb":22995,"haas":22996,"313":22997,"cartridges":22998,"gilmore":22999,"radiated":23000,"salford":23001,"tunic":23002,"hades":23003,"##ulsive":23004,"archeological":23005,"delilah":23006,"magistrates":23007,"auditioned":23008,"brewster":23009,"charters":23010,"empowerment":23011,"blogs":23012,"cappella":23013,"dynasties":23014,"iroquois":23015,"whipping":23016,"##krishna":23017,"raceway":23018,"truths":23019,"myra":23020,"weaken":23021,"judah":23022,"mcgregor":23023,"##horse":23024,"mic":23025,"refueling":23026,"37th":23027,"burnley":23028,"bosses":23029,"markus":23030,"premio":23031,"query":23032,"##gga":23033,"dunbar":23034,"##economic":23035,"darkest":23036,"lyndon":23037,"sealing":23038,"commendation":23039,"reappeared":23040,"##mun":23041,"addicted":23042,"ezio":23043,"slaughtered":23044,"satisfactory":23045,"shuffle":23046,"##eves":23047,"##thic":23048,"##uj":23049,"fortification":23050,"warrington":23051,"##otto":23052,"resurrected":23053,"fargo":23054,"mane":23055,"##utable":23056,"##lei":23057,"##space":23058,"foreword":23059,"ox":23060,"##aris":23061,"##vern":23062,"abrams":23063,"hua":23064,"##mento":23065,"sakura":23066,"##alo":23067,"uv":23068,"sentimental":23069,"##skaya":23070,"midfield":23071,"##eses":23072,"sturdy":23073,"scrolls":23074,"macleod":23075,"##kyu":23076,"entropy":23077,"##lance":23078,"mitochondrial":23079,"cicero":23080,"excelled":23081,"thinner":23082,"convoys":23083,"perceive":23084,"##oslav":23085,"##urable":23086,"systematically":23087,"grind":23088,"burkina":23089,"287":23090,"##tagram":23091,"ops":23092,"##aman":23093,"guantanamo":23094,"##cloth":23095,"##tite":23096,"forcefully":23097,"wavy":23098,"##jou":23099,"pointless":23100,"##linger":23101,"##tze":23102,"layton":23103,"portico":23104,"superficial":23105,"clerical":23106,"outlaws":23107,"##hism":23108,"burials":23109,"muir":23110,"##inn":23111,"creditors":23112,"hauling":23113,"rattle":23114,"##leg":23115,"calais":23116,"monde":23117,"archers":23118,"reclaimed":23119,"dwell":23120,"wexford":23121,"hellenic":23122,"falsely":23123,"remorse":23124,"##tek":23125,"dough":23126,"furnishings":23127,"##uttered":23128,"gabon":23129,"neurological":23130,"novice":23131,"##igraphy":23132,"contemplated":23133,"pulpit":23134,"nightstand":23135,"saratoga":23136,"##istan":23137,"documenting":23138,"pulsing":23139,"taluk":23140,"##firmed":23141,"busted":23142,"marital":23143,"##rien":23144,"disagreements":23145,"wasps":23146,"##yes":23147,"hodge":23148,"mcdonnell":23149,"mimic":23150,"fran":23151,"pendant":23152,"dhabi":23153,"musa":23154,"##nington":23155,"congratulations":23156,"argent":23157,"darrell":23158,"concussion":23159,"losers":23160,"regrets":23161,"thessaloniki":23162,"reversal":23163,"donaldson":23164,"hardwood":23165,"thence":23166,"achilles":23167,"ritter":23168,"##eran":23169,"demonic":23170,"jurgen":23171,"prophets":23172,"goethe":23173,"eki":23174,"classmate":23175,"buff":23176,"##cking":23177,"yank":23178,"irrational":23179,"##inging":23180,"perished":23181,"seductive":23182,"qur":23183,"sourced":23184,"##crat":23185,"##typic":23186,"mustard":23187,"ravine":23188,"barre":23189,"horizontally":23190,"characterization":23191,"phylogenetic":23192,"boise":23193,"##dit":23194,"##runner":23195,"##tower":23196,"brutally":23197,"intercourse":23198,"seduce":23199,"##bbing":23200,"fay":23201,"ferris":23202,"ogden":23203,"amar":23204,"nik":23205,"unarmed":23206,"##inator":23207,"evaluating":23208,"kyrgyzstan":23209,"sweetness":23210,"##lford":23211,"##oki":23212,"mccormick":23213,"meiji":23214,"notoriety":23215,"stimulate":23216,"disrupt":23217,"figuring":23218,"instructional":23219,"mcgrath":23220,"##zoo":23221,"groundbreaking":23222,"##lto":23223,"flinch":23224,"khorasan":23225,"agrarian":23226,"bengals":23227,"mixer":23228,"radiating":23229,"##sov":23230,"ingram":23231,"pitchers":23232,"nad":23233,"tariff":23234,"##cript":23235,"tata":23236,"##codes":23237,"##emi":23238,"##ungen":23239,"appellate":23240,"lehigh":23241,"##bled":23242,"##giri":23243,"brawl":23244,"duct":23245,"texans":23246,"##ciation":23247,"##ropolis":23248,"skipper":23249,"speculative":23250,"vomit":23251,"doctrines":23252,"stresses":23253,"253":23254,"davy":23255,"graders":23256,"whitehead":23257,"jozef":23258,"timely":23259,"cumulative":23260,"haryana":23261,"paints":23262,"appropriately":23263,"boon":23264,"cactus":23265,"##ales":23266,"##pid":23267,"dow":23268,"legions":23269,"##pit":23270,"perceptions":23271,"1730":23272,"picturesque":23273,"##yse":23274,"periphery":23275,"rune":23276,"wr":23277,"##aha":23278,"celtics":23279,"sentencing":23280,"whoa":23281,"##erin":23282,"confirms":23283,"variance":23284,"425":23285,"moines":23286,"mathews":23287,"spade":23288,"rave":23289,"m1":23290,"fronted":23291,"fx":23292,"blending":23293,"alleging":23294,"reared":23295,"##gl":23296,"237":23297,"##paper":23298,"grassroots":23299,"eroded":23300,"##free":23301,"##physical":23302,"directs":23303,"ordeal":23304,"##sław":23305,"accelerate":23306,"hacker":23307,"rooftop":23308,"##inia":23309,"lev":23310,"buys":23311,"cebu":23312,"devote":23313,"##lce":23314,"specialising":23315,"##ulsion":23316,"choreographed":23317,"repetition":23318,"warehouses":23319,"##ryl":23320,"paisley":23321,"tuscany":23322,"analogy":23323,"sorcerer":23324,"hash":23325,"huts":23326,"shards":23327,"descends":23328,"exclude":23329,"nix":23330,"chaplin":23331,"gaga":23332,"ito":23333,"vane":23334,"##drich":23335,"causeway":23336,"misconduct":23337,"limo":23338,"orchestrated":23339,"glands":23340,"jana":23341,"##kot":23342,"u2":23343,"##mple":23344,"##sons":23345,"branching":23346,"contrasts":23347,"scoop":23348,"longed":23349,"##virus":23350,"chattanooga":23351,"##75":23352,"syrup":23353,"cornerstone":23354,"##tized":23355,"##mind":23356,"##iaceae":23357,"careless":23358,"precedence":23359,"frescoes":23360,"##uet":23361,"chilled":23362,"consult":23363,"modelled":23364,"snatch":23365,"peat":23366,"##thermal":23367,"caucasian":23368,"humane":23369,"relaxation":23370,"spins":23371,"temperance":23372,"##lbert":23373,"occupations":23374,"lambda":23375,"hybrids":23376,"moons":23377,"mp3":23378,"##oese":23379,"247":23380,"rolf":23381,"societal":23382,"yerevan":23383,"ness":23384,"##ssler":23385,"befriended":23386,"mechanized":23387,"nominate":23388,"trough":23389,"boasted":23390,"cues":23391,"seater":23392,"##hom":23393,"bends":23394,"##tangle":23395,"conductors":23396,"emptiness":23397,"##lmer":23398,"eurasian":23399,"adriatic":23400,"tian":23401,"##cie":23402,"anxiously":23403,"lark":23404,"propellers":23405,"chichester":23406,"jock":23407,"ev":23408,"2a":23409,"##holding":23410,"credible":23411,"recounts":23412,"tori":23413,"loyalist":23414,"abduction":23415,"##hoot":23416,"##redo":23417,"nepali":23418,"##mite":23419,"ventral":23420,"tempting":23421,"##ango":23422,"##crats":23423,"steered":23424,"##wice":23425,"javelin":23426,"dipping":23427,"laborers":23428,"prentice":23429,"looming":23430,"titanium":23431,"##ː":23432,"badges":23433,"emir":23434,"tensor":23435,"##ntation":23436,"egyptians":23437,"rash":23438,"denies":23439,"hawthorne":23440,"lombard":23441,"showers":23442,"wehrmacht":23443,"dietary":23444,"trojan":23445,"##reus":23446,"welles":23447,"executing":23448,"horseshoe":23449,"lifeboat":23450,"##lak":23451,"elsa":23452,"infirmary":23453,"nearing":23454,"roberta":23455,"boyer":23456,"mutter":23457,"trillion":23458,"joanne":23459,"##fine":23460,"##oked":23461,"sinks":23462,"vortex":23463,"uruguayan":23464,"clasp":23465,"sirius":23466,"##block":23467,"accelerator":23468,"prohibit":23469,"sunken":23470,"byu":23471,"chronological":23472,"diplomats":23473,"ochreous":23474,"510":23475,"symmetrical":23476,"1644":23477,"maia":23478,"##tology":23479,"salts":23480,"reigns":23481,"atrocities":23482,"##ия":23483,"hess":23484,"bared":23485,"issn":23486,"##vyn":23487,"cater":23488,"saturated":23489,"##cycle":23490,"##isse":23491,"sable":23492,"voyager":23493,"dyer":23494,"yusuf":23495,"##inge":23496,"fountains":23497,"wolff":23498,"##39":23499,"##nni":23500,"engraving":23501,"rollins":23502,"atheist":23503,"ominous":23504,"##ault":23505,"herr":23506,"chariot":23507,"martina":23508,"strung":23509,"##fell":23510,"##farlane":23511,"horrific":23512,"sahib":23513,"gazes":23514,"saetan":23515,"erased":23516,"ptolemy":23517,"##olic":23518,"flushing":23519,"lauderdale":23520,"analytic":23521,"##ices":23522,"530":23523,"navarro":23524,"beak":23525,"gorilla":23526,"herrera":23527,"broom":23528,"guadalupe":23529,"raiding":23530,"sykes":23531,"311":23532,"bsc":23533,"deliveries":23534,"1720":23535,"invasions":23536,"carmichael":23537,"tajikistan":23538,"thematic":23539,"ecumenical":23540,"sentiments":23541,"onstage":23542,"##rians":23543,"##brand":23544,"##sume":23545,"catastrophic":23546,"flanks":23547,"molten":23548,"##arns":23549,"waller":23550,"aimee":23551,"terminating":23552,"##icing":23553,"alternately":23554,"##oche":23555,"nehru":23556,"printers":23557,"outraged":23558,"##eving":23559,"empires":23560,"template":23561,"banners":23562,"repetitive":23563,"za":23564,"##oise":23565,"vegetarian":23566,"##tell":23567,"guiana":23568,"opt":23569,"cavendish":23570,"lucknow":23571,"synthesized":23572,"##hani":23573,"##mada":23574,"finalized":23575,"##ctable":23576,"fictitious":23577,"mayoral":23578,"unreliable":23579,"##enham":23580,"embracing":23581,"peppers":23582,"rbis":23583,"##chio":23584,"##neo":23585,"inhibition":23586,"slashed":23587,"togo":23588,"orderly":23589,"embroidered":23590,"safari":23591,"salty":23592,"236":23593,"barron":23594,"benito":23595,"totaled":23596,"##dak":23597,"pubs":23598,"simulated":23599,"caden":23600,"devin":23601,"tolkien":23602,"momma":23603,"welding":23604,"sesame":23605,"##ept":23606,"gottingen":23607,"hardness":23608,"630":23609,"shaman":23610,"temeraire":23611,"620":23612,"adequately":23613,"pediatric":23614,"##kit":23615,"ck":23616,"assertion":23617,"radicals":23618,"composure":23619,"cadence":23620,"seafood":23621,"beaufort":23622,"lazarus":23623,"mani":23624,"warily":23625,"cunning":23626,"kurdistan":23627,"249":23628,"cantata":23629,"##kir":23630,"ares":23631,"##41":23632,"##clusive":23633,"nape":23634,"townland":23635,"geared":23636,"insulted":23637,"flutter":23638,"boating":23639,"violate":23640,"draper":23641,"dumping":23642,"malmo":23643,"##hh":23644,"##romatic":23645,"firearm":23646,"alta":23647,"bono":23648,"obscured":23649,"##clave":23650,"exceeds":23651,"panorama":23652,"unbelievable":23653,"##train":23654,"preschool":23655,"##essed":23656,"disconnected":23657,"installing":23658,"rescuing":23659,"secretaries":23660,"accessibility":23661,"##castle":23662,"##drive":23663,"##ifice":23664,"##film":23665,"bouts":23666,"slug":23667,"waterway":23668,"mindanao":23669,"##buro":23670,"##ratic":23671,"halves":23672,"##ل":23673,"calming":23674,"liter":23675,"maternity":23676,"adorable":23677,"bragg":23678,"electrification":23679,"mcc":23680,"##dote":23681,"roxy":23682,"schizophrenia":23683,"##body":23684,"munoz":23685,"kaye":23686,"whaling":23687,"239":23688,"mil":23689,"tingling":23690,"tolerant":23691,"##ago":23692,"unconventional":23693,"volcanoes":23694,"##finder":23695,"deportivo":23696,"##llie":23697,"robson":23698,"kaufman":23699,"neuroscience":23700,"wai":23701,"deportation":23702,"masovian":23703,"scraping":23704,"converse":23705,"##bh":23706,"hacking":23707,"bulge":23708,"##oun":23709,"administratively":23710,"yao":23711,"580":23712,"amp":23713,"mammoth":23714,"booster":23715,"claremont":23716,"hooper":23717,"nomenclature":23718,"pursuits":23719,"mclaughlin":23720,"melinda":23721,"##sul":23722,"catfish":23723,"barclay":23724,"substrates":23725,"taxa":23726,"zee":23727,"originals":23728,"kimberly":23729,"packets":23730,"padma":23731,"##ality":23732,"borrowing":23733,"ostensibly":23734,"solvent":23735,"##bri":23736,"##genesis":23737,"##mist":23738,"lukas":23739,"shreveport":23740,"veracruz":23741,"##ь":23742,"##lou":23743,"##wives":23744,"cheney":23745,"tt":23746,"anatolia":23747,"hobbs":23748,"##zyn":23749,"cyclic":23750,"radiant":23751,"alistair":23752,"greenish":23753,"siena":23754,"dat":23755,"independents":23756,"##bation":23757,"conform":23758,"pieter":23759,"hyper":23760,"applicant":23761,"bradshaw":23762,"spores":23763,"telangana":23764,"vinci":23765,"inexpensive":23766,"nuclei":23767,"322":23768,"jang":23769,"nme":23770,"soho":23771,"spd":23772,"##ign":23773,"cradled":23774,"receptionist":23775,"pow":23776,"##43":23777,"##rika":23778,"fascism":23779,"##ifer":23780,"experimenting":23781,"##ading":23782,"##iec":23783,"##region":23784,"345":23785,"jocelyn":23786,"maris":23787,"stair":23788,"nocturnal":23789,"toro":23790,"constabulary":23791,"elgin":23792,"##kker":23793,"msc":23794,"##giving":23795,"##schen":23796,"##rase":23797,"doherty":23798,"doping":23799,"sarcastically":23800,"batter":23801,"maneuvers":23802,"##cano":23803,"##apple":23804,"##gai":23805,"##git":23806,"intrinsic":23807,"##nst":23808,"##stor":23809,"1753":23810,"showtime":23811,"cafes":23812,"gasps":23813,"lviv":23814,"ushered":23815,"##thed":23816,"fours":23817,"restart":23818,"astonishment":23819,"transmitting":23820,"flyer":23821,"shrugs":23822,"##sau":23823,"intriguing":23824,"cones":23825,"dictated":23826,"mushrooms":23827,"medial":23828,"##kovsky":23829,"##elman":23830,"escorting":23831,"gaped":23832,"##26":23833,"godfather":23834,"##door":23835,"##sell":23836,"djs":23837,"recaptured":23838,"timetable":23839,"vila":23840,"1710":23841,"3a":23842,"aerodrome":23843,"mortals":23844,"scientology":23845,"##orne":23846,"angelina":23847,"mag":23848,"convection":23849,"unpaid":23850,"insertion":23851,"intermittent":23852,"lego":23853,"##nated":23854,"endeavor":23855,"kota":23856,"pereira":23857,"##lz":23858,"304":23859,"bwv":23860,"glamorgan":23861,"insults":23862,"agatha":23863,"fey":23864,"##cend":23865,"fleetwood":23866,"mahogany":23867,"protruding":23868,"steamship":23869,"zeta":23870,"##arty":23871,"mcguire":23872,"suspense":23873,"##sphere":23874,"advising":23875,"urges":23876,"##wala":23877,"hurriedly":23878,"meteor":23879,"gilded":23880,"inline":23881,"arroyo":23882,"stalker":23883,"##oge":23884,"excitedly":23885,"revered":23886,"##cure":23887,"earle":23888,"introductory":23889,"##break":23890,"##ilde":23891,"mutants":23892,"puff":23893,"pulses":23894,"reinforcement":23895,"##haling":23896,"curses":23897,"lizards":23898,"stalk":23899,"correlated":23900,"##fixed":23901,"fallout":23902,"macquarie":23903,"##unas":23904,"bearded":23905,"denton":23906,"heaving":23907,"802":23908,"##ocation":23909,"winery":23910,"assign":23911,"dortmund":23912,"##lkirk":23913,"everest":23914,"invariant":23915,"charismatic":23916,"susie":23917,"##elling":23918,"bled":23919,"lesley":23920,"telegram":23921,"sumner":23922,"bk":23923,"##ogen":23924,"##к":23925,"wilcox":23926,"needy":23927,"colbert":23928,"duval":23929,"##iferous":23930,"##mbled":23931,"allotted":23932,"attends":23933,"imperative":23934,"##hita":23935,"replacements":23936,"hawker":23937,"##inda":23938,"insurgency":23939,"##zee":23940,"##eke":23941,"casts":23942,"##yla":23943,"680":23944,"ives":23945,"transitioned":23946,"##pack":23947,"##powering":23948,"authoritative":23949,"baylor":23950,"flex":23951,"cringed":23952,"plaintiffs":23953,"woodrow":23954,"##skie":23955,"drastic":23956,"ape":23957,"aroma":23958,"unfolded":23959,"commotion":23960,"nt":23961,"preoccupied":23962,"theta":23963,"routines":23964,"lasers":23965,"privatization":23966,"wand":23967,"domino":23968,"ek":23969,"clenching":23970,"nsa":23971,"strategically":23972,"showered":23973,"bile":23974,"handkerchief":23975,"pere":23976,"storing":23977,"christophe":23978,"insulting":23979,"316":23980,"nakamura":23981,"romani":23982,"asiatic":23983,"magdalena":23984,"palma":23985,"cruises":23986,"stripping":23987,"405":23988,"konstantin":23989,"soaring":23990,"##berman":23991,"colloquially":23992,"forerunner":23993,"havilland":23994,"incarcerated":23995,"parasites":23996,"sincerity":23997,"##utus":23998,"disks":23999,"plank":24000,"saigon":24001,"##ining":24002,"corbin":24003,"homo":24004,"ornaments":24005,"powerhouse":24006,"##tlement":24007,"chong":24008,"fastened":24009,"feasibility":24010,"idf":24011,"morphological":24012,"usable":24013,"##nish":24014,"##zuki":24015,"aqueduct":24016,"jaguars":24017,"keepers":24018,"##flies":24019,"aleksandr":24020,"faust":24021,"assigns":24022,"ewing":24023,"bacterium":24024,"hurled":24025,"tricky":24026,"hungarians":24027,"integers":24028,"wallis":24029,"321":24030,"yamaha":24031,"##isha":24032,"hushed":24033,"oblivion":24034,"aviator":24035,"evangelist":24036,"friars":24037,"##eller":24038,"monograph":24039,"ode":24040,"##nary":24041,"airplanes":24042,"labourers":24043,"charms":24044,"##nee":24045,"1661":24046,"hagen":24047,"tnt":24048,"rudder":24049,"fiesta":24050,"transcript":24051,"dorothea":24052,"ska":24053,"inhibitor":24054,"maccabi":24055,"retorted":24056,"raining":24057,"encompassed":24058,"clauses":24059,"menacing":24060,"1642":24061,"lineman":24062,"##gist":24063,"vamps":24064,"##ape":24065,"##dick":24066,"gloom":24067,"##rera":24068,"dealings":24069,"easing":24070,"seekers":24071,"##nut":24072,"##pment":24073,"helens":24074,"unmanned":24075,"##anu":24076,"##isson":24077,"basics":24078,"##amy":24079,"##ckman":24080,"adjustments":24081,"1688":24082,"brutality":24083,"horne":24084,"##zell":24085,"sui":24086,"##55":24087,"##mable":24088,"aggregator":24089,"##thal":24090,"rhino":24091,"##drick":24092,"##vira":24093,"counters":24094,"zoom":24095,"##01":24096,"##rting":24097,"mn":24098,"montenegrin":24099,"packard":24100,"##unciation":24101,"##♭":24102,"##kki":24103,"reclaim":24104,"scholastic":24105,"thugs":24106,"pulsed":24107,"##icia":24108,"syriac":24109,"quan":24110,"saddam":24111,"banda":24112,"kobe":24113,"blaming":24114,"buddies":24115,"dissent":24116,"##lusion":24117,"##usia":24118,"corbett":24119,"jaya":24120,"delle":24121,"erratic":24122,"lexie":24123,"##hesis":24124,"435":24125,"amiga":24126,"hermes":24127,"##pressing":24128,"##leen":24129,"chapels":24130,"gospels":24131,"jamal":24132,"##uating":24133,"compute":24134,"revolving":24135,"warp":24136,"##sso":24137,"##thes":24138,"armory":24139,"##eras":24140,"##gol":24141,"antrim":24142,"loki":24143,"##kow":24144,"##asian":24145,"##good":24146,"##zano":24147,"braid":24148,"handwriting":24149,"subdistrict":24150,"funky":24151,"pantheon":24152,"##iculate":24153,"concurrency":24154,"estimation":24155,"improper":24156,"juliana":24157,"##his":24158,"newcomers":24159,"johnstone":24160,"staten":24161,"communicated":24162,"##oco":24163,"##alle":24164,"sausage":24165,"stormy":24166,"##stered":24167,"##tters":24168,"superfamily":24169,"##grade":24170,"acidic":24171,"collateral":24172,"tabloid":24173,"##oped":24174,"##rza":24175,"bladder":24176,"austen":24177,"##ellant":24178,"mcgraw":24179,"##hay":24180,"hannibal":24181,"mein":24182,"aquino":24183,"lucifer":24184,"wo":24185,"badger":24186,"boar":24187,"cher":24188,"christensen":24189,"greenberg":24190,"interruption":24191,"##kken":24192,"jem":24193,"244":24194,"mocked":24195,"bottoms":24196,"cambridgeshire":24197,"##lide":24198,"sprawling":24199,"##bbly":24200,"eastwood":24201,"ghent":24202,"synth":24203,"##buck":24204,"advisers":24205,"##bah":24206,"nominally":24207,"hapoel":24208,"qu":24209,"daggers":24210,"estranged":24211,"fabricated":24212,"towels":24213,"vinnie":24214,"wcw":24215,"misunderstanding":24216,"anglia":24217,"nothin":24218,"unmistakable":24219,"##dust":24220,"##lova":24221,"chilly":24222,"marquette":24223,"truss":24224,"##edge":24225,"##erine":24226,"reece":24227,"##lty":24228,"##chemist":24229,"##connected":24230,"272":24231,"308":24232,"41st":24233,"bash":24234,"raion":24235,"waterfalls":24236,"##ump":24237,"##main":24238,"labyrinth":24239,"queue":24240,"theorist":24241,"##istle":24242,"bharatiya":24243,"flexed":24244,"soundtracks":24245,"rooney":24246,"leftist":24247,"patrolling":24248,"wharton":24249,"plainly":24250,"alleviate":24251,"eastman":24252,"schuster":24253,"topographic":24254,"engages":24255,"immensely":24256,"unbearable":24257,"fairchild":24258,"1620":24259,"dona":24260,"lurking":24261,"parisian":24262,"oliveira":24263,"ia":24264,"indictment":24265,"hahn":24266,"bangladeshi":24267,"##aster":24268,"vivo":24269,"##uming":24270,"##ential":24271,"antonia":24272,"expects":24273,"indoors":24274,"kildare":24275,"harlan":24276,"##logue":24277,"##ogenic":24278,"##sities":24279,"forgiven":24280,"##wat":24281,"childish":24282,"tavi":24283,"##mide":24284,"##orra":24285,"plausible":24286,"grimm":24287,"successively":24288,"scooted":24289,"##bola":24290,"##dget":24291,"##rith":24292,"spartans":24293,"emery":24294,"flatly":24295,"azure":24296,"epilogue":24297,"##wark":24298,"flourish":24299,"##iny":24300,"##tracted":24301,"##overs":24302,"##oshi":24303,"bestseller":24304,"distressed":24305,"receipt":24306,"spitting":24307,"hermit":24308,"topological":24309,"##cot":24310,"drilled":24311,"subunit":24312,"francs":24313,"##layer":24314,"eel":24315,"##fk":24316,"##itas":24317,"octopus":24318,"footprint":24319,"petitions":24320,"ufo":24321,"##say":24322,"##foil":24323,"interfering":24324,"leaking":24325,"palo":24326,"##metry":24327,"thistle":24328,"valiant":24329,"##pic":24330,"narayan":24331,"mcpherson":24332,"##fast":24333,"gonzales":24334,"##ym":24335,"##enne":24336,"dustin":24337,"novgorod":24338,"solos":24339,"##zman":24340,"doin":24341,"##raph":24342,"##patient":24343,"##meyer":24344,"soluble":24345,"ashland":24346,"cuffs":24347,"carole":24348,"pendleton":24349,"whistling":24350,"vassal":24351,"##river":24352,"deviation":24353,"revisited":24354,"constituents":24355,"rallied":24356,"rotate":24357,"loomed":24358,"##eil":24359,"##nting":24360,"amateurs":24361,"augsburg":24362,"auschwitz":24363,"crowns":24364,"skeletons":24365,"##cona":24366,"bonnet":24367,"257":24368,"dummy":24369,"globalization":24370,"simeon":24371,"sleeper":24372,"mandal":24373,"differentiated":24374,"##crow":24375,"##mare":24376,"milne":24377,"bundled":24378,"exasperated":24379,"talmud":24380,"owes":24381,"segregated":24382,"##feng":24383,"##uary":24384,"dentist":24385,"piracy":24386,"props":24387,"##rang":24388,"devlin":24389,"##torium":24390,"malicious":24391,"paws":24392,"##laid":24393,"dependency":24394,"##ergy":24395,"##fers":24396,"##enna":24397,"258":24398,"pistons":24399,"rourke":24400,"jed":24401,"grammatical":24402,"tres":24403,"maha":24404,"wig":24405,"512":24406,"ghostly":24407,"jayne":24408,"##achal":24409,"##creen":24410,"##ilis":24411,"##lins":24412,"##rence":24413,"designate":24414,"##with":24415,"arrogance":24416,"cambodian":24417,"clones":24418,"showdown":24419,"throttle":24420,"twain":24421,"##ception":24422,"lobes":24423,"metz":24424,"nagoya":24425,"335":24426,"braking":24427,"##furt":24428,"385":24429,"roaming":24430,"##minster":24431,"amin":24432,"crippled":24433,"##37":24434,"##llary":24435,"indifferent":24436,"hoffmann":24437,"idols":24438,"intimidating":24439,"1751":24440,"261":24441,"influenza":24442,"memo":24443,"onions":24444,"1748":24445,"bandage":24446,"consciously":24447,"##landa":24448,"##rage":24449,"clandestine":24450,"observes":24451,"swiped":24452,"tangle":24453,"##ener":24454,"##jected":24455,"##trum":24456,"##bill":24457,"##lta":24458,"hugs":24459,"congresses":24460,"josiah":24461,"spirited":24462,"##dek":24463,"humanist":24464,"managerial":24465,"filmmaking":24466,"inmate":24467,"rhymes":24468,"debuting":24469,"grimsby":24470,"ur":24471,"##laze":24472,"duplicate":24473,"vigor":24474,"##tf":24475,"republished":24476,"bolshevik":24477,"refurbishment":24478,"antibiotics":24479,"martini":24480,"methane":24481,"newscasts":24482,"royale":24483,"horizons":24484,"levant":24485,"iain":24486,"visas":24487,"##ischen":24488,"paler":24489,"##around":24490,"manifestation":24491,"snuck":24492,"alf":24493,"chop":24494,"futile":24495,"pedestal":24496,"rehab":24497,"##kat":24498,"bmg":24499,"kerman":24500,"res":24501,"fairbanks":24502,"jarrett":24503,"abstraction":24504,"saharan":24505,"##zek":24506,"1746":24507,"procedural":24508,"clearer":24509,"kincaid":24510,"sash":24511,"luciano":24512,"##ffey":24513,"crunch":24514,"helmut":24515,"##vara":24516,"revolutionaries":24517,"##tute":24518,"creamy":24519,"leach":24520,"##mmon":24521,"1747":24522,"permitting":24523,"nes":24524,"plight":24525,"wendell":24526,"##lese":24527,"contra":24528,"ts":24529,"clancy":24530,"ipa":24531,"mach":24532,"staples":24533,"autopsy":24534,"disturbances":24535,"nueva":24536,"karin":24537,"pontiac":24538,"##uding":24539,"proxy":24540,"venerable":24541,"haunt":24542,"leto":24543,"bergman":24544,"expands":24545,"##helm":24546,"wal":24547,"##pipe":24548,"canning":24549,"celine":24550,"cords":24551,"obesity":24552,"##enary":24553,"intrusion":24554,"planner":24555,"##phate":24556,"reasoned":24557,"sequencing":24558,"307":24559,"harrow":24560,"##chon":24561,"##dora":24562,"marred":24563,"mcintyre":24564,"repay":24565,"tarzan":24566,"darting":24567,"248":24568,"harrisburg":24569,"margarita":24570,"repulsed":24571,"##hur":24572,"##lding":24573,"belinda":24574,"hamburger":24575,"novo":24576,"compliant":24577,"runways":24578,"bingham":24579,"registrar":24580,"skyscraper":24581,"ic":24582,"cuthbert":24583,"improvisation":24584,"livelihood":24585,"##corp":24586,"##elial":24587,"admiring":24588,"##dened":24589,"sporadic":24590,"believer":24591,"casablanca":24592,"popcorn":24593,"##29":24594,"asha":24595,"shovel":24596,"##bek":24597,"##dice":24598,"coiled":24599,"tangible":24600,"##dez":24601,"casper":24602,"elsie":24603,"resin":24604,"tenderness":24605,"rectory":24606,"##ivision":24607,"avail":24608,"sonar":24609,"##mori":24610,"boutique":24611,"##dier":24612,"guerre":24613,"bathed":24614,"upbringing":24615,"vaulted":24616,"sandals":24617,"blessings":24618,"##naut":24619,"##utnant":24620,"1680":24621,"306":24622,"foxes":24623,"pia":24624,"corrosion":24625,"hesitantly":24626,"confederates":24627,"crystalline":24628,"footprints":24629,"shapiro":24630,"tirana":24631,"valentin":24632,"drones":24633,"45th":24634,"microscope":24635,"shipments":24636,"texted":24637,"inquisition":24638,"wry":24639,"guernsey":24640,"unauthorized":24641,"resigning":24642,"760":24643,"ripple":24644,"schubert":24645,"stu":24646,"reassure":24647,"felony":24648,"##ardo":24649,"brittle":24650,"koreans":24651,"##havan":24652,"##ives":24653,"dun":24654,"implicit":24655,"tyres":24656,"##aldi":24657,"##lth":24658,"magnolia":24659,"##ehan":24660,"##puri":24661,"##poulos":24662,"aggressively":24663,"fei":24664,"gr":24665,"familiarity":24666,"##poo":24667,"indicative":24668,"##trust":24669,"fundamentally":24670,"jimmie":24671,"overrun":24672,"395":24673,"anchors":24674,"moans":24675,"##opus":24676,"britannia":24677,"armagh":24678,"##ggle":24679,"purposely":24680,"seizing":24681,"##vao":24682,"bewildered":24683,"mundane":24684,"avoidance":24685,"cosmopolitan":24686,"geometridae":24687,"quartermaster":24688,"caf":24689,"415":24690,"chatter":24691,"engulfed":24692,"gleam":24693,"purge":24694,"##icate":24695,"juliette":24696,"jurisprudence":24697,"guerra":24698,"revisions":24699,"##bn":24700,"casimir":24701,"brew":24702,"##jm":24703,"1749":24704,"clapton":24705,"cloudy":24706,"conde":24707,"hermitage":24708,"278":24709,"simulations":24710,"torches":24711,"vincenzo":24712,"matteo":24713,"##rill":24714,"hidalgo":24715,"booming":24716,"westbound":24717,"accomplishment":24718,"tentacles":24719,"unaffected":24720,"##sius":24721,"annabelle":24722,"flopped":24723,"sloping":24724,"##litz":24725,"dreamer":24726,"interceptor":24727,"vu":24728,"##loh":24729,"consecration":24730,"copying":24731,"messaging":24732,"breaker":24733,"climates":24734,"hospitalized":24735,"1752":24736,"torino":24737,"afternoons":24738,"winfield":24739,"witnessing":24740,"##teacher":24741,"breakers":24742,"choirs":24743,"sawmill":24744,"coldly":24745,"##ege":24746,"sipping":24747,"haste":24748,"uninhabited":24749,"conical":24750,"bibliography":24751,"pamphlets":24752,"severn":24753,"edict":24754,"##oca":24755,"deux":24756,"illnesses":24757,"grips":24758,"##pl":24759,"rehearsals":24760,"sis":24761,"thinkers":24762,"tame":24763,"##keepers":24764,"1690":24765,"acacia":24766,"reformer":24767,"##osed":24768,"##rys":24769,"shuffling":24770,"##iring":24771,"##shima":24772,"eastbound":24773,"ionic":24774,"rhea":24775,"flees":24776,"littered":24777,"##oum":24778,"rocker":24779,"vomiting":24780,"groaning":24781,"champ":24782,"overwhelmingly":24783,"civilizations":24784,"paces":24785,"sloop":24786,"adoptive":24787,"##tish":24788,"skaters":24789,"##vres":24790,"aiding":24791,"mango":24792,"##joy":24793,"nikola":24794,"shriek":24795,"##ignon":24796,"pharmaceuticals":24797,"##mg":24798,"tuna":24799,"calvert":24800,"gustavo":24801,"stocked":24802,"yearbook":24803,"##urai":24804,"##mana":24805,"computed":24806,"subsp":24807,"riff":24808,"hanoi":24809,"kelvin":24810,"hamid":24811,"moors":24812,"pastures":24813,"summons":24814,"jihad":24815,"nectar":24816,"##ctors":24817,"bayou":24818,"untitled":24819,"pleasing":24820,"vastly":24821,"republics":24822,"intellect":24823,"##η":24824,"##ulio":24825,"##tou":24826,"crumbling":24827,"stylistic":24828,"sb":24829,"##ی":24830,"consolation":24831,"frequented":24832,"h₂o":24833,"walden":24834,"widows":24835,"##iens":24836,"404":24837,"##ignment":24838,"chunks":24839,"improves":24840,"288":24841,"grit":24842,"recited":24843,"##dev":24844,"snarl":24845,"sociological":24846,"##arte":24847,"##gul":24848,"inquired":24849,"##held":24850,"bruise":24851,"clube":24852,"consultancy":24853,"homogeneous":24854,"hornets":24855,"multiplication":24856,"pasta":24857,"prick":24858,"savior":24859,"##grin":24860,"##kou":24861,"##phile":24862,"yoon":24863,"##gara":24864,"grimes":24865,"vanishing":24866,"cheering":24867,"reacting":24868,"bn":24869,"distillery":24870,"##quisite":24871,"##vity":24872,"coe":24873,"dockyard":24874,"massif":24875,"##jord":24876,"escorts":24877,"voss":24878,"##valent":24879,"byte":24880,"chopped":24881,"hawke":24882,"illusions":24883,"workings":24884,"floats":24885,"##koto":24886,"##vac":24887,"kv":24888,"annapolis":24889,"madden":24890,"##onus":24891,"alvaro":24892,"noctuidae":24893,"##cum":24894,"##scopic":24895,"avenge":24896,"steamboat":24897,"forte":24898,"illustrates":24899,"erika":24900,"##trip":24901,"570":24902,"dew":24903,"nationalities":24904,"bran":24905,"manifested":24906,"thirsty":24907,"diversified":24908,"muscled":24909,"reborn":24910,"##standing":24911,"arson":24912,"##lessness":24913,"##dran":24914,"##logram":24915,"##boys":24916,"##kushima":24917,"##vious":24918,"willoughby":24919,"##phobia":24920,"286":24921,"alsace":24922,"dashboard":24923,"yuki":24924,"##chai":24925,"granville":24926,"myspace":24927,"publicized":24928,"tricked":24929,"##gang":24930,"adjective":24931,"##ater":24932,"relic":24933,"reorganisation":24934,"enthusiastically":24935,"indications":24936,"saxe":24937,"##lassified":24938,"consolidate":24939,"iec":24940,"padua":24941,"helplessly":24942,"ramps":24943,"renaming":24944,"regulars":24945,"pedestrians":24946,"accents":24947,"convicts":24948,"inaccurate":24949,"lowers":24950,"mana":24951,"##pati":24952,"barrie":24953,"bjp":24954,"outta":24955,"someplace":24956,"berwick":24957,"flanking":24958,"invoked":24959,"marrow":24960,"sparsely":24961,"excerpts":24962,"clothed":24963,"rei":24964,"##ginal":24965,"wept":24966,"##straße":24967,"##vish":24968,"alexa":24969,"excel":24970,"##ptive":24971,"membranes":24972,"aquitaine":24973,"creeks":24974,"cutler":24975,"sheppard":24976,"implementations":24977,"ns":24978,"##dur":24979,"fragrance":24980,"budge":24981,"concordia":24982,"magnesium":24983,"marcelo":24984,"##antes":24985,"gladly":24986,"vibrating":24987,"##rral":24988,"##ggles":24989,"montrose":24990,"##omba":24991,"lew":24992,"seamus":24993,"1630":24994,"cocky":24995,"##ament":24996,"##uen":24997,"bjorn":24998,"##rrick":24999,"fielder":25000,"fluttering":25001,"##lase":25002,"methyl":25003,"kimberley":25004,"mcdowell":25005,"reductions":25006,"barbed":25007,"##jic":25008,"##tonic":25009,"aeronautical":25010,"condensed":25011,"distracting":25012,"##promising":25013,"huffed":25014,"##cala":25015,"##sle":25016,"claudius":25017,"invincible":25018,"missy":25019,"pious":25020,"balthazar":25021,"ci":25022,"##lang":25023,"butte":25024,"combo":25025,"orson":25026,"##dication":25027,"myriad":25028,"1707":25029,"silenced":25030,"##fed":25031,"##rh":25032,"coco":25033,"netball":25034,"yourselves":25035,"##oza":25036,"clarify":25037,"heller":25038,"peg":25039,"durban":25040,"etudes":25041,"offender":25042,"roast":25043,"blackmail":25044,"curvature":25045,"##woods":25046,"vile":25047,"309":25048,"illicit":25049,"suriname":25050,"##linson":25051,"overture":25052,"1685":25053,"bubbling":25054,"gymnast":25055,"tucking":25056,"##mming":25057,"##ouin":25058,"maldives":25059,"##bala":25060,"gurney":25061,"##dda":25062,"##eased":25063,"##oides":25064,"backside":25065,"pinto":25066,"jars":25067,"racehorse":25068,"tending":25069,"##rdial":25070,"baronetcy":25071,"wiener":25072,"duly":25073,"##rke":25074,"barbarian":25075,"cupping":25076,"flawed":25077,"##thesis":25078,"bertha":25079,"pleistocene":25080,"puddle":25081,"swearing":25082,"##nob":25083,"##tically":25084,"fleeting":25085,"prostate":25086,"amulet":25087,"educating":25088,"##mined":25089,"##iti":25090,"##tler":25091,"75th":25092,"jens":25093,"respondents":25094,"analytics":25095,"cavaliers":25096,"papacy":25097,"raju":25098,"##iente":25099,"##ulum":25100,"##tip":25101,"funnel":25102,"271":25103,"disneyland":25104,"##lley":25105,"sociologist":25106,"##iam":25107,"2500":25108,"faulkner":25109,"louvre":25110,"menon":25111,"##dson":25112,"276":25113,"##ower":25114,"afterlife":25115,"mannheim":25116,"peptide":25117,"referees":25118,"comedians":25119,"meaningless":25120,"##anger":25121,"##laise":25122,"fabrics":25123,"hurley":25124,"renal":25125,"sleeps":25126,"##bour":25127,"##icle":25128,"breakout":25129,"kristin":25130,"roadside":25131,"animator":25132,"clover":25133,"disdain":25134,"unsafe":25135,"redesign":25136,"##urity":25137,"firth":25138,"barnsley":25139,"portage":25140,"reset":25141,"narrows":25142,"268":25143,"commandos":25144,"expansive":25145,"speechless":25146,"tubular":25147,"##lux":25148,"essendon":25149,"eyelashes":25150,"smashwords":25151,"##yad":25152,"##bang":25153,"##claim":25154,"craved":25155,"sprinted":25156,"chet":25157,"somme":25158,"astor":25159,"wrocław":25160,"orton":25161,"266":25162,"bane":25163,"##erving":25164,"##uing":25165,"mischief":25166,"##amps":25167,"##sund":25168,"scaling":25169,"terre":25170,"##xious":25171,"impairment":25172,"offenses":25173,"undermine":25174,"moi":25175,"soy":25176,"contiguous":25177,"arcadia":25178,"inuit":25179,"seam":25180,"##tops":25181,"macbeth":25182,"rebelled":25183,"##icative":25184,"##iot":25185,"590":25186,"elaborated":25187,"frs":25188,"uniformed":25189,"##dberg":25190,"259":25191,"powerless":25192,"priscilla":25193,"stimulated":25194,"980":25195,"qc":25196,"arboretum":25197,"frustrating":25198,"trieste":25199,"bullock":25200,"##nified":25201,"enriched":25202,"glistening":25203,"intern":25204,"##adia":25205,"locus":25206,"nouvelle":25207,"ollie":25208,"ike":25209,"lash":25210,"starboard":25211,"ee":25212,"tapestry":25213,"headlined":25214,"hove":25215,"rigged":25216,"##vite":25217,"pollock":25218,"##yme":25219,"thrive":25220,"clustered":25221,"cas":25222,"roi":25223,"gleamed":25224,"olympiad":25225,"##lino":25226,"pressured":25227,"regimes":25228,"##hosis":25229,"##lick":25230,"ripley":25231,"##ophone":25232,"kickoff":25233,"gallon":25234,"rockwell":25235,"##arable":25236,"crusader":25237,"glue":25238,"revolutions":25239,"scrambling":25240,"1714":25241,"grover":25242,"##jure":25243,"englishman":25244,"aztec":25245,"263":25246,"contemplating":25247,"coven":25248,"ipad":25249,"preach":25250,"triumphant":25251,"tufts":25252,"##esian":25253,"rotational":25254,"##phus":25255,"328":25256,"falkland":25257,"##brates":25258,"strewn":25259,"clarissa":25260,"rejoin":25261,"environmentally":25262,"glint":25263,"banded":25264,"drenched":25265,"moat":25266,"albanians":25267,"johor":25268,"rr":25269,"maestro":25270,"malley":25271,"nouveau":25272,"shaded":25273,"taxonomy":25274,"v6":25275,"adhere":25276,"bunk":25277,"airfields":25278,"##ritan":25279,"1741":25280,"encompass":25281,"remington":25282,"tran":25283,"##erative":25284,"amelie":25285,"mazda":25286,"friar":25287,"morals":25288,"passions":25289,"##zai":25290,"breadth":25291,"vis":25292,"##hae":25293,"argus":25294,"burnham":25295,"caressing":25296,"insider":25297,"rudd":25298,"##imov":25299,"##mini":25300,"##rso":25301,"italianate":25302,"murderous":25303,"textual":25304,"wainwright":25305,"armada":25306,"bam":25307,"weave":25308,"timer":25309,"##taken":25310,"##nh":25311,"fra":25312,"##crest":25313,"ardent":25314,"salazar":25315,"taps":25316,"tunis":25317,"##ntino":25318,"allegro":25319,"gland":25320,"philanthropic":25321,"##chester":25322,"implication":25323,"##optera":25324,"esq":25325,"judas":25326,"noticeably":25327,"wynn":25328,"##dara":25329,"inched":25330,"indexed":25331,"crises":25332,"villiers":25333,"bandit":25334,"royalties":25335,"patterned":25336,"cupboard":25337,"interspersed":25338,"accessory":25339,"isla":25340,"kendrick":25341,"entourage":25342,"stitches":25343,"##esthesia":25344,"headwaters":25345,"##ior":25346,"interlude":25347,"distraught":25348,"draught":25349,"1727":25350,"##basket":25351,"biased":25352,"sy":25353,"transient":25354,"triad":25355,"subgenus":25356,"adapting":25357,"kidd":25358,"shortstop":25359,"##umatic":25360,"dimly":25361,"spiked":25362,"mcleod":25363,"reprint":25364,"nellie":25365,"pretoria":25366,"windmill":25367,"##cek":25368,"singled":25369,"##mps":25370,"273":25371,"reunite":25372,"##orous":25373,"747":25374,"bankers":25375,"outlying":25376,"##omp":25377,"##ports":25378,"##tream":25379,"apologies":25380,"cosmetics":25381,"patsy":25382,"##deh":25383,"##ocks":25384,"##yson":25385,"bender":25386,"nantes":25387,"serene":25388,"##nad":25389,"lucha":25390,"mmm":25391,"323":25392,"##cius":25393,"##gli":25394,"cmll":25395,"coinage":25396,"nestor":25397,"juarez":25398,"##rook":25399,"smeared":25400,"sprayed":25401,"twitching":25402,"sterile":25403,"irina":25404,"embodied":25405,"juveniles":25406,"enveloped":25407,"miscellaneous":25408,"cancers":25409,"dq":25410,"gulped":25411,"luisa":25412,"crested":25413,"swat":25414,"donegal":25415,"ref":25416,"##anov":25417,"##acker":25418,"hearst":25419,"mercantile":25420,"##lika":25421,"doorbell":25422,"ua":25423,"vicki":25424,"##alla":25425,"##som":25426,"bilbao":25427,"psychologists":25428,"stryker":25429,"sw":25430,"horsemen":25431,"turkmenistan":25432,"wits":25433,"##national":25434,"anson":25435,"mathew":25436,"screenings":25437,"##umb":25438,"rihanna":25439,"##agne":25440,"##nessy":25441,"aisles":25442,"##iani":25443,"##osphere":25444,"hines":25445,"kenton":25446,"saskatoon":25447,"tasha":25448,"truncated":25449,"##champ":25450,"##itan":25451,"mildred":25452,"advises":25453,"fredrik":25454,"interpreting":25455,"inhibitors":25456,"##athi":25457,"spectroscopy":25458,"##hab":25459,"##kong":25460,"karim":25461,"panda":25462,"##oia":25463,"##nail":25464,"##vc":25465,"conqueror":25466,"kgb":25467,"leukemia":25468,"##dity":25469,"arrivals":25470,"cheered":25471,"pisa":25472,"phosphorus":25473,"shielded":25474,"##riated":25475,"mammal":25476,"unitarian":25477,"urgently":25478,"chopin":25479,"sanitary":25480,"##mission":25481,"spicy":25482,"drugged":25483,"hinges":25484,"##tort":25485,"tipping":25486,"trier":25487,"impoverished":25488,"westchester":25489,"##caster":25490,"267":25491,"epoch":25492,"nonstop":25493,"##gman":25494,"##khov":25495,"aromatic":25496,"centrally":25497,"cerro":25498,"##tively":25499,"##vio":25500,"billions":25501,"modulation":25502,"sedimentary":25503,"283":25504,"facilitating":25505,"outrageous":25506,"goldstein":25507,"##eak":25508,"##kt":25509,"ld":25510,"maitland":25511,"penultimate":25512,"pollard":25513,"##dance":25514,"fleets":25515,"spaceship":25516,"vertebrae":25517,"##nig":25518,"alcoholism":25519,"als":25520,"recital":25521,"##bham":25522,"##ference":25523,"##omics":25524,"m2":25525,"##bm":25526,"trois":25527,"##tropical":25528,"##в":25529,"commemorates":25530,"##meric":25531,"marge":25532,"##raction":25533,"1643":25534,"670":25535,"cosmetic":25536,"ravaged":25537,"##ige":25538,"catastrophe":25539,"eng":25540,"##shida":25541,"albrecht":25542,"arterial":25543,"bellamy":25544,"decor":25545,"harmon":25546,"##rde":25547,"bulbs":25548,"synchronized":25549,"vito":25550,"easiest":25551,"shetland":25552,"shielding":25553,"wnba":25554,"##glers":25555,"##ssar":25556,"##riam":25557,"brianna":25558,"cumbria":25559,"##aceous":25560,"##rard":25561,"cores":25562,"thayer":25563,"##nsk":25564,"brood":25565,"hilltop":25566,"luminous":25567,"carts":25568,"keynote":25569,"larkin":25570,"logos":25571,"##cta":25572,"##ا":25573,"##mund":25574,"##quay":25575,"lilith":25576,"tinted":25577,"277":25578,"wrestle":25579,"mobilization":25580,"##uses":25581,"sequential":25582,"siam":25583,"bloomfield":25584,"takahashi":25585,"274":25586,"##ieving":25587,"presenters":25588,"ringo":25589,"blazed":25590,"witty":25591,"##oven":25592,"##ignant":25593,"devastation":25594,"haydn":25595,"harmed":25596,"newt":25597,"therese":25598,"##peed":25599,"gershwin":25600,"molina":25601,"rabbis":25602,"sudanese":25603,"001":25604,"innate":25605,"restarted":25606,"##sack":25607,"##fus":25608,"slices":25609,"wb":25610,"##shah":25611,"enroll":25612,"hypothetical":25613,"hysterical":25614,"1743":25615,"fabio":25616,"indefinite":25617,"warped":25618,"##hg":25619,"exchanging":25620,"525":25621,"unsuitable":25622,"##sboro":25623,"gallo":25624,"1603":25625,"bret":25626,"cobalt":25627,"homemade":25628,"##hunter":25629,"mx":25630,"operatives":25631,"##dhar":25632,"terraces":25633,"durable":25634,"latch":25635,"pens":25636,"whorls":25637,"##ctuated":25638,"##eaux":25639,"billing":25640,"ligament":25641,"succumbed":25642,"##gly":25643,"regulators":25644,"spawn":25645,"##brick":25646,"##stead":25647,"filmfare":25648,"rochelle":25649,"##nzo":25650,"1725":25651,"circumstance":25652,"saber":25653,"supplements":25654,"##nsky":25655,"##tson":25656,"crowe":25657,"wellesley":25658,"carrot":25659,"##9th":25660,"##movable":25661,"primate":25662,"drury":25663,"sincerely":25664,"topical":25665,"##mad":25666,"##rao":25667,"callahan":25668,"kyiv":25669,"smarter":25670,"tits":25671,"undo":25672,"##yeh":25673,"announcements":25674,"anthologies":25675,"barrio":25676,"nebula":25677,"##islaus":25678,"##shaft":25679,"##tyn":25680,"bodyguards":25681,"2021":25682,"assassinate":25683,"barns":25684,"emmett":25685,"scully":25686,"##mah":25687,"##yd":25688,"##eland":25689,"##tino":25690,"##itarian":25691,"demoted":25692,"gorman":25693,"lashed":25694,"prized":25695,"adventist":25696,"writ":25697,"##gui":25698,"alla":25699,"invertebrates":25700,"##ausen":25701,"1641":25702,"amman":25703,"1742":25704,"align":25705,"healy":25706,"redistribution":25707,"##gf":25708,"##rize":25709,"insulation":25710,"##drop":25711,"adherents":25712,"hezbollah":25713,"vitro":25714,"ferns":25715,"yanking":25716,"269":25717,"php":25718,"registering":25719,"uppsala":25720,"cheerleading":25721,"confines":25722,"mischievous":25723,"tully":25724,"##ross":25725,"49th":25726,"docked":25727,"roam":25728,"stipulated":25729,"pumpkin":25730,"##bry":25731,"prompt":25732,"##ezer":25733,"blindly":25734,"shuddering":25735,"craftsmen":25736,"frail":25737,"scented":25738,"katharine":25739,"scramble":25740,"shaggy":25741,"sponge":25742,"helix":25743,"zaragoza":25744,"279":25745,"##52":25746,"43rd":25747,"backlash":25748,"fontaine":25749,"seizures":25750,"posse":25751,"cowan":25752,"nonfiction":25753,"telenovela":25754,"wwii":25755,"hammered":25756,"undone":25757,"##gpur":25758,"encircled":25759,"irs":25760,"##ivation":25761,"artefacts":25762,"oneself":25763,"searing":25764,"smallpox":25765,"##belle":25766,"##osaurus":25767,"shandong":25768,"breached":25769,"upland":25770,"blushing":25771,"rankin":25772,"infinitely":25773,"psyche":25774,"tolerated":25775,"docking":25776,"evicted":25777,"##col":25778,"unmarked":25779,"##lving":25780,"gnome":25781,"lettering":25782,"litres":25783,"musique":25784,"##oint":25785,"benevolent":25786,"##jal":25787,"blackened":25788,"##anna":25789,"mccall":25790,"racers":25791,"tingle":25792,"##ocene":25793,"##orestation":25794,"introductions":25795,"radically":25796,"292":25797,"##hiff":25798,"##باد":25799,"1610":25800,"1739":25801,"munchen":25802,"plead":25803,"##nka":25804,"condo":25805,"scissors":25806,"##sight":25807,"##tens":25808,"apprehension":25809,"##cey":25810,"##yin":25811,"hallmark":25812,"watering":25813,"formulas":25814,"sequels":25815,"##llas":25816,"aggravated":25817,"bae":25818,"commencing":25819,"##building":25820,"enfield":25821,"prohibits":25822,"marne":25823,"vedic":25824,"civilized":25825,"euclidean":25826,"jagger":25827,"beforehand":25828,"blasts":25829,"dumont":25830,"##arney":25831,"##nem":25832,"740":25833,"conversions":25834,"hierarchical":25835,"rios":25836,"simulator":25837,"##dya":25838,"##lellan":25839,"hedges":25840,"oleg":25841,"thrusts":25842,"shadowed":25843,"darby":25844,"maximize":25845,"1744":25846,"gregorian":25847,"##nded":25848,"##routed":25849,"sham":25850,"unspecified":25851,"##hog":25852,"emory":25853,"factual":25854,"##smo":25855,"##tp":25856,"fooled":25857,"##rger":25858,"ortega":25859,"wellness":25860,"marlon":25861,"##oton":25862,"##urance":25863,"casket":25864,"keating":25865,"ley":25866,"enclave":25867,"##ayan":25868,"char":25869,"influencing":25870,"jia":25871,"##chenko":25872,"412":25873,"ammonia":25874,"erebidae":25875,"incompatible":25876,"violins":25877,"cornered":25878,"##arat":25879,"grooves":25880,"astronauts":25881,"columbian":25882,"rampant":25883,"fabrication":25884,"kyushu":25885,"mahmud":25886,"vanish":25887,"##dern":25888,"mesopotamia":25889,"##lete":25890,"ict":25891,"##rgen":25892,"caspian":25893,"kenji":25894,"pitted":25895,"##vered":25896,"999":25897,"grimace":25898,"roanoke":25899,"tchaikovsky":25900,"twinned":25901,"##analysis":25902,"##awan":25903,"xinjiang":25904,"arias":25905,"clemson":25906,"kazakh":25907,"sizable":25908,"1662":25909,"##khand":25910,"##vard":25911,"plunge":25912,"tatum":25913,"vittorio":25914,"##nden":25915,"cholera":25916,"##dana":25917,"##oper":25918,"bracing":25919,"indifference":25920,"projectile":25921,"superliga":25922,"##chee":25923,"realises":25924,"upgrading":25925,"299":25926,"porte":25927,"retribution":25928,"##vies":25929,"nk":25930,"stil":25931,"##resses":25932,"ama":25933,"bureaucracy":25934,"blackberry":25935,"bosch":25936,"testosterone":25937,"collapses":25938,"greer":25939,"##pathic":25940,"ioc":25941,"fifties":25942,"malls":25943,"##erved":25944,"bao":25945,"baskets":25946,"adolescents":25947,"siegfried":25948,"##osity":25949,"##tosis":25950,"mantra":25951,"detecting":25952,"existent":25953,"fledgling":25954,"##cchi":25955,"dissatisfied":25956,"gan":25957,"telecommunication":25958,"mingled":25959,"sobbed":25960,"6000":25961,"controversies":25962,"outdated":25963,"taxis":25964,"##raus":25965,"fright":25966,"slams":25967,"##lham":25968,"##fect":25969,"##tten":25970,"detectors":25971,"fetal":25972,"tanned":25973,"##uw":25974,"fray":25975,"goth":25976,"olympian":25977,"skipping":25978,"mandates":25979,"scratches":25980,"sheng":25981,"unspoken":25982,"hyundai":25983,"tracey":25984,"hotspur":25985,"restrictive":25986,"##buch":25987,"americana":25988,"mundo":25989,"##bari":25990,"burroughs":25991,"diva":25992,"vulcan":25993,"##6th":25994,"distinctions":25995,"thumping":25996,"##ngen":25997,"mikey":25998,"sheds":25999,"fide":26000,"rescues":26001,"springsteen":26002,"vested":26003,"valuation":26004,"##ece":26005,"##ely":26006,"pinnacle":26007,"rake":26008,"sylvie":26009,"##edo":26010,"almond":26011,"quivering":26012,"##irus":26013,"alteration":26014,"faltered":26015,"##wad":26016,"51st":26017,"hydra":26018,"ticked":26019,"##kato":26020,"recommends":26021,"##dicated":26022,"antigua":26023,"arjun":26024,"stagecoach":26025,"wilfred":26026,"trickle":26027,"pronouns":26028,"##pon":26029,"aryan":26030,"nighttime":26031,"##anian":26032,"gall":26033,"pea":26034,"stitch":26035,"##hei":26036,"leung":26037,"milos":26038,"##dini":26039,"eritrea":26040,"nexus":26041,"starved":26042,"snowfall":26043,"kant":26044,"parasitic":26045,"cot":26046,"discus":26047,"hana":26048,"strikers":26049,"appleton":26050,"kitchens":26051,"##erina":26052,"##partisan":26053,"##itha":26054,"##vius":26055,"disclose":26056,"metis":26057,"##channel":26058,"1701":26059,"tesla":26060,"##vera":26061,"fitch":26062,"1735":26063,"blooded":26064,"##tila":26065,"decimal":26066,"##tang":26067,"##bai":26068,"cyclones":26069,"eun":26070,"bottled":26071,"peas":26072,"pensacola":26073,"basha":26074,"bolivian":26075,"crabs":26076,"boil":26077,"lanterns":26078,"partridge":26079,"roofed":26080,"1645":26081,"necks":26082,"##phila":26083,"opined":26084,"patting":26085,"##kla":26086,"##lland":26087,"chuckles":26088,"volta":26089,"whereupon":26090,"##nche":26091,"devout":26092,"euroleague":26093,"suicidal":26094,"##dee":26095,"inherently":26096,"involuntary":26097,"knitting":26098,"nasser":26099,"##hide":26100,"puppets":26101,"colourful":26102,"courageous":26103,"southend":26104,"stills":26105,"miraculous":26106,"hodgson":26107,"richer":26108,"rochdale":26109,"ethernet":26110,"greta":26111,"uniting":26112,"prism":26113,"umm":26114,"##haya":26115,"##itical":26116,"##utation":26117,"deterioration":26118,"pointe":26119,"prowess":26120,"##ropriation":26121,"lids":26122,"scranton":26123,"billings":26124,"subcontinent":26125,"##koff":26126,"##scope":26127,"brute":26128,"kellogg":26129,"psalms":26130,"degraded":26131,"##vez":26132,"stanisław":26133,"##ructured":26134,"ferreira":26135,"pun":26136,"astonishing":26137,"gunnar":26138,"##yat":26139,"arya":26140,"prc":26141,"gottfried":26142,"##tight":26143,"excursion":26144,"##ographer":26145,"dina":26146,"##quil":26147,"##nare":26148,"huffington":26149,"illustrious":26150,"wilbur":26151,"gundam":26152,"verandah":26153,"##zard":26154,"naacp":26155,"##odle":26156,"constructive":26157,"fjord":26158,"kade":26159,"##naud":26160,"generosity":26161,"thrilling":26162,"baseline":26163,"cayman":26164,"frankish":26165,"plastics":26166,"accommodations":26167,"zoological":26168,"##fting":26169,"cedric":26170,"qb":26171,"motorized":26172,"##dome":26173,"##otted":26174,"squealed":26175,"tackled":26176,"canucks":26177,"budgets":26178,"situ":26179,"asthma":26180,"dail":26181,"gabled":26182,"grasslands":26183,"whimpered":26184,"writhing":26185,"judgments":26186,"##65":26187,"minnie":26188,"pv":26189,"##carbon":26190,"bananas":26191,"grille":26192,"domes":26193,"monique":26194,"odin":26195,"maguire":26196,"markham":26197,"tierney":26198,"##estra":26199,"##chua":26200,"libel":26201,"poke":26202,"speedy":26203,"atrium":26204,"laval":26205,"notwithstanding":26206,"##edly":26207,"fai":26208,"kala":26209,"##sur":26210,"robb":26211,"##sma":26212,"listings":26213,"luz":26214,"supplementary":26215,"tianjin":26216,"##acing":26217,"enzo":26218,"jd":26219,"ric":26220,"scanner":26221,"croats":26222,"transcribed":26223,"##49":26224,"arden":26225,"cv":26226,"##hair":26227,"##raphy":26228,"##lver":26229,"##uy":26230,"357":26231,"seventies":26232,"staggering":26233,"alam":26234,"horticultural":26235,"hs":26236,"regression":26237,"timbers":26238,"blasting":26239,"##ounded":26240,"montagu":26241,"manipulating":26242,"##cit":26243,"catalytic":26244,"1550":26245,"troopers":26246,"##meo":26247,"condemnation":26248,"fitzpatrick":26249,"##oire":26250,"##roved":26251,"inexperienced":26252,"1670":26253,"castes":26254,"##lative":26255,"outing":26256,"314":26257,"dubois":26258,"flicking":26259,"quarrel":26260,"ste":26261,"learners":26262,"1625":26263,"iq":26264,"whistled":26265,"##class":26266,"282":26267,"classify":26268,"tariffs":26269,"temperament":26270,"355":26271,"folly":26272,"liszt":26273,"##yles":26274,"immersed":26275,"jordanian":26276,"ceasefire":26277,"apparel":26278,"extras":26279,"maru":26280,"fished":26281,"##bio":26282,"harta":26283,"stockport":26284,"assortment":26285,"craftsman":26286,"paralysis":26287,"transmitters":26288,"##cola":26289,"blindness":26290,"##wk":26291,"fatally":26292,"proficiency":26293,"solemnly":26294,"##orno":26295,"repairing":26296,"amore":26297,"groceries":26298,"ultraviolet":26299,"##chase":26300,"schoolhouse":26301,"##tua":26302,"resurgence":26303,"nailed":26304,"##otype":26305,"##×":26306,"ruse":26307,"saliva":26308,"diagrams":26309,"##tructing":26310,"albans":26311,"rann":26312,"thirties":26313,"1b":26314,"antennas":26315,"hilarious":26316,"cougars":26317,"paddington":26318,"stats":26319,"##eger":26320,"breakaway":26321,"ipod":26322,"reza":26323,"authorship":26324,"prohibiting":26325,"scoffed":26326,"##etz":26327,"##ttle":26328,"conscription":26329,"defected":26330,"trondheim":26331,"##fires":26332,"ivanov":26333,"keenan":26334,"##adan":26335,"##ciful":26336,"##fb":26337,"##slow":26338,"locating":26339,"##ials":26340,"##tford":26341,"cadiz":26342,"basalt":26343,"blankly":26344,"interned":26345,"rags":26346,"rattling":26347,"##tick":26348,"carpathian":26349,"reassured":26350,"sync":26351,"bum":26352,"guildford":26353,"iss":26354,"staunch":26355,"##onga":26356,"astronomers":26357,"sera":26358,"sofie":26359,"emergencies":26360,"susquehanna":26361,"##heard":26362,"duc":26363,"mastery":26364,"vh1":26365,"williamsburg":26366,"bayer":26367,"buckled":26368,"craving":26369,"##khan":26370,"##rdes":26371,"bloomington":26372,"##write":26373,"alton":26374,"barbecue":26375,"##bians":26376,"justine":26377,"##hri":26378,"##ndt":26379,"delightful":26380,"smartphone":26381,"newtown":26382,"photon":26383,"retrieval":26384,"peugeot":26385,"hissing":26386,"##monium":26387,"##orough":26388,"flavors":26389,"lighted":26390,"relaunched":26391,"tainted":26392,"##games":26393,"##lysis":26394,"anarchy":26395,"microscopic":26396,"hopping":26397,"adept":26398,"evade":26399,"evie":26400,"##beau":26401,"inhibit":26402,"sinn":26403,"adjustable":26404,"hurst":26405,"intuition":26406,"wilton":26407,"cisco":26408,"44th":26409,"lawful":26410,"lowlands":26411,"stockings":26412,"thierry":26413,"##dalen":26414,"##hila":26415,"##nai":26416,"fates":26417,"prank":26418,"tb":26419,"maison":26420,"lobbied":26421,"provocative":26422,"1724":26423,"4a":26424,"utopia":26425,"##qual":26426,"carbonate":26427,"gujarati":26428,"purcell":26429,"##rford":26430,"curtiss":26431,"##mei":26432,"overgrown":26433,"arenas":26434,"mediation":26435,"swallows":26436,"##rnik":26437,"respectful":26438,"turnbull":26439,"##hedron":26440,"##hope":26441,"alyssa":26442,"ozone":26443,"##ʻi":26444,"ami":26445,"gestapo":26446,"johansson":26447,"snooker":26448,"canteen":26449,"cuff":26450,"declines":26451,"empathy":26452,"stigma":26453,"##ags":26454,"##iner":26455,"##raine":26456,"taxpayers":26457,"gui":26458,"volga":26459,"##wright":26460,"##copic":26461,"lifespan":26462,"overcame":26463,"tattooed":26464,"enactment":26465,"giggles":26466,"##ador":26467,"##camp":26468,"barrington":26469,"bribe":26470,"obligatory":26471,"orbiting":26472,"peng":26473,"##enas":26474,"elusive":26475,"sucker":26476,"##vating":26477,"cong":26478,"hardship":26479,"empowered":26480,"anticipating":26481,"estrada":26482,"cryptic":26483,"greasy":26484,"detainees":26485,"planck":26486,"sudbury":26487,"plaid":26488,"dod":26489,"marriott":26490,"kayla":26491,"##ears":26492,"##vb":26493,"##zd":26494,"mortally":26495,"##hein":26496,"cognition":26497,"radha":26498,"319":26499,"liechtenstein":26500,"meade":26501,"richly":26502,"argyle":26503,"harpsichord":26504,"liberalism":26505,"trumpets":26506,"lauded":26507,"tyrant":26508,"salsa":26509,"tiled":26510,"lear":26511,"promoters":26512,"reused":26513,"slicing":26514,"trident":26515,"##chuk":26516,"##gami":26517,"##lka":26518,"cantor":26519,"checkpoint":26520,"##points":26521,"gaul":26522,"leger":26523,"mammalian":26524,"##tov":26525,"##aar":26526,"##schaft":26527,"doha":26528,"frenchman":26529,"nirvana":26530,"##vino":26531,"delgado":26532,"headlining":26533,"##eron":26534,"##iography":26535,"jug":26536,"tko":26537,"1649":26538,"naga":26539,"intersections":26540,"##jia":26541,"benfica":26542,"nawab":26543,"##suka":26544,"ashford":26545,"gulp":26546,"##deck":26547,"##vill":26548,"##rug":26549,"brentford":26550,"frazier":26551,"pleasures":26552,"dunne":26553,"potsdam":26554,"shenzhen":26555,"dentistry":26556,"##tec":26557,"flanagan":26558,"##dorff":26559,"##hear":26560,"chorale":26561,"dinah":26562,"prem":26563,"quezon":26564,"##rogated":26565,"relinquished":26566,"sutra":26567,"terri":26568,"##pani":26569,"flaps":26570,"##rissa":26571,"poly":26572,"##rnet":26573,"homme":26574,"aback":26575,"##eki":26576,"linger":26577,"womb":26578,"##kson":26579,"##lewood":26580,"doorstep":26581,"orthodoxy":26582,"threaded":26583,"westfield":26584,"##rval":26585,"dioceses":26586,"fridays":26587,"subsided":26588,"##gata":26589,"loyalists":26590,"##biotic":26591,"##ettes":26592,"letterman":26593,"lunatic":26594,"prelate":26595,"tenderly":26596,"invariably":26597,"souza":26598,"thug":26599,"winslow":26600,"##otide":26601,"furlongs":26602,"gogh":26603,"jeopardy":26604,"##runa":26605,"pegasus":26606,"##umble":26607,"humiliated":26608,"standalone":26609,"tagged":26610,"##roller":26611,"freshmen":26612,"klan":26613,"##bright":26614,"attaining":26615,"initiating":26616,"transatlantic":26617,"logged":26618,"viz":26619,"##uance":26620,"1723":26621,"combatants":26622,"intervening":26623,"stephane":26624,"chieftain":26625,"despised":26626,"grazed":26627,"317":26628,"cdc":26629,"galveston":26630,"godzilla":26631,"macro":26632,"simulate":26633,"##planes":26634,"parades":26635,"##esses":26636,"960":26637,"##ductive":26638,"##unes":26639,"equator":26640,"overdose":26641,"##cans":26642,"##hosh":26643,"##lifting":26644,"joshi":26645,"epstein":26646,"sonora":26647,"treacherous":26648,"aquatics":26649,"manchu":26650,"responsive":26651,"##sation":26652,"supervisory":26653,"##christ":26654,"##llins":26655,"##ibar":26656,"##balance":26657,"##uso":26658,"kimball":26659,"karlsruhe":26660,"mab":26661,"##emy":26662,"ignores":26663,"phonetic":26664,"reuters":26665,"spaghetti":26666,"820":26667,"almighty":26668,"danzig":26669,"rumbling":26670,"tombstone":26671,"designations":26672,"lured":26673,"outset":26674,"##felt":26675,"supermarkets":26676,"##wt":26677,"grupo":26678,"kei":26679,"kraft":26680,"susanna":26681,"##blood":26682,"comprehension":26683,"genealogy":26684,"##aghan":26685,"##verted":26686,"redding":26687,"##ythe":26688,"1722":26689,"bowing":26690,"##pore":26691,"##roi":26692,"lest":26693,"sharpened":26694,"fulbright":26695,"valkyrie":26696,"sikhs":26697,"##unds":26698,"swans":26699,"bouquet":26700,"merritt":26701,"##tage":26702,"##venting":26703,"commuted":26704,"redhead":26705,"clerks":26706,"leasing":26707,"cesare":26708,"dea":26709,"hazy":26710,"##vances":26711,"fledged":26712,"greenfield":26713,"servicemen":26714,"##gical":26715,"armando":26716,"blackout":26717,"dt":26718,"sagged":26719,"downloadable":26720,"intra":26721,"potion":26722,"pods":26723,"##4th":26724,"##mism":26725,"xp":26726,"attendants":26727,"gambia":26728,"stale":26729,"##ntine":26730,"plump":26731,"asteroids":26732,"rediscovered":26733,"buds":26734,"flea":26735,"hive":26736,"##neas":26737,"1737":26738,"classifications":26739,"debuts":26740,"##eles":26741,"olympus":26742,"scala":26743,"##eurs":26744,"##gno":26745,"##mute":26746,"hummed":26747,"sigismund":26748,"visuals":26749,"wiggled":26750,"await":26751,"pilasters":26752,"clench":26753,"sulfate":26754,"##ances":26755,"bellevue":26756,"enigma":26757,"trainee":26758,"snort":26759,"##sw":26760,"clouded":26761,"denim":26762,"##rank":26763,"##rder":26764,"churning":26765,"hartman":26766,"lodges":26767,"riches":26768,"sima":26769,"##missible":26770,"accountable":26771,"socrates":26772,"regulates":26773,"mueller":26774,"##cr":26775,"1702":26776,"avoids":26777,"solids":26778,"himalayas":26779,"nutrient":26780,"pup":26781,"##jevic":26782,"squat":26783,"fades":26784,"nec":26785,"##lates":26786,"##pina":26787,"##rona":26788,"##ου":26789,"privateer":26790,"tequila":26791,"##gative":26792,"##mpton":26793,"apt":26794,"hornet":26795,"immortals":26796,"##dou":26797,"asturias":26798,"cleansing":26799,"dario":26800,"##rries":26801,"##anta":26802,"etymology":26803,"servicing":26804,"zhejiang":26805,"##venor":26806,"##nx":26807,"horned":26808,"erasmus":26809,"rayon":26810,"relocating":26811,"£10":26812,"##bags":26813,"escalated":26814,"promenade":26815,"stubble":26816,"2010s":26817,"artisans":26818,"axial":26819,"liquids":26820,"mora":26821,"sho":26822,"yoo":26823,"##tsky":26824,"bundles":26825,"oldies":26826,"##nally":26827,"notification":26828,"bastion":26829,"##ths":26830,"sparkle":26831,"##lved":26832,"1728":26833,"leash":26834,"pathogen":26835,"highs":26836,"##hmi":26837,"immature":26838,"880":26839,"gonzaga":26840,"ignatius":26841,"mansions":26842,"monterrey":26843,"sweets":26844,"bryson":26845,"##loe":26846,"polled":26847,"regatta":26848,"brightest":26849,"pei":26850,"rosy":26851,"squid":26852,"hatfield":26853,"payroll":26854,"addict":26855,"meath":26856,"cornerback":26857,"heaviest":26858,"lodging":26859,"##mage":26860,"capcom":26861,"rippled":26862,"##sily":26863,"barnet":26864,"mayhem":26865,"ymca":26866,"snuggled":26867,"rousseau":26868,"##cute":26869,"blanchard":26870,"284":26871,"fragmented":26872,"leighton":26873,"chromosomes":26874,"risking":26875,"##md":26876,"##strel":26877,"##utter":26878,"corinne":26879,"coyotes":26880,"cynical":26881,"hiroshi":26882,"yeomanry":26883,"##ractive":26884,"ebook":26885,"grading":26886,"mandela":26887,"plume":26888,"agustin":26889,"magdalene":26890,"##rkin":26891,"bea":26892,"femme":26893,"trafford":26894,"##coll":26895,"##lun":26896,"##tance":26897,"52nd":26898,"fourier":26899,"upton":26900,"##mental":26901,"camilla":26902,"gust":26903,"iihf":26904,"islamabad":26905,"longevity":26906,"##kala":26907,"feldman":26908,"netting":26909,"##rization":26910,"endeavour":26911,"foraging":26912,"mfa":26913,"orr":26914,"##open":26915,"greyish":26916,"contradiction":26917,"graz":26918,"##ruff":26919,"handicapped":26920,"marlene":26921,"tweed":26922,"oaxaca":26923,"spp":26924,"campos":26925,"miocene":26926,"pri":26927,"configured":26928,"cooks":26929,"pluto":26930,"cozy":26931,"pornographic":26932,"##entes":26933,"70th":26934,"fairness":26935,"glided":26936,"jonny":26937,"lynne":26938,"rounding":26939,"sired":26940,"##emon":26941,"##nist":26942,"remade":26943,"uncover":26944,"##mack":26945,"complied":26946,"lei":26947,"newsweek":26948,"##jured":26949,"##parts":26950,"##enting":26951,"##pg":26952,"293":26953,"finer":26954,"guerrillas":26955,"athenian":26956,"deng":26957,"disused":26958,"stepmother":26959,"accuse":26960,"gingerly":26961,"seduction":26962,"521":26963,"confronting":26964,"##walker":26965,"##going":26966,"gora":26967,"nostalgia":26968,"sabres":26969,"virginity":26970,"wrenched":26971,"##minated":26972,"syndication":26973,"wielding":26974,"eyre":26975,"##56":26976,"##gnon":26977,"##igny":26978,"behaved":26979,"taxpayer":26980,"sweeps":26981,"##growth":26982,"childless":26983,"gallant":26984,"##ywood":26985,"amplified":26986,"geraldine":26987,"scrape":26988,"##ffi":26989,"babylonian":26990,"fresco":26991,"##rdan":26992,"##kney":26993,"##position":26994,"1718":26995,"restricting":26996,"tack":26997,"fukuoka":26998,"osborn":26999,"selector":27000,"partnering":27001,"##dlow":27002,"318":27003,"gnu":27004,"kia":27005,"tak":27006,"whitley":27007,"gables":27008,"##54":27009,"##mania":27010,"mri":27011,"softness":27012,"immersion":27013,"##bots":27014,"##evsky":27015,"1713":27016,"chilling":27017,"insignificant":27018,"pcs":27019,"##uis":27020,"elites":27021,"lina":27022,"purported":27023,"supplemental":27024,"teaming":27025,"##americana":27026,"##dding":27027,"##inton":27028,"proficient":27029,"rouen":27030,"##nage":27031,"##rret":27032,"niccolo":27033,"selects":27034,"##bread":27035,"fluffy":27036,"1621":27037,"gruff":27038,"knotted":27039,"mukherjee":27040,"polgara":27041,"thrash":27042,"nicholls":27043,"secluded":27044,"smoothing":27045,"thru":27046,"corsica":27047,"loaf":27048,"whitaker":27049,"inquiries":27050,"##rrier":27051,"##kam":27052,"indochina":27053,"289":27054,"marlins":27055,"myles":27056,"peking":27057,"##tea":27058,"extracts":27059,"pastry":27060,"superhuman":27061,"connacht":27062,"vogel":27063,"##ditional":27064,"##het":27065,"##udged":27066,"##lash":27067,"gloss":27068,"quarries":27069,"refit":27070,"teaser":27071,"##alic":27072,"##gaon":27073,"20s":27074,"materialized":27075,"sling":27076,"camped":27077,"pickering":27078,"tung":27079,"tracker":27080,"pursuant":27081,"##cide":27082,"cranes":27083,"soc":27084,"##cini":27085,"##typical":27086,"##viere":27087,"anhalt":27088,"overboard":27089,"workout":27090,"chores":27091,"fares":27092,"orphaned":27093,"stains":27094,"##logie":27095,"fenton":27096,"surpassing":27097,"joyah":27098,"triggers":27099,"##itte":27100,"grandmaster":27101,"##lass":27102,"##lists":27103,"clapping":27104,"fraudulent":27105,"ledger":27106,"nagasaki":27107,"##cor":27108,"##nosis":27109,"##tsa":27110,"eucalyptus":27111,"tun":27112,"##icio":27113,"##rney":27114,"##tara":27115,"dax":27116,"heroism":27117,"ina":27118,"wrexham":27119,"onboard":27120,"unsigned":27121,"##dates":27122,"moshe":27123,"galley":27124,"winnie":27125,"droplets":27126,"exiles":27127,"praises":27128,"watered":27129,"noodles":27130,"##aia":27131,"fein":27132,"adi":27133,"leland":27134,"multicultural":27135,"stink":27136,"bingo":27137,"comets":27138,"erskine":27139,"modernized":27140,"canned":27141,"constraint":27142,"domestically":27143,"chemotherapy":27144,"featherweight":27145,"stifled":27146,"##mum":27147,"darkly":27148,"irresistible":27149,"refreshing":27150,"hasty":27151,"isolate":27152,"##oys":27153,"kitchener":27154,"planners":27155,"##wehr":27156,"cages":27157,"yarn":27158,"implant":27159,"toulon":27160,"elects":27161,"childbirth":27162,"yue":27163,"##lind":27164,"##lone":27165,"cn":27166,"rightful":27167,"sportsman":27168,"junctions":27169,"remodeled":27170,"specifies":27171,"##rgh":27172,"291":27173,"##oons":27174,"complimented":27175,"##urgent":27176,"lister":27177,"ot":27178,"##logic":27179,"bequeathed":27180,"cheekbones":27181,"fontana":27182,"gabby":27183,"##dial":27184,"amadeus":27185,"corrugated":27186,"maverick":27187,"resented":27188,"triangles":27189,"##hered":27190,"##usly":27191,"nazareth":27192,"tyrol":27193,"1675":27194,"assent":27195,"poorer":27196,"sectional":27197,"aegean":27198,"##cous":27199,"296":27200,"nylon":27201,"ghanaian":27202,"##egorical":27203,"##weig":27204,"cushions":27205,"forbid":27206,"fusiliers":27207,"obstruction":27208,"somerville":27209,"##scia":27210,"dime":27211,"earrings":27212,"elliptical":27213,"leyte":27214,"oder":27215,"polymers":27216,"timmy":27217,"atm":27218,"midtown":27219,"piloted":27220,"settles":27221,"continual":27222,"externally":27223,"mayfield":27224,"##uh":27225,"enrichment":27226,"henson":27227,"keane":27228,"persians":27229,"1733":27230,"benji":27231,"braden":27232,"pep":27233,"324":27234,"##efe":27235,"contenders":27236,"pepsi":27237,"valet":27238,"##isches":27239,"298":27240,"##asse":27241,"##earing":27242,"goofy":27243,"stroll":27244,"##amen":27245,"authoritarian":27246,"occurrences":27247,"adversary":27248,"ahmedabad":27249,"tangent":27250,"toppled":27251,"dorchester":27252,"1672":27253,"modernism":27254,"marxism":27255,"islamist":27256,"charlemagne":27257,"exponential":27258,"racks":27259,"unicode":27260,"brunette":27261,"mbc":27262,"pic":27263,"skirmish":27264,"##bund":27265,"##lad":27266,"##powered":27267,"##yst":27268,"hoisted":27269,"messina":27270,"shatter":27271,"##ctum":27272,"jedi":27273,"vantage":27274,"##music":27275,"##neil":27276,"clemens":27277,"mahmoud":27278,"corrupted":27279,"authentication":27280,"lowry":27281,"nils":27282,"##washed":27283,"omnibus":27284,"wounding":27285,"jillian":27286,"##itors":27287,"##opped":27288,"serialized":27289,"narcotics":27290,"handheld":27291,"##arm":27292,"##plicity":27293,"intersecting":27294,"stimulating":27295,"##onis":27296,"crate":27297,"fellowships":27298,"hemingway":27299,"casinos":27300,"climatic":27301,"fordham":27302,"copeland":27303,"drip":27304,"beatty":27305,"leaflets":27306,"robber":27307,"brothel":27308,"madeira":27309,"##hedral":27310,"sphinx":27311,"ultrasound":27312,"##vana":27313,"valor":27314,"forbade":27315,"leonid":27316,"villas":27317,"##aldo":27318,"duane":27319,"marquez":27320,"##cytes":27321,"disadvantaged":27322,"forearms":27323,"kawasaki":27324,"reacts":27325,"consular":27326,"lax":27327,"uncles":27328,"uphold":27329,"##hopper":27330,"concepcion":27331,"dorsey":27332,"lass":27333,"##izan":27334,"arching":27335,"passageway":27336,"1708":27337,"researches":27338,"tia":27339,"internationals":27340,"##graphs":27341,"##opers":27342,"distinguishes":27343,"javanese":27344,"divert":27345,"##uven":27346,"plotted":27347,"##listic":27348,"##rwin":27349,"##erik":27350,"##tify":27351,"affirmative":27352,"signifies":27353,"validation":27354,"##bson":27355,"kari":27356,"felicity":27357,"georgina":27358,"zulu":27359,"##eros":27360,"##rained":27361,"##rath":27362,"overcoming":27363,"##dot":27364,"argyll":27365,"##rbin":27366,"1734":27367,"chiba":27368,"ratification":27369,"windy":27370,"earls":27371,"parapet":27372,"##marks":27373,"hunan":27374,"pristine":27375,"astrid":27376,"punta":27377,"##gart":27378,"brodie":27379,"##kota":27380,"##oder":27381,"malaga":27382,"minerva":27383,"rouse":27384,"##phonic":27385,"bellowed":27386,"pagoda":27387,"portals":27388,"reclamation":27389,"##gur":27390,"##odies":27391,"##⁄₄":27392,"parentheses":27393,"quoting":27394,"allergic":27395,"palette":27396,"showcases":27397,"benefactor":27398,"heartland":27399,"nonlinear":27400,"##tness":27401,"bladed":27402,"cheerfully":27403,"scans":27404,"##ety":27405,"##hone":27406,"1666":27407,"girlfriends":27408,"pedersen":27409,"hiram":27410,"sous":27411,"##liche":27412,"##nator":27413,"1683":27414,"##nery":27415,"##orio":27416,"##umen":27417,"bobo":27418,"primaries":27419,"smiley":27420,"##cb":27421,"unearthed":27422,"uniformly":27423,"fis":27424,"metadata":27425,"1635":27426,"ind":27427,"##oted":27428,"recoil":27429,"##titles":27430,"##tura":27431,"##ια":27432,"406":27433,"hilbert":27434,"jamestown":27435,"mcmillan":27436,"tulane":27437,"seychelles":27438,"##frid":27439,"antics":27440,"coli":27441,"fated":27442,"stucco":27443,"##grants":27444,"1654":27445,"bulky":27446,"accolades":27447,"arrays":27448,"caledonian":27449,"carnage":27450,"optimism":27451,"puebla":27452,"##tative":27453,"##cave":27454,"enforcing":27455,"rotherham":27456,"seo":27457,"dunlop":27458,"aeronautics":27459,"chimed":27460,"incline":27461,"zoning":27462,"archduke":27463,"hellenistic":27464,"##oses":27465,"##sions":27466,"candi":27467,"thong":27468,"##ople":27469,"magnate":27470,"rustic":27471,"##rsk":27472,"projective":27473,"slant":27474,"##offs":27475,"danes":27476,"hollis":27477,"vocalists":27478,"##ammed":27479,"congenital":27480,"contend":27481,"gesellschaft":27482,"##ocating":27483,"##pressive":27484,"douglass":27485,"quieter":27486,"##cm":27487,"##kshi":27488,"howled":27489,"salim":27490,"spontaneously":27491,"townsville":27492,"buena":27493,"southport":27494,"##bold":27495,"kato":27496,"1638":27497,"faerie":27498,"stiffly":27499,"##vus":27500,"##rled":27501,"297":27502,"flawless":27503,"realising":27504,"taboo":27505,"##7th":27506,"bytes":27507,"straightening":27508,"356":27509,"jena":27510,"##hid":27511,"##rmin":27512,"cartwright":27513,"berber":27514,"bertram":27515,"soloists":27516,"411":27517,"noses":27518,"417":27519,"coping":27520,"fission":27521,"hardin":27522,"inca":27523,"##cen":27524,"1717":27525,"mobilized":27526,"vhf":27527,"##raf":27528,"biscuits":27529,"curate":27530,"##85":27531,"##anial":27532,"331":27533,"gaunt":27534,"neighbourhoods":27535,"1540":27536,"##abas":27537,"blanca":27538,"bypassed":27539,"sockets":27540,"behold":27541,"coincidentally":27542,"##bane":27543,"nara":27544,"shave":27545,"splinter":27546,"terrific":27547,"##arion":27548,"##erian":27549,"commonplace":27550,"juris":27551,"redwood":27552,"waistband":27553,"boxed":27554,"caitlin":27555,"fingerprints":27556,"jennie":27557,"naturalized":27558,"##ired":27559,"balfour":27560,"craters":27561,"jody":27562,"bungalow":27563,"hugely":27564,"quilt":27565,"glitter":27566,"pigeons":27567,"undertaker":27568,"bulging":27569,"constrained":27570,"goo":27571,"##sil":27572,"##akh":27573,"assimilation":27574,"reworked":27575,"##person":27576,"persuasion":27577,"##pants":27578,"felicia":27579,"##cliff":27580,"##ulent":27581,"1732":27582,"explodes":27583,"##dun":27584,"##inium":27585,"##zic":27586,"lyman":27587,"vulture":27588,"hog":27589,"overlook":27590,"begs":27591,"northwards":27592,"ow":27593,"spoil":27594,"##urer":27595,"fatima":27596,"favorably":27597,"accumulate":27598,"sargent":27599,"sorority":27600,"corresponded":27601,"dispersal":27602,"kochi":27603,"toned":27604,"##imi":27605,"##lita":27606,"internacional":27607,"newfound":27608,"##agger":27609,"##lynn":27610,"##rigue":27611,"booths":27612,"peanuts":27613,"##eborg":27614,"medicare":27615,"muriel":27616,"nur":27617,"##uram":27618,"crates":27619,"millennia":27620,"pajamas":27621,"worsened":27622,"##breakers":27623,"jimi":27624,"vanuatu":27625,"yawned":27626,"##udeau":27627,"carousel":27628,"##hony":27629,"hurdle":27630,"##ccus":27631,"##mounted":27632,"##pod":27633,"rv":27634,"##eche":27635,"airship":27636,"ambiguity":27637,"compulsion":27638,"recapture":27639,"##claiming":27640,"arthritis":27641,"##osomal":27642,"1667":27643,"asserting":27644,"ngc":27645,"sniffing":27646,"dade":27647,"discontent":27648,"glendale":27649,"ported":27650,"##amina":27651,"defamation":27652,"rammed":27653,"##scent":27654,"fling":27655,"livingstone":27656,"##fleet":27657,"875":27658,"##ppy":27659,"apocalyptic":27660,"comrade":27661,"lcd":27662,"##lowe":27663,"cessna":27664,"eine":27665,"persecuted":27666,"subsistence":27667,"demi":27668,"hoop":27669,"reliefs":27670,"710":27671,"coptic":27672,"progressing":27673,"stemmed":27674,"perpetrators":27675,"1665":27676,"priestess":27677,"##nio":27678,"dobson":27679,"ebony":27680,"rooster":27681,"itf":27682,"tortricidae":27683,"##bbon":27684,"##jian":27685,"cleanup":27686,"##jean":27687,"##øy":27688,"1721":27689,"eighties":27690,"taxonomic":27691,"holiness":27692,"##hearted":27693,"##spar":27694,"antilles":27695,"showcasing":27696,"stabilized":27697,"##nb":27698,"gia":27699,"mascara":27700,"michelangelo":27701,"dawned":27702,"##uria":27703,"##vinsky":27704,"extinguished":27705,"fitz":27706,"grotesque":27707,"£100":27708,"##fera":27709,"##loid":27710,"##mous":27711,"barges":27712,"neue":27713,"throbbed":27714,"cipher":27715,"johnnie":27716,"##a1":27717,"##mpt":27718,"outburst":27719,"##swick":27720,"spearheaded":27721,"administrations":27722,"c1":27723,"heartbreak":27724,"pixels":27725,"pleasantly":27726,"##enay":27727,"lombardy":27728,"plush":27729,"##nsed":27730,"bobbie":27731,"##hly":27732,"reapers":27733,"tremor":27734,"xiang":27735,"minogue":27736,"substantive":27737,"hitch":27738,"barak":27739,"##wyl":27740,"kwan":27741,"##encia":27742,"910":27743,"obscene":27744,"elegance":27745,"indus":27746,"surfer":27747,"bribery":27748,"conserve":27749,"##hyllum":27750,"##masters":27751,"horatio":27752,"##fat":27753,"apes":27754,"rebound":27755,"psychotic":27756,"##pour":27757,"iteration":27758,"##mium":27759,"##vani":27760,"botanic":27761,"horribly":27762,"antiques":27763,"dispose":27764,"paxton":27765,"##hli":27766,"##wg":27767,"timeless":27768,"1704":27769,"disregard":27770,"engraver":27771,"hounds":27772,"##bau":27773,"##version":27774,"looted":27775,"uno":27776,"facilitates":27777,"groans":27778,"masjid":27779,"rutland":27780,"antibody":27781,"disqualification":27782,"decatur":27783,"footballers":27784,"quake":27785,"slacks":27786,"48th":27787,"rein":27788,"scribe":27789,"stabilize":27790,"commits":27791,"exemplary":27792,"tho":27793,"##hort":27794,"##chison":27795,"pantry":27796,"traversed":27797,"##hiti":27798,"disrepair":27799,"identifiable":27800,"vibrated":27801,"baccalaureate":27802,"##nnis":27803,"csa":27804,"interviewing":27805,"##iensis":27806,"##raße":27807,"greaves":27808,"wealthiest":27809,"343":27810,"classed":27811,"jogged":27812,"£5":27813,"##58":27814,"##atal":27815,"illuminating":27816,"knicks":27817,"respecting":27818,"##uno":27819,"scrubbed":27820,"##iji":27821,"##dles":27822,"kruger":27823,"moods":27824,"growls":27825,"raider":27826,"silvia":27827,"chefs":27828,"kam":27829,"vr":27830,"cree":27831,"percival":27832,"##terol":27833,"gunter":27834,"counterattack":27835,"defiant":27836,"henan":27837,"ze":27838,"##rasia":27839,"##riety":27840,"equivalence":27841,"submissions":27842,"##fra":27843,"##thor":27844,"bautista":27845,"mechanically":27846,"##heater":27847,"cornice":27848,"herbal":27849,"templar":27850,"##mering":27851,"outputs":27852,"ruining":27853,"ligand":27854,"renumbered":27855,"extravagant":27856,"mika":27857,"blockbuster":27858,"eta":27859,"insurrection":27860,"##ilia":27861,"darkening":27862,"ferocious":27863,"pianos":27864,"strife":27865,"kinship":27866,"##aer":27867,"melee":27868,"##anor":27869,"##iste":27870,"##may":27871,"##oue":27872,"decidedly":27873,"weep":27874,"##jad":27875,"##missive":27876,"##ppel":27877,"354":27878,"puget":27879,"unease":27880,"##gnant":27881,"1629":27882,"hammering":27883,"kassel":27884,"ob":27885,"wessex":27886,"##lga":27887,"bromwich":27888,"egan":27889,"paranoia":27890,"utilization":27891,"##atable":27892,"##idad":27893,"contradictory":27894,"provoke":27895,"##ols":27896,"##ouring":27897,"##tangled":27898,"knesset":27899,"##very":27900,"##lette":27901,"plumbing":27902,"##sden":27903,"##¹":27904,"greensboro":27905,"occult":27906,"sniff":27907,"338":27908,"zev":27909,"beaming":27910,"gamer":27911,"haggard":27912,"mahal":27913,"##olt":27914,"##pins":27915,"mendes":27916,"utmost":27917,"briefing":27918,"gunnery":27919,"##gut":27920,"##pher":27921,"##zh":27922,"##rok":27923,"1679":27924,"khalifa":27925,"sonya":27926,"##boot":27927,"principals":27928,"urbana":27929,"wiring":27930,"##liffe":27931,"##minating":27932,"##rrado":27933,"dahl":27934,"nyu":27935,"skepticism":27936,"np":27937,"townspeople":27938,"ithaca":27939,"lobster":27940,"somethin":27941,"##fur":27942,"##arina":27943,"##−1":27944,"freighter":27945,"zimmerman":27946,"biceps":27947,"contractual":27948,"##herton":27949,"amend":27950,"hurrying":27951,"subconscious":27952,"##anal":27953,"336":27954,"meng":27955,"clermont":27956,"spawning":27957,"##eia":27958,"##lub":27959,"dignitaries":27960,"impetus":27961,"snacks":27962,"spotting":27963,"twigs":27964,"##bilis":27965,"##cz":27966,"##ouk":27967,"libertadores":27968,"nic":27969,"skylar":27970,"##aina":27971,"##firm":27972,"gustave":27973,"asean":27974,"##anum":27975,"dieter":27976,"legislatures":27977,"flirt":27978,"bromley":27979,"trolls":27980,"umar":27981,"##bbies":27982,"##tyle":27983,"blah":27984,"parc":27985,"bridgeport":27986,"crank":27987,"negligence":27988,"##nction":27989,"46th":27990,"constantin":27991,"molded":27992,"bandages":27993,"seriousness":27994,"00pm":27995,"siegel":27996,"carpets":27997,"compartments":27998,"upbeat":27999,"statehood":28000,"##dner":28001,"##edging":28002,"marko":28003,"730":28004,"platt":28005,"##hane":28006,"paving":28007,"##iy":28008,"1738":28009,"abbess":28010,"impatience":28011,"limousine":28012,"nbl":28013,"##talk":28014,"441":28015,"lucille":28016,"mojo":28017,"nightfall":28018,"robbers":28019,"##nais":28020,"karel":28021,"brisk":28022,"calves":28023,"replicate":28024,"ascribed":28025,"telescopes":28026,"##olf":28027,"intimidated":28028,"##reen":28029,"ballast":28030,"specialization":28031,"##sit":28032,"aerodynamic":28033,"caliphate":28034,"rainer":28035,"visionary":28036,"##arded":28037,"epsilon":28038,"##aday":28039,"##onte":28040,"aggregation":28041,"auditory":28042,"boosted":28043,"reunification":28044,"kathmandu":28045,"loco":28046,"robyn":28047,"402":28048,"acknowledges":28049,"appointing":28050,"humanoid":28051,"newell":28052,"redeveloped":28053,"restraints":28054,"##tained":28055,"barbarians":28056,"chopper":28057,"1609":28058,"italiana":28059,"##lez":28060,"##lho":28061,"investigates":28062,"wrestlemania":28063,"##anies":28064,"##bib":28065,"690":28066,"##falls":28067,"creaked":28068,"dragoons":28069,"gravely":28070,"minions":28071,"stupidity":28072,"volley":28073,"##harat":28074,"##week":28075,"musik":28076,"##eries":28077,"##uously":28078,"fungal":28079,"massimo":28080,"semantics":28081,"malvern":28082,"##ahl":28083,"##pee":28084,"discourage":28085,"embryo":28086,"imperialism":28087,"1910s":28088,"profoundly":28089,"##ddled":28090,"jiangsu":28091,"sparkled":28092,"stat":28093,"##holz":28094,"sweatshirt":28095,"tobin":28096,"##iction":28097,"sneered":28098,"##cheon":28099,"##oit":28100,"brit":28101,"causal":28102,"smyth":28103,"##neuve":28104,"diffuse":28105,"perrin":28106,"silvio":28107,"##ipes":28108,"##recht":28109,"detonated":28110,"iqbal":28111,"selma":28112,"##nism":28113,"##zumi":28114,"roasted":28115,"##riders":28116,"tay":28117,"##ados":28118,"##mament":28119,"##mut":28120,"##rud":28121,"840":28122,"completes":28123,"nipples":28124,"cfa":28125,"flavour":28126,"hirsch":28127,"##laus":28128,"calderon":28129,"sneakers":28130,"moravian":28131,"##ksha":28132,"1622":28133,"rq":28134,"294":28135,"##imeters":28136,"bodo":28137,"##isance":28138,"##pre":28139,"##ronia":28140,"anatomical":28141,"excerpt":28142,"##lke":28143,"dh":28144,"kunst":28145,"##tablished":28146,"##scoe":28147,"biomass":28148,"panted":28149,"unharmed":28150,"gael":28151,"housemates":28152,"montpellier":28153,"##59":28154,"coa":28155,"rodents":28156,"tonic":28157,"hickory":28158,"singleton":28159,"##taro":28160,"451":28161,"1719":28162,"aldo":28163,"breaststroke":28164,"dempsey":28165,"och":28166,"rocco":28167,"##cuit":28168,"merton":28169,"dissemination":28170,"midsummer":28171,"serials":28172,"##idi":28173,"haji":28174,"polynomials":28175,"##rdon":28176,"gs":28177,"enoch":28178,"prematurely":28179,"shutter":28180,"taunton":28181,"£3":28182,"##grating":28183,"##inates":28184,"archangel":28185,"harassed":28186,"##asco":28187,"326":28188,"archway":28189,"dazzling":28190,"##ecin":28191,"1736":28192,"sumo":28193,"wat":28194,"##kovich":28195,"1086":28196,"honneur":28197,"##ently":28198,"##nostic":28199,"##ttal":28200,"##idon":28201,"1605":28202,"403":28203,"1716":28204,"blogger":28205,"rents":28206,"##gnan":28207,"hires":28208,"##ikh":28209,"##dant":28210,"howie":28211,"##rons":28212,"handler":28213,"retracted":28214,"shocks":28215,"1632":28216,"arun":28217,"duluth":28218,"kepler":28219,"trumpeter":28220,"##lary":28221,"peeking":28222,"seasoned":28223,"trooper":28224,"##mara":28225,"laszlo":28226,"##iciencies":28227,"##rti":28228,"heterosexual":28229,"##inatory":28230,"##ssion":28231,"indira":28232,"jogging":28233,"##inga":28234,"##lism":28235,"beit":28236,"dissatisfaction":28237,"malice":28238,"##ately":28239,"nedra":28240,"peeling":28241,"##rgeon":28242,"47th":28243,"stadiums":28244,"475":28245,"vertigo":28246,"##ains":28247,"iced":28248,"restroom":28249,"##plify":28250,"##tub":28251,"illustrating":28252,"pear":28253,"##chner":28254,"##sibility":28255,"inorganic":28256,"rappers":28257,"receipts":28258,"watery":28259,"##kura":28260,"lucinda":28261,"##oulos":28262,"reintroduced":28263,"##8th":28264,"##tched":28265,"gracefully":28266,"saxons":28267,"nutritional":28268,"wastewater":28269,"rained":28270,"favourites":28271,"bedrock":28272,"fisted":28273,"hallways":28274,"likeness":28275,"upscale":28276,"##lateral":28277,"1580":28278,"blinds":28279,"prequel":28280,"##pps":28281,"##tama":28282,"deter":28283,"humiliating":28284,"restraining":28285,"tn":28286,"vents":28287,"1659":28288,"laundering":28289,"recess":28290,"rosary":28291,"tractors":28292,"coulter":28293,"federer":28294,"##ifiers":28295,"##plin":28296,"persistence":28297,"##quitable":28298,"geschichte":28299,"pendulum":28300,"quakers":28301,"##beam":28302,"bassett":28303,"pictorial":28304,"buffet":28305,"koln":28306,"##sitor":28307,"drills":28308,"reciprocal":28309,"shooters":28310,"##57":28311,"##cton":28312,"##tees":28313,"converge":28314,"pip":28315,"dmitri":28316,"donnelly":28317,"yamamoto":28318,"aqua":28319,"azores":28320,"demographics":28321,"hypnotic":28322,"spitfire":28323,"suspend":28324,"wryly":28325,"roderick":28326,"##rran":28327,"sebastien":28328,"##asurable":28329,"mavericks":28330,"##fles":28331,"##200":28332,"himalayan":28333,"prodigy":28334,"##iance":28335,"transvaal":28336,"demonstrators":28337,"handcuffs":28338,"dodged":28339,"mcnamara":28340,"sublime":28341,"1726":28342,"crazed":28343,"##efined":28344,"##till":28345,"ivo":28346,"pondered":28347,"reconciled":28348,"shrill":28349,"sava":28350,"##duk":28351,"bal":28352,"cad":28353,"heresy":28354,"jaipur":28355,"goran":28356,"##nished":28357,"341":28358,"lux":28359,"shelly":28360,"whitehall":28361,"##hre":28362,"israelis":28363,"peacekeeping":28364,"##wled":28365,"1703":28366,"demetrius":28367,"ousted":28368,"##arians":28369,"##zos":28370,"beale":28371,"anwar":28372,"backstroke":28373,"raged":28374,"shrinking":28375,"cremated":28376,"##yck":28377,"benign":28378,"towing":28379,"wadi":28380,"darmstadt":28381,"landfill":28382,"parana":28383,"soothe":28384,"colleen":28385,"sidewalks":28386,"mayfair":28387,"tumble":28388,"hepatitis":28389,"ferrer":28390,"superstructure":28391,"##gingly":28392,"##urse":28393,"##wee":28394,"anthropological":28395,"translators":28396,"##mies":28397,"closeness":28398,"hooves":28399,"##pw":28400,"mondays":28401,"##roll":28402,"##vita":28403,"landscaping":28404,"##urized":28405,"purification":28406,"sock":28407,"thorns":28408,"thwarted":28409,"jalan":28410,"tiberius":28411,"##taka":28412,"saline":28413,"##rito":28414,"confidently":28415,"khyber":28416,"sculptors":28417,"##ij":28418,"brahms":28419,"hammersmith":28420,"inspectors":28421,"battista":28422,"fivb":28423,"fragmentation":28424,"hackney":28425,"##uls":28426,"arresting":28427,"exercising":28428,"antoinette":28429,"bedfordshire":28430,"##zily":28431,"dyed":28432,"##hema":28433,"1656":28434,"racetrack":28435,"variability":28436,"##tique":28437,"1655":28438,"austrians":28439,"deteriorating":28440,"madman":28441,"theorists":28442,"aix":28443,"lehman":28444,"weathered":28445,"1731":28446,"decreed":28447,"eruptions":28448,"1729":28449,"flaw":28450,"quinlan":28451,"sorbonne":28452,"flutes":28453,"nunez":28454,"1711":28455,"adored":28456,"downwards":28457,"fable":28458,"rasped":28459,"1712":28460,"moritz":28461,"mouthful":28462,"renegade":28463,"shivers":28464,"stunts":28465,"dysfunction":28466,"restrain":28467,"translit":28468,"327":28469,"pancakes":28470,"##avio":28471,"##cision":28472,"##tray":28473,"351":28474,"vial":28475,"##lden":28476,"bain":28477,"##maid":28478,"##oxide":28479,"chihuahua":28480,"malacca":28481,"vimes":28482,"##rba":28483,"##rnier":28484,"1664":28485,"donnie":28486,"plaques":28487,"##ually":28488,"337":28489,"bangs":28490,"floppy":28491,"huntsville":28492,"loretta":28493,"nikolay":28494,"##otte":28495,"eater":28496,"handgun":28497,"ubiquitous":28498,"##hett":28499,"eras":28500,"zodiac":28501,"1634":28502,"##omorphic":28503,"1820s":28504,"##zog":28505,"cochran":28506,"##bula":28507,"##lithic":28508,"warring":28509,"##rada":28510,"dalai":28511,"excused":28512,"blazers":28513,"mcconnell":28514,"reeling":28515,"bot":28516,"este":28517,"##abi":28518,"geese":28519,"hoax":28520,"taxon":28521,"##bla":28522,"guitarists":28523,"##icon":28524,"condemning":28525,"hunts":28526,"inversion":28527,"moffat":28528,"taekwondo":28529,"##lvis":28530,"1624":28531,"stammered":28532,"##rest":28533,"##rzy":28534,"sousa":28535,"fundraiser":28536,"marylebone":28537,"navigable":28538,"uptown":28539,"cabbage":28540,"daniela":28541,"salman":28542,"shitty":28543,"whimper":28544,"##kian":28545,"##utive":28546,"programmers":28547,"protections":28548,"rm":28549,"##rmi":28550,"##rued":28551,"forceful":28552,"##enes":28553,"fuss":28554,"##tao":28555,"##wash":28556,"brat":28557,"oppressive":28558,"reykjavik":28559,"spartak":28560,"ticking":28561,"##inkles":28562,"##kiewicz":28563,"adolph":28564,"horst":28565,"maui":28566,"protege":28567,"straighten":28568,"cpc":28569,"landau":28570,"concourse":28571,"clements":28572,"resultant":28573,"##ando":28574,"imaginative":28575,"joo":28576,"reactivated":28577,"##rem":28578,"##ffled":28579,"##uising":28580,"consultative":28581,"##guide":28582,"flop":28583,"kaitlyn":28584,"mergers":28585,"parenting":28586,"somber":28587,"##vron":28588,"supervise":28589,"vidhan":28590,"##imum":28591,"courtship":28592,"exemplified":28593,"harmonies":28594,"medallist":28595,"refining":28596,"##rrow":28597,"##ка":28598,"amara":28599,"##hum":28600,"780":28601,"goalscorer":28602,"sited":28603,"overshadowed":28604,"rohan":28605,"displeasure":28606,"secretive":28607,"multiplied":28608,"osman":28609,"##orth":28610,"engravings":28611,"padre":28612,"##kali":28613,"##veda":28614,"miniatures":28615,"mis":28616,"##yala":28617,"clap":28618,"pali":28619,"rook":28620,"##cana":28621,"1692":28622,"57th":28623,"antennae":28624,"astro":28625,"oskar":28626,"1628":28627,"bulldog":28628,"crotch":28629,"hackett":28630,"yucatan":28631,"##sure":28632,"amplifiers":28633,"brno":28634,"ferrara":28635,"migrating":28636,"##gree":28637,"thanking":28638,"turing":28639,"##eza":28640,"mccann":28641,"ting":28642,"andersson":28643,"onslaught":28644,"gaines":28645,"ganga":28646,"incense":28647,"standardization":28648,"##mation":28649,"sentai":28650,"scuba":28651,"stuffing":28652,"turquoise":28653,"waivers":28654,"alloys":28655,"##vitt":28656,"regaining":28657,"vaults":28658,"##clops":28659,"##gizing":28660,"digger":28661,"furry":28662,"memorabilia":28663,"probing":28664,"##iad":28665,"payton":28666,"rec":28667,"deutschland":28668,"filippo":28669,"opaque":28670,"seamen":28671,"zenith":28672,"afrikaans":28673,"##filtration":28674,"disciplined":28675,"inspirational":28676,"##merie":28677,"banco":28678,"confuse":28679,"grafton":28680,"tod":28681,"##dgets":28682,"championed":28683,"simi":28684,"anomaly":28685,"biplane":28686,"##ceptive":28687,"electrode":28688,"##para":28689,"1697":28690,"cleavage":28691,"crossbow":28692,"swirl":28693,"informant":28694,"##lars":28695,"##osta":28696,"afi":28697,"bonfire":28698,"spec":28699,"##oux":28700,"lakeside":28701,"slump":28702,"##culus":28703,"##lais":28704,"##qvist":28705,"##rrigan":28706,"1016":28707,"facades":28708,"borg":28709,"inwardly":28710,"cervical":28711,"xl":28712,"pointedly":28713,"050":28714,"stabilization":28715,"##odon":28716,"chests":28717,"1699":28718,"hacked":28719,"ctv":28720,"orthogonal":28721,"suzy":28722,"##lastic":28723,"gaulle":28724,"jacobite":28725,"rearview":28726,"##cam":28727,"##erted":28728,"ashby":28729,"##drik":28730,"##igate":28731,"##mise":28732,"##zbek":28733,"affectionately":28734,"canine":28735,"disperse":28736,"latham":28737,"##istles":28738,"##ivar":28739,"spielberg":28740,"##orin":28741,"##idium":28742,"ezekiel":28743,"cid":28744,"##sg":28745,"durga":28746,"middletown":28747,"##cina":28748,"customized":28749,"frontiers":28750,"harden":28751,"##etano":28752,"##zzy":28753,"1604":28754,"bolsheviks":28755,"##66":28756,"coloration":28757,"yoko":28758,"##bedo":28759,"briefs":28760,"slabs":28761,"debra":28762,"liquidation":28763,"plumage":28764,"##oin":28765,"blossoms":28766,"dementia":28767,"subsidy":28768,"1611":28769,"proctor":28770,"relational":28771,"jerseys":28772,"parochial":28773,"ter":28774,"##ici":28775,"esa":28776,"peshawar":28777,"cavalier":28778,"loren":28779,"cpi":28780,"idiots":28781,"shamrock":28782,"1646":28783,"dutton":28784,"malabar":28785,"mustache":28786,"##endez":28787,"##ocytes":28788,"referencing":28789,"terminates":28790,"marche":28791,"yarmouth":28792,"##sop":28793,"acton":28794,"mated":28795,"seton":28796,"subtly":28797,"baptised":28798,"beige":28799,"extremes":28800,"jolted":28801,"kristina":28802,"telecast":28803,"##actic":28804,"safeguard":28805,"waldo":28806,"##baldi":28807,"##bular":28808,"endeavors":28809,"sloppy":28810,"subterranean":28811,"##ensburg":28812,"##itung":28813,"delicately":28814,"pigment":28815,"tq":28816,"##scu":28817,"1626":28818,"##ound":28819,"collisions":28820,"coveted":28821,"herds":28822,"##personal":28823,"##meister":28824,"##nberger":28825,"chopra":28826,"##ricting":28827,"abnormalities":28828,"defective":28829,"galician":28830,"lucie":28831,"##dilly":28832,"alligator":28833,"likened":28834,"##genase":28835,"burundi":28836,"clears":28837,"complexion":28838,"derelict":28839,"deafening":28840,"diablo":28841,"fingered":28842,"champaign":28843,"dogg":28844,"enlist":28845,"isotope":28846,"labeling":28847,"mrna":28848,"##erre":28849,"brilliance":28850,"marvelous":28851,"##ayo":28852,"1652":28853,"crawley":28854,"ether":28855,"footed":28856,"dwellers":28857,"deserts":28858,"hamish":28859,"rubs":28860,"warlock":28861,"skimmed":28862,"##lizer":28863,"870":28864,"buick":28865,"embark":28866,"heraldic":28867,"irregularities":28868,"##ajan":28869,"kiara":28870,"##kulam":28871,"##ieg":28872,"antigen":28873,"kowalski":28874,"##lge":28875,"oakley":28876,"visitation":28877,"##mbit":28878,"vt":28879,"##suit":28880,"1570":28881,"murderers":28882,"##miento":28883,"##rites":28884,"chimneys":28885,"##sling":28886,"condemn":28887,"custer":28888,"exchequer":28889,"havre":28890,"##ghi":28891,"fluctuations":28892,"##rations":28893,"dfb":28894,"hendricks":28895,"vaccines":28896,"##tarian":28897,"nietzsche":28898,"biking":28899,"juicy":28900,"##duced":28901,"brooding":28902,"scrolling":28903,"selangor":28904,"##ragan":28905,"352":28906,"annum":28907,"boomed":28908,"seminole":28909,"sugarcane":28910,"##dna":28911,"departmental":28912,"dismissing":28913,"innsbruck":28914,"arteries":28915,"ashok":28916,"batavia":28917,"daze":28918,"kun":28919,"overtook":28920,"##rga":28921,"##tlan":28922,"beheaded":28923,"gaddafi":28924,"holm":28925,"electronically":28926,"faulty":28927,"galilee":28928,"fractures":28929,"kobayashi":28930,"##lized":28931,"gunmen":28932,"magma":28933,"aramaic":28934,"mala":28935,"eastenders":28936,"inference":28937,"messengers":28938,"bf":28939,"##qu":28940,"407":28941,"bathrooms":28942,"##vere":28943,"1658":28944,"flashbacks":28945,"ideally":28946,"misunderstood":28947,"##jali":28948,"##weather":28949,"mendez":28950,"##grounds":28951,"505":28952,"uncanny":28953,"##iii":28954,"1709":28955,"friendships":28956,"##nbc":28957,"sacrament":28958,"accommodated":28959,"reiterated":28960,"logistical":28961,"pebbles":28962,"thumped":28963,"##escence":28964,"administering":28965,"decrees":28966,"drafts":28967,"##flight":28968,"##cased":28969,"##tula":28970,"futuristic":28971,"picket":28972,"intimidation":28973,"winthrop":28974,"##fahan":28975,"interfered":28976,"339":28977,"afar":28978,"francoise":28979,"morally":28980,"uta":28981,"cochin":28982,"croft":28983,"dwarfs":28984,"##bruck":28985,"##dents":28986,"##nami":28987,"biker":28988,"##hner":28989,"##meral":28990,"nano":28991,"##isen":28992,"##ometric":28993,"##pres":28994,"##ан":28995,"brightened":28996,"meek":28997,"parcels":28998,"securely":28999,"gunners":29000,"##jhl":29001,"##zko":29002,"agile":29003,"hysteria":29004,"##lten":29005,"##rcus":29006,"bukit":29007,"champs":29008,"chevy":29009,"cuckoo":29010,"leith":29011,"sadler":29012,"theologians":29013,"welded":29014,"##section":29015,"1663":29016,"jj":29017,"plurality":29018,"xander":29019,"##rooms":29020,"##formed":29021,"shredded":29022,"temps":29023,"intimately":29024,"pau":29025,"tormented":29026,"##lok":29027,"##stellar":29028,"1618":29029,"charred":29030,"ems":29031,"essen":29032,"##mmel":29033,"alarms":29034,"spraying":29035,"ascot":29036,"blooms":29037,"twinkle":29038,"##abia":29039,"##apes":29040,"internment":29041,"obsidian":29042,"##chaft":29043,"snoop":29044,"##dav":29045,"##ooping":29046,"malibu":29047,"##tension":29048,"quiver":29049,"##itia":29050,"hays":29051,"mcintosh":29052,"travers":29053,"walsall":29054,"##ffie":29055,"1623":29056,"beverley":29057,"schwarz":29058,"plunging":29059,"structurally":29060,"m3":29061,"rosenthal":29062,"vikram":29063,"##tsk":29064,"770":29065,"ghz":29066,"##onda":29067,"##tiv":29068,"chalmers":29069,"groningen":29070,"pew":29071,"reckon":29072,"unicef":29073,"##rvis":29074,"55th":29075,"##gni":29076,"1651":29077,"sulawesi":29078,"avila":29079,"cai":29080,"metaphysical":29081,"screwing":29082,"turbulence":29083,"##mberg":29084,"augusto":29085,"samba":29086,"56th":29087,"baffled":29088,"momentary":29089,"toxin":29090,"##urian":29091,"##wani":29092,"aachen":29093,"condoms":29094,"dali":29095,"steppe":29096,"##3d":29097,"##app":29098,"##oed":29099,"##year":29100,"adolescence":29101,"dauphin":29102,"electrically":29103,"inaccessible":29104,"microscopy":29105,"nikita":29106,"##ega":29107,"atv":29108,"##cel":29109,"##enter":29110,"##oles":29111,"##oteric":29112,"##ы":29113,"accountants":29114,"punishments":29115,"wrongly":29116,"bribes":29117,"adventurous":29118,"clinch":29119,"flinders":29120,"southland":29121,"##hem":29122,"##kata":29123,"gough":29124,"##ciency":29125,"lads":29126,"soared":29127,"##ה":29128,"undergoes":29129,"deformation":29130,"outlawed":29131,"rubbish":29132,"##arus":29133,"##mussen":29134,"##nidae":29135,"##rzburg":29136,"arcs":29137,"##ingdon":29138,"##tituted":29139,"1695":29140,"wheelbase":29141,"wheeling":29142,"bombardier":29143,"campground":29144,"zebra":29145,"##lices":29146,"##oj":29147,"##bain":29148,"lullaby":29149,"##ecure":29150,"donetsk":29151,"wylie":29152,"grenada":29153,"##arding":29154,"##ης":29155,"squinting":29156,"eireann":29157,"opposes":29158,"##andra":29159,"maximal":29160,"runes":29161,"##broken":29162,"##cuting":29163,"##iface":29164,"##ror":29165,"##rosis":29166,"additive":29167,"britney":29168,"adultery":29169,"triggering":29170,"##drome":29171,"detrimental":29172,"aarhus":29173,"containment":29174,"jc":29175,"swapped":29176,"vichy":29177,"##ioms":29178,"madly":29179,"##oric":29180,"##rag":29181,"brant":29182,"##ckey":29183,"##trix":29184,"1560":29185,"1612":29186,"broughton":29187,"rustling":29188,"##stems":29189,"##uder":29190,"asbestos":29191,"mentoring":29192,"##nivorous":29193,"finley":29194,"leaps":29195,"##isan":29196,"apical":29197,"pry":29198,"slits":29199,"substitutes":29200,"##dict":29201,"intuitive":29202,"fantasia":29203,"insistent":29204,"unreasonable":29205,"##igen":29206,"##vna":29207,"domed":29208,"hannover":29209,"margot":29210,"ponder":29211,"##zziness":29212,"impromptu":29213,"jian":29214,"lc":29215,"rampage":29216,"stemming":29217,"##eft":29218,"andrey":29219,"gerais":29220,"whichever":29221,"amnesia":29222,"appropriated":29223,"anzac":29224,"clicks":29225,"modifying":29226,"ultimatum":29227,"cambrian":29228,"maids":29229,"verve":29230,"yellowstone":29231,"##mbs":29232,"conservatoire":29233,"##scribe":29234,"adherence":29235,"dinners":29236,"spectra":29237,"imperfect":29238,"mysteriously":29239,"sidekick":29240,"tatar":29241,"tuba":29242,"##aks":29243,"##ifolia":29244,"distrust":29245,"##athan":29246,"##zle":29247,"c2":29248,"ronin":29249,"zac":29250,"##pse":29251,"celaena":29252,"instrumentalist":29253,"scents":29254,"skopje":29255,"##mbling":29256,"comical":29257,"compensated":29258,"vidal":29259,"condor":29260,"intersect":29261,"jingle":29262,"wavelengths":29263,"##urrent":29264,"mcqueen":29265,"##izzly":29266,"carp":29267,"weasel":29268,"422":29269,"kanye":29270,"militias":29271,"postdoctoral":29272,"eugen":29273,"gunslinger":29274,"##ɛ":29275,"faux":29276,"hospice":29277,"##for":29278,"appalled":29279,"derivation":29280,"dwarves":29281,"##elis":29282,"dilapidated":29283,"##folk":29284,"astoria":29285,"philology":29286,"##lwyn":29287,"##otho":29288,"##saka":29289,"inducing":29290,"philanthropy":29291,"##bf":29292,"##itative":29293,"geek":29294,"markedly":29295,"sql":29296,"##yce":29297,"bessie":29298,"indices":29299,"rn":29300,"##flict":29301,"495":29302,"frowns":29303,"resolving":29304,"weightlifting":29305,"tugs":29306,"cleric":29307,"contentious":29308,"1653":29309,"mania":29310,"rms":29311,"##miya":29312,"##reate":29313,"##ruck":29314,"##tucket":29315,"bien":29316,"eels":29317,"marek":29318,"##ayton":29319,"##cence":29320,"discreet":29321,"unofficially":29322,"##ife":29323,"leaks":29324,"##bber":29325,"1705":29326,"332":29327,"dung":29328,"compressor":29329,"hillsborough":29330,"pandit":29331,"shillings":29332,"distal":29333,"##skin":29334,"381":29335,"##tat":29336,"##you":29337,"nosed":29338,"##nir":29339,"mangrove":29340,"undeveloped":29341,"##idia":29342,"textures":29343,"##inho":29344,"##500":29345,"##rise":29346,"ae":29347,"irritating":29348,"nay":29349,"amazingly":29350,"bancroft":29351,"apologetic":29352,"compassionate":29353,"kata":29354,"symphonies":29355,"##lovic":29356,"airspace":29357,"##lch":29358,"930":29359,"gifford":29360,"precautions":29361,"fulfillment":29362,"sevilla":29363,"vulgar":29364,"martinique":29365,"##urities":29366,"looting":29367,"piccolo":29368,"tidy":29369,"##dermott":29370,"quadrant":29371,"armchair":29372,"incomes":29373,"mathematicians":29374,"stampede":29375,"nilsson":29376,"##inking":29377,"##scan":29378,"foo":29379,"quarterfinal":29380,"##ostal":29381,"shang":29382,"shouldered":29383,"squirrels":29384,"##owe":29385,"344":29386,"vinegar":29387,"##bner":29388,"##rchy":29389,"##systems":29390,"delaying":29391,"##trics":29392,"ars":29393,"dwyer":29394,"rhapsody":29395,"sponsoring":29396,"##gration":29397,"bipolar":29398,"cinder":29399,"starters":29400,"##olio":29401,"##urst":29402,"421":29403,"signage":29404,"##nty":29405,"aground":29406,"figurative":29407,"mons":29408,"acquaintances":29409,"duets":29410,"erroneously":29411,"soyuz":29412,"elliptic":29413,"recreated":29414,"##cultural":29415,"##quette":29416,"##ssed":29417,"##tma":29418,"##zcz":29419,"moderator":29420,"scares":29421,"##itaire":29422,"##stones":29423,"##udence":29424,"juniper":29425,"sighting":29426,"##just":29427,"##nsen":29428,"britten":29429,"calabria":29430,"ry":29431,"bop":29432,"cramer":29433,"forsyth":29434,"stillness":29435,"##л":29436,"airmen":29437,"gathers":29438,"unfit":29439,"##umber":29440,"##upt":29441,"taunting":29442,"##rip":29443,"seeker":29444,"streamlined":29445,"##bution":29446,"holster":29447,"schumann":29448,"tread":29449,"vox":29450,"##gano":29451,"##onzo":29452,"strive":29453,"dil":29454,"reforming":29455,"covent":29456,"newbury":29457,"predicting":29458,"##orro":29459,"decorate":29460,"tre":29461,"##puted":29462,"andover":29463,"ie":29464,"asahi":29465,"dept":29466,"dunkirk":29467,"gills":29468,"##tori":29469,"buren":29470,"huskies":29471,"##stis":29472,"##stov":29473,"abstracts":29474,"bets":29475,"loosen":29476,"##opa":29477,"1682":29478,"yearning":29479,"##glio":29480,"##sir":29481,"berman":29482,"effortlessly":29483,"enamel":29484,"napoli":29485,"persist":29486,"##peration":29487,"##uez":29488,"attache":29489,"elisa":29490,"b1":29491,"invitations":29492,"##kic":29493,"accelerating":29494,"reindeer":29495,"boardwalk":29496,"clutches":29497,"nelly":29498,"polka":29499,"starbucks":29500,"##kei":29501,"adamant":29502,"huey":29503,"lough":29504,"unbroken":29505,"adventurer":29506,"embroidery":29507,"inspecting":29508,"stanza":29509,"##ducted":29510,"naia":29511,"taluka":29512,"##pone":29513,"##roids":29514,"chases":29515,"deprivation":29516,"florian":29517,"##jing":29518,"##ppet":29519,"earthly":29520,"##lib":29521,"##ssee":29522,"colossal":29523,"foreigner":29524,"vet":29525,"freaks":29526,"patrice":29527,"rosewood":29528,"triassic":29529,"upstate":29530,"##pkins":29531,"dominates":29532,"ata":29533,"chants":29534,"ks":29535,"vo":29536,"##400":29537,"##bley":29538,"##raya":29539,"##rmed":29540,"555":29541,"agra":29542,"infiltrate":29543,"##ailing":29544,"##ilation":29545,"##tzer":29546,"##uppe":29547,"##werk":29548,"binoculars":29549,"enthusiast":29550,"fujian":29551,"squeak":29552,"##avs":29553,"abolitionist":29554,"almeida":29555,"boredom":29556,"hampstead":29557,"marsden":29558,"rations":29559,"##ands":29560,"inflated":29561,"334":29562,"bonuses":29563,"rosalie":29564,"patna":29565,"##rco":29566,"329":29567,"detachments":29568,"penitentiary":29569,"54th":29570,"flourishing":29571,"woolf":29572,"##dion":29573,"##etched":29574,"papyrus":29575,"##lster":29576,"##nsor":29577,"##toy":29578,"bobbed":29579,"dismounted":29580,"endelle":29581,"inhuman":29582,"motorola":29583,"tbs":29584,"wince":29585,"wreath":29586,"##ticus":29587,"hideout":29588,"inspections":29589,"sanjay":29590,"disgrace":29591,"infused":29592,"pudding":29593,"stalks":29594,"##urbed":29595,"arsenic":29596,"leases":29597,"##hyl":29598,"##rrard":29599,"collarbone":29600,"##waite":29601,"##wil":29602,"dowry":29603,"##bant":29604,"##edance":29605,"genealogical":29606,"nitrate":29607,"salamanca":29608,"scandals":29609,"thyroid":29610,"necessitated":29611,"##!":29612,"##\"":29613,"###":29614,"##$":29615,"##%":29616,"##&":29617,"##'":29618,"##(":29619,"##)":29620,"##*":29621,"##+":29622,"##,":29623,"##-":29624,"##.":29625,"##/":29626,"##:":29627,"##;":29628,"##<":29629,"##=":29630,"##>":29631,"##?":29632,"##@":29633,"##[":29634,"##\\":29635,"##]":29636,"##^":29637,"##_":29638,"##`":29639,"##{":29640,"##|":29641,"##}":29642,"##~":29643,"##¡":29644,"##¢":29645,"##£":29646,"##¤":29647,"##¥":29648,"##¦":29649,"##§":29650,"##¨":29651,"##©":29652,"##ª":29653,"##«":29654,"##¬":29655,"##®":29656,"##±":29657,"##´":29658,"##µ":29659,"##¶":29660,"##·":29661,"##º":29662,"##»":29663,"##¼":29664,"##¾":29665,"##¿":29666,"##æ":29667,"##ð":29668,"##÷":29669,"##þ":29670,"##đ":29671,"##ħ":29672,"##ŋ":29673,"##œ":29674,"##ƒ":29675,"##ɐ":29676,"##ɑ":29677,"##ɒ":29678,"##ɔ":29679,"##ɕ":29680,"##ə":29681,"##ɡ":29682,"##ɣ":29683,"##ɨ":29684,"##ɪ":29685,"##ɫ":29686,"##ɬ":29687,"##ɯ":29688,"##ɲ":29689,"##ɴ":29690,"##ɹ":29691,"##ɾ":29692,"##ʀ":29693,"##ʁ":29694,"##ʂ":29695,"##ʃ":29696,"##ʉ":29697,"##ʊ":29698,"##ʋ":29699,"##ʌ":29700,"##ʎ":29701,"##ʐ":29702,"##ʑ":29703,"##ʒ":29704,"##ʔ":29705,"##ʰ":29706,"##ʲ":29707,"##ʳ":29708,"##ʷ":29709,"##ʸ":29710,"##ʻ":29711,"##ʼ":29712,"##ʾ":29713,"##ʿ":29714,"##ˈ":29715,"##ˡ":29716,"##ˢ":29717,"##ˣ":29718,"##ˤ":29719,"##β":29720,"##γ":29721,"##δ":29722,"##ε":29723,"##ζ":29724,"##θ":29725,"##κ":29726,"##λ":29727,"##μ":29728,"##ξ":29729,"##ο":29730,"##π":29731,"##ρ":29732,"##σ":29733,"##τ":29734,"##υ":29735,"##φ":29736,"##χ":29737,"##ψ":29738,"##ω":29739,"##б":29740,"##г":29741,"##д":29742,"##ж":29743,"##з":29744,"##м":29745,"##п":29746,"##с":29747,"##у":29748,"##ф":29749,"##х":29750,"##ц":29751,"##ч":29752,"##ш":29753,"##щ":29754,"##ъ":29755,"##э":29756,"##ю":29757,"##ђ":29758,"##є":29759,"##і":29760,"##ј":29761,"##љ":29762,"##њ":29763,"##ћ":29764,"##ӏ":29765,"##ա":29766,"##բ":29767,"##գ":29768,"##դ":29769,"##ե":29770,"##թ":29771,"##ի":29772,"##լ":29773,"##կ":29774,"##հ":29775,"##մ":29776,"##յ":29777,"##ն":29778,"##ո":29779,"##պ":29780,"##ս":29781,"##վ":29782,"##տ":29783,"##ր":29784,"##ւ":29785,"##ք":29786,"##־":29787,"##א":29788,"##ב":29789,"##ג":29790,"##ד":29791,"##ו":29792,"##ז":29793,"##ח":29794,"##ט":29795,"##י":29796,"##ך":29797,"##כ":29798,"##ל":29799,"##ם":29800,"##מ":29801,"##ן":29802,"##נ":29803,"##ס":29804,"##ע":29805,"##ף":29806,"##פ":29807,"##ץ":29808,"##צ":29809,"##ק":29810,"##ר":29811,"##ש":29812,"##ת":29813,"##،":29814,"##ء":29815,"##ب":29816,"##ت":29817,"##ث":29818,"##ج":29819,"##ح":29820,"##خ":29821,"##ذ":29822,"##ز":29823,"##س":29824,"##ش":29825,"##ص":29826,"##ض":29827,"##ط":29828,"##ظ":29829,"##ع":29830,"##غ":29831,"##ـ":29832,"##ف":29833,"##ق":29834,"##ك":29835,"##و":29836,"##ى":29837,"##ٹ":29838,"##پ":29839,"##چ":29840,"##ک":29841,"##گ":29842,"##ں":29843,"##ھ":29844,"##ہ":29845,"##ے":29846,"##अ":29847,"##आ":29848,"##उ":29849,"##ए":29850,"##क":29851,"##ख":29852,"##ग":29853,"##च":29854,"##ज":29855,"##ट":29856,"##ड":29857,"##ण":29858,"##त":29859,"##थ":29860,"##द":29861,"##ध":29862,"##न":29863,"##प":29864,"##ब":29865,"##भ":29866,"##म":29867,"##य":29868,"##र":29869,"##ल":29870,"##व":29871,"##श":29872,"##ष":29873,"##स":29874,"##ह":29875,"##ा":29876,"##ि":29877,"##ी":29878,"##ो":29879,"##।":29880,"##॥":29881,"##ং":29882,"##অ":29883,"##আ":29884,"##ই":29885,"##উ":29886,"##এ":29887,"##ও":29888,"##ক":29889,"##খ":29890,"##গ":29891,"##চ":29892,"##ছ":29893,"##জ":29894,"##ট":29895,"##ড":29896,"##ণ":29897,"##ত":29898,"##থ":29899,"##দ":29900,"##ধ":29901,"##ন":29902,"##প":29903,"##ব":29904,"##ভ":29905,"##ম":29906,"##য":29907,"##র":29908,"##ল":29909,"##শ":29910,"##ষ":29911,"##স":29912,"##হ":29913,"##া":29914,"##ি":29915,"##ী":29916,"##ে":29917,"##க":29918,"##ச":29919,"##ட":29920,"##த":29921,"##ந":29922,"##ன":29923,"##ப":29924,"##ம":29925,"##ய":29926,"##ர":29927,"##ல":29928,"##ள":29929,"##வ":29930,"##ா":29931,"##ி":29932,"##ு":29933,"##ே":29934,"##ை":29935,"##ನ":29936,"##ರ":29937,"##ಾ":29938,"##ක":29939,"##ය":29940,"##ර":29941,"##ල":29942,"##ව":29943,"##ා":29944,"##ก":29945,"##ง":29946,"##ต":29947,"##ท":29948,"##น":29949,"##พ":29950,"##ม":29951,"##ย":29952,"##ร":29953,"##ล":29954,"##ว":29955,"##ส":29956,"##อ":29957,"##า":29958,"##เ":29959,"##་":29960,"##།":29961,"##ག":29962,"##ང":29963,"##ད":29964,"##ན":29965,"##པ":29966,"##བ":29967,"##མ":29968,"##འ":29969,"##ར":29970,"##ལ":29971,"##ས":29972,"##မ":29973,"##ა":29974,"##ბ":29975,"##გ":29976,"##დ":29977,"##ე":29978,"##ვ":29979,"##თ":29980,"##ი":29981,"##კ":29982,"##ლ":29983,"##მ":29984,"##ნ":29985,"##ო":29986,"##რ":29987,"##ს":29988,"##ტ":29989,"##უ":29990,"##ᄀ":29991,"##ᄂ":29992,"##ᄃ":29993,"##ᄅ":29994,"##ᄆ":29995,"##ᄇ":29996,"##ᄉ":29997,"##ᄊ":29998,"##ᄋ":29999,"##ᄌ":30000,"##ᄎ":30001,"##ᄏ":30002,"##ᄐ":30003,"##ᄑ":30004,"##ᄒ":30005,"##ᅡ":30006,"##ᅢ":30007,"##ᅥ":30008,"##ᅦ":30009,"##ᅧ":30010,"##ᅩ":30011,"##ᅪ":30012,"##ᅭ":30013,"##ᅮ":30014,"##ᅯ":30015,"##ᅲ":30016,"##ᅳ":30017,"##ᅴ":30018,"##ᅵ":30019,"##ᆨ":30020,"##ᆫ":30021,"##ᆯ":30022,"##ᆷ":30023,"##ᆸ":30024,"##ᆼ":30025,"##ᴬ":30026,"##ᴮ":30027,"##ᴰ":30028,"##ᴵ":30029,"##ᴺ":30030,"##ᵀ":30031,"##ᵃ":30032,"##ᵇ":30033,"##ᵈ":30034,"##ᵉ":30035,"##ᵍ":30036,"##ᵏ":30037,"##ᵐ":30038,"##ᵒ":30039,"##ᵖ":30040,"##ᵗ":30041,"##ᵘ":30042,"##ᵣ":30043,"##ᵤ":30044,"##ᵥ":30045,"##ᶜ":30046,"##ᶠ":30047,"##‐":30048,"##‑":30049,"##‒":30050,"##–":30051,"##—":30052,"##―":30053,"##‖":30054,"##‘":30055,"##’":30056,"##‚":30057,"##“":30058,"##”":30059,"##„":30060,"##†":30061,"##‡":30062,"##•":30063,"##…":30064,"##‰":30065,"##′":30066,"##″":30067,"##›":30068,"##‿":30069,"##⁄":30070,"##⁰":30071,"##ⁱ":30072,"##⁴":30073,"##⁵":30074,"##⁶":30075,"##⁷":30076,"##⁸":30077,"##⁹":30078,"##⁻":30079,"##ⁿ":30080,"##₅":30081,"##₆":30082,"##₇":30083,"##₈":30084,"##₉":30085,"##₊":30086,"##₍":30087,"##₎":30088,"##ₐ":30089,"##ₑ":30090,"##ₒ":30091,"##ₓ":30092,"##ₕ":30093,"##ₖ":30094,"##ₗ":30095,"##ₘ":30096,"##ₚ":30097,"##ₛ":30098,"##ₜ":30099,"##₤":30100,"##₩":30101,"##€":30102,"##₱":30103,"##₹":30104,"##ℓ":30105,"##№":30106,"##ℝ":30107,"##™":30108,"##⅓":30109,"##⅔":30110,"##←":30111,"##↑":30112,"##→":30113,"##↓":30114,"##↔":30115,"##↦":30116,"##⇄":30117,"##⇌":30118,"##⇒":30119,"##∂":30120,"##∅":30121,"##∆":30122,"##∇":30123,"##∈":30124,"##∗":30125,"##∘":30126,"##√":30127,"##∞":30128,"##∧":30129,"##∨":30130,"##∩":30131,"##∪":30132,"##≈":30133,"##≡":30134,"##≤":30135,"##≥":30136,"##⊂":30137,"##⊆":30138,"##⊕":30139,"##⊗":30140,"##⋅":30141,"##─":30142,"##│":30143,"##■":30144,"##▪":30145,"##●":30146,"##★":30147,"##☆":30148,"##☉":30149,"##♠":30150,"##♣":30151,"##♥":30152,"##♦":30153,"##♯":30154,"##⟨":30155,"##⟩":30156,"##ⱼ":30157,"##⺩":30158,"##⺼":30159,"##⽥":30160,"##、":30161,"##。":30162,"##〈":30163,"##〉":30164,"##《":30165,"##》":30166,"##「":30167,"##」":30168,"##『":30169,"##』":30170,"##〜":30171,"##あ":30172,"##い":30173,"##う":30174,"##え":30175,"##お":30176,"##か":30177,"##き":30178,"##く":30179,"##け":30180,"##こ":30181,"##さ":30182,"##し":30183,"##す":30184,"##せ":30185,"##そ":30186,"##た":30187,"##ち":30188,"##っ":30189,"##つ":30190,"##て":30191,"##と":30192,"##な":30193,"##に":30194,"##ぬ":30195,"##ね":30196,"##の":30197,"##は":30198,"##ひ":30199,"##ふ":30200,"##へ":30201,"##ほ":30202,"##ま":30203,"##み":30204,"##む":30205,"##め":30206,"##も":30207,"##や":30208,"##ゆ":30209,"##よ":30210,"##ら":30211,"##り":30212,"##る":30213,"##れ":30214,"##ろ":30215,"##を":30216,"##ん":30217,"##ァ":30218,"##ア":30219,"##ィ":30220,"##イ":30221,"##ウ":30222,"##ェ":30223,"##エ":30224,"##オ":30225,"##カ":30226,"##キ":30227,"##ク":30228,"##ケ":30229,"##コ":30230,"##サ":30231,"##シ":30232,"##ス":30233,"##セ":30234,"##タ":30235,"##チ":30236,"##ッ":30237,"##ツ":30238,"##テ":30239,"##ト":30240,"##ナ":30241,"##ニ":30242,"##ノ":30243,"##ハ":30244,"##ヒ":30245,"##フ":30246,"##ヘ":30247,"##ホ":30248,"##マ":30249,"##ミ":30250,"##ム":30251,"##メ":30252,"##モ":30253,"##ャ":30254,"##ュ":30255,"##ョ":30256,"##ラ":30257,"##リ":30258,"##ル":30259,"##レ":30260,"##ロ":30261,"##ワ":30262,"##ン":30263,"##・":30264,"##ー":30265,"##一":30266,"##三":30267,"##上":30268,"##下":30269,"##不":30270,"##世":30271,"##中":30272,"##主":30273,"##久":30274,"##之":30275,"##也":30276,"##事":30277,"##二":30278,"##五":30279,"##井":30280,"##京":30281,"##人":30282,"##亻":30283,"##仁":30284,"##介":30285,"##代":30286,"##仮":30287,"##伊":30288,"##会":30289,"##佐":30290,"##侍":30291,"##保":30292,"##信":30293,"##健":30294,"##元":30295,"##光":30296,"##八":30297,"##公":30298,"##内":30299,"##出":30300,"##分":30301,"##前":30302,"##劉":30303,"##力":30304,"##加":30305,"##勝":30306,"##北":30307,"##区":30308,"##十":30309,"##千":30310,"##南":30311,"##博":30312,"##原":30313,"##口":30314,"##古":30315,"##史":30316,"##司":30317,"##合":30318,"##吉":30319,"##同":30320,"##名":30321,"##和":30322,"##囗":30323,"##四":30324,"##国":30325,"##國":30326,"##土":30327,"##地":30328,"##坂":30329,"##城":30330,"##堂":30331,"##場":30332,"##士":30333,"##夏":30334,"##外":30335,"##大":30336,"##天":30337,"##太":30338,"##夫":30339,"##奈":30340,"##女":30341,"##子":30342,"##学":30343,"##宀":30344,"##宇":30345,"##安":30346,"##宗":30347,"##定":30348,"##宣":30349,"##宮":30350,"##家":30351,"##宿":30352,"##寺":30353,"##將":30354,"##小":30355,"##尚":30356,"##山":30357,"##岡":30358,"##島":30359,"##崎":30360,"##川":30361,"##州":30362,"##巿":30363,"##帝":30364,"##平":30365,"##年":30366,"##幸":30367,"##广":30368,"##弘":30369,"##張":30370,"##彳":30371,"##後":30372,"##御":30373,"##德":30374,"##心":30375,"##忄":30376,"##志":30377,"##忠":30378,"##愛":30379,"##成":30380,"##我":30381,"##戦":30382,"##戸":30383,"##手":30384,"##扌":30385,"##政":30386,"##文":30387,"##新":30388,"##方":30389,"##日":30390,"##明":30391,"##星":30392,"##春":30393,"##昭":30394,"##智":30395,"##曲":30396,"##書":30397,"##月":30398,"##有":30399,"##朝":30400,"##木":30401,"##本":30402,"##李":30403,"##村":30404,"##東":30405,"##松":30406,"##林":30407,"##森":30408,"##楊":30409,"##樹":30410,"##橋":30411,"##歌":30412,"##止":30413,"##正":30414,"##武":30415,"##比":30416,"##氏":30417,"##民":30418,"##水":30419,"##氵":30420,"##氷":30421,"##永":30422,"##江":30423,"##沢":30424,"##河":30425,"##治":30426,"##法":30427,"##海":30428,"##清":30429,"##漢":30430,"##瀬":30431,"##火":30432,"##版":30433,"##犬":30434,"##王":30435,"##生":30436,"##田":30437,"##男":30438,"##疒":30439,"##発":30440,"##白":30441,"##的":30442,"##皇":30443,"##目":30444,"##相":30445,"##省":30446,"##真":30447,"##石":30448,"##示":30449,"##社":30450,"##神":30451,"##福":30452,"##禾":30453,"##秀":30454,"##秋":30455,"##空":30456,"##立":30457,"##章":30458,"##竹":30459,"##糹":30460,"##美":30461,"##義":30462,"##耳":30463,"##良":30464,"##艹":30465,"##花":30466,"##英":30467,"##華":30468,"##葉":30469,"##藤":30470,"##行":30471,"##街":30472,"##西":30473,"##見":30474,"##訁":30475,"##語":30476,"##谷":30477,"##貝":30478,"##貴":30479,"##車":30480,"##軍":30481,"##辶":30482,"##道":30483,"##郎":30484,"##郡":30485,"##部":30486,"##都":30487,"##里":30488,"##野":30489,"##金":30490,"##鈴":30491,"##镇":30492,"##長":30493,"##門":30494,"##間":30495,"##阝":30496,"##阿":30497,"##陳":30498,"##陽":30499,"##雄":30500,"##青":30501,"##面":30502,"##風":30503,"##食":30504,"##香":30505,"##馬":30506,"##高":30507,"##龍":30508,"##龸":30509,"##fi":30510,"##fl":30511,"##!":30512,"##(":30513,"##)":30514,"##,":30515,"##-":30516,"##.":30517,"##/":30518,"##:":30519,"##?":30520,"##~":30521}}} \ No newline at end of file diff --git a/extras/BLIP/models/bert_tokenizer/tokenizer_config.json b/extras/BLIP/models/bert_tokenizer/tokenizer_config.json new file mode 100644 index 0000000..a661b1a --- /dev/null +++ b/extras/BLIP/models/bert_tokenizer/tokenizer_config.json @@ -0,0 +1,3 @@ +{ + "do_lower_case": true +} diff --git a/extras/BLIP/models/bert_tokenizer/vocab.txt b/extras/BLIP/models/bert_tokenizer/vocab.txt new file mode 100644 index 0000000..fb14027 --- /dev/null +++ b/extras/BLIP/models/bert_tokenizer/vocab.txt @@ -0,0 +1,30522 @@ +[PAD] +[unused0] +[unused1] +[unused2] +[unused3] +[unused4] +[unused5] +[unused6] +[unused7] +[unused8] +[unused9] +[unused10] +[unused11] +[unused12] +[unused13] +[unused14] +[unused15] +[unused16] +[unused17] +[unused18] +[unused19] +[unused20] +[unused21] +[unused22] +[unused23] +[unused24] +[unused25] +[unused26] +[unused27] +[unused28] +[unused29] +[unused30] +[unused31] +[unused32] +[unused33] +[unused34] +[unused35] +[unused36] +[unused37] +[unused38] +[unused39] +[unused40] +[unused41] +[unused42] +[unused43] +[unused44] +[unused45] +[unused46] +[unused47] +[unused48] +[unused49] +[unused50] +[unused51] +[unused52] +[unused53] +[unused54] +[unused55] +[unused56] +[unused57] +[unused58] +[unused59] +[unused60] +[unused61] +[unused62] +[unused63] +[unused64] +[unused65] +[unused66] +[unused67] +[unused68] +[unused69] +[unused70] +[unused71] +[unused72] +[unused73] +[unused74] +[unused75] +[unused76] +[unused77] +[unused78] +[unused79] +[unused80] +[unused81] +[unused82] +[unused83] +[unused84] +[unused85] +[unused86] +[unused87] +[unused88] +[unused89] +[unused90] +[unused91] +[unused92] +[unused93] +[unused94] +[unused95] +[unused96] +[unused97] +[unused98] +[UNK] +[CLS] +[SEP] +[MASK] +[unused99] +[unused100] +[unused101] +[unused102] +[unused103] +[unused104] +[unused105] +[unused106] +[unused107] +[unused108] +[unused109] +[unused110] +[unused111] +[unused112] +[unused113] +[unused114] +[unused115] +[unused116] +[unused117] +[unused118] +[unused119] +[unused120] +[unused121] +[unused122] +[unused123] +[unused124] +[unused125] +[unused126] +[unused127] +[unused128] +[unused129] +[unused130] +[unused131] +[unused132] +[unused133] +[unused134] +[unused135] +[unused136] +[unused137] +[unused138] +[unused139] +[unused140] +[unused141] +[unused142] +[unused143] +[unused144] +[unused145] +[unused146] +[unused147] +[unused148] +[unused149] +[unused150] +[unused151] +[unused152] +[unused153] +[unused154] +[unused155] +[unused156] +[unused157] +[unused158] +[unused159] +[unused160] +[unused161] +[unused162] +[unused163] +[unused164] +[unused165] +[unused166] +[unused167] +[unused168] +[unused169] +[unused170] +[unused171] +[unused172] +[unused173] +[unused174] +[unused175] +[unused176] +[unused177] +[unused178] +[unused179] +[unused180] +[unused181] +[unused182] +[unused183] +[unused184] +[unused185] +[unused186] +[unused187] +[unused188] +[unused189] +[unused190] +[unused191] +[unused192] +[unused193] +[unused194] +[unused195] +[unused196] +[unused197] +[unused198] +[unused199] +[unused200] +[unused201] +[unused202] +[unused203] +[unused204] +[unused205] +[unused206] +[unused207] +[unused208] +[unused209] +[unused210] +[unused211] +[unused212] +[unused213] +[unused214] +[unused215] +[unused216] +[unused217] +[unused218] +[unused219] +[unused220] +[unused221] +[unused222] +[unused223] +[unused224] +[unused225] +[unused226] +[unused227] +[unused228] +[unused229] +[unused230] +[unused231] +[unused232] +[unused233] +[unused234] +[unused235] +[unused236] +[unused237] +[unused238] +[unused239] +[unused240] +[unused241] +[unused242] +[unused243] +[unused244] +[unused245] +[unused246] +[unused247] +[unused248] +[unused249] +[unused250] +[unused251] +[unused252] +[unused253] +[unused254] +[unused255] +[unused256] +[unused257] +[unused258] +[unused259] +[unused260] +[unused261] +[unused262] +[unused263] +[unused264] +[unused265] +[unused266] +[unused267] +[unused268] +[unused269] +[unused270] +[unused271] +[unused272] +[unused273] +[unused274] +[unused275] +[unused276] +[unused277] +[unused278] +[unused279] +[unused280] +[unused281] +[unused282] +[unused283] +[unused284] +[unused285] +[unused286] +[unused287] +[unused288] +[unused289] +[unused290] +[unused291] +[unused292] +[unused293] +[unused294] +[unused295] +[unused296] +[unused297] +[unused298] +[unused299] +[unused300] +[unused301] +[unused302] +[unused303] +[unused304] +[unused305] +[unused306] +[unused307] +[unused308] +[unused309] +[unused310] +[unused311] +[unused312] +[unused313] +[unused314] +[unused315] +[unused316] +[unused317] +[unused318] +[unused319] +[unused320] +[unused321] +[unused322] +[unused323] +[unused324] +[unused325] +[unused326] +[unused327] +[unused328] +[unused329] +[unused330] +[unused331] +[unused332] +[unused333] +[unused334] +[unused335] +[unused336] +[unused337] +[unused338] +[unused339] +[unused340] +[unused341] +[unused342] +[unused343] +[unused344] +[unused345] +[unused346] +[unused347] +[unused348] +[unused349] +[unused350] +[unused351] +[unused352] +[unused353] +[unused354] +[unused355] +[unused356] +[unused357] +[unused358] +[unused359] +[unused360] +[unused361] +[unused362] +[unused363] +[unused364] +[unused365] +[unused366] +[unused367] +[unused368] +[unused369] +[unused370] +[unused371] +[unused372] +[unused373] +[unused374] +[unused375] +[unused376] +[unused377] +[unused378] +[unused379] +[unused380] +[unused381] +[unused382] +[unused383] +[unused384] +[unused385] +[unused386] +[unused387] +[unused388] +[unused389] +[unused390] +[unused391] +[unused392] +[unused393] +[unused394] +[unused395] +[unused396] +[unused397] +[unused398] +[unused399] +[unused400] +[unused401] +[unused402] +[unused403] +[unused404] +[unused405] +[unused406] +[unused407] +[unused408] +[unused409] +[unused410] +[unused411] +[unused412] +[unused413] +[unused414] +[unused415] +[unused416] +[unused417] +[unused418] +[unused419] +[unused420] +[unused421] +[unused422] +[unused423] +[unused424] +[unused425] +[unused426] +[unused427] +[unused428] +[unused429] +[unused430] +[unused431] +[unused432] +[unused433] +[unused434] +[unused435] +[unused436] +[unused437] +[unused438] +[unused439] +[unused440] +[unused441] +[unused442] +[unused443] +[unused444] +[unused445] +[unused446] +[unused447] +[unused448] +[unused449] +[unused450] +[unused451] +[unused452] +[unused453] +[unused454] +[unused455] +[unused456] +[unused457] +[unused458] +[unused459] +[unused460] +[unused461] +[unused462] +[unused463] +[unused464] +[unused465] +[unused466] +[unused467] +[unused468] +[unused469] +[unused470] +[unused471] +[unused472] +[unused473] +[unused474] +[unused475] +[unused476] +[unused477] +[unused478] +[unused479] +[unused480] +[unused481] +[unused482] +[unused483] +[unused484] +[unused485] +[unused486] +[unused487] +[unused488] +[unused489] +[unused490] +[unused491] +[unused492] +[unused493] +[unused494] +[unused495] +[unused496] +[unused497] +[unused498] +[unused499] +[unused500] +[unused501] +[unused502] +[unused503] +[unused504] +[unused505] +[unused506] +[unused507] +[unused508] +[unused509] +[unused510] +[unused511] +[unused512] +[unused513] +[unused514] +[unused515] +[unused516] +[unused517] +[unused518] +[unused519] +[unused520] +[unused521] +[unused522] +[unused523] +[unused524] +[unused525] +[unused526] +[unused527] +[unused528] +[unused529] +[unused530] +[unused531] +[unused532] +[unused533] +[unused534] +[unused535] +[unused536] +[unused537] +[unused538] +[unused539] +[unused540] +[unused541] +[unused542] +[unused543] +[unused544] +[unused545] +[unused546] +[unused547] +[unused548] +[unused549] +[unused550] +[unused551] +[unused552] +[unused553] +[unused554] +[unused555] +[unused556] +[unused557] +[unused558] +[unused559] +[unused560] +[unused561] +[unused562] +[unused563] +[unused564] +[unused565] +[unused566] +[unused567] +[unused568] +[unused569] +[unused570] +[unused571] +[unused572] +[unused573] +[unused574] +[unused575] +[unused576] +[unused577] +[unused578] +[unused579] +[unused580] +[unused581] +[unused582] +[unused583] +[unused584] +[unused585] +[unused586] +[unused587] +[unused588] +[unused589] +[unused590] +[unused591] +[unused592] +[unused593] +[unused594] +[unused595] +[unused596] +[unused597] +[unused598] +[unused599] +[unused600] +[unused601] +[unused602] +[unused603] +[unused604] +[unused605] +[unused606] +[unused607] +[unused608] +[unused609] +[unused610] +[unused611] +[unused612] +[unused613] +[unused614] +[unused615] +[unused616] +[unused617] +[unused618] +[unused619] +[unused620] +[unused621] +[unused622] +[unused623] +[unused624] +[unused625] +[unused626] +[unused627] +[unused628] +[unused629] +[unused630] +[unused631] +[unused632] +[unused633] +[unused634] +[unused635] +[unused636] +[unused637] +[unused638] +[unused639] +[unused640] +[unused641] +[unused642] +[unused643] +[unused644] +[unused645] +[unused646] +[unused647] +[unused648] +[unused649] +[unused650] +[unused651] +[unused652] +[unused653] +[unused654] +[unused655] +[unused656] +[unused657] +[unused658] +[unused659] +[unused660] +[unused661] +[unused662] +[unused663] +[unused664] +[unused665] +[unused666] +[unused667] +[unused668] +[unused669] +[unused670] +[unused671] +[unused672] +[unused673] +[unused674] +[unused675] +[unused676] +[unused677] +[unused678] +[unused679] +[unused680] +[unused681] +[unused682] +[unused683] +[unused684] +[unused685] +[unused686] +[unused687] +[unused688] +[unused689] +[unused690] +[unused691] +[unused692] +[unused693] +[unused694] +[unused695] +[unused696] +[unused697] +[unused698] +[unused699] +[unused700] +[unused701] +[unused702] +[unused703] +[unused704] +[unused705] +[unused706] +[unused707] +[unused708] +[unused709] +[unused710] +[unused711] +[unused712] +[unused713] +[unused714] +[unused715] +[unused716] +[unused717] +[unused718] +[unused719] +[unused720] +[unused721] +[unused722] +[unused723] +[unused724] +[unused725] +[unused726] +[unused727] +[unused728] +[unused729] +[unused730] +[unused731] +[unused732] +[unused733] +[unused734] +[unused735] +[unused736] +[unused737] +[unused738] +[unused739] +[unused740] +[unused741] +[unused742] +[unused743] +[unused744] +[unused745] +[unused746] +[unused747] +[unused748] +[unused749] +[unused750] +[unused751] +[unused752] +[unused753] +[unused754] +[unused755] +[unused756] +[unused757] +[unused758] +[unused759] +[unused760] +[unused761] +[unused762] +[unused763] +[unused764] +[unused765] +[unused766] +[unused767] +[unused768] +[unused769] +[unused770] +[unused771] +[unused772] +[unused773] +[unused774] +[unused775] +[unused776] +[unused777] +[unused778] +[unused779] +[unused780] +[unused781] +[unused782] +[unused783] +[unused784] +[unused785] +[unused786] +[unused787] +[unused788] +[unused789] +[unused790] +[unused791] +[unused792] +[unused793] +[unused794] +[unused795] +[unused796] +[unused797] +[unused798] +[unused799] +[unused800] +[unused801] +[unused802] +[unused803] +[unused804] +[unused805] +[unused806] +[unused807] +[unused808] +[unused809] +[unused810] +[unused811] +[unused812] +[unused813] +[unused814] +[unused815] +[unused816] +[unused817] +[unused818] +[unused819] +[unused820] +[unused821] +[unused822] +[unused823] +[unused824] +[unused825] +[unused826] +[unused827] +[unused828] +[unused829] +[unused830] +[unused831] +[unused832] +[unused833] +[unused834] +[unused835] +[unused836] +[unused837] +[unused838] +[unused839] +[unused840] +[unused841] +[unused842] +[unused843] +[unused844] +[unused845] +[unused846] +[unused847] +[unused848] +[unused849] +[unused850] +[unused851] +[unused852] +[unused853] +[unused854] +[unused855] +[unused856] +[unused857] +[unused858] +[unused859] +[unused860] +[unused861] +[unused862] +[unused863] +[unused864] +[unused865] +[unused866] +[unused867] +[unused868] +[unused869] +[unused870] +[unused871] +[unused872] +[unused873] +[unused874] +[unused875] +[unused876] +[unused877] +[unused878] +[unused879] +[unused880] +[unused881] +[unused882] +[unused883] +[unused884] +[unused885] +[unused886] +[unused887] +[unused888] +[unused889] +[unused890] +[unused891] +[unused892] +[unused893] +[unused894] +[unused895] +[unused896] +[unused897] +[unused898] +[unused899] +[unused900] +[unused901] +[unused902] +[unused903] +[unused904] +[unused905] +[unused906] +[unused907] +[unused908] +[unused909] +[unused910] +[unused911] +[unused912] +[unused913] +[unused914] +[unused915] +[unused916] +[unused917] +[unused918] +[unused919] +[unused920] +[unused921] +[unused922] +[unused923] +[unused924] +[unused925] +[unused926] +[unused927] +[unused928] +[unused929] +[unused930] +[unused931] +[unused932] +[unused933] +[unused934] +[unused935] +[unused936] +[unused937] +[unused938] +[unused939] +[unused940] +[unused941] +[unused942] +[unused943] +[unused944] +[unused945] +[unused946] +[unused947] +[unused948] +[unused949] +[unused950] +[unused951] +[unused952] +[unused953] +[unused954] +[unused955] +[unused956] +[unused957] +[unused958] +[unused959] +[unused960] +[unused961] +[unused962] +[unused963] +[unused964] +[unused965] +[unused966] +[unused967] +[unused968] +[unused969] +[unused970] +[unused971] +[unused972] +[unused973] +[unused974] +[unused975] +[unused976] +[unused977] +[unused978] +[unused979] +[unused980] +[unused981] +[unused982] +[unused983] +[unused984] +[unused985] +[unused986] +[unused987] +[unused988] +[unused989] +[unused990] +[unused991] +[unused992] +[unused993] +! +" +# +$ +% +& +' +( +) +* ++ +, +- +. +/ +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +: +; +< += +> +? +@ +[ +\ +] +^ +_ +` +a +b +c +d +e +f +g +h +i +j +k +l +m +n +o +p +q +r +s +t +u +v +w +x +y +z +{ +| +} +~ +¡ +¢ +£ +¤ +¥ +¦ +§ +¨ +© +ª +« +¬ +® +° +± +² +³ +´ +µ +¶ +· +¹ +º +» +¼ +½ +¾ +¿ +× +ß +æ +ð +÷ +ø +þ +đ +ħ +ı +ł +ŋ +œ +ƒ +ɐ +ɑ +ɒ +ɔ +ɕ +ə +ɛ +ɡ +ɣ +ɨ +ɪ +ɫ +ɬ +ɯ +ɲ +ɴ +ɹ +ɾ +ʀ +ʁ +ʂ +ʃ +ʉ +ʊ +ʋ +ʌ +ʎ +ʐ +ʑ +ʒ +ʔ +ʰ +ʲ +ʳ +ʷ +ʸ +ʻ +ʼ +ʾ +ʿ +ˈ +ː +ˡ +ˢ +ˣ +ˤ +α +β +γ +δ +ε +ζ +η +θ +ι +κ +λ +μ +ν +ξ +ο +π +ρ +ς +σ +τ +υ +φ +χ +ψ +ω +а +б +в +г +д +е +ж +з +и +к +л +м +н +о +п +р +с +т +у +ф +х +ц +ч +ш +щ +ъ +ы +ь +э +ю +я +ђ +є +і +ј +љ +њ +ћ +ӏ +ա +բ +գ +դ +ե +թ +ի +լ +կ +հ +մ +յ +ն +ո +պ +ս +վ +տ +ր +ւ +ք +־ +א +ב +ג +ד +ה +ו +ז +ח +ט +י +ך +כ +ל +ם +מ +ן +נ +ס +ע +ף +פ +ץ +צ +ק +ר +ש +ת +، +ء +ا +ب +ة +ت +ث +ج +ح +خ +د +ذ +ر +ز +س +ش +ص +ض +ط +ظ +ع +غ +ـ +ف +ق +ك +ل +م +ن +ه +و +ى +ي +ٹ +پ +چ +ک +گ +ں +ھ +ہ +ی +ے +अ +आ +उ +ए +क +ख +ग +च +ज +ट +ड +ण +त +थ +द +ध +न +प +ब +भ +म +य +र +ल +व +श +ष +स +ह +ा +ि +ी +ो +। +॥ +ং +অ +আ +ই +উ +এ +ও +ক +খ +গ +চ +ছ +জ +ট +ড +ণ +ত +থ +দ +ধ +ন +প +ব +ভ +ম +য +র +ল +শ +ষ +স +হ +া +ি +ী +ে +க +ச +ட +த +ந +ன +ப +ம +ய +ர +ல +ள +வ +ா +ி +ு +ே +ை +ನ +ರ +ಾ +ක +ය +ර +ල +ව +ා +ก +ง +ต +ท +น +พ +ม +ย +ร +ล +ว +ส +อ +า +เ +་ +། +ག +ང +ད +ན +པ +བ +མ +འ +ར +ལ +ས +မ +ა +ბ +გ +დ +ე +ვ +თ +ი +კ +ლ +მ +ნ +ო +რ +ს +ტ +უ +ᄀ +ᄂ +ᄃ +ᄅ +ᄆ +ᄇ +ᄉ +ᄊ +ᄋ +ᄌ +ᄎ +ᄏ +ᄐ +ᄑ +ᄒ +ᅡ +ᅢ +ᅥ +ᅦ +ᅧ +ᅩ +ᅪ +ᅭ +ᅮ +ᅯ +ᅲ +ᅳ +ᅴ +ᅵ +ᆨ +ᆫ +ᆯ +ᆷ +ᆸ +ᆼ +ᴬ +ᴮ +ᴰ +ᴵ +ᴺ +ᵀ +ᵃ +ᵇ +ᵈ +ᵉ +ᵍ +ᵏ +ᵐ +ᵒ +ᵖ +ᵗ +ᵘ +ᵢ +ᵣ +ᵤ +ᵥ +ᶜ +ᶠ +‐ +‑ +‒ +– +— +― +‖ +‘ +’ +‚ +“ +” +„ +† +‡ +• +… +‰ +′ +″ +› +‿ +⁄ +⁰ +ⁱ +⁴ +⁵ +⁶ +⁷ +⁸ +⁹ +⁺ +⁻ +ⁿ +₀ +₁ +₂ +₃ +₄ +₅ +₆ +₇ +₈ +₉ +₊ +₍ +₎ +ₐ +ₑ +ₒ +ₓ +ₕ +ₖ +ₗ +ₘ +ₙ +ₚ +ₛ +ₜ +₤ +₩ +€ +₱ +₹ +ℓ +№ +ℝ +™ +⅓ +⅔ +← +↑ +→ +↓ +↔ +↦ +⇄ +⇌ +⇒ +∂ +∅ +∆ +∇ +∈ +− +∗ +∘ +√ +∞ +∧ +∨ +∩ +∪ +≈ +≡ +≤ +≥ +⊂ +⊆ +⊕ +⊗ +⋅ +─ +│ +■ +▪ +● +★ +☆ +☉ +♠ +♣ +♥ +♦ +♭ +♯ +⟨ +⟩ +ⱼ +⺩ +⺼ +⽥ +、 +。 +〈 +〉 +《 +》 +「 +」 +『 +』 +〜 +あ +い +う +え +お +か +き +く +け +こ +さ +し +す +せ +そ +た +ち +っ +つ +て +と +な +に +ぬ +ね +の +は +ひ +ふ +へ +ほ +ま +み +む +め +も +や +ゆ +よ +ら +り +る +れ +ろ +を +ん +ァ +ア +ィ +イ +ウ +ェ +エ +オ +カ +キ +ク +ケ +コ +サ +シ +ス +セ +タ +チ +ッ +ツ +テ +ト +ナ +ニ +ノ +ハ +ヒ +フ +ヘ +ホ +マ +ミ +ム +メ +モ +ャ +ュ +ョ +ラ +リ +ル +レ +ロ +ワ +ン +・ +ー +一 +三 +上 +下 +不 +世 +中 +主 +久 +之 +也 +事 +二 +五 +井 +京 +人 +亻 +仁 +介 +代 +仮 +伊 +会 +佐 +侍 +保 +信 +健 +元 +光 +八 +公 +内 +出 +分 +前 +劉 +力 +加 +勝 +北 +区 +十 +千 +南 +博 +原 +口 +古 +史 +司 +合 +吉 +同 +名 +和 +囗 +四 +国 +國 +土 +地 +坂 +城 +堂 +場 +士 +夏 +外 +大 +天 +太 +夫 +奈 +女 +子 +学 +宀 +宇 +安 +宗 +定 +宣 +宮 +家 +宿 +寺 +將 +小 +尚 +山 +岡 +島 +崎 +川 +州 +巿 +帝 +平 +年 +幸 +广 +弘 +張 +彳 +後 +御 +德 +心 +忄 +志 +忠 +愛 +成 +我 +戦 +戸 +手 +扌 +政 +文 +新 +方 +日 +明 +星 +春 +昭 +智 +曲 +書 +月 +有 +朝 +木 +本 +李 +村 +東 +松 +林 +森 +楊 +樹 +橋 +歌 +止 +正 +武 +比 +氏 +民 +水 +氵 +氷 +永 +江 +沢 +河 +治 +法 +海 +清 +漢 +瀬 +火 +版 +犬 +王 +生 +田 +男 +疒 +発 +白 +的 +皇 +目 +相 +省 +真 +石 +示 +社 +神 +福 +禾 +秀 +秋 +空 +立 +章 +竹 +糹 +美 +義 +耳 +良 +艹 +花 +英 +華 +葉 +藤 +行 +街 +西 +見 +訁 +語 +谷 +貝 +貴 +車 +軍 +辶 +道 +郎 +郡 +部 +都 +里 +野 +金 +鈴 +镇 +長 +門 +間 +阝 +阿 +陳 +陽 +雄 +青 +面 +風 +食 +香 +馬 +高 +龍 +龸 +fi +fl +! +( +) +, +- +. +/ +: +? +~ +the +of +and +in +to +was +he +is +as +for +on +with +that +it +his +by +at +from +her +##s +she +you +had +an +were +but +be +this +are +not +my +they +one +which +or +have +him +me +first +all +also +their +has +up +who +out +been +when +after +there +into +new +two +its +##a +time +would +no +what +about +said +we +over +then +other +so +more +##e +can +if +like +back +them +only +some +could +##i +where +just +##ing +during +before +##n +do +##o +made +school +through +than +now +years +most +world +may +between +down +well +three +##d +year +while +will +##ed +##r +##y +later +##t +city +under +around +did +such +being +used +state +people +part +know +against +your +many +second +university +both +national +##er +these +don +known +off +way +until +re +how +even +get +head +... +didn +##ly +team +american +because +de +##l +born +united +film +since +still +long +work +south +us +became +any +high +again +day +family +see +right +man +eyes +house +season +war +states +including +took +life +north +same +each +called +name +much +place +however +go +four +group +another +found +won +area +here +going +10 +away +series +left +home +music +best +make +hand +number +company +several +never +last +john +000 +very +album +take +end +good +too +following +released +game +played +little +began +district +##m +old +want +those +side +held +own +early +county +ll +league +use +west +##u +face +think +##es +2010 +government +##h +march +came +small +general +town +june +##on +line +based +something +##k +september +thought +looked +along +international +2011 +air +july +club +went +january +october +our +august +april +york +12 +few +2012 +2008 +east +show +member +college +2009 +father +public +##us +come +men +five +set +station +church +##c +next +former +november +room +party +located +december +2013 +age +got +2007 +##g +system +let +love +2006 +though +every +2014 +look +song +water +century +without +body +black +night +within +great +women +single +ve +building +large +population +river +named +band +white +started +##an +once +15 +20 +should +18 +2015 +service +top +built +british +open +death +king +moved +local +times +children +february +book +why +11 +door +need +president +order +final +road +wasn +although +due +major +died +village +third +knew +2016 +asked +turned +st +wanted +say +##p +together +received +main +son +served +different +##en +behind +himself +felt +members +power +football +law +voice +play +##in +near +park +history +30 +having +2005 +16 +##man +saw +mother +##al +army +point +front +help +english +street +art +late +hands +games +award +##ia +young +14 +put +published +country +division +across +told +13 +often +ever +french +london +center +six +red +2017 +led +days +include +light +25 +find +tell +among +species +really +according +central +half +2004 +form +original +gave +office +making +enough +lost +full +opened +must +included +live +given +german +player +run +business +woman +community +cup +might +million +land +2000 +court +development +17 +short +round +ii +km +seen +class +story +always +become +sure +research +almost +director +council +la +##2 +career +things +using +island +##z +couldn +car +##is +24 +close +force +##1 +better +free +support +control +field +students +2003 +education +married +##b +nothing +worked +others +record +big +inside +level +anything +continued +give +james +##3 +military +established +non +returned +feel +does +title +written +thing +feet +william +far +co +association +hard +already +2002 +##ra +championship +human +western +100 +##na +department +hall +role +various +production +21 +19 +heart +2001 +living +fire +version +##ers +##f +television +royal +##4 +produced +working +act +case +society +region +present +radio +period +looking +least +total +keep +england +wife +program +per +brother +mind +special +22 +##le +am +works +soon +##6 +political +george +services +taken +created +##7 +further +able +reached +david +union +joined +upon +done +important +social +information +either +##ic +##x +appeared +position +ground +lead +rock +dark +election +23 +board +france +hair +course +arms +site +police +girl +instead +real +sound +##v +words +moment +##te +someone +##8 +summer +project +announced +san +less +wrote +past +followed +##5 +blue +founded +al +finally +india +taking +records +america +##ne +1999 +design +considered +northern +god +stop +battle +toward +european +outside +described +track +today +playing +language +28 +call +26 +heard +professional +low +australia +miles +california +win +yet +green +##ie +trying +blood +##ton +southern +science +maybe +everything +match +square +27 +mouth +video +race +recorded +leave +above +##9 +daughter +points +space +1998 +museum +change +middle +common +##0 +move +tv +post +##ta +lake +seven +tried +elected +closed +ten +paul +minister +##th +months +start +chief +return +canada +person +sea +release +similar +modern +brought +rest +hit +formed +mr +##la +1997 +floor +event +doing +thomas +1996 +robert +care +killed +training +star +week +needed +turn +finished +railway +rather +news +health +sent +example +ran +term +michael +coming +currently +yes +forces +despite +gold +areas +50 +stage +fact +29 +dead +says +popular +2018 +originally +germany +probably +developed +result +pulled +friend +stood +money +running +mi +signed +word +songs +child +eventually +met +tour +average +teams +minutes +festival +current +deep +kind +1995 +decided +usually +eastern +seemed +##ness +episode +bed +added +table +indian +private +charles +route +available +idea +throughout +centre +addition +appointed +style +1994 +books +eight +construction +press +mean +wall +friends +remained +schools +study +##ch +##um +institute +oh +chinese +sometimes +events +possible +1992 +australian +type +brown +forward +talk +process +food +debut +seat +performance +committee +features +character +arts +herself +else +lot +strong +russian +range +hours +peter +arm +##da +morning +dr +sold +##ry +quickly +directed +1993 +guitar +china +##w +31 +list +##ma +performed +media +uk +players +smile +##rs +myself +40 +placed +coach +province +towards +wouldn +leading +whole +boy +official +designed +grand +census +##el +europe +attack +japanese +henry +1991 +##re +##os +cross +getting +alone +action +lower +network +wide +washington +japan +1990 +hospital +believe +changed +sister +##ar +hold +gone +sir +hadn +ship +##ka +studies +academy +shot +rights +below +base +bad +involved +kept +largest +##ist +bank +future +especially +beginning +mark +movement +section +female +magazine +plan +professor +lord +longer +##ian +sat +walked +hill +actually +civil +energy +model +families +size +thus +aircraft +completed +includes +data +captain +##or +fight +vocals +featured +richard +bridge +fourth +1989 +officer +stone +hear +##ism +means +medical +groups +management +self +lips +competition +entire +lived +technology +leaving +federal +tournament +bit +passed +hot +independent +awards +kingdom +mary +spent +fine +doesn +reported +##ling +jack +fall +raised +itself +stay +true +studio +1988 +sports +replaced +paris +systems +saint +leader +theatre +whose +market +capital +parents +spanish +canadian +earth +##ity +cut +degree +writing +bay +christian +awarded +natural +higher +bill +##as +coast +provided +previous +senior +ft +valley +organization +stopped +onto +countries +parts +conference +queen +security +interest +saying +allowed +master +earlier +phone +matter +smith +winning +try +happened +moving +campaign +los +##ley +breath +nearly +mid +1987 +certain +girls +date +italian +african +standing +fell +artist +##ted +shows +deal +mine +industry +1986 +##ng +everyone +republic +provide +collection +library +student +##ville +primary +owned +older +via +heavy +1st +makes +##able +attention +anyone +africa +##ri +stated +length +ended +fingers +command +staff +skin +foreign +opening +governor +okay +medal +kill +sun +cover +job +1985 +introduced +chest +hell +feeling +##ies +success +meet +reason +standard +meeting +novel +1984 +trade +source +buildings +##land +rose +guy +goal +##ur +chapter +native +husband +previously +unit +limited +entered +weeks +producer +operations +mountain +takes +covered +forced +related +roman +complete +successful +key +texas +cold +##ya +channel +1980 +traditional +films +dance +clear +approximately +500 +nine +van +prince +question +active +tracks +ireland +regional +silver +author +personal +sense +operation +##ine +economic +1983 +holding +twenty +isbn +additional +speed +hour +edition +regular +historic +places +whom +shook +movie +km² +secretary +prior +report +chicago +read +foundation +view +engine +scored +1982 +units +ask +airport +property +ready +immediately +lady +month +listed +contract +##de +manager +themselves +lines +##ki +navy +writer +meant +##ts +runs +##ro +practice +championships +singer +glass +commission +required +forest +starting +culture +generally +giving +access +attended +test +couple +stand +catholic +martin +caught +executive +##less +eye +##ey +thinking +chair +quite +shoulder +1979 +hope +decision +plays +defeated +municipality +whether +structure +offered +slowly +pain +ice +direction +##ion +paper +mission +1981 +mostly +200 +noted +individual +managed +nature +lives +plant +##ha +helped +except +studied +computer +figure +relationship +issue +significant +loss +die +smiled +gun +ago +highest +1972 +##am +male +bring +goals +mexico +problem +distance +commercial +completely +location +annual +famous +drive +1976 +neck +1978 +surface +caused +italy +understand +greek +highway +wrong +hotel +comes +appearance +joseph +double +issues +musical +companies +castle +income +review +assembly +bass +initially +parliament +artists +experience +1974 +particular +walk +foot +engineering +talking +window +dropped +##ter +miss +baby +boys +break +1975 +stars +edge +remember +policy +carried +train +stadium +bar +sex +angeles +evidence +##ge +becoming +assistant +soviet +1977 +upper +step +wing +1970 +youth +financial +reach +##ll +actor +numerous +##se +##st +nodded +arrived +##ation +minute +##nt +believed +sorry +complex +beautiful +victory +associated +temple +1968 +1973 +chance +perhaps +metal +##son +1945 +bishop +##et +lee +launched +particularly +tree +le +retired +subject +prize +contains +yeah +theory +empire +##ce +suddenly +waiting +trust +recording +##to +happy +terms +camp +champion +1971 +religious +pass +zealand +names +2nd +port +ancient +tom +corner +represented +watch +legal +anti +justice +cause +watched +brothers +45 +material +changes +simply +response +louis +fast +##ting +answer +60 +historical +1969 +stories +straight +create +feature +increased +rate +administration +virginia +el +activities +cultural +overall +winner +programs +basketball +legs +guard +beyond +cast +doctor +mm +flight +results +remains +cost +effect +winter +##ble +larger +islands +problems +chairman +grew +commander +isn +1967 +pay +failed +selected +hurt +fort +box +regiment +majority +journal +35 +edward +plans +##ke +##ni +shown +pretty +irish +characters +directly +scene +likely +operated +allow +spring +##j +junior +matches +looks +mike +houses +fellow +##tion +beach +marriage +##ham +##ive +rules +oil +65 +florida +expected +nearby +congress +sam +peace +recent +iii +wait +subsequently +cell +##do +variety +serving +agreed +please +poor +joe +pacific +attempt +wood +democratic +piece +prime +##ca +rural +mile +touch +appears +township +1964 +1966 +soldiers +##men +##ized +1965 +pennsylvania +closer +fighting +claimed +score +jones +physical +editor +##ous +filled +genus +specific +sitting +super +mom +##va +therefore +supported +status +fear +cases +store +meaning +wales +minor +spain +tower +focus +vice +frank +follow +parish +separate +golden +horse +fifth +remaining +branch +32 +presented +stared +##id +uses +secret +forms +##co +baseball +exactly +##ck +choice +note +discovered +travel +composed +truth +russia +ball +color +kiss +dad +wind +continue +ring +referred +numbers +digital +greater +##ns +metres +slightly +direct +increase +1960 +responsible +crew +rule +trees +troops +##no +broke +goes +individuals +hundred +weight +creek +sleep +memory +defense +provides +ordered +code +value +jewish +windows +1944 +safe +judge +whatever +corps +realized +growing +pre +##ga +cities +alexander +gaze +lies +spread +scott +letter +showed +situation +mayor +transport +watching +workers +extended +##li +expression +normal +##ment +chart +multiple +border +##ba +host +##ner +daily +mrs +walls +piano +##ko +heat +cannot +##ate +earned +products +drama +era +authority +seasons +join +grade +##io +sign +difficult +machine +1963 +territory +mainly +##wood +stations +squadron +1962 +stepped +iron +19th +##led +serve +appear +sky +speak +broken +charge +knowledge +kilometres +removed +ships +article +campus +simple +##ty +pushed +britain +##ve +leaves +recently +cd +soft +boston +latter +easy +acquired +poland +##sa +quality +officers +presence +planned +nations +mass +broadcast +jean +share +image +influence +wild +offer +emperor +electric +reading +headed +ability +promoted +yellow +ministry +1942 +throat +smaller +politician +##by +latin +spoke +cars +williams +males +lack +pop +80 +##ier +acting +seeing +consists +##ti +estate +1961 +pressure +johnson +newspaper +jr +chris +olympics +online +conditions +beat +elements +walking +vote +##field +needs +carolina +text +featuring +global +block +shirt +levels +francisco +purpose +females +et +dutch +duke +ahead +gas +twice +safety +serious +turning +highly +lieutenant +firm +maria +amount +mixed +daniel +proposed +perfect +agreement +affairs +3rd +seconds +contemporary +paid +1943 +prison +save +kitchen +label +administrative +intended +constructed +academic +nice +teacher +races +1956 +formerly +corporation +ben +nation +issued +shut +1958 +drums +housing +victoria +seems +opera +1959 +graduated +function +von +mentioned +picked +build +recognized +shortly +protection +picture +notable +exchange +elections +1980s +loved +percent +racing +fish +elizabeth +garden +volume +hockey +1941 +beside +settled +##ford +1940 +competed +replied +drew +1948 +actress +marine +scotland +steel +glanced +farm +steve +1957 +risk +tonight +positive +magic +singles +effects +gray +screen +dog +##ja +residents +bus +sides +none +secondary +literature +polish +destroyed +flying +founder +households +1939 +lay +reserve +usa +gallery +##ler +1946 +industrial +younger +approach +appearances +urban +ones +1950 +finish +avenue +powerful +fully +growth +page +honor +jersey +projects +advanced +revealed +basic +90 +infantry +pair +equipment +visit +33 +evening +search +grant +effort +solo +treatment +buried +republican +primarily +bottom +owner +1970s +israel +gives +jim +dream +bob +remain +spot +70 +notes +produce +champions +contact +ed +soul +accepted +ways +del +##ally +losing +split +price +capacity +basis +trial +questions +##ina +1955 +20th +guess +officially +memorial +naval +initial +##ization +whispered +median +engineer +##ful +sydney +##go +columbia +strength +300 +1952 +tears +senate +00 +card +asian +agent +1947 +software +44 +draw +warm +supposed +com +pro +##il +transferred +leaned +##at +candidate +escape +mountains +asia +potential +activity +entertainment +seem +traffic +jackson +murder +36 +slow +product +orchestra +haven +agency +bbc +taught +website +comedy +unable +storm +planning +albums +rugby +environment +scientific +grabbed +protect +##hi +boat +typically +1954 +1953 +damage +principal +divided +dedicated +mount +ohio +##berg +pick +fought +driver +##der +empty +shoulders +sort +thank +berlin +prominent +account +freedom +necessary +efforts +alex +headquarters +follows +alongside +des +simon +andrew +suggested +operating +learning +steps +1949 +sweet +technical +begin +easily +34 +teeth +speaking +settlement +scale +##sh +renamed +ray +max +enemy +semi +joint +compared +##rd +scottish +leadership +analysis +offers +georgia +pieces +captured +animal +deputy +guest +organized +##lin +tony +combined +method +challenge +1960s +huge +wants +battalion +sons +rise +crime +types +facilities +telling +path +1951 +platform +sit +1990s +##lo +tells +assigned +rich +pull +##ot +commonly +alive +##za +letters +concept +conducted +wearing +happen +bought +becomes +holy +gets +ocean +defeat +languages +purchased +coffee +occurred +titled +##q +declared +applied +sciences +concert +sounds +jazz +brain +##me +painting +fleet +tax +nick +##ius +michigan +count +animals +leaders +episodes +##line +content +##den +birth +##it +clubs +64 +palace +critical +refused +fair +leg +laughed +returning +surrounding +participated +formation +lifted +pointed +connected +rome +medicine +laid +taylor +santa +powers +adam +tall +shared +focused +knowing +yards +entrance +falls +##wa +calling +##ad +sources +chosen +beneath +resources +yard +##ite +nominated +silence +zone +defined +##que +gained +thirty +38 +bodies +moon +##ard +adopted +christmas +widely +register +apart +iran +premier +serves +du +unknown +parties +##les +generation +##ff +continues +quick +fields +brigade +quiet +teaching +clothes +impact +weapons +partner +flat +theater +supreme +1938 +37 +relations +##tor +plants +suffered +1936 +wilson +kids +begins +##age +1918 +seats +armed +internet +models +worth +laws +400 +communities +classes +background +knows +thanks +quarter +reaching +humans +carry +killing +format +kong +hong +setting +75 +architecture +disease +railroad +inc +possibly +wish +arthur +thoughts +harry +doors +density +##di +crowd +illinois +stomach +tone +unique +reports +anyway +##ir +liberal +der +vehicle +thick +dry +drug +faced +largely +facility +theme +holds +creation +strange +colonel +##mi +revolution +bell +politics +turns +silent +rail +relief +independence +combat +shape +write +determined +sales +learned +4th +finger +oxford +providing +1937 +heritage +fiction +situated +designated +allowing +distribution +hosted +##est +sight +interview +estimated +reduced +##ria +toronto +footballer +keeping +guys +damn +claim +motion +sport +sixth +stayed +##ze +en +rear +receive +handed +twelve +dress +audience +granted +brazil +##well +spirit +##ated +noticed +etc +olympic +representative +eric +tight +trouble +reviews +drink +vampire +missing +roles +ranked +newly +household +finals +wave +critics +##ee +phase +massachusetts +pilot +unlike +philadelphia +bright +guns +crown +organizations +roof +42 +respectively +clearly +tongue +marked +circle +fox +korea +bronze +brian +expanded +sexual +supply +yourself +inspired +labour +fc +##ah +reference +vision +draft +connection +brand +reasons +1935 +classic +driving +trip +jesus +cells +entry +1920 +neither +trail +claims +atlantic +orders +labor +nose +afraid +identified +intelligence +calls +cancer +attacked +passing +stephen +positions +imperial +grey +jason +39 +sunday +48 +swedish +avoid +extra +uncle +message +covers +allows +surprise +materials +fame +hunter +##ji +1930 +citizens +figures +davis +environmental +confirmed +shit +titles +di +performing +difference +acts +attacks +##ov +existing +votes +opportunity +nor +shop +entirely +trains +opposite +pakistan +##pa +develop +resulted +representatives +actions +reality +pressed +##ish +barely +wine +conversation +faculty +northwest +ends +documentary +nuclear +stock +grace +sets +eat +alternative +##ps +bag +resulting +creating +surprised +cemetery +1919 +drop +finding +sarah +cricket +streets +tradition +ride +1933 +exhibition +target +ear +explained +rain +composer +injury +apartment +municipal +educational +occupied +netherlands +clean +billion +constitution +learn +1914 +maximum +classical +francis +lose +opposition +jose +ontario +bear +core +hills +rolled +ending +drawn +permanent +fun +##tes +##lla +lewis +sites +chamber +ryan +##way +scoring +height +1934 +##house +lyrics +staring +55 +officials +1917 +snow +oldest +##tic +orange +##ger +qualified +interior +apparently +succeeded +thousand +dinner +lights +existence +fans +heavily +41 +greatest +conservative +send +bowl +plus +enter +catch +##un +economy +duty +1929 +speech +authorities +princess +performances +versions +shall +graduate +pictures +effective +remembered +poetry +desk +crossed +starring +starts +passenger +sharp +##ant +acres +ass +weather +falling +rank +fund +supporting +check +adult +publishing +heads +cm +southeast +lane +##burg +application +bc +##ura +les +condition +transfer +prevent +display +ex +regions +earl +federation +cool +relatively +answered +besides +1928 +obtained +portion +##town +mix +##ding +reaction +liked +dean +express +peak +1932 +##tte +counter +religion +chain +rare +miller +convention +aid +lie +vehicles +mobile +perform +squad +wonder +lying +crazy +sword +##ping +attempted +centuries +weren +philosophy +category +##ize +anna +interested +47 +sweden +wolf +frequently +abandoned +kg +literary +alliance +task +entitled +##ay +threw +promotion +factory +tiny +soccer +visited +matt +fm +achieved +52 +defence +internal +persian +43 +methods +##ging +arrested +otherwise +cambridge +programming +villages +elementary +districts +rooms +criminal +conflict +worry +trained +1931 +attempts +waited +signal +bird +truck +subsequent +programme +##ol +ad +49 +communist +details +faith +sector +patrick +carrying +laugh +##ss +controlled +korean +showing +origin +fuel +evil +1927 +##ent +brief +identity +darkness +address +pool +missed +publication +web +planet +ian +anne +wings +invited +##tt +briefly +standards +kissed +##be +ideas +climate +causing +walter +worse +albert +articles +winners +desire +aged +northeast +dangerous +gate +doubt +1922 +wooden +multi +##ky +poet +rising +funding +46 +communications +communication +violence +copies +prepared +ford +investigation +skills +1924 +pulling +electronic +##ak +##ial +##han +containing +ultimately +offices +singing +understanding +restaurant +tomorrow +fashion +christ +ward +da +pope +stands +5th +flow +studios +aired +commissioned +contained +exist +fresh +americans +##per +wrestling +approved +kid +employed +respect +suit +1925 +angel +asking +increasing +frame +angry +selling +1950s +thin +finds +##nd +temperature +statement +ali +explain +inhabitants +towns +extensive +narrow +51 +jane +flowers +images +promise +somewhere +object +fly +closely +##ls +1912 +bureau +cape +1926 +weekly +presidential +legislative +1921 +##ai +##au +launch +founding +##ny +978 +##ring +artillery +strike +un +institutions +roll +writers +landing +chose +kevin +anymore +pp +##ut +attorney +fit +dan +billboard +receiving +agricultural +breaking +sought +dave +admitted +lands +mexican +##bury +charlie +specifically +hole +iv +howard +credit +moscow +roads +accident +1923 +proved +wear +struck +hey +guards +stuff +slid +expansion +1915 +cat +anthony +##kin +melbourne +opposed +sub +southwest +architect +failure +plane +1916 +##ron +map +camera +tank +listen +regarding +wet +introduction +metropolitan +link +ep +fighter +inch +grown +gene +anger +fixed +buy +dvd +khan +domestic +worldwide +chapel +mill +functions +examples +##head +developing +1910 +turkey +hits +pocket +antonio +papers +grow +unless +circuit +18th +concerned +attached +journalist +selection +journey +converted +provincial +painted +hearing +aren +bands +negative +aside +wondered +knight +lap +survey +ma +##ow +noise +billy +##ium +shooting +guide +bedroom +priest +resistance +motor +homes +sounded +giant +##mer +150 +scenes +equal +comic +patients +hidden +solid +actual +bringing +afternoon +touched +funds +wedding +consisted +marie +canal +sr +kim +treaty +turkish +recognition +residence +cathedral +broad +knees +incident +shaped +fired +norwegian +handle +cheek +contest +represent +##pe +representing +beauty +##sen +birds +advantage +emergency +wrapped +drawing +notice +pink +broadcasting +##ong +somehow +bachelor +seventh +collected +registered +establishment +alan +assumed +chemical +personnel +roger +retirement +jeff +portuguese +wore +tied +device +threat +progress +advance +##ised +banks +hired +manchester +nfl +teachers +structures +forever +##bo +tennis +helping +saturday +sale +applications +junction +hip +incorporated +neighborhood +dressed +ceremony +##ds +influenced +hers +visual +stairs +decades +inner +kansas +hung +hoped +gain +scheduled +downtown +engaged +austria +clock +norway +certainly +pale +protected +1913 +victor +employees +plate +putting +surrounded +##ists +finishing +blues +tropical +##ries +minnesota +consider +philippines +accept +54 +retrieved +1900 +concern +anderson +properties +institution +gordon +successfully +vietnam +##dy +backing +outstanding +muslim +crossing +folk +producing +usual +demand +occurs +observed +lawyer +educated +##ana +kelly +string +pleasure +budget +items +quietly +colorado +philip +typical +##worth +derived +600 +survived +asks +mental +##ide +56 +jake +jews +distinguished +ltd +1911 +sri +extremely +53 +athletic +loud +thousands +worried +shadow +transportation +horses +weapon +arena +importance +users +tim +objects +contributed +dragon +douglas +aware +senator +johnny +jordan +sisters +engines +flag +investment +samuel +shock +capable +clark +row +wheel +refers +session +familiar +biggest +wins +hate +maintained +drove +hamilton +request +expressed +injured +underground +churches +walker +wars +tunnel +passes +stupid +agriculture +softly +cabinet +regarded +joining +indiana +##ea +##ms +push +dates +spend +behavior +woods +protein +gently +chase +morgan +mention +burning +wake +combination +occur +mirror +leads +jimmy +indeed +impossible +singapore +paintings +covering +##nes +soldier +locations +attendance +sell +historian +wisconsin +invasion +argued +painter +diego +changing +egypt +##don +experienced +inches +##ku +missouri +vol +grounds +spoken +switzerland +##gan +reform +rolling +ha +forget +massive +resigned +burned +allen +tennessee +locked +values +improved +##mo +wounded +universe +sick +dating +facing +pack +purchase +user +##pur +moments +##ul +merged +anniversary +1908 +coal +brick +understood +causes +dynasty +queensland +establish +stores +crisis +promote +hoping +views +cards +referee +extension +##si +raise +arizona +improve +colonial +formal +charged +##rt +palm +lucky +hide +rescue +faces +95 +feelings +candidates +juan +##ell +goods +6th +courses +weekend +59 +luke +cash +fallen +##om +delivered +affected +installed +carefully +tries +swiss +hollywood +costs +lincoln +responsibility +##he +shore +file +proper +normally +maryland +assistance +jump +constant +offering +friendly +waters +persons +realize +contain +trophy +800 +partnership +factor +58 +musicians +cry +bound +oregon +indicated +hero +houston +medium +##ure +consisting +somewhat +##ara +57 +cycle +##che +beer +moore +frederick +gotten +eleven +worst +weak +approached +arranged +chin +loan +universal +bond +fifteen +pattern +disappeared +##ney +translated +##zed +lip +arab +capture +interests +insurance +##chi +shifted +cave +prix +warning +sections +courts +coat +plot +smell +feed +golf +favorite +maintain +knife +vs +voted +degrees +finance +quebec +opinion +translation +manner +ruled +operate +productions +choose +musician +discovery +confused +tired +separated +stream +techniques +committed +attend +ranking +kings +throw +passengers +measure +horror +fan +mining +sand +danger +salt +calm +decade +dam +require +runner +##ik +rush +associate +greece +##ker +rivers +consecutive +matthew +##ski +sighed +sq +documents +steam +edited +closing +tie +accused +1905 +##ini +islamic +distributed +directors +organisation +bruce +7th +breathing +mad +lit +arrival +concrete +taste +08 +composition +shaking +faster +amateur +adjacent +stating +1906 +twin +flew +##ran +tokyo +publications +##tone +obviously +ridge +storage +1907 +carl +pages +concluded +desert +driven +universities +ages +terminal +sequence +borough +250 +constituency +creative +cousin +economics +dreams +margaret +notably +reduce +montreal +mode +17th +ears +saved +jan +vocal +##ica +1909 +andy +##jo +riding +roughly +threatened +##ise +meters +meanwhile +landed +compete +repeated +grass +czech +regularly +charges +tea +sudden +appeal +##ung +solution +describes +pierre +classification +glad +parking +##ning +belt +physics +99 +rachel +add +hungarian +participate +expedition +damaged +gift +childhood +85 +fifty +##red +mathematics +jumped +letting +defensive +mph +##ux +##gh +testing +##hip +hundreds +shoot +owners +matters +smoke +israeli +kentucky +dancing +mounted +grandfather +emma +designs +profit +argentina +##gs +truly +li +lawrence +cole +begun +detroit +willing +branches +smiling +decide +miami +enjoyed +recordings +##dale +poverty +ethnic +gay +##bi +gary +arabic +09 +accompanied +##one +##ons +fishing +determine +residential +acid +##ary +alice +returns +starred +mail +##ang +jonathan +strategy +##ue +net +forty +cook +businesses +equivalent +commonwealth +distinct +ill +##cy +seriously +##ors +##ped +shift +harris +replace +rio +imagine +formula +ensure +##ber +additionally +scheme +conservation +occasionally +purposes +feels +favor +##and +##ore +1930s +contrast +hanging +hunt +movies +1904 +instruments +victims +danish +christopher +busy +demon +sugar +earliest +colony +studying +balance +duties +##ks +belgium +slipped +carter +05 +visible +stages +iraq +fifa +##im +commune +forming +zero +07 +continuing +talked +counties +legend +bathroom +option +tail +clay +daughters +afterwards +severe +jaw +visitors +##ded +devices +aviation +russell +kate +##vi +entering +subjects +##ino +temporary +swimming +forth +smooth +ghost +audio +bush +operates +rocks +movements +signs +eddie +##tz +ann +voices +honorary +06 +memories +dallas +pure +measures +racial +promised +66 +harvard +ceo +16th +parliamentary +indicate +benefit +flesh +dublin +louisiana +1902 +1901 +patient +sleeping +1903 +membership +coastal +medieval +wanting +element +scholars +rice +62 +limit +survive +makeup +rating +definitely +collaboration +obvious +##tan +boss +ms +baron +birthday +linked +soil +diocese +##lan +ncaa +##mann +offensive +shell +shouldn +waist +##tus +plain +ross +organ +resolution +manufacturing +adding +relative +kennedy +98 +whilst +moth +marketing +gardens +crash +72 +heading +partners +credited +carlos +moves +cable +##zi +marshall +##out +depending +bottle +represents +rejected +responded +existed +04 +jobs +denmark +lock +##ating +treated +graham +routes +talent +commissioner +drugs +secure +tests +reign +restored +photography +##gi +contributions +oklahoma +designer +disc +grin +seattle +robin +paused +atlanta +unusual +##gate +praised +las +laughing +satellite +hungary +visiting +##sky +interesting +factors +deck +poems +norman +##water +stuck +speaker +rifle +domain +premiered +##her +dc +comics +actors +01 +reputation +eliminated +8th +ceiling +prisoners +script +##nce +leather +austin +mississippi +rapidly +admiral +parallel +charlotte +guilty +tools +gender +divisions +fruit +##bs +laboratory +nelson +fantasy +marry +rapid +aunt +tribe +requirements +aspects +suicide +amongst +adams +bone +ukraine +abc +kick +sees +edinburgh +clothing +column +rough +gods +hunting +broadway +gathered +concerns +##ek +spending +ty +12th +snapped +requires +solar +bones +cavalry +##tta +iowa +drinking +waste +index +franklin +charity +thompson +stewart +tip +flash +landscape +friday +enjoy +singh +poem +listening +##back +eighth +fred +differences +adapted +bomb +ukrainian +surgery +corporate +masters +anywhere +##more +waves +odd +sean +portugal +orleans +dick +debate +kent +eating +puerto +cleared +96 +expect +cinema +97 +guitarist +blocks +electrical +agree +involving +depth +dying +panel +struggle +##ged +peninsula +adults +novels +emerged +vienna +metro +debuted +shoes +tamil +songwriter +meets +prove +beating +instance +heaven +scared +sending +marks +artistic +passage +superior +03 +significantly +shopping +##tive +retained +##izing +malaysia +technique +cheeks +##ola +warren +maintenance +destroy +extreme +allied +120 +appearing +##yn +fill +advice +alabama +qualifying +policies +cleveland +hat +battery +smart +authors +10th +soundtrack +acted +dated +lb +glance +equipped +coalition +funny +outer +ambassador +roy +possibility +couples +campbell +dna +loose +ethan +supplies +1898 +gonna +88 +monster +##res +shake +agents +frequency +springs +dogs +practices +61 +gang +plastic +easier +suggests +gulf +blade +exposed +colors +industries +markets +pan +nervous +electoral +charts +legislation +ownership +##idae +mac +appointment +shield +copy +assault +socialist +abbey +monument +license +throne +employment +jay +93 +replacement +charter +cloud +powered +suffering +accounts +oak +connecticut +strongly +wright +colour +crystal +13th +context +welsh +networks +voiced +gabriel +jerry +##cing +forehead +mp +##ens +manage +schedule +totally +remix +##ii +forests +occupation +print +nicholas +brazilian +strategic +vampires +engineers +76 +roots +seek +correct +instrumental +und +alfred +backed +hop +##des +stanley +robinson +traveled +wayne +welcome +austrian +achieve +67 +exit +rates +1899 +strip +whereas +##cs +sing +deeply +adventure +bobby +rick +jamie +careful +components +cap +useful +personality +knee +##shi +pushing +hosts +02 +protest +ca +ottoman +symphony +##sis +63 +boundary +1890 +processes +considering +considerable +tons +##work +##ft +##nia +cooper +trading +dear +conduct +91 +illegal +apple +revolutionary +holiday +definition +harder +##van +jacob +circumstances +destruction +##lle +popularity +grip +classified +liverpool +donald +baltimore +flows +seeking +honour +approval +92 +mechanical +till +happening +statue +critic +increasingly +immediate +describe +commerce +stare +##ster +indonesia +meat +rounds +boats +baker +orthodox +depression +formally +worn +naked +claire +muttered +sentence +11th +emily +document +77 +criticism +wished +vessel +spiritual +bent +virgin +parker +minimum +murray +lunch +danny +printed +compilation +keyboards +false +blow +belonged +68 +raising +78 +cutting +##board +pittsburgh +##up +9th +shadows +81 +hated +indigenous +jon +15th +barry +scholar +ah +##zer +oliver +##gy +stick +susan +meetings +attracted +spell +romantic +##ver +ye +1895 +photo +demanded +customers +##ac +1896 +logan +revival +keys +modified +commanded +jeans +##ious +upset +raw +phil +detective +hiding +resident +vincent +##bly +experiences +diamond +defeating +coverage +lucas +external +parks +franchise +helen +bible +successor +percussion +celebrated +il +lift +profile +clan +romania +##ied +mills +##su +nobody +achievement +shrugged +fault +1897 +rhythm +initiative +breakfast +carbon +700 +69 +lasted +violent +74 +wound +ken +killer +gradually +filmed +°c +dollars +processing +94 +remove +criticized +guests +sang +chemistry +##vin +legislature +disney +##bridge +uniform +escaped +integrated +proposal +purple +denied +liquid +karl +influential +morris +nights +stones +intense +experimental +twisted +71 +84 +##ld +pace +nazi +mitchell +ny +blind +reporter +newspapers +14th +centers +burn +basin +forgotten +surviving +filed +collections +monastery +losses +manual +couch +description +appropriate +merely +tag +missions +sebastian +restoration +replacing +triple +73 +elder +julia +warriors +benjamin +julian +convinced +stronger +amazing +declined +versus +merchant +happens +output +finland +bare +barbara +absence +ignored +dawn +injuries +##port +producers +##ram +82 +luis +##ities +kw +admit +expensive +electricity +nba +exception +symbol +##ving +ladies +shower +sheriff +characteristics +##je +aimed +button +ratio +effectively +summit +angle +jury +bears +foster +vessels +pants +executed +evans +dozen +advertising +kicked +patrol +1889 +competitions +lifetime +principles +athletics +##logy +birmingham +sponsored +89 +rob +nomination +1893 +acoustic +##sm +creature +longest +##tra +credits +harbor +dust +josh +##so +territories +milk +infrastructure +completion +thailand +indians +leon +archbishop +##sy +assist +pitch +blake +arrangement +girlfriend +serbian +operational +hence +sad +scent +fur +dj +sessions +hp +refer +rarely +##ora +exists +1892 +##ten +scientists +dirty +penalty +burst +portrait +seed +79 +pole +limits +rival +1894 +stable +alpha +grave +constitutional +alcohol +arrest +flower +mystery +devil +architectural +relationships +greatly +habitat +##istic +larry +progressive +remote +cotton +##ics +##ok +preserved +reaches +##ming +cited +86 +vast +scholarship +decisions +cbs +joy +teach +1885 +editions +knocked +eve +searching +partly +participation +gap +animated +fate +excellent +##ett +na +87 +alternate +saints +youngest +##ily +climbed +##ita +##tors +suggest +##ct +discussion +staying +choir +lakes +jacket +revenue +nevertheless +peaked +instrument +wondering +annually +managing +neil +1891 +signing +terry +##ice +apply +clinical +brooklyn +aim +catherine +fuck +farmers +figured +ninth +pride +hugh +evolution +ordinary +involvement +comfortable +shouted +tech +encouraged +taiwan +representation +sharing +##lia +##em +panic +exact +cargo +competing +fat +cried +83 +1920s +occasions +pa +cabin +borders +utah +marcus +##isation +badly +muscles +##ance +victorian +transition +warner +bet +permission +##rin +slave +terrible +similarly +shares +seth +uefa +possession +medals +benefits +colleges +lowered +perfectly +mall +transit +##ye +##kar +publisher +##ened +harrison +deaths +elevation +##ae +asleep +machines +sigh +ash +hardly +argument +occasion +parent +leo +decline +1888 +contribution +##ua +concentration +1000 +opportunities +hispanic +guardian +extent +emotions +hips +mason +volumes +bloody +controversy +diameter +steady +mistake +phoenix +identify +violin +##sk +departure +richmond +spin +funeral +enemies +1864 +gear +literally +connor +random +sergeant +grab +confusion +1865 +transmission +informed +op +leaning +sacred +suspended +thinks +gates +portland +luck +agencies +yours +hull +expert +muscle +layer +practical +sculpture +jerusalem +latest +lloyd +statistics +deeper +recommended +warrior +arkansas +mess +supports +greg +eagle +1880 +recovered +rated +concerts +rushed +##ano +stops +eggs +files +premiere +keith +##vo +delhi +turner +pit +affair +belief +paint +##zing +mate +##ach +##ev +victim +##ology +withdrew +bonus +styles +fled +##ud +glasgow +technologies +funded +nbc +adaptation +##ata +portrayed +cooperation +supporters +judges +bernard +justin +hallway +ralph +##ick +graduating +controversial +distant +continental +spider +bite +##ho +recognize +intention +mixing +##ese +egyptian +bow +tourism +suppose +claiming +tiger +dominated +participants +vi +##ru +nurse +partially +tape +##rum +psychology +##rn +essential +touring +duo +voting +civilian +emotional +channels +##king +apparent +hebrew +1887 +tommy +carrier +intersection +beast +hudson +##gar +##zo +lab +nova +bench +discuss +costa +##ered +detailed +behalf +drivers +unfortunately +obtain +##lis +rocky +##dae +siege +friendship +honey +##rian +1861 +amy +hang +posted +governments +collins +respond +wildlife +preferred +operator +##po +laura +pregnant +videos +dennis +suspected +boots +instantly +weird +automatic +businessman +alleged +placing +throwing +ph +mood +1862 +perry +venue +jet +remainder +##lli +##ci +passion +biological +boyfriend +1863 +dirt +buffalo +ron +segment +fa +abuse +##era +genre +thrown +stroke +colored +stress +exercise +displayed +##gen +struggled +##tti +abroad +dramatic +wonderful +thereafter +madrid +component +widespread +##sed +tale +citizen +todd +monday +1886 +vancouver +overseas +forcing +crying +descent +##ris +discussed +substantial +ranks +regime +1870 +provinces +switch +drum +zane +ted +tribes +proof +lp +cream +researchers +volunteer +manor +silk +milan +donated +allies +venture +principle +delivery +enterprise +##ves +##ans +bars +traditionally +witch +reminded +copper +##uk +pete +inter +links +colin +grinned +elsewhere +competitive +frequent +##oy +scream +##hu +tension +texts +submarine +finnish +defending +defend +pat +detail +1884 +affiliated +stuart +themes +villa +periods +tool +belgian +ruling +crimes +answers +folded +licensed +resort +demolished +hans +lucy +1881 +lion +traded +photographs +writes +craig +##fa +trials +generated +beth +noble +debt +percentage +yorkshire +erected +ss +viewed +grades +confidence +ceased +islam +telephone +retail +##ible +chile +m² +roberts +sixteen +##ich +commented +hampshire +innocent +dual +pounds +checked +regulations +afghanistan +sung +rico +liberty +assets +bigger +options +angels +relegated +tribute +wells +attending +leaf +##yan +butler +romanian +forum +monthly +lisa +patterns +gmina +##tory +madison +hurricane +rev +##ians +bristol +##ula +elite +valuable +disaster +democracy +awareness +germans +freyja +##ins +loop +absolutely +paying +populations +maine +sole +prayer +spencer +releases +doorway +bull +##ani +lover +midnight +conclusion +##sson +thirteen +lily +mediterranean +##lt +nhl +proud +sample +##hill +drummer +guinea +##ova +murphy +climb +##ston +instant +attributed +horn +ain +railways +steven +##ao +autumn +ferry +opponent +root +traveling +secured +corridor +stretched +tales +sheet +trinity +cattle +helps +indicates +manhattan +murdered +fitted +1882 +gentle +grandmother +mines +shocked +vegas +produces +##light +caribbean +##ou +belong +continuous +desperate +drunk +historically +trio +waved +raf +dealing +nathan +bat +murmured +interrupted +residing +scientist +pioneer +harold +aaron +##net +delta +attempting +minority +mini +believes +chorus +tend +lots +eyed +indoor +load +shots +updated +jail +##llo +concerning +connecting +wealth +##ved +slaves +arrive +rangers +sufficient +rebuilt +##wick +cardinal +flood +muhammad +whenever +relation +runners +moral +repair +viewers +arriving +revenge +punk +assisted +bath +fairly +breathe +lists +innings +illustrated +whisper +nearest +voters +clinton +ties +ultimate +screamed +beijing +lions +andre +fictional +gathering +comfort +radar +suitable +dismissed +hms +ban +pine +wrist +atmosphere +voivodeship +bid +timber +##ned +##nan +giants +##ane +cameron +recovery +uss +identical +categories +switched +serbia +laughter +noah +ensemble +therapy +peoples +touching +##off +locally +pearl +platforms +everywhere +ballet +tables +lanka +herbert +outdoor +toured +derek +1883 +spaces +contested +swept +1878 +exclusive +slight +connections +##dra +winds +prisoner +collective +bangladesh +tube +publicly +wealthy +thai +##ys +isolated +select +##ric +insisted +pen +fortune +ticket +spotted +reportedly +animation +enforcement +tanks +110 +decides +wider +lowest +owen +##time +nod +hitting +##hn +gregory +furthermore +magazines +fighters +solutions +##ery +pointing +requested +peru +reed +chancellor +knights +mask +worker +eldest +flames +reduction +1860 +volunteers +##tis +reporting +##hl +wire +advisory +endemic +origins +settlers +pursue +knock +consumer +1876 +eu +compound +creatures +mansion +sentenced +ivan +deployed +guitars +frowned +involves +mechanism +kilometers +perspective +shops +maps +terminus +duncan +alien +fist +bridges +##pers +heroes +fed +derby +swallowed +##ros +patent +sara +illness +characterized +adventures +slide +hawaii +jurisdiction +##op +organised +##side +adelaide +walks +biology +se +##ties +rogers +swing +tightly +boundaries +##rie +prepare +implementation +stolen +##sha +certified +colombia +edwards +garage +##mm +recalled +##ball +rage +harm +nigeria +breast +##ren +furniture +pupils +settle +##lus +cuba +balls +client +alaska +21st +linear +thrust +celebration +latino +genetic +terror +##cia +##ening +lightning +fee +witness +lodge +establishing +skull +##ique +earning +hood +##ei +rebellion +wang +sporting +warned +missile +devoted +activist +porch +worship +fourteen +package +1871 +decorated +##shire +housed +##ock +chess +sailed +doctors +oscar +joan +treat +garcia +harbour +jeremy +##ire +traditions +dominant +jacques +##gon +##wan +relocated +1879 +amendment +sized +companion +simultaneously +volleyball +spun +acre +increases +stopping +loves +belongs +affect +drafted +tossed +scout +battles +1875 +filming +shoved +munich +tenure +vertical +romance +pc +##cher +argue +##ical +craft +ranging +www +opens +honest +tyler +yesterday +virtual +##let +muslims +reveal +snake +immigrants +radical +screaming +speakers +firing +saving +belonging +ease +lighting +prefecture +blame +farmer +hungry +grows +rubbed +beam +sur +subsidiary +##cha +armenian +sao +dropping +conventional +##fer +microsoft +reply +qualify +spots +1867 +sweat +festivals +##ken +immigration +physician +discover +exposure +sandy +explanation +isaac +implemented +##fish +hart +initiated +connect +stakes +presents +heights +householder +pleased +tourist +regardless +slip +closest +##ction +surely +sultan +brings +riley +preparation +aboard +slammed +baptist +experiment +ongoing +interstate +organic +playoffs +##ika +1877 +130 +##tar +hindu +error +tours +tier +plenty +arrangements +talks +trapped +excited +sank +ho +athens +1872 +denver +welfare +suburb +athletes +trick +diverse +belly +exclusively +yelled +1868 +##med +conversion +##ette +1874 +internationally +computers +conductor +abilities +sensitive +hello +dispute +measured +globe +rocket +prices +amsterdam +flights +tigers +inn +municipalities +emotion +references +3d +##mus +explains +airlines +manufactured +pm +archaeological +1873 +interpretation +devon +comment +##ites +settlements +kissing +absolute +improvement +suite +impressed +barcelona +sullivan +jefferson +towers +jesse +julie +##tin +##lu +grandson +hi +gauge +regard +rings +interviews +trace +raymond +thumb +departments +burns +serial +bulgarian +scores +demonstrated +##ix +1866 +kyle +alberta +underneath +romanized +##ward +relieved +acquisition +phrase +cliff +reveals +han +cuts +merger +custom +##dar +nee +gilbert +graduation +##nts +assessment +cafe +difficulty +demands +swung +democrat +jennifer +commons +1940s +grove +##yo +completing +focuses +sum +substitute +bearing +stretch +reception +##py +reflected +essentially +destination +pairs +##ched +survival +resource +##bach +promoting +doubles +messages +tear +##down +##fully +parade +florence +harvey +incumbent +partial +framework +900 +pedro +frozen +procedure +olivia +controls +##mic +shelter +personally +temperatures +##od +brisbane +tested +sits +marble +comprehensive +oxygen +leonard +##kov +inaugural +iranian +referring +quarters +attitude +##ivity +mainstream +lined +mars +dakota +norfolk +unsuccessful +##° +explosion +helicopter +congressional +##sing +inspector +bitch +seal +departed +divine +##ters +coaching +examination +punishment +manufacturer +sink +columns +unincorporated +signals +nevada +squeezed +dylan +dining +photos +martial +manuel +eighteen +elevator +brushed +plates +ministers +ivy +congregation +##len +slept +specialized +taxes +curve +restricted +negotiations +likes +statistical +arnold +inspiration +execution +bold +intermediate +significance +margin +ruler +wheels +gothic +intellectual +dependent +listened +eligible +buses +widow +syria +earn +cincinnati +collapsed +recipient +secrets +accessible +philippine +maritime +goddess +clerk +surrender +breaks +playoff +database +##ified +##lon +ideal +beetle +aspect +soap +regulation +strings +expand +anglo +shorter +crosses +retreat +tough +coins +wallace +directions +pressing +##oon +shipping +locomotives +comparison +topics +nephew +##mes +distinction +honors +travelled +sierra +ibn +##over +fortress +sa +recognised +carved +1869 +clients +##dan +intent +##mar +coaches +describing +bread +##ington +beaten +northwestern +##ona +merit +youtube +collapse +challenges +em +historians +objective +submitted +virus +attacking +drake +assume +##ere +diseases +marc +stem +leeds +##cus +##ab +farming +glasses +##lock +visits +nowhere +fellowship +relevant +carries +restaurants +experiments +101 +constantly +bases +targets +shah +tenth +opponents +verse +territorial +##ira +writings +corruption +##hs +instruction +inherited +reverse +emphasis +##vic +employee +arch +keeps +rabbi +watson +payment +uh +##ala +nancy +##tre +venice +fastest +sexy +banned +adrian +properly +ruth +touchdown +dollar +boards +metre +circles +edges +favour +comments +ok +travels +liberation +scattered +firmly +##ular +holland +permitted +diesel +kenya +den +originated +##ral +demons +resumed +dragged +rider +##rus +servant +blinked +extend +torn +##ias +##sey +input +meal +everybody +cylinder +kinds +camps +##fe +bullet +logic +##wn +croatian +evolved +healthy +fool +chocolate +wise +preserve +pradesh +##ess +respective +1850 +##ew +chicken +artificial +gross +corresponding +convicted +cage +caroline +dialogue +##dor +narrative +stranger +mario +br +christianity +failing +trent +commanding +buddhist +1848 +maurice +focusing +yale +bike +altitude +##ering +mouse +revised +##sley +veteran +##ig +pulls +theology +crashed +campaigns +legion +##ability +drag +excellence +customer +cancelled +intensity +excuse +##lar +liga +participating +contributing +printing +##burn +variable +##rk +curious +bin +legacy +renaissance +##my +symptoms +binding +vocalist +dancer +##nie +grammar +gospel +democrats +ya +enters +sc +diplomatic +hitler +##ser +clouds +mathematical +quit +defended +oriented +##heim +fundamental +hardware +impressive +equally +convince +confederate +guilt +chuck +sliding +##ware +magnetic +narrowed +petersburg +bulgaria +otto +phd +skill +##ama +reader +hopes +pitcher +reservoir +hearts +automatically +expecting +mysterious +bennett +extensively +imagined +seeds +monitor +fix +##ative +journalism +struggling +signature +ranch +encounter +photographer +observation +protests +##pin +influences +##hr +calendar +##all +cruz +croatia +locomotive +hughes +naturally +shakespeare +basement +hook +uncredited +faded +theories +approaches +dare +phillips +filling +fury +obama +##ain +efficient +arc +deliver +min +raid +breeding +inducted +leagues +efficiency +axis +montana +eagles +##ked +supplied +instructions +karen +picking +indicating +trap +anchor +practically +christians +tomb +vary +occasional +electronics +lords +readers +newcastle +faint +innovation +collect +situations +engagement +160 +claude +mixture +##feld +peer +tissue +logo +lean +##ration +°f +floors +##ven +architects +reducing +##our +##ments +rope +1859 +ottawa +##har +samples +banking +declaration +proteins +resignation +francois +saudi +advocate +exhibited +armor +twins +divorce +##ras +abraham +reviewed +jo +temporarily +matrix +physically +pulse +curled +##ena +difficulties +bengal +usage +##ban +annie +riders +certificate +##pi +holes +warsaw +distinctive +jessica +##mon +mutual +1857 +customs +circular +eugene +removal +loaded +mere +vulnerable +depicted +generations +dame +heir +enormous +lightly +climbing +pitched +lessons +pilots +nepal +ram +google +preparing +brad +louise +renowned +##₂ +liam +##ably +plaza +shaw +sophie +brilliant +bills +##bar +##nik +fucking +mainland +server +pleasant +seized +veterans +jerked +fail +beta +brush +radiation +stored +warmth +southeastern +nate +sin +raced +berkeley +joke +athlete +designation +trunk +##low +roland +qualification +archives +heels +artwork +receives +judicial +reserves +##bed +woke +installation +abu +floating +fake +lesser +excitement +interface +concentrated +addressed +characteristic +amanda +saxophone +monk +auto +##bus +releasing +egg +dies +interaction +defender +ce +outbreak +glory +loving +##bert +sequel +consciousness +http +awake +ski +enrolled +##ress +handling +rookie +brow +somebody +biography +warfare +amounts +contracts +presentation +fabric +dissolved +challenged +meter +psychological +lt +elevated +rally +accurate +##tha +hospitals +undergraduate +specialist +venezuela +exhibit +shed +nursing +protestant +fluid +structural +footage +jared +consistent +prey +##ska +succession +reflect +exile +lebanon +wiped +suspect +shanghai +resting +integration +preservation +marvel +variant +pirates +sheep +rounded +capita +sailing +colonies +manuscript +deemed +variations +clarke +functional +emerging +boxing +relaxed +curse +azerbaijan +heavyweight +nickname +editorial +rang +grid +tightened +earthquake +flashed +miguel +rushing +##ches +improvements +boxes +brooks +180 +consumption +molecular +felix +societies +repeatedly +variation +aids +civic +graphics +professionals +realm +autonomous +receiver +delayed +workshop +militia +chairs +trump +canyon +##point +harsh +extending +lovely +happiness +##jan +stake +eyebrows +embassy +wellington +hannah +##ella +sony +corners +bishops +swear +cloth +contents +xi +namely +commenced +1854 +stanford +nashville +courage +graphic +commitment +garrison +##bin +hamlet +clearing +rebels +attraction +literacy +cooking +ruins +temples +jenny +humanity +celebrate +hasn +freight +sixty +rebel +bastard +##art +newton +##ada +deer +##ges +##ching +smiles +delaware +singers +##ets +approaching +assists +flame +##ph +boulevard +barrel +planted +##ome +pursuit +##sia +consequences +posts +shallow +invitation +rode +depot +ernest +kane +rod +concepts +preston +topic +chambers +striking +blast +arrives +descendants +montgomery +ranges +worlds +##lay +##ari +span +chaos +praise +##ag +fewer +1855 +sanctuary +mud +fbi +##ions +programmes +maintaining +unity +harper +bore +handsome +closure +tournaments +thunder +nebraska +linda +facade +puts +satisfied +argentine +dale +cork +dome +panama +##yl +1858 +tasks +experts +##ates +feeding +equation +##las +##ida +##tu +engage +bryan +##ax +um +quartet +melody +disbanded +sheffield +blocked +gasped +delay +kisses +maggie +connects +##non +sts +poured +creator +publishers +##we +guided +ellis +extinct +hug +gaining +##ord +complicated +##bility +poll +clenched +investigate +##use +thereby +quantum +spine +cdp +humor +kills +administered +semifinals +##du +encountered +ignore +##bu +commentary +##maker +bother +roosevelt +140 +plains +halfway +flowing +cultures +crack +imprisoned +neighboring +airline +##ses +##view +##mate +##ec +gather +wolves +marathon +transformed +##ill +cruise +organisations +carol +punch +exhibitions +numbered +alarm +ratings +daddy +silently +##stein +queens +colours +impression +guidance +liu +tactical +##rat +marshal +della +arrow +##ings +rested +feared +tender +owns +bitter +advisor +escort +##ides +spare +farms +grants +##ene +dragons +encourage +colleagues +cameras +##und +sucked +pile +spirits +prague +statements +suspension +landmark +fence +torture +recreation +bags +permanently +survivors +pond +spy +predecessor +bombing +coup +##og +protecting +transformation +glow +##lands +##book +dug +priests +andrea +feat +barn +jumping +##chen +##ologist +##con +casualties +stern +auckland +pipe +serie +revealing +ba +##bel +trevor +mercy +spectrum +yang +consist +governing +collaborated +possessed +epic +comprises +blew +shane +##ack +lopez +honored +magical +sacrifice +judgment +perceived +hammer +mtv +baronet +tune +das +missionary +sheets +350 +neutral +oral +threatening +attractive +shade +aims +seminary +##master +estates +1856 +michel +wounds +refugees +manufacturers +##nic +mercury +syndrome +porter +##iya +##din +hamburg +identification +upstairs +purse +widened +pause +cared +breathed +affiliate +santiago +prevented +celtic +fisher +125 +recruited +byzantine +reconstruction +farther +##mp +diet +sake +au +spite +sensation +##ert +blank +separation +105 +##hon +vladimir +armies +anime +##lie +accommodate +orbit +cult +sofia +archive +##ify +##box +founders +sustained +disorder +honours +northeastern +mia +crops +violet +threats +blanket +fires +canton +followers +southwestern +prototype +voyage +assignment +altered +moderate +protocol +pistol +##eo +questioned +brass +lifting +1852 +math +authored +##ual +doug +dimensional +dynamic +##san +1851 +pronounced +grateful +quest +uncomfortable +boom +presidency +stevens +relating +politicians +chen +barrier +quinn +diana +mosque +tribal +cheese +palmer +portions +sometime +chester +treasure +wu +bend +download +millions +reforms +registration +##osa +consequently +monitoring +ate +preliminary +brandon +invented +ps +eaten +exterior +intervention +ports +documented +log +displays +lecture +sally +favourite +##itz +vermont +lo +invisible +isle +breed +##ator +journalists +relay +speaks +backward +explore +midfielder +actively +stefan +procedures +cannon +blond +kenneth +centered +servants +chains +libraries +malcolm +essex +henri +slavery +##hal +facts +fairy +coached +cassie +cats +washed +cop +##fi +announcement +item +2000s +vinyl +activated +marco +frontier +growled +curriculum +##das +loyal +accomplished +leslie +ritual +kenny +##00 +vii +napoleon +hollow +hybrid +jungle +stationed +friedrich +counted +##ulated +platinum +theatrical +seated +col +rubber +glen +1840 +diversity +healing +extends +id +provisions +administrator +columbus +##oe +tributary +te +assured +org +##uous +prestigious +examined +lectures +grammy +ronald +associations +bailey +allan +essays +flute +believing +consultant +proceedings +travelling +1853 +kit +kerala +yugoslavia +buddy +methodist +##ith +burial +centres +batman +##nda +discontinued +bo +dock +stockholm +lungs +severely +##nk +citing +manga +##ugh +steal +mumbai +iraqi +robot +celebrity +bride +broadcasts +abolished +pot +joel +overhead +franz +packed +reconnaissance +johann +acknowledged +introduce +handled +doctorate +developments +drinks +alley +palestine +##nis +##aki +proceeded +recover +bradley +grain +patch +afford +infection +nationalist +legendary +##ath +interchange +virtually +gen +gravity +exploration +amber +vital +wishes +powell +doctrine +elbow +screenplay +##bird +contribute +indonesian +pet +creates +##com +enzyme +kylie +discipline +drops +manila +hunger +##ien +layers +suffer +fever +bits +monica +keyboard +manages +##hood +searched +appeals +##bad +testament +grande +reid +##war +beliefs +congo +##ification +##dia +si +requiring +##via +casey +1849 +regret +streak +rape +depends +syrian +sprint +pound +tourists +upcoming +pub +##xi +tense +##els +practiced +echo +nationwide +guild +motorcycle +liz +##zar +chiefs +desired +elena +bye +precious +absorbed +relatives +booth +pianist +##mal +citizenship +exhausted +wilhelm +##ceae +##hed +noting +quarterback +urge +hectares +##gue +ace +holly +##tal +blonde +davies +parked +sustainable +stepping +twentieth +airfield +galaxy +nest +chip +##nell +tan +shaft +paulo +requirement +##zy +paradise +tobacco +trans +renewed +vietnamese +##cker +##ju +suggesting +catching +holmes +enjoying +md +trips +colt +holder +butterfly +nerve +reformed +cherry +bowling +trailer +carriage +goodbye +appreciate +toy +joshua +interactive +enabled +involve +##kan +collar +determination +bunch +facebook +recall +shorts +superintendent +episcopal +frustration +giovanni +nineteenth +laser +privately +array +circulation +##ovic +armstrong +deals +painful +permit +discrimination +##wi +aires +retiring +cottage +ni +##sta +horizon +ellen +jamaica +ripped +fernando +chapters +playstation +patron +lecturer +navigation +behaviour +genes +georgian +export +solomon +rivals +swift +seventeen +rodriguez +princeton +independently +sox +1847 +arguing +entity +casting +hank +criteria +oakland +geographic +milwaukee +reflection +expanding +conquest +dubbed +##tv +halt +brave +brunswick +doi +arched +curtis +divorced +predominantly +somerset +streams +ugly +zoo +horrible +curved +buenos +fierce +dictionary +vector +theological +unions +handful +stability +chan +punjab +segments +##lly +altar +ignoring +gesture +monsters +pastor +##stone +thighs +unexpected +operators +abruptly +coin +compiled +associates +improving +migration +pin +##ose +compact +collegiate +reserved +##urs +quarterfinals +roster +restore +assembled +hurry +oval +##cies +1846 +flags +martha +##del +victories +sharply +##rated +argues +deadly +neo +drawings +symbols +performer +##iel +griffin +restrictions +editing +andrews +java +journals +arabia +compositions +dee +pierce +removing +hindi +casino +runway +civilians +minds +nasa +hotels +##zation +refuge +rent +retain +potentially +conferences +suburban +conducting +##tto +##tions +##tle +descended +massacre +##cal +ammunition +terrain +fork +souls +counts +chelsea +durham +drives +cab +##bank +perth +realizing +palestinian +finn +simpson +##dal +betty +##ule +moreover +particles +cardinals +tent +evaluation +extraordinary +##oid +inscription +##works +wednesday +chloe +maintains +panels +ashley +trucks +##nation +cluster +sunlight +strikes +zhang +##wing +dialect +canon +##ap +tucked +##ws +collecting +##mas +##can +##sville +maker +quoted +evan +franco +aria +buying +cleaning +eva +closet +provision +apollo +clinic +rat +##ez +necessarily +ac +##gle +##ising +venues +flipped +cent +spreading +trustees +checking +authorized +##sco +disappointed +##ado +notion +duration +trumpet +hesitated +topped +brussels +rolls +theoretical +hint +define +aggressive +repeat +wash +peaceful +optical +width +allegedly +mcdonald +strict +copyright +##illa +investors +mar +jam +witnesses +sounding +miranda +michelle +privacy +hugo +harmony +##pp +valid +lynn +glared +nina +102 +headquartered +diving +boarding +gibson +##ncy +albanian +marsh +routine +dealt +enhanced +er +intelligent +substance +targeted +enlisted +discovers +spinning +observations +pissed +smoking +rebecca +capitol +visa +varied +costume +seemingly +indies +compensation +surgeon +thursday +arsenal +westminster +suburbs +rid +anglican +##ridge +knots +foods +alumni +lighter +fraser +whoever +portal +scandal +##ray +gavin +advised +instructor +flooding +terrorist +##ale +teenage +interim +senses +duck +teen +thesis +abby +eager +overcome +##ile +newport +glenn +rises +shame +##cc +prompted +priority +forgot +bomber +nicolas +protective +360 +cartoon +katherine +breeze +lonely +trusted +henderson +richardson +relax +banner +candy +palms +remarkable +##rio +legends +cricketer +essay +ordained +edmund +rifles +trigger +##uri +##away +sail +alert +1830 +audiences +penn +sussex +siblings +pursued +indianapolis +resist +rosa +consequence +succeed +avoided +1845 +##ulation +inland +##tie +##nna +counsel +profession +chronicle +hurried +##una +eyebrow +eventual +bleeding +innovative +cure +##dom +committees +accounting +con +scope +hardy +heather +tenor +gut +herald +codes +tore +scales +wagon +##oo +luxury +tin +prefer +fountain +triangle +bonds +darling +convoy +dried +traced +beings +troy +accidentally +slam +findings +smelled +joey +lawyers +outcome +steep +bosnia +configuration +shifting +toll +brook +performers +lobby +philosophical +construct +shrine +aggregate +boot +cox +phenomenon +savage +insane +solely +reynolds +lifestyle +##ima +nationally +holdings +consideration +enable +edgar +mo +mama +##tein +fights +relegation +chances +atomic +hub +conjunction +awkward +reactions +currency +finale +kumar +underwent +steering +elaborate +gifts +comprising +melissa +veins +reasonable +sunshine +chi +solve +trails +inhabited +elimination +ethics +huh +ana +molly +consent +apartments +layout +marines +##ces +hunters +bulk +##oma +hometown +##wall +##mont +cracked +reads +neighbouring +withdrawn +admission +wingspan +damned +anthology +lancashire +brands +batting +forgive +cuban +awful +##lyn +104 +dimensions +imagination +##ade +dante +##ship +tracking +desperately +goalkeeper +##yne +groaned +workshops +confident +burton +gerald +milton +circus +uncertain +slope +copenhagen +sophia +fog +philosopher +portraits +accent +cycling +varying +gripped +larvae +garrett +specified +scotia +mature +luther +kurt +rap +##kes +aerial +750 +ferdinand +heated +es +transported +##shan +safely +nonetheless +##orn +##gal +motors +demanding +##sburg +startled +##brook +ally +generate +caps +ghana +stained +demo +mentions +beds +ap +afterward +diary +##bling +utility +##iro +richards +1837 +conspiracy +conscious +shining +footsteps +observer +cyprus +urged +loyalty +developer +probability +olive +upgraded +gym +miracle +insects +graves +1844 +ourselves +hydrogen +amazon +katie +tickets +poets +##pm +planes +##pan +prevention +witnessed +dense +jin +randy +tang +warehouse +monroe +bang +archived +elderly +investigations +alec +granite +mineral +conflicts +controlling +aboriginal +carlo +##zu +mechanics +stan +stark +rhode +skirt +est +##berry +bombs +respected +##horn +imposed +limestone +deny +nominee +memphis +grabbing +disabled +##als +amusement +aa +frankfurt +corn +referendum +varies +slowed +disk +firms +unconscious +incredible +clue +sue +##zhou +twist +##cio +joins +idaho +chad +developers +computing +destroyer +103 +mortal +tucker +kingston +choices +yu +carson +1800 +os +whitney +geneva +pretend +dimension +staged +plateau +maya +##une +freestyle +##bc +rovers +hiv +##ids +tristan +classroom +prospect +##hus +honestly +diploma +lied +thermal +auxiliary +feast +unlikely +iata +##tel +morocco +pounding +treasury +lithuania +considerably +1841 +dish +1812 +geological +matching +stumbled +destroying +marched +brien +advances +cake +nicole +belle +settling +measuring +directing +##mie +tuesday +bassist +capabilities +stunned +fraud +torpedo +##list +##phone +anton +wisdom +surveillance +ruined +##ulate +lawsuit +healthcare +theorem +halls +trend +aka +horizontal +dozens +acquire +lasting +swim +hawk +gorgeous +fees +vicinity +decrease +adoption +tactics +##ography +pakistani +##ole +draws +##hall +willie +burke +heath +algorithm +integral +powder +elliott +brigadier +jackie +tate +varieties +darker +##cho +lately +cigarette +specimens +adds +##ree +##ensis +##inger +exploded +finalist +cia +murders +wilderness +arguments +nicknamed +acceptance +onwards +manufacture +robertson +jets +tampa +enterprises +blog +loudly +composers +nominations +1838 +ai +malta +inquiry +automobile +hosting +viii +rays +tilted +grief +museums +strategies +furious +euro +equality +cohen +poison +surrey +wireless +governed +ridiculous +moses +##esh +##room +vanished +##ito +barnes +attract +morrison +istanbul +##iness +absent +rotation +petition +janet +##logical +satisfaction +custody +deliberately +observatory +comedian +surfaces +pinyin +novelist +strictly +canterbury +oslo +monks +embrace +ibm +jealous +photograph +continent +dorothy +marina +doc +excess +holden +allegations +explaining +stack +avoiding +lance +storyline +majesty +poorly +spike +dos +bradford +raven +travis +classics +proven +voltage +pillow +fists +butt +1842 +interpreted +##car +1839 +gage +telegraph +lens +promising +expelled +casual +collector +zones +##min +silly +nintendo +##kh +##bra +downstairs +chef +suspicious +afl +flies +vacant +uganda +pregnancy +condemned +lutheran +estimates +cheap +decree +saxon +proximity +stripped +idiot +deposits +contrary +presenter +magnus +glacier +im +offense +edwin +##ori +upright +##long +bolt +##ois +toss +geographical +##izes +environments +delicate +marking +abstract +xavier +nails +windsor +plantation +occurring +equity +saskatchewan +fears +drifted +sequences +vegetation +revolt +##stic +1843 +sooner +fusion +opposing +nato +skating +1836 +secretly +ruin +lease +##oc +edit +##nne +flora +anxiety +ruby +##ological +##mia +tel +bout +taxi +emmy +frost +rainbow +compounds +foundations +rainfall +assassination +nightmare +dominican +##win +achievements +deserve +orlando +intact +armenia +##nte +calgary +valentine +106 +marion +proclaimed +theodore +bells +courtyard +thigh +gonzalez +console +troop +minimal +monte +everyday +##ence +##if +supporter +terrorism +buck +openly +presbyterian +activists +carpet +##iers +rubbing +uprising +##yi +cute +conceived +legally +##cht +millennium +cello +velocity +ji +rescued +cardiff +1835 +rex +concentrate +senators +beard +rendered +glowing +battalions +scouts +competitors +sculptor +catalogue +arctic +ion +raja +bicycle +wow +glancing +lawn +##woman +gentleman +lighthouse +publish +predicted +calculated +##val +variants +##gne +strain +##ui +winston +deceased +##nus +touchdowns +brady +caleb +sinking +echoed +crush +hon +blessed +protagonist +hayes +endangered +magnitude +editors +##tine +estimate +responsibilities +##mel +backup +laying +consumed +sealed +zurich +lovers +frustrated +##eau +ahmed +kicking +mit +treasurer +1832 +biblical +refuse +terrified +pump +agrees +genuine +imprisonment +refuses +plymouth +##hen +lou +##nen +tara +trembling +antarctic +ton +learns +##tas +crap +crucial +faction +atop +##borough +wrap +lancaster +odds +hopkins +erik +lyon +##eon +bros +##ode +snap +locality +tips +empress +crowned +cal +acclaimed +chuckled +##ory +clara +sends +mild +towel +##fl +##day +##а +wishing +assuming +interviewed +##bal +##die +interactions +eden +cups +helena +##lf +indie +beck +##fire +batteries +filipino +wizard +parted +##lam +traces +##born +rows +idol +albany +delegates +##ees +##sar +discussions +##ex +notre +instructed +belgrade +highways +suggestion +lauren +possess +orientation +alexandria +abdul +beats +salary +reunion +ludwig +alright +wagner +intimate +pockets +slovenia +hugged +brighton +merchants +cruel +stole +trek +slopes +repairs +enrollment +politically +underlying +promotional +counting +boeing +##bb +isabella +naming +##и +keen +bacteria +listing +separately +belfast +ussr +450 +lithuanian +anybody +ribs +sphere +martinez +cock +embarrassed +proposals +fragments +nationals +##fs +##wski +premises +fin +1500 +alpine +matched +freely +bounded +jace +sleeve +##af +gaming +pier +populated +evident +##like +frances +flooded +##dle +frightened +pour +trainer +framed +visitor +challenging +pig +wickets +##fold +infected +email +##pes +arose +##aw +reward +ecuador +oblast +vale +ch +shuttle +##usa +bach +rankings +forbidden +cornwall +accordance +salem +consumers +bruno +fantastic +toes +machinery +resolved +julius +remembering +propaganda +iceland +bombardment +tide +contacts +wives +##rah +concerto +macdonald +albania +implement +daisy +tapped +sudan +helmet +angela +mistress +##lic +crop +sunk +finest +##craft +hostile +##ute +##tsu +boxer +fr +paths +adjusted +habit +ballot +supervision +soprano +##zen +bullets +wicked +sunset +regiments +disappear +lamp +performs +app +##gia +##oa +rabbit +digging +incidents +entries +##cion +dishes +##oi +introducing +##ati +##fied +freshman +slot +jill +tackles +baroque +backs +##iest +lone +sponsor +destiny +altogether +convert +##aro +consensus +shapes +demonstration +basically +feminist +auction +artifacts +##bing +strongest +twitter +halifax +2019 +allmusic +mighty +smallest +precise +alexandra +viola +##los +##ille +manuscripts +##illo +dancers +ari +managers +monuments +blades +barracks +springfield +maiden +consolidated +electron +##end +berry +airing +wheat +nobel +inclusion +blair +payments +geography +bee +cc +eleanor +react +##hurst +afc +manitoba +##yu +su +lineup +fitness +recreational +investments +airborne +disappointment +##dis +edmonton +viewing +##row +renovation +##cast +infant +bankruptcy +roses +aftermath +pavilion +##yer +carpenter +withdrawal +ladder +##hy +discussing +popped +reliable +agreements +rochester +##abad +curves +bombers +220 +rao +reverend +decreased +choosing +107 +stiff +consulting +naples +crawford +tracy +ka +ribbon +cops +##lee +crushed +deciding +unified +teenager +accepting +flagship +explorer +poles +sanchez +inspection +revived +skilled +induced +exchanged +flee +locals +tragedy +swallow +loading +hanna +demonstrate +##ela +salvador +flown +contestants +civilization +##ines +wanna +rhodes +fletcher +hector +knocking +considers +##ough +nash +mechanisms +sensed +mentally +walt +unclear +##eus +renovated +madame +##cks +crews +governmental +##hin +undertaken +monkey +##ben +##ato +fatal +armored +copa +caves +governance +grasp +perception +certification +froze +damp +tugged +wyoming +##rg +##ero +newman +##lor +nerves +curiosity +graph +115 +##ami +withdraw +tunnels +dull +meredith +moss +exhibits +neighbors +communicate +accuracy +explored +raiders +republicans +secular +kat +superman +penny +criticised +##tch +freed +update +conviction +wade +ham +likewise +delegation +gotta +doll +promises +technological +myth +nationality +resolve +convent +##mark +sharon +dig +sip +coordinator +entrepreneur +fold +##dine +capability +councillor +synonym +blown +swan +cursed +1815 +jonas +haired +sofa +canvas +keeper +rivalry +##hart +rapper +speedway +swords +postal +maxwell +estonia +potter +recurring +##nn +##ave +errors +##oni +cognitive +1834 +##² +claws +nadu +roberto +bce +wrestler +ellie +##ations +infinite +ink +##tia +presumably +finite +staircase +108 +noel +patricia +nacional +##cation +chill +eternal +tu +preventing +prussia +fossil +limbs +##logist +ernst +frog +perez +rene +##ace +pizza +prussian +##ios +##vy +molecules +regulatory +answering +opinions +sworn +lengths +supposedly +hypothesis +upward +habitats +seating +ancestors +drank +yield +hd +synthesis +researcher +modest +##var +mothers +peered +voluntary +homeland +##the +acclaim +##igan +static +valve +luxembourg +alto +carroll +fe +receptor +norton +ambulance +##tian +johnston +catholics +depicting +jointly +elephant +gloria +mentor +badge +ahmad +distinguish +remarked +councils +precisely +allison +advancing +detection +crowded +##10 +cooperative +ankle +mercedes +dagger +surrendered +pollution +commit +subway +jeffrey +lesson +sculptures +provider +##fication +membrane +timothy +rectangular +fiscal +heating +teammate +basket +particle +anonymous +deployment +##ple +missiles +courthouse +proportion +shoe +sec +##ller +complaints +forbes +blacks +abandon +remind +sizes +overwhelming +autobiography +natalie +##awa +risks +contestant +countryside +babies +scorer +invaded +enclosed +proceed +hurling +disorders +##cu +reflecting +continuously +cruiser +graduates +freeway +investigated +ore +deserved +maid +blocking +phillip +jorge +shakes +dove +mann +variables +lacked +burden +accompanying +que +consistently +organizing +provisional +complained +endless +##rm +tubes +juice +georges +krishna +mick +labels +thriller +##uch +laps +arcade +sage +snail +##table +shannon +fi +laurence +seoul +vacation +presenting +hire +churchill +surprisingly +prohibited +savannah +technically +##oli +170 +##lessly +testimony +suited +speeds +toys +romans +mlb +flowering +measurement +talented +kay +settings +charleston +expectations +shattered +achieving +triumph +ceremonies +portsmouth +lanes +mandatory +loser +stretching +cologne +realizes +seventy +cornell +careers +webb +##ulating +americas +budapest +ava +suspicion +##ison +yo +conrad +##hai +sterling +jessie +rector +##az +1831 +transform +organize +loans +christine +volcanic +warrant +slender +summers +subfamily +newer +danced +dynamics +rhine +proceeds +heinrich +gastropod +commands +sings +facilitate +easter +ra +positioned +responses +expense +fruits +yanked +imported +25th +velvet +vic +primitive +tribune +baldwin +neighbourhood +donna +rip +hay +pr +##uro +1814 +espn +welcomed +##aria +qualifier +glare +highland +timing +##cted +shells +eased +geometry +louder +exciting +slovakia +##sion +##iz +##lot +savings +prairie +##ques +marching +rafael +tonnes +##lled +curtain +preceding +shy +heal +greene +worthy +##pot +detachment +bury +sherman +##eck +reinforced +seeks +bottles +contracted +duchess +outfit +walsh +##sc +mickey +##ase +geoffrey +archer +squeeze +dawson +eliminate +invention +##enberg +neal +##eth +stance +dealer +coral +maple +retire +polo +simplified +##ht +1833 +hid +watts +backwards +jules +##oke +genesis +mt +frames +rebounds +burma +woodland +moist +santos +whispers +drained +subspecies +##aa +streaming +ulster +burnt +correspondence +maternal +gerard +denis +stealing +##load +genius +duchy +##oria +inaugurated +momentum +suits +placement +sovereign +clause +thames +##hara +confederation +reservation +sketch +yankees +lets +rotten +charm +hal +verses +ultra +commercially +dot +salon +citation +adopt +winnipeg +mist +allocated +cairo +##boy +jenkins +interference +objectives +##wind +1820 +portfolio +armoured +sectors +##eh +initiatives +##world +integrity +exercises +robe +tap +ab +gazed +##tones +distracted +rulers +111 +favorable +jerome +tended +cart +factories +##eri +diplomat +valued +gravel +charitable +##try +calvin +exploring +chang +shepherd +terrace +pdf +pupil +##ural +reflects +ups +##rch +governors +shelf +depths +##nberg +trailed +crest +tackle +##nian +##ats +hatred +##kai +clare +makers +ethiopia +longtime +detected +embedded +lacking +slapped +rely +thomson +anticipation +iso +morton +successive +agnes +screenwriter +straightened +philippe +playwright +haunted +licence +iris +intentions +sutton +112 +logical +correctly +##weight +branded +licked +tipped +silva +ricky +narrator +requests +##ents +greeted +supernatural +cow +##wald +lung +refusing +employer +strait +gaelic +liner +##piece +zoe +sabha +##mba +driveway +harvest +prints +bates +reluctantly +threshold +algebra +ira +wherever +coupled +240 +assumption +picks +##air +designers +raids +gentlemen +##ean +roller +blowing +leipzig +locks +screw +dressing +strand +##lings +scar +dwarf +depicts +##nu +nods +##mine +differ +boris +##eur +yuan +flip +##gie +mob +invested +questioning +applying +##ture +shout +##sel +gameplay +blamed +illustrations +bothered +weakness +rehabilitation +##of +##zes +envelope +rumors +miners +leicester +subtle +kerry +##ico +ferguson +##fu +premiership +ne +##cat +bengali +prof +catches +remnants +dana +##rily +shouting +presidents +baltic +ought +ghosts +dances +sailors +shirley +fancy +dominic +##bie +madonna +##rick +bark +buttons +gymnasium +ashes +liver +toby +oath +providence +doyle +evangelical +nixon +cement +carnegie +embarked +hatch +surroundings +guarantee +needing +pirate +essence +##bee +filter +crane +hammond +projected +immune +percy +twelfth +##ult +regent +doctoral +damon +mikhail +##ichi +lu +critically +elect +realised +abortion +acute +screening +mythology +steadily +##fc +frown +nottingham +kirk +wa +minneapolis +##rra +module +algeria +mc +nautical +encounters +surprising +statues +availability +shirts +pie +alma +brows +munster +mack +soup +crater +tornado +sanskrit +cedar +explosive +bordered +dixon +planets +stamp +exam +happily +##bble +carriers +kidnapped +##vis +accommodation +emigrated +##met +knockout +correspondent +violation +profits +peaks +lang +specimen +agenda +ancestry +pottery +spelling +equations +obtaining +ki +linking +1825 +debris +asylum +##20 +buddhism +teddy +##ants +gazette +##nger +##sse +dental +eligibility +utc +fathers +averaged +zimbabwe +francesco +coloured +hissed +translator +lynch +mandate +humanities +mackenzie +uniforms +lin +##iana +##gio +asset +mhz +fitting +samantha +genera +wei +rim +beloved +shark +riot +entities +expressions +indo +carmen +slipping +owing +abbot +neighbor +sidney +##av +rats +recommendations +encouraging +squadrons +anticipated +commanders +conquered +##oto +donations +diagnosed +##mond +divide +##iva +guessed +decoration +vernon +auditorium +revelation +conversations +##kers +##power +herzegovina +dash +alike +protested +lateral +herman +accredited +mg +##gent +freeman +mel +fiji +crow +crimson +##rine +livestock +##pped +humanitarian +bored +oz +whip +##lene +##ali +legitimate +alter +grinning +spelled +anxious +oriental +wesley +##nin +##hole +carnival +controller +detect +##ssa +bowed +educator +kosovo +macedonia +##sin +occupy +mastering +stephanie +janeiro +para +unaware +nurses +noon +135 +cam +hopefully +ranger +combine +sociology +polar +rica +##eer +neill +##sman +holocaust +##ip +doubled +lust +1828 +109 +decent +cooling +unveiled +##card +1829 +nsw +homer +chapman +meyer +##gin +dive +mae +reagan +expertise +##gled +darwin +brooke +sided +prosecution +investigating +comprised +petroleum +genres +reluctant +differently +trilogy +johns +vegetables +corpse +highlighted +lounge +pension +unsuccessfully +elegant +aided +ivory +beatles +amelia +cain +dubai +sunny +immigrant +babe +click +##nder +underwater +pepper +combining +mumbled +atlas +horns +accessed +ballad +physicians +homeless +gestured +rpm +freak +louisville +corporations +patriots +prizes +rational +warn +modes +decorative +overnight +din +troubled +phantom +##ort +monarch +sheer +##dorf +generals +guidelines +organs +addresses +##zon +enhance +curling +parishes +cord +##kie +linux +caesar +deutsche +bavaria +##bia +coleman +cyclone +##eria +bacon +petty +##yama +##old +hampton +diagnosis +1824 +throws +complexity +rita +disputed +##₃ +pablo +##sch +marketed +trafficking +##ulus +examine +plague +formats +##oh +vault +faithful +##bourne +webster +##ox +highlights +##ient +##ann +phones +vacuum +sandwich +modeling +##gated +bolivia +clergy +qualities +isabel +##nas +##ars +wears +screams +reunited +annoyed +bra +##ancy +##rate +differential +transmitter +tattoo +container +poker +##och +excessive +resides +cowboys +##tum +augustus +trash +providers +statute +retreated +balcony +reversed +void +storey +preceded +masses +leap +laughs +neighborhoods +wards +schemes +falcon +santo +battlefield +pad +ronnie +thread +lesbian +venus +##dian +beg +sandstone +daylight +punched +gwen +analog +stroked +wwe +acceptable +measurements +dec +toxic +##kel +adequate +surgical +economist +parameters +varsity +##sberg +quantity +ella +##chy +##rton +countess +generating +precision +diamonds +expressway +ga +##ı +1821 +uruguay +talents +galleries +expenses +scanned +colleague +outlets +ryder +lucien +##ila +paramount +##bon +syracuse +dim +fangs +gown +sweep +##sie +toyota +missionaries +websites +##nsis +sentences +adviser +val +trademark +spells +##plane +patience +starter +slim +##borg +toe +incredibly +shoots +elliot +nobility +##wyn +cowboy +endorsed +gardner +tendency +persuaded +organisms +emissions +kazakhstan +amused +boring +chips +themed +##hand +llc +constantinople +chasing +systematic +guatemala +borrowed +erin +carey +##hard +highlands +struggles +1810 +##ifying +##ced +wong +exceptions +develops +enlarged +kindergarten +castro +##ern +##rina +leigh +zombie +juvenile +##most +consul +##nar +sailor +hyde +clarence +intensive +pinned +nasty +useless +jung +clayton +stuffed +exceptional +ix +apostolic +230 +transactions +##dge +exempt +swinging +cove +religions +##ash +shields +dairy +bypass +190 +pursuing +bug +joyce +bombay +chassis +southampton +chat +interact +redesignated +##pen +nascar +pray +salmon +rigid +regained +malaysian +grim +publicity +constituted +capturing +toilet +delegate +purely +tray +drift +loosely +striker +weakened +trinidad +mitch +itv +defines +transmitted +ming +scarlet +nodding +fitzgerald +fu +narrowly +sp +tooth +standings +virtue +##₁ +##wara +##cting +chateau +gloves +lid +##nel +hurting +conservatory +##pel +sinclair +reopened +sympathy +nigerian +strode +advocated +optional +chronic +discharge +##rc +suck +compatible +laurel +stella +shi +fails +wage +dodge +128 +informal +sorts +levi +buddha +villagers +##aka +chronicles +heavier +summoned +gateway +3000 +eleventh +jewelry +translations +accordingly +seas +##ency +fiber +pyramid +cubic +dragging +##ista +caring +##ops +android +contacted +lunar +##dt +kai +lisbon +patted +1826 +sacramento +theft +madagascar +subtropical +disputes +ta +holidays +piper +willow +mare +cane +itunes +newfoundland +benny +companions +dong +raj +observe +roar +charming +plaque +tibetan +fossils +enacted +manning +bubble +tina +tanzania +##eda +##hir +funk +swamp +deputies +cloak +ufc +scenario +par +scratch +metals +anthem +guru +engaging +specially +##boat +dialects +nineteen +cecil +duet +disability +messenger +unofficial +##lies +defunct +eds +moonlight +drainage +surname +puzzle +honda +switching +conservatives +mammals +knox +broadcaster +sidewalk +cope +##ried +benson +princes +peterson +##sal +bedford +sharks +eli +wreck +alberto +gasp +archaeology +lgbt +teaches +securities +madness +compromise +waving +coordination +davidson +visions +leased +possibilities +eighty +jun +fernandez +enthusiasm +assassin +sponsorship +reviewer +kingdoms +estonian +laboratories +##fy +##nal +applies +verb +celebrations +##zzo +rowing +lightweight +sadness +submit +mvp +balanced +dude +##vas +explicitly +metric +magnificent +mound +brett +mohammad +mistakes +irregular +##hing +##ass +sanders +betrayed +shipped +surge +##enburg +reporters +termed +georg +pity +verbal +bulls +abbreviated +enabling +appealed +##are +##atic +sicily +sting +heel +sweetheart +bart +spacecraft +brutal +monarchy +##tter +aberdeen +cameo +diane +##ub +survivor +clyde +##aries +complaint +##makers +clarinet +delicious +chilean +karnataka +coordinates +1818 +panties +##rst +pretending +ar +dramatically +kiev +bella +tends +distances +113 +catalog +launching +instances +telecommunications +portable +lindsay +vatican +##eim +angles +aliens +marker +stint +screens +bolton +##rne +judy +wool +benedict +plasma +europa +spark +imaging +filmmaker +swiftly +##een +contributor +##nor +opted +stamps +apologize +financing +butter +gideon +sophisticated +alignment +avery +chemicals +yearly +speculation +prominence +professionally +##ils +immortal +institutional +inception +wrists +identifying +tribunal +derives +gains +##wo +papal +preference +linguistic +vince +operative +brewery +##ont +unemployment +boyd +##ured +##outs +albeit +prophet +1813 +bi +##rr +##face +##rad +quarterly +asteroid +cleaned +radius +temper +##llen +telugu +jerk +viscount +menu +##ote +glimpse +##aya +yacht +hawaiian +baden +##rl +laptop +readily +##gu +monetary +offshore +scots +watches +##yang +##arian +upgrade +needle +xbox +lea +encyclopedia +flank +fingertips +##pus +delight +teachings +confirm +roth +beaches +midway +winters +##iah +teasing +daytime +beverly +gambling +bonnie +##backs +regulated +clement +hermann +tricks +knot +##shing +##uring +##vre +detached +ecological +owed +specialty +byron +inventor +bats +stays +screened +unesco +midland +trim +affection +##ander +##rry +jess +thoroughly +feedback +##uma +chennai +strained +heartbeat +wrapping +overtime +pleaded +##sworth +mon +leisure +oclc +##tate +##ele +feathers +angelo +thirds +nuts +surveys +clever +gill +commentator +##dos +darren +rides +gibraltar +##nc +##mu +dissolution +dedication +shin +meals +saddle +elvis +reds +chaired +taller +appreciation +functioning +niece +favored +advocacy +robbie +criminals +suffolk +yugoslav +passport +constable +congressman +hastings +vera +##rov +consecrated +sparks +ecclesiastical +confined +##ovich +muller +floyd +nora +1822 +paved +1827 +cumberland +ned +saga +spiral +##flow +appreciated +yi +collaborative +treating +similarities +feminine +finishes +##ib +jade +import +##nse +##hot +champagne +mice +securing +celebrities +helsinki +attributes +##gos +cousins +phases +ache +lucia +gandhi +submission +vicar +spear +shine +tasmania +biting +detention +constitute +tighter +seasonal +##gus +terrestrial +matthews +##oka +effectiveness +parody +philharmonic +##onic +1816 +strangers +encoded +consortium +guaranteed +regards +shifts +tortured +collision +supervisor +inform +broader +insight +theaters +armour +emeritus +blink +incorporates +mapping +##50 +##ein +handball +flexible +##nta +substantially +generous +thief +##own +carr +loses +1793 +prose +ucla +romeo +generic +metallic +realization +damages +mk +commissioners +zach +default +##ther +helicopters +lengthy +stems +spa +partnered +spectators +rogue +indication +penalties +teresa +1801 +sen +##tric +dalton +##wich +irving +photographic +##vey +dell +deaf +peters +excluded +unsure +##vable +patterson +crawled +##zio +resided +whipped +latvia +slower +ecole +pipes +employers +maharashtra +comparable +va +textile +pageant +##gel +alphabet +binary +irrigation +chartered +choked +antoine +offs +waking +supplement +##wen +quantities +demolition +regain +locate +urdu +folks +alt +114 +##mc +scary +andreas +whites +##ava +classrooms +mw +aesthetic +publishes +valleys +guides +cubs +johannes +bryant +conventions +affecting +##itt +drain +awesome +isolation +prosecutor +ambitious +apology +captive +downs +atmospheric +lorenzo +aisle +beef +foul +##onia +kidding +composite +disturbed +illusion +natives +##ffer +emi +rockets +riverside +wartime +painters +adolf +melted +##ail +uncertainty +simulation +hawks +progressed +meantime +builder +spray +breach +unhappy +regina +russians +##urg +determining +##tation +tram +1806 +##quin +aging +##12 +1823 +garion +rented +mister +diaz +terminated +clip +1817 +depend +nervously +disco +owe +defenders +shiva +notorious +disbelief +shiny +worcester +##gation +##yr +trailing +undertook +islander +belarus +limitations +watershed +fuller +overlooking +utilized +raphael +1819 +synthetic +breakdown +klein +##nate +moaned +memoir +lamb +practicing +##erly +cellular +arrows +exotic +##graphy +witches +117 +charted +rey +hut +hierarchy +subdivision +freshwater +giuseppe +aloud +reyes +qatar +marty +sideways +utterly +sexually +jude +prayers +mccarthy +softball +blend +damien +##gging +##metric +wholly +erupted +lebanese +negro +revenues +tasted +comparative +teamed +transaction +labeled +maori +sovereignty +parkway +trauma +gran +malay +121 +advancement +descendant +2020 +buzz +salvation +inventory +symbolic +##making +antarctica +mps +##gas +##bro +mohammed +myanmar +holt +submarines +tones +##lman +locker +patriarch +bangkok +emerson +remarks +predators +kin +afghan +confession +norwich +rental +emerge +advantages +##zel +rca +##hold +shortened +storms +aidan +##matic +autonomy +compliance +##quet +dudley +atp +##osis +1803 +motto +documentation +summary +professors +spectacular +christina +archdiocese +flashing +innocence +remake +##dell +psychic +reef +scare +employ +rs +sticks +meg +gus +leans +##ude +accompany +bergen +tomas +##iko +doom +wages +pools +##nch +##bes +breasts +scholarly +alison +outline +brittany +breakthrough +willis +realistic +##cut +##boro +competitor +##stan +pike +picnic +icon +designing +commercials +washing +villain +skiing +micro +costumes +auburn +halted +executives +##hat +logistics +cycles +vowel +applicable +barrett +exclaimed +eurovision +eternity +ramon +##umi +##lls +modifications +sweeping +disgust +##uck +torch +aviv +ensuring +rude +dusty +sonic +donovan +outskirts +cu +pathway +##band +##gun +##lines +disciplines +acids +cadet +paired +##40 +sketches +##sive +marriages +##⁺ +folding +peers +slovak +implies +admired +##beck +1880s +leopold +instinct +attained +weston +megan +horace +##ination +dorsal +ingredients +evolutionary +##its +complications +deity +lethal +brushing +levy +deserted +institutes +posthumously +delivering +telescope +coronation +motivated +rapids +luc +flicked +pays +volcano +tanner +weighed +##nica +crowds +frankie +gifted +addressing +granddaughter +winding +##rna +constantine +gomez +##front +landscapes +rudolf +anthropology +slate +werewolf +##lio +astronomy +circa +rouge +dreaming +sack +knelt +drowned +naomi +prolific +tracked +freezing +herb +##dium +agony +randall +twisting +wendy +deposit +touches +vein +wheeler +##bbled +##bor +batted +retaining +tire +presently +compare +specification +daemon +nigel +##grave +merry +recommendation +czechoslovakia +sandra +ng +roma +##sts +lambert +inheritance +sheikh +winchester +cries +examining +##yle +comeback +cuisine +nave +##iv +ko +retrieve +tomatoes +barker +polished +defining +irene +lantern +personalities +begging +tract +swore +1809 +175 +##gic +omaha +brotherhood +##rley +haiti +##ots +exeter +##ete +##zia +steele +dumb +pearson +210 +surveyed +elisabeth +trends +##ef +fritz +##rf +premium +bugs +fraction +calmly +viking +##birds +tug +inserted +unusually +##ield +confronted +distress +crashing +brent +turks +resign +##olo +cambodia +gabe +sauce +##kal +evelyn +116 +extant +clusters +quarry +teenagers +luna +##lers +##ister +affiliation +drill +##ashi +panthers +scenic +libya +anita +strengthen +inscriptions +##cated +lace +sued +judith +riots +##uted +mint +##eta +preparations +midst +dub +challenger +##vich +mock +cf +displaced +wicket +breaths +enables +schmidt +analyst +##lum +ag +highlight +automotive +axe +josef +newark +sufficiently +resembles +50th +##pal +flushed +mum +traits +##ante +commodore +incomplete +warming +titular +ceremonial +ethical +118 +celebrating +eighteenth +cao +lima +medalist +mobility +strips +snakes +##city +miniature +zagreb +barton +escapes +umbrella +automated +doubted +differs +cooled +georgetown +dresden +cooked +fade +wyatt +rna +jacobs +carlton +abundant +stereo +boost +madras +inning +##hia +spur +ip +malayalam +begged +osaka +groan +escaping +charging +dose +vista +##aj +bud +papa +communists +advocates +edged +tri +##cent +resemble +peaking +necklace +fried +montenegro +saxony +goose +glances +stuttgart +curator +recruit +grocery +sympathetic +##tting +##fort +127 +lotus +randolph +ancestor +##rand +succeeding +jupiter +1798 +macedonian +##heads +hiking +1808 +handing +fischer +##itive +garbage +node +##pies +prone +singular +papua +inclined +attractions +italia +pouring +motioned +grandma +garnered +jacksonville +corp +ego +ringing +aluminum +##hausen +ordering +##foot +drawer +traders +synagogue +##play +##kawa +resistant +wandering +fragile +fiona +teased +var +hardcore +soaked +jubilee +decisive +exposition +mercer +poster +valencia +hale +kuwait +1811 +##ises +##wr +##eed +tavern +gamma +122 +johan +##uer +airways +amino +gil +##ury +vocational +domains +torres +##sp +generator +folklore +outcomes +##keeper +canberra +shooter +fl +beams +confrontation +##lling +##gram +feb +aligned +forestry +pipeline +jax +motorway +conception +decay +##tos +coffin +##cott +stalin +1805 +escorted +minded +##nam +sitcom +purchasing +twilight +veronica +additions +passive +tensions +straw +123 +frequencies +1804 +refugee +cultivation +##iate +christie +clary +bulletin +crept +disposal +##rich +##zong +processor +crescent +##rol +bmw +emphasized +whale +nazis +aurora +##eng +dwelling +hauled +sponsors +toledo +mega +ideology +theatres +tessa +cerambycidae +saves +turtle +cone +suspects +kara +rusty +yelling +greeks +mozart +shades +cocked +participant +##tro +shire +spit +freeze +necessity +##cos +inmates +nielsen +councillors +loaned +uncommon +omar +peasants +botanical +offspring +daniels +formations +jokes +1794 +pioneers +sigma +licensing +##sus +wheelchair +polite +1807 +liquor +pratt +trustee +##uta +forewings +balloon +##zz +kilometre +camping +explicit +casually +shawn +foolish +teammates +nm +hassan +carrie +judged +satisfy +vanessa +knives +selective +cnn +flowed +##lice +eclipse +stressed +eliza +mathematician +cease +cultivated +##roy +commissions +browns +##ania +destroyers +sheridan +meadow +##rius +minerals +##cial +downstream +clash +gram +memoirs +ventures +baha +seymour +archie +midlands +edith +fare +flynn +invite +canceled +tiles +stabbed +boulder +incorporate +amended +camden +facial +mollusk +unreleased +descriptions +yoga +grabs +550 +raises +ramp +shiver +##rose +coined +pioneering +tunes +qing +warwick +tops +119 +melanie +giles +##rous +wandered +##inal +annexed +nov +30th +unnamed +##ished +organizational +airplane +normandy +stoke +whistle +blessing +violations +chased +holders +shotgun +##ctic +outlet +reactor +##vik +tires +tearing +shores +fortified +mascot +constituencies +nc +columnist +productive +tibet +##rta +lineage +hooked +oct +tapes +judging +cody +##gger +hansen +kashmir +triggered +##eva +solved +cliffs +##tree +resisted +anatomy +protesters +transparent +implied +##iga +injection +mattress +excluding +##mbo +defenses +helpless +devotion +##elli +growl +liberals +weber +phenomena +atoms +plug +##iff +mortality +apprentice +howe +convincing +aaa +swimmer +barber +leone +promptly +sodium +def +nowadays +arise +##oning +gloucester +corrected +dignity +norm +erie +##ders +elders +evacuated +sylvia +compression +##yar +hartford +pose +backpack +reasoning +accepts +24th +wipe +millimetres +marcel +##oda +dodgers +albion +1790 +overwhelmed +aerospace +oaks +1795 +showcase +acknowledge +recovering +nolan +ashe +hurts +geology +fashioned +disappearance +farewell +swollen +shrug +marquis +wimbledon +124 +rue +1792 +commemorate +reduces +experiencing +inevitable +calcutta +intel +##court +murderer +sticking +fisheries +imagery +bloom +280 +brake +##inus +gustav +hesitation +memorable +po +viral +beans +accidents +tunisia +antenna +spilled +consort +treatments +aye +perimeter +##gard +donation +hostage +migrated +banker +addiction +apex +lil +trout +##ously +conscience +##nova +rams +sands +genome +passionate +troubles +##lets +##set +amid +##ibility +##ret +higgins +exceed +vikings +##vie +payne +##zan +muscular +##ste +defendant +sucking +##wal +ibrahim +fuselage +claudia +vfl +europeans +snails +interval +##garh +preparatory +statewide +tasked +lacrosse +viktor +##lation +angola +##hra +flint +implications +employs +teens +patrons +stall +weekends +barriers +scrambled +nucleus +tehran +jenna +parsons +lifelong +robots +displacement +5000 +##bles +precipitation +##gt +knuckles +clutched +1802 +marrying +ecology +marx +accusations +declare +scars +kolkata +mat +meadows +bermuda +skeleton +finalists +vintage +crawl +coordinate +affects +subjected +orchestral +mistaken +##tc +mirrors +dipped +relied +260 +arches +candle +##nick +incorporating +wildly +fond +basilica +owl +fringe +rituals +whispering +stirred +feud +tertiary +slick +goat +honorable +whereby +skip +ricardo +stripes +parachute +adjoining +submerged +synthesizer +##gren +intend +positively +ninety +phi +beaver +partition +fellows +alexis +prohibition +carlisle +bizarre +fraternity +##bre +doubts +icy +cbc +aquatic +sneak +sonny +combines +airports +crude +supervised +spatial +merge +alfonso +##bic +corrupt +scan +undergo +##ams +disabilities +colombian +comparing +dolphins +perkins +##lish +reprinted +unanimous +bounced +hairs +underworld +midwest +semester +bucket +paperback +miniseries +coventry +demise +##leigh +demonstrations +sensor +rotating +yan +##hler +arrange +soils +##idge +hyderabad +labs +##dr +brakes +grandchildren +##nde +negotiated +rover +ferrari +continuation +directorate +augusta +stevenson +counterpart +gore +##rda +nursery +rican +ave +collectively +broadly +pastoral +repertoire +asserted +discovering +nordic +styled +fiba +cunningham +harley +middlesex +survives +tumor +tempo +zack +aiming +lok +urgent +##rade +##nto +devils +##ement +contractor +turin +##wl +##ool +bliss +repaired +simmons +moan +astronomical +cr +negotiate +lyric +1890s +lara +bred +clad +angus +pbs +##ience +engineered +posed +##lk +hernandez +possessions +elbows +psychiatric +strokes +confluence +electorate +lifts +campuses +lava +alps +##ep +##ution +##date +physicist +woody +##page +##ographic +##itis +juliet +reformation +sparhawk +320 +complement +suppressed +jewel +##½ +floated +##kas +continuity +sadly +##ische +inability +melting +scanning +paula +flour +judaism +safer +vague +##lm +solving +curb +##stown +financially +gable +bees +expired +miserable +cassidy +dominion +1789 +cupped +145 +robbery +facto +amos +warden +resume +tallest +marvin +ing +pounded +usd +declaring +gasoline +##aux +darkened +270 +650 +sophomore +##mere +erection +gossip +televised +risen +dial +##eu +pillars +##link +passages +profound +##tina +arabian +ashton +silicon +nail +##ead +##lated +##wer +##hardt +fleming +firearms +ducked +circuits +blows +waterloo +titans +##lina +atom +fireplace +cheshire +financed +activation +algorithms +##zzi +constituent +catcher +cherokee +partnerships +sexuality +platoon +tragic +vivian +guarded +whiskey +meditation +poetic +##late +##nga +##ake +porto +listeners +dominance +kendra +mona +chandler +factions +22nd +salisbury +attitudes +derivative +##ido +##haus +intake +paced +javier +illustrator +barrels +bias +cockpit +burnett +dreamed +ensuing +##anda +receptors +someday +hawkins +mattered +##lal +slavic +1799 +jesuit +cameroon +wasted +tai +wax +lowering +victorious +freaking +outright +hancock +librarian +sensing +bald +calcium +myers +tablet +announcing +barack +shipyard +pharmaceutical +##uan +greenwich +flush +medley +patches +wolfgang +pt +speeches +acquiring +exams +nikolai +##gg +hayden +kannada +##type +reilly +##pt +waitress +abdomen +devastated +capped +pseudonym +pharmacy +fulfill +paraguay +1796 +clicked +##trom +archipelago +syndicated +##hman +lumber +orgasm +rejection +clifford +lorraine +advent +mafia +rodney +brock +##ght +##used +##elia +cassette +chamberlain +despair +mongolia +sensors +developmental +upstream +##eg +##alis +spanning +165 +trombone +basque +seeded +interred +renewable +rhys +leapt +revision +molecule +##ages +chord +vicious +nord +shivered +23rd +arlington +debts +corpus +sunrise +bays +blackburn +centimetres +##uded +shuddered +gm +strangely +gripping +cartoons +isabelle +orbital +##ppa +seals +proving +##lton +refusal +strengthened +bust +assisting +baghdad +batsman +portrayal +mara +pushes +spears +og +##cock +reside +nathaniel +brennan +1776 +confirmation +caucus +##worthy +markings +yemen +nobles +ku +lazy +viewer +catalan +encompasses +sawyer +##fall +sparked +substances +patents +braves +arranger +evacuation +sergio +persuade +dover +tolerance +penguin +cum +jockey +insufficient +townships +occupying +declining +plural +processed +projection +puppet +flanders +introduces +liability +##yon +gymnastics +antwerp +taipei +hobart +candles +jeep +wes +observers +126 +chaplain +bundle +glorious +##hine +hazel +flung +sol +excavations +dumped +stares +sh +bangalore +triangular +icelandic +intervals +expressing +turbine +##vers +songwriting +crafts +##igo +jasmine +ditch +rite +##ways +entertaining +comply +sorrow +wrestlers +basel +emirates +marian +rivera +helpful +##some +caution +downward +networking +##atory +##tered +darted +genocide +emergence +replies +specializing +spokesman +convenient +unlocked +fading +augustine +concentrations +resemblance +elijah +investigator +andhra +##uda +promotes +bean +##rrell +fleeing +wan +simone +announcer +##ame +##bby +lydia +weaver +132 +residency +modification +##fest +stretches +##ast +alternatively +nat +lowe +lacks +##ented +pam +tile +concealed +inferior +abdullah +residences +tissues +vengeance +##ided +moisture +peculiar +groove +zip +bologna +jennings +ninja +oversaw +zombies +pumping +batch +livingston +emerald +installations +1797 +peel +nitrogen +rama +##fying +##star +schooling +strands +responding +werner +##ost +lime +casa +accurately +targeting +##rod +underway +##uru +hemisphere +lester +##yard +occupies +2d +griffith +angrily +reorganized +##owing +courtney +deposited +##dd +##30 +estadio +##ifies +dunn +exiled +##ying +checks +##combe +##о +##fly +successes +unexpectedly +blu +assessed +##flower +##ه +observing +sacked +spiders +kn +##tail +mu +nodes +prosperity +audrey +divisional +155 +broncos +tangled +adjust +feeds +erosion +paolo +surf +directory +snatched +humid +admiralty +screwed +gt +reddish +##nese +modules +trench +lamps +bind +leah +bucks +competes +##nz +##form +transcription +##uc +isles +violently +clutching +pga +cyclist +inflation +flats +ragged +unnecessary +##hian +stubborn +coordinated +harriet +baba +disqualified +330 +insect +wolfe +##fies +reinforcements +rocked +duel +winked +embraced +bricks +##raj +hiatus +defeats +pending +brightly +jealousy +##xton +##hm +##uki +lena +gdp +colorful +##dley +stein +kidney +##shu +underwear +wanderers +##haw +##icus +guardians +m³ +roared +habits +##wise +permits +gp +uranium +punished +disguise +bundesliga +elise +dundee +erotic +partisan +pi +collectors +float +individually +rendering +behavioral +bucharest +ser +hare +valerie +corporal +nutrition +proportional +##isa +immense +##kis +pavement +##zie +##eld +sutherland +crouched +1775 +##lp +suzuki +trades +endurance +operas +crosby +prayed +priory +rory +socially +##urn +gujarat +##pu +walton +cube +pasha +privilege +lennon +floods +thorne +waterfall +nipple +scouting +approve +##lov +minorities +voter +dwight +extensions +assure +ballroom +slap +dripping +privileges +rejoined +confessed +demonstrating +patriotic +yell +investor +##uth +pagan +slumped +squares +##cle +##kins +confront +bert +embarrassment +##aid +aston +urging +sweater +starr +yuri +brains +williamson +commuter +mortar +structured +selfish +exports +##jon +cds +##him +unfinished +##rre +mortgage +destinations +##nagar +canoe +solitary +buchanan +delays +magistrate +fk +##pling +motivation +##lier +##vier +recruiting +assess +##mouth +malik +antique +1791 +pius +rahman +reich +tub +zhou +smashed +airs +galway +xii +conditioning +honduras +discharged +dexter +##pf +lionel +129 +debates +lemon +tiffany +volunteered +dom +dioxide +procession +devi +sic +tremendous +advertisements +colts +transferring +verdict +hanover +decommissioned +utter +relate +pac +racism +##top +beacon +limp +similarity +terra +occurrence +ant +##how +becky +capt +updates +armament +richie +pal +##graph +halloween +mayo +##ssen +##bone +cara +serena +fcc +dolls +obligations +##dling +violated +lafayette +jakarta +exploitation +##ime +infamous +iconic +##lah +##park +kitty +moody +reginald +dread +spill +crystals +olivier +modeled +bluff +equilibrium +separating +notices +ordnance +extinction +onset +cosmic +attachment +sammy +expose +privy +anchored +##bil +abbott +admits +bending +baritone +emmanuel +policeman +vaughan +winged +climax +dresses +denny +polytechnic +mohamed +burmese +authentic +nikki +genetics +grandparents +homestead +gaza +postponed +metacritic +una +##sby +##bat +unstable +dissertation +##rial +##cian +curls +obscure +uncovered +bronx +praying +disappearing +##hoe +prehistoric +coke +turret +mutations +nonprofit +pits +monaco +##ي +##usion +prominently +dispatched +podium +##mir +uci +##uation +133 +fortifications +birthplace +kendall +##lby +##oll +preacher +rack +goodman +##rman +persistent +##ott +countless +jaime +recorder +lexington +persecution +jumps +renewal +wagons +##11 +crushing +##holder +decorations +##lake +abundance +wrath +laundry +£1 +garde +##rp +jeanne +beetles +peasant +##sl +splitting +caste +sergei +##rer +##ema +scripts +##ively +rub +satellites +##vor +inscribed +verlag +scrapped +gale +packages +chick +potato +slogan +kathleen +arabs +##culture +counterparts +reminiscent +choral +##tead +rand +retains +bushes +dane +accomplish +courtesy +closes +##oth +slaughter +hague +krakow +lawson +tailed +elias +ginger +##ttes +canopy +betrayal +rebuilding +turf +##hof +frowning +allegiance +brigades +kicks +rebuild +polls +alias +nationalism +td +rowan +audition +bowie +fortunately +recognizes +harp +dillon +horrified +##oro +renault +##tics +ropes +##α +presumed +rewarded +infrared +wiping +accelerated +illustration +##rid +presses +practitioners +badminton +##iard +detained +##tera +recognizing +relates +misery +##sies +##tly +reproduction +piercing +potatoes +thornton +esther +manners +hbo +##aan +ours +bullshit +ernie +perennial +sensitivity +illuminated +rupert +##jin +##iss +##ear +rfc +nassau +##dock +staggered +socialism +##haven +appointments +nonsense +prestige +sharma +haul +##tical +solidarity +gps +##ook +##rata +igor +pedestrian +##uit +baxter +tenants +wires +medication +unlimited +guiding +impacts +diabetes +##rama +sasha +pas +clive +extraction +131 +continually +constraints +##bilities +sonata +hunted +sixteenth +chu +planting +quote +mayer +pretended +abs +spat +##hua +ceramic +##cci +curtains +pigs +pitching +##dad +latvian +sore +dayton +##sted +##qi +patrols +slice +playground +##nted +shone +stool +apparatus +inadequate +mates +treason +##ija +desires +##liga +##croft +somalia +laurent +mir +leonardo +oracle +grape +obliged +chevrolet +thirteenth +stunning +enthusiastic +##ede +accounted +concludes +currents +basil +##kovic +drought +##rica +mai +##aire +shove +posting +##shed +pilgrimage +humorous +packing +fry +pencil +wines +smells +144 +marilyn +aching +newest +clung +bon +neighbours +sanctioned +##pie +mug +##stock +drowning +##mma +hydraulic +##vil +hiring +reminder +lilly +investigators +##ncies +sour +##eous +compulsory +packet +##rion +##graphic +##elle +cannes +##inate +depressed +##rit +heroic +importantly +theresa +##tled +conway +saturn +marginal +rae +##xia +corresponds +royce +pact +jasper +explosives +packaging +aluminium +##ttered +denotes +rhythmic +spans +assignments +hereditary +outlined +originating +sundays +lad +reissued +greeting +beatrice +##dic +pillar +marcos +plots +handbook +alcoholic +judiciary +avant +slides +extract +masculine +blur +##eum +##force +homage +trembled +owens +hymn +trey +omega +signaling +socks +accumulated +reacted +attic +theo +lining +angie +distraction +primera +talbot +##key +1200 +ti +creativity +billed +##hey +deacon +eduardo +identifies +proposition +dizzy +gunner +hogan +##yam +##pping +##hol +ja +##chan +jensen +reconstructed +##berger +clearance +darius +##nier +abe +harlem +plea +dei +circled +emotionally +notation +fascist +neville +exceeded +upwards +viable +ducks +##fo +workforce +racer +limiting +shri +##lson +possesses +1600 +kerr +moths +devastating +laden +disturbing +locking +##cture +gal +fearing +accreditation +flavor +aide +1870s +mountainous +##baum +melt +##ures +motel +texture +servers +soda +##mb +herd +##nium +erect +puzzled +hum +peggy +examinations +gould +testified +geoff +ren +devised +sacks +##law +denial +posters +grunted +cesar +tutor +ec +gerry +offerings +byrne +falcons +combinations +ct +incoming +pardon +rocking +26th +avengers +flared +mankind +seller +uttar +loch +nadia +stroking +exposing +##hd +fertile +ancestral +instituted +##has +noises +prophecy +taxation +eminent +vivid +pol +##bol +dart +indirect +multimedia +notebook +upside +displaying +adrenaline +referenced +geometric +##iving +progression +##ddy +blunt +announce +##far +implementing +##lav +aggression +liaison +cooler +cares +headache +plantations +gorge +dots +impulse +thickness +ashamed +averaging +kathy +obligation +precursor +137 +fowler +symmetry +thee +225 +hears +##rai +undergoing +ads +butcher +bowler +##lip +cigarettes +subscription +goodness +##ically +browne +##hos +##tech +kyoto +donor +##erty +damaging +friction +drifting +expeditions +hardened +prostitution +152 +fauna +blankets +claw +tossing +snarled +butterflies +recruits +investigative +coated +healed +138 +communal +hai +xiii +academics +boone +psychologist +restless +lahore +stephens +mba +brendan +foreigners +printer +##pc +ached +explode +27th +deed +scratched +dared +##pole +cardiac +1780 +okinawa +proto +commando +compelled +oddly +electrons +##base +replica +thanksgiving +##rist +sheila +deliberate +stafford +tidal +representations +hercules +ou +##path +##iated +kidnapping +lenses +##tling +deficit +samoa +mouths +consuming +computational +maze +granting +smirk +razor +fixture +ideals +inviting +aiden +nominal +##vs +issuing +julio +pitt +ramsey +docks +##oss +exhaust +##owed +bavarian +draped +anterior +mating +ethiopian +explores +noticing +##nton +discarded +convenience +hoffman +endowment +beasts +cartridge +mormon +paternal +probe +sleeves +interfere +lump +deadline +##rail +jenks +bulldogs +scrap +alternating +justified +reproductive +nam +seize +descending +secretariat +kirby +coupe +grouped +smash +panther +sedan +tapping +##18 +lola +cheer +germanic +unfortunate +##eter +unrelated +##fan +subordinate +##sdale +suzanne +advertisement +##ility +horsepower +##lda +cautiously +discourse +luigi +##mans +##fields +noun +prevalent +mao +schneider +everett +surround +governorate +kira +##avia +westward +##take +misty +rails +sustainability +134 +unused +##rating +packs +toast +unwilling +regulate +thy +suffrage +nile +awe +assam +definitions +travelers +affordable +##rb +conferred +sells +undefeated +beneficial +torso +basal +repeating +remixes +##pass +bahrain +cables +fang +##itated +excavated +numbering +statutory +##rey +deluxe +##lian +forested +ramirez +derbyshire +zeus +slamming +transfers +astronomer +banana +lottery +berg +histories +bamboo +##uchi +resurrection +posterior +bowls +vaguely +##thi +thou +preserving +tensed +offence +##inas +meyrick +callum +ridden +watt +langdon +tying +lowland +snorted +daring +truman +##hale +##girl +aura +overly +filing +weighing +goa +infections +philanthropist +saunders +eponymous +##owski +latitude +perspectives +reviewing +mets +commandant +radial +##kha +flashlight +reliability +koch +vowels +amazed +ada +elaine +supper +##rth +##encies +predator +debated +soviets +cola +##boards +##nah +compartment +crooked +arbitrary +fourteenth +##ctive +havana +majors +steelers +clips +profitable +ambush +exited +packers +##tile +nude +cracks +fungi +##е +limb +trousers +josie +shelby +tens +frederic +##ος +definite +smoothly +constellation +insult +baton +discs +lingering +##nco +conclusions +lent +staging +becker +grandpa +shaky +##tron +einstein +obstacles +sk +adverse +elle +economically +##moto +mccartney +thor +dismissal +motions +readings +nostrils +treatise +##pace +squeezing +evidently +prolonged +1783 +venezuelan +je +marguerite +beirut +takeover +shareholders +##vent +denise +digit +airplay +norse +##bbling +imaginary +pills +hubert +blaze +vacated +eliminating +##ello +vine +mansfield +##tty +retrospective +barrow +borne +clutch +bail +forensic +weaving +##nett +##witz +desktop +citadel +promotions +worrying +dorset +ieee +subdivided +##iating +manned +expeditionary +pickup +synod +chuckle +185 +barney +##rz +##ffin +functionality +karachi +litigation +meanings +uc +lick +turbo +anders +##ffed +execute +curl +oppose +ankles +typhoon +##د +##ache +##asia +linguistics +compassion +pressures +grazing +perfection +##iting +immunity +monopoly +muddy +backgrounds +136 +namibia +francesca +monitors +attracting +stunt +tuition +##ии +vegetable +##mates +##quent +mgm +jen +complexes +forts +##ond +cellar +bites +seventeenth +royals +flemish +failures +mast +charities +##cular +peruvian +capitals +macmillan +ipswich +outward +frigate +postgraduate +folds +employing +##ouse +concurrently +fiery +##tai +contingent +nightmares +monumental +nicaragua +##kowski +lizard +mal +fielding +gig +reject +##pad +harding +##ipe +coastline +##cin +##nos +beethoven +humphrey +innovations +##tam +##nge +norris +doris +solicitor +huang +obey +141 +##lc +niagara +##tton +shelves +aug +bourbon +curry +nightclub +specifications +hilton +##ndo +centennial +dispersed +worm +neglected +briggs +sm +font +kuala +uneasy +plc +##nstein +##bound +##aking +##burgh +awaiting +pronunciation +##bbed +##quest +eh +optimal +zhu +raped +greens +presided +brenda +worries +##life +venetian +marxist +turnout +##lius +refined +braced +sins +grasped +sunderland +nickel +speculated +lowell +cyrillic +communism +fundraising +resembling +colonists +mutant +freddie +usc +##mos +gratitude +##run +mural +##lous +chemist +wi +reminds +28th +steals +tess +pietro +##ingen +promoter +ri +microphone +honoured +rai +sant +##qui +feather +##nson +burlington +kurdish +terrorists +deborah +sickness +##wed +##eet +hazard +irritated +desperation +veil +clarity +##rik +jewels +xv +##gged +##ows +##cup +berkshire +unfair +mysteries +orchid +winced +exhaustion +renovations +stranded +obe +infinity +##nies +adapt +redevelopment +thanked +registry +olga +domingo +noir +tudor +ole +##atus +commenting +behaviors +##ais +crisp +pauline +probable +stirling +wigan +##bian +paralympics +panting +surpassed +##rew +luca +barred +pony +famed +##sters +cassandra +waiter +carolyn +exported +##orted +andres +destructive +deeds +jonah +castles +vacancy +suv +##glass +1788 +orchard +yep +famine +belarusian +sprang +##forth +skinny +##mis +administrators +rotterdam +zambia +zhao +boiler +discoveries +##ride +##physics +lucius +disappointing +outreach +spoon +##frame +qualifications +unanimously +enjoys +regency +##iidae +stade +realism +veterinary +rodgers +dump +alain +chestnut +castile +censorship +rumble +gibbs +##itor +communion +reggae +inactivated +logs +loads +##houses +homosexual +##iano +ale +informs +##cas +phrases +plaster +linebacker +ambrose +kaiser +fascinated +850 +limerick +recruitment +forge +mastered +##nding +leinster +rooted +threaten +##strom +borneo +##hes +suggestions +scholarships +propeller +documentaries +patronage +coats +constructing +invest +neurons +comet +entirety +shouts +identities +annoying +unchanged +wary +##antly +##ogy +neat +oversight +##kos +phillies +replay +constance +##kka +incarnation +humble +skies +minus +##acy +smithsonian +##chel +guerrilla +jar +cadets +##plate +surplus +audit +##aru +cracking +joanna +louisa +pacing +##lights +intentionally +##iri +diner +nwa +imprint +australians +tong +unprecedented +bunker +naive +specialists +ark +nichols +railing +leaked +pedal +##uka +shrub +longing +roofs +v8 +captains +neural +tuned +##ntal +##jet +emission +medina +frantic +codex +definitive +sid +abolition +intensified +stocks +enrique +sustain +genoa +oxide +##written +clues +cha +##gers +tributaries +fragment +venom +##rity +##ente +##sca +muffled +vain +sire +laos +##ingly +##hana +hastily +snapping +surfaced +sentiment +motive +##oft +contests +approximate +mesa +luckily +dinosaur +exchanges +propelled +accord +bourne +relieve +tow +masks +offended +##ues +cynthia +##mmer +rains +bartender +zinc +reviewers +lois +##sai +legged +arrogant +rafe +rosie +comprise +handicap +blockade +inlet +lagoon +copied +drilling +shelley +petals +##inian +mandarin +obsolete +##inated +onward +arguably +productivity +cindy +praising +seldom +busch +discusses +raleigh +shortage +ranged +stanton +encouragement +firstly +conceded +overs +temporal +##uke +cbe +##bos +woo +certainty +pumps +##pton +stalked +##uli +lizzie +periodic +thieves +weaker +##night +gases +shoving +chooses +wc +##chemical +prompting +weights +##kill +robust +flanked +sticky +hu +tuberculosis +##eb +##eal +christchurch +resembled +wallet +reese +inappropriate +pictured +distract +fixing +fiddle +giggled +burger +heirs +hairy +mechanic +torque +apache +obsessed +chiefly +cheng +logging +##tag +extracted +meaningful +numb +##vsky +gloucestershire +reminding +##bay +unite +##lit +breeds +diminished +clown +glove +1860s +##ن +##ug +archibald +focal +freelance +sliced +depiction +##yk +organism +switches +sights +stray +crawling +##ril +lever +leningrad +interpretations +loops +anytime +reel +alicia +delighted +##ech +inhaled +xiv +suitcase +bernie +vega +licenses +northampton +exclusion +induction +monasteries +racecourse +homosexuality +##right +##sfield +##rky +dimitri +michele +alternatives +ions +commentators +genuinely +objected +pork +hospitality +fencing +stephan +warships +peripheral +wit +drunken +wrinkled +quentin +spends +departing +chung +numerical +spokesperson +##zone +johannesburg +caliber +killers +##udge +assumes +neatly +demographic +abigail +bloc +##vel +mounting +##lain +bentley +slightest +xu +recipients +##jk +merlin +##writer +seniors +prisons +blinking +hindwings +flickered +kappa +##hel +80s +strengthening +appealing +brewing +gypsy +mali +lashes +hulk +unpleasant +harassment +bio +treaties +predict +instrumentation +pulp +troupe +boiling +mantle +##ffe +ins +##vn +dividing +handles +verbs +##onal +coconut +senegal +340 +thorough +gum +momentarily +##sto +cocaine +panicked +destined +##turing +teatro +denying +weary +captained +mans +##hawks +##code +wakefield +bollywood +thankfully +##16 +cyril +##wu +amendments +##bahn +consultation +stud +reflections +kindness +1787 +internally +##ovo +tex +mosaic +distribute +paddy +seeming +143 +##hic +piers +##15 +##mura +##verse +popularly +winger +kang +sentinel +mccoy +##anza +covenant +##bag +verge +fireworks +suppress +thrilled +dominate +##jar +swansea +##60 +142 +reconciliation +##ndi +stiffened +cue +dorian +##uf +damascus +amor +ida +foremost +##aga +porsche +unseen +dir +##had +##azi +stony +lexi +melodies +##nko +angular +integer +podcast +ants +inherent +jaws +justify +persona +##olved +josephine +##nr +##ressed +customary +flashes +gala +cyrus +glaring +backyard +ariel +physiology +greenland +html +stir +avon +atletico +finch +methodology +ked +##lent +mas +catholicism +townsend +branding +quincy +fits +containers +1777 +ashore +aragon +##19 +forearm +poisoning +##sd +adopting +conquer +grinding +amnesty +keller +finances +evaluate +forged +lankan +instincts +##uto +guam +bosnian +photographed +workplace +desirable +protector +##dog +allocation +intently +encourages +willy +##sten +bodyguard +electro +brighter +##ν +bihar +##chev +lasts +opener +amphibious +sal +verde +arte +##cope +captivity +vocabulary +yields +##tted +agreeing +desmond +pioneered +##chus +strap +campaigned +railroads +##ович +emblem +##dre +stormed +501 +##ulous +marijuana +northumberland +##gn +##nath +bowen +landmarks +beaumont +##qua +danube +##bler +attorneys +th +ge +flyers +critique +villains +cass +mutation +acc +##0s +colombo +mckay +motif +sampling +concluding +syndicate +##rell +neon +stables +ds +warnings +clint +mourning +wilkinson +##tated +merrill +leopard +evenings +exhaled +emil +sonia +ezra +discrete +stove +farrell +fifteenth +prescribed +superhero +##rier +worms +helm +wren +##duction +##hc +expo +##rator +hq +unfamiliar +antony +prevents +acceleration +fiercely +mari +painfully +calculations +cheaper +ign +clifton +irvine +davenport +mozambique +##np +pierced +##evich +wonders +##wig +##cate +##iling +crusade +ware +##uel +enzymes +reasonably +mls +##coe +mater +ambition +bunny +eliot +kernel +##fin +asphalt +headmaster +torah +aden +lush +pins +waived +##care +##yas +joao +substrate +enforce +##grad +##ules +alvarez +selections +epidemic +tempted +##bit +bremen +translates +ensured +waterfront +29th +forrest +manny +malone +kramer +reigning +cookies +simpler +absorption +205 +engraved +##ffy +evaluated +1778 +haze +146 +comforting +crossover +##abe +thorn +##rift +##imo +##pop +suppression +fatigue +cutter +##tr +201 +wurttemberg +##orf +enforced +hovering +proprietary +gb +samurai +syllable +ascent +lacey +tick +lars +tractor +merchandise +rep +bouncing +defendants +##yre +huntington +##ground +##oko +standardized +##hor +##hima +assassinated +nu +predecessors +rainy +liar +assurance +lyrical +##uga +secondly +flattened +ios +parameter +undercover +##mity +bordeaux +punish +ridges +markers +exodus +inactive +hesitate +debbie +nyc +pledge +savoy +nagar +offset +organist +##tium +hesse +marin +converting +##iver +diagram +propulsion +pu +validity +reverted +supportive +##dc +ministries +clans +responds +proclamation +##inae +##ø +##rea +ein +pleading +patriot +sf +birch +islanders +strauss +hates +##dh +brandenburg +concession +rd +##ob +1900s +killings +textbook +antiquity +cinematography +wharf +embarrassing +setup +creed +farmland +inequality +centred +signatures +fallon +370 +##ingham +##uts +ceylon +gazing +directive +laurie +##tern +globally +##uated +##dent +allah +excavation +threads +##cross +148 +frantically +icc +utilize +determines +respiratory +thoughtful +receptions +##dicate +merging +chandra +seine +147 +builders +builds +diagnostic +dev +visibility +goddamn +analyses +dhaka +cho +proves +chancel +concurrent +curiously +canadians +pumped +restoring +1850s +turtles +jaguar +sinister +spinal +traction +declan +vows +1784 +glowed +capitalism +swirling +install +universidad +##lder +##oat +soloist +##genic +##oor +coincidence +beginnings +nissan +dip +resorts +caucasus +combustion +infectious +##eno +pigeon +serpent +##itating +conclude +masked +salad +jew +##gr +surreal +toni +##wc +harmonica +151 +##gins +##etic +##coat +fishermen +intending +bravery +##wave +klaus +titan +wembley +taiwanese +ransom +40th +incorrect +hussein +eyelids +jp +cooke +dramas +utilities +##etta +##print +eisenhower +principally +granada +lana +##rak +openings +concord +##bl +bethany +connie +morality +sega +##mons +##nard +earnings +##kara +##cine +wii +communes +##rel +coma +composing +softened +severed +grapes +##17 +nguyen +analyzed +warlord +hubbard +heavenly +behave +slovenian +##hit +##ony +hailed +filmmakers +trance +caldwell +skye +unrest +coward +likelihood +##aging +bern +sci +taliban +honolulu +propose +##wang +1700 +browser +imagining +cobra +contributes +dukes +instinctively +conan +violinist +##ores +accessories +gradual +##amp +quotes +sioux +##dating +undertake +intercepted +sparkling +compressed +139 +fungus +tombs +haley +imposing +rests +degradation +lincolnshire +retailers +wetlands +tulsa +distributor +dungeon +nun +greenhouse +convey +atlantis +aft +exits +oman +dresser +lyons +##sti +joking +eddy +judgement +omitted +digits +##cts +##game +juniors +##rae +cents +stricken +une +##ngo +wizards +weir +breton +nan +technician +fibers +liking +royalty +##cca +154 +persia +terribly +magician +##rable +##unt +vance +cafeteria +booker +camille +warmer +##static +consume +cavern +gaps +compass +contemporaries +foyer +soothing +graveyard +maj +plunged +blush +##wear +cascade +demonstrates +ordinance +##nov +boyle +##lana +rockefeller +shaken +banjo +izzy +##ense +breathless +vines +##32 +##eman +alterations +chromosome +dwellings +feudal +mole +153 +catalonia +relics +tenant +mandated +##fm +fridge +hats +honesty +patented +raul +heap +cruisers +accusing +enlightenment +infants +wherein +chatham +contractors +zen +affinity +hc +osborne +piston +156 +traps +maturity +##rana +lagos +##zal +peering +##nay +attendant +dealers +protocols +subset +prospects +biographical +##cre +artery +##zers +insignia +nuns +endured +##eration +recommend +schwartz +serbs +berger +cromwell +crossroads +##ctor +enduring +clasped +grounded +##bine +marseille +twitched +abel +choke +https +catalyst +moldova +italians +##tist +disastrous +wee +##oured +##nti +wwf +nope +##piration +##asa +expresses +thumbs +167 +##nza +coca +1781 +cheating +##ption +skipped +sensory +heidelberg +spies +satan +dangers +semifinal +202 +bohemia +whitish +confusing +shipbuilding +relies +surgeons +landings +ravi +baku +moor +suffix +alejandro +##yana +litre +upheld +##unk +rajasthan +##rek +coaster +insists +posture +scenarios +etienne +favoured +appoint +transgender +elephants +poked +greenwood +defences +fulfilled +militant +somali +1758 +chalk +potent +##ucci +migrants +wink +assistants +nos +restriction +activism +niger +##ario +colon +shaun +##sat +daphne +##erated +swam +congregations +reprise +considerations +magnet +playable +xvi +##р +overthrow +tobias +knob +chavez +coding +##mers +propped +katrina +orient +newcomer +##suke +temperate +##pool +farmhouse +interrogation +##vd +committing +##vert +forthcoming +strawberry +joaquin +macau +ponds +shocking +siberia +##cellular +chant +contributors +##nant +##ologists +sped +absorb +hail +1782 +spared +##hore +barbados +karate +opus +originates +saul +##xie +evergreen +leaped +##rock +correlation +exaggerated +weekday +unification +bump +tracing +brig +afb +pathways +utilizing +##ners +mod +mb +disturbance +kneeling +##stad +##guchi +100th +pune +##thy +decreasing +168 +manipulation +miriam +academia +ecosystem +occupational +rbi +##lem +rift +##14 +rotary +stacked +incorporation +awakening +generators +guerrero +racist +##omy +cyber +derivatives +culminated +allie +annals +panzer +sainte +wikipedia +pops +zu +austro +##vate +algerian +politely +nicholson +mornings +educate +tastes +thrill +dartmouth +##gating +db +##jee +regan +differing +concentrating +choreography +divinity +##media +pledged +alexandre +routing +gregor +madeline +##idal +apocalypse +##hora +gunfire +culminating +elves +fined +liang +lam +programmed +tar +guessing +transparency +gabrielle +##gna +cancellation +flexibility +##lining +accession +shea +stronghold +nets +specializes +##rgan +abused +hasan +sgt +ling +exceeding +##₄ +admiration +supermarket +##ark +photographers +specialised +tilt +resonance +hmm +perfume +380 +sami +threatens +garland +botany +guarding +boiled +greet +puppy +russo +supplier +wilmington +vibrant +vijay +##bius +paralympic +grumbled +paige +faa +licking +margins +hurricanes +##gong +fest +grenade +ripping +##uz +counseling +weigh +##sian +needles +wiltshire +edison +costly +##not +fulton +tramway +redesigned +staffordshire +cache +gasping +watkins +sleepy +candidacy +##group +monkeys +timeline +throbbing +##bid +##sos +berth +uzbekistan +vanderbilt +bothering +overturned +ballots +gem +##iger +sunglasses +subscribers +hooker +compelling +ang +exceptionally +saloon +stab +##rdi +carla +terrifying +rom +##vision +coil +##oids +satisfying +vendors +31st +mackay +deities +overlooked +ambient +bahamas +felipe +olympia +whirled +botanist +advertised +tugging +##dden +disciples +morales +unionist +rites +foley +morse +motives +creepy +##₀ +soo +##sz +bargain +highness +frightening +turnpike +tory +reorganization +##cer +depict +biographer +##walk +unopposed +manifesto +##gles +institut +emile +accidental +kapoor +##dam +kilkenny +cortex +lively +##13 +romanesque +jain +shan +cannons +##ood +##ske +petrol +echoing +amalgamated +disappears +cautious +proposes +sanctions +trenton +##ر +flotilla +aus +contempt +tor +canary +cote +theirs +##hun +conceptual +deleted +fascinating +paso +blazing +elf +honourable +hutchinson +##eiro +##outh +##zin +surveyor +tee +amidst +wooded +reissue +intro +##ono +cobb +shelters +newsletter +hanson +brace +encoding +confiscated +dem +caravan +marino +scroll +melodic +cows +imam +##adi +##aneous +northward +searches +biodiversity +cora +310 +roaring +##bers +connell +theologian +halo +compose +pathetic +unmarried +dynamo +##oot +az +calculation +toulouse +deserves +humour +nr +forgiveness +tam +undergone +martyr +pamela +myths +whore +counselor +hicks +290 +heavens +battleship +electromagnetic +##bbs +stellar +establishments +presley +hopped +##chin +temptation +90s +wills +nas +##yuan +nhs +##nya +seminars +##yev +adaptations +gong +asher +lex +indicator +sikh +tobago +cites +goin +##yte +satirical +##gies +characterised +correspond +bubbles +lure +participates +##vid +eruption +skate +therapeutic +1785 +canals +wholesale +defaulted +sac +460 +petit +##zzled +virgil +leak +ravens +256 +portraying +##yx +ghetto +creators +dams +portray +vicente +##rington +fae +namesake +bounty +##arium +joachim +##ota +##iser +aforementioned +axle +snout +depended +dismantled +reuben +480 +##ibly +gallagher +##lau +##pd +earnest +##ieu +##iary +inflicted +objections +##llar +asa +gritted +##athy +jericho +##sea +##was +flick +underside +ceramics +undead +substituted +195 +eastward +undoubtedly +wheeled +chimney +##iche +guinness +cb +##ager +siding +##bell +traitor +baptiste +disguised +inauguration +149 +tipperary +choreographer +perched +warmed +stationary +eco +##ike +##ntes +bacterial +##aurus +flores +phosphate +##core +attacker +invaders +alvin +intersects +a1 +indirectly +immigrated +businessmen +cornelius +valves +narrated +pill +sober +ul +nationale +monastic +applicants +scenery +##jack +161 +motifs +constitutes +cpu +##osh +jurisdictions +sd +tuning +irritation +woven +##uddin +fertility +gao +##erie +antagonist +impatient +glacial +hides +boarded +denominations +interception +##jas +cookie +nicola +##tee +algebraic +marquess +bahn +parole +buyers +bait +turbines +paperwork +bestowed +natasha +renee +oceans +purchases +157 +vaccine +215 +##tock +fixtures +playhouse +integrate +jai +oswald +intellectuals +##cky +booked +nests +mortimer +##isi +obsession +sept +##gler +##sum +440 +scrutiny +simultaneous +squinted +##shin +collects +oven +shankar +penned +remarkably +##я +slips +luggage +spectral +1786 +collaborations +louie +consolidation +##ailed +##ivating +420 +hoover +blackpool +harness +ignition +vest +tails +belmont +mongol +skinner +##nae +visually +mage +derry +##tism +##unce +stevie +transitional +##rdy +redskins +drying +prep +prospective +##21 +annoyance +oversee +##loaded +fills +##books +##iki +announces +fda +scowled +respects +prasad +mystic +tucson +##vale +revue +springer +bankrupt +1772 +aristotle +salvatore +habsburg +##geny +dal +natal +nut +pod +chewing +darts +moroccan +walkover +rosario +lenin +punjabi +##ße +grossed +scattering +wired +invasive +hui +polynomial +corridors +wakes +gina +portrays +##cratic +arid +retreating +erich +irwin +sniper +##dha +linen +lindsey +maneuver +butch +shutting +socio +bounce +commemorative +postseason +jeremiah +pines +275 +mystical +beads +bp +abbas +furnace +bidding +consulted +assaulted +empirical +rubble +enclosure +sob +weakly +cancel +polly +yielded +##emann +curly +prediction +battered +70s +vhs +jacqueline +render +sails +barked +detailing +grayson +riga +sloane +raging +##yah +herbs +bravo +##athlon +alloy +giggle +imminent +suffers +assumptions +waltz +##itate +accomplishments +##ited +bathing +remixed +deception +prefix +##emia +deepest +##tier +##eis +balkan +frogs +##rong +slab +##pate +philosophers +peterborough +grains +imports +dickinson +rwanda +##atics +1774 +dirk +lan +tablets +##rove +clone +##rice +caretaker +hostilities +mclean +##gre +regimental +treasures +norms +impose +tsar +tango +diplomacy +variously +complain +192 +recognise +arrests +1779 +celestial +pulitzer +##dus +bing +libretto +##moor +adele +splash +##rite +expectation +lds +confronts +##izer +spontaneous +harmful +wedge +entrepreneurs +buyer +##ope +bilingual +translate +rugged +conner +circulated +uae +eaton +##gra +##zzle +lingered +lockheed +vishnu +reelection +alonso +##oom +joints +yankee +headline +cooperate +heinz +laureate +invading +##sford +echoes +scandinavian +##dham +hugging +vitamin +salute +micah +hind +trader +##sper +radioactive +##ndra +militants +poisoned +ratified +remark +campeonato +deprived +wander +prop +##dong +outlook +##tani +##rix +##eye +chiang +darcy +##oping +mandolin +spice +statesman +babylon +182 +walled +forgetting +afro +##cap +158 +giorgio +buffer +##polis +planetary +##gis +overlap +terminals +kinda +centenary +##bir +arising +manipulate +elm +ke +1770 +ak +##tad +chrysler +mapped +moose +pomeranian +quad +macarthur +assemblies +shoreline +recalls +stratford +##rted +noticeable +##evic +imp +##rita +##sque +accustomed +supplying +tents +disgusted +vogue +sipped +filters +khz +reno +selecting +luftwaffe +mcmahon +tyne +masterpiece +carriages +collided +dunes +exercised +flare +remembers +muzzle +##mobile +heck +##rson +burgess +lunged +middleton +boycott +bilateral +##sity +hazardous +lumpur +multiplayer +spotlight +jackets +goldman +liege +porcelain +rag +waterford +benz +attracts +hopeful +battling +ottomans +kensington +baked +hymns +cheyenne +lattice +levine +borrow +polymer +clashes +michaels +monitored +commitments +denounced +##25 +##von +cavity +##oney +hobby +akin +##holders +futures +intricate +cornish +patty +##oned +illegally +dolphin +##lag +barlow +yellowish +maddie +apologized +luton +plagued +##puram +nana +##rds +sway +fanny +łodz +##rino +psi +suspicions +hanged +##eding +initiate +charlton +##por +nak +competent +235 +analytical +annex +wardrobe +reservations +##rma +sect +162 +fairfax +hedge +piled +buckingham +uneven +bauer +simplicity +snyder +interpret +accountability +donors +moderately +byrd +continents +##cite +##max +disciple +hr +jamaican +ping +nominees +##uss +mongolian +diver +attackers +eagerly +ideological +pillows +miracles +apartheid +revolver +sulfur +clinics +moran +163 +##enko +ile +katy +rhetoric +##icated +chronology +recycling +##hrer +elongated +mughal +pascal +profiles +vibration +databases +domination +##fare +##rant +matthias +digest +rehearsal +polling +weiss +initiation +reeves +clinging +flourished +impress +ngo +##hoff +##ume +buckley +symposium +rhythms +weed +emphasize +transforming +##taking +##gence +##yman +accountant +analyze +flicker +foil +priesthood +voluntarily +decreases +##80 +##hya +slater +sv +charting +mcgill +##lde +moreno +##iu +besieged +zur +robes +##phic +admitting +api +deported +turmoil +peyton +earthquakes +##ares +nationalists +beau +clair +brethren +interrupt +welch +curated +galerie +requesting +164 +##ested +impending +steward +viper +##vina +complaining +beautifully +brandy +foam +nl +1660 +##cake +alessandro +punches +laced +explanations +##lim +attribute +clit +reggie +discomfort +##cards +smoothed +whales +##cene +adler +countered +duffy +disciplinary +widening +recipe +reliance +conducts +goats +gradient +preaching +##shaw +matilda +quasi +striped +meridian +cannabis +cordoba +certificates +##agh +##tering +graffiti +hangs +pilgrims +repeats +##ych +revive +urine +etat +##hawk +fueled +belts +fuzzy +susceptible +##hang +mauritius +salle +sincere +beers +hooks +##cki +arbitration +entrusted +advise +sniffed +seminar +junk +donnell +processors +principality +strapped +celia +mendoza +everton +fortunes +prejudice +starving +reassigned +steamer +##lund +tuck +evenly +foreman +##ffen +dans +375 +envisioned +slit +##xy +baseman +liberia +rosemary +##weed +electrified +periodically +potassium +stride +contexts +sperm +slade +mariners +influx +bianca +subcommittee +##rane +spilling +icao +estuary +##nock +delivers +iphone +##ulata +isa +mira +bohemian +dessert +##sbury +welcoming +proudly +slowing +##chs +musee +ascension +russ +##vian +waits +##psy +africans +exploit +##morphic +gov +eccentric +crab +peck +##ull +entrances +formidable +marketplace +groom +bolted +metabolism +patton +robbins +courier +payload +endure +##ifier +andes +refrigerator +##pr +ornate +##uca +ruthless +illegitimate +masonry +strasbourg +bikes +adobe +##³ +apples +quintet +willingly +niche +bakery +corpses +energetic +##cliffe +##sser +##ards +177 +centimeters +centro +fuscous +cretaceous +rancho +##yde +andrei +telecom +tottenham +oasis +ordination +vulnerability +presiding +corey +cp +penguins +sims +##pis +malawi +piss +##48 +correction +##cked +##ffle +##ryn +countdown +detectives +psychiatrist +psychedelic +dinosaurs +blouse +##get +choi +vowed +##oz +randomly +##pol +49ers +scrub +blanche +bruins +dusseldorf +##using +unwanted +##ums +212 +dominique +elevations +headlights +om +laguna +##oga +1750 +famously +ignorance +shrewsbury +##aine +ajax +breuning +che +confederacy +greco +overhaul +##screen +paz +skirts +disagreement +cruelty +jagged +phoebe +shifter +hovered +viruses +##wes +mandy +##lined +##gc +landlord +squirrel +dashed +##ι +ornamental +gag +wally +grange +literal +spurs +undisclosed +proceeding +yin +##text +billie +orphan +spanned +humidity +indy +weighted +presentations +explosions +lucian +##tary +vaughn +hindus +##anga +##hell +psycho +171 +daytona +protects +efficiently +rematch +sly +tandem +##oya +rebranded +impaired +hee +metropolis +peach +godfrey +diaspora +ethnicity +prosperous +gleaming +dar +grossing +playback +##rden +stripe +pistols +##tain +births +labelled +##cating +172 +rudy +alba +##onne +aquarium +hostility +##gb +##tase +shudder +sumatra +hardest +lakers +consonant +creeping +demos +homicide +capsule +zeke +liberties +expulsion +pueblo +##comb +trait +transporting +##ddin +##neck +##yna +depart +gregg +mold +ledge +hangar +oldham +playboy +termination +analysts +gmbh +romero +##itic +insist +cradle +filthy +brightness +slash +shootout +deposed +bordering +##truct +isis +microwave +tumbled +sheltered +cathy +werewolves +messy +andersen +convex +clapped +clinched +satire +wasting +edo +vc +rufus +##jak +mont +##etti +poznan +##keeping +restructuring +transverse +##rland +azerbaijani +slovene +gestures +roommate +choking +shear +##quist +vanguard +oblivious +##hiro +disagreed +baptism +##lich +coliseum +##aceae +salvage +societe +cory +locke +relocation +relying +versailles +ahl +swelling +##elo +cheerful +##word +##edes +gin +sarajevo +obstacle +diverted +##nac +messed +thoroughbred +fluttered +utrecht +chewed +acquaintance +assassins +dispatch +mirza +##wart +nike +salzburg +swell +yen +##gee +idle +ligue +samson +##nds +##igh +playful +spawned +##cise +tease +##case +burgundy +##bot +stirring +skeptical +interceptions +marathi +##dies +bedrooms +aroused +pinch +##lik +preferences +tattoos +buster +digitally +projecting +rust +##ital +kitten +priorities +addison +pseudo +##guard +dusk +icons +sermon +##psis +##iba +bt +##lift +##xt +ju +truce +rink +##dah +##wy +defects +psychiatry +offences +calculate +glucose +##iful +##rized +##unda +francaise +##hari +richest +warwickshire +carly +1763 +purity +redemption +lending +##cious +muse +bruises +cerebral +aero +carving +##name +preface +terminology +invade +monty +##int +anarchist +blurred +##iled +rossi +treats +guts +shu +foothills +ballads +undertaking +premise +cecilia +affiliates +blasted +conditional +wilder +minors +drone +rudolph +buffy +swallowing +horton +attested +##hop +rutherford +howell +primetime +livery +penal +##bis +minimize +hydro +wrecked +wrought +palazzo +##gling +cans +vernacular +friedman +nobleman +shale +walnut +danielle +##ection +##tley +sears +##kumar +chords +lend +flipping +streamed +por +dracula +gallons +sacrifices +gamble +orphanage +##iman +mckenzie +##gible +boxers +daly +##balls +##ان +208 +##ific +##rative +##iq +exploited +slated +##uity +circling +hillary +pinched +goldberg +provost +campaigning +lim +piles +ironically +jong +mohan +successors +usaf +##tem +##ught +autobiographical +haute +preserves +##ending +acquitted +comparisons +203 +hydroelectric +gangs +cypriot +torpedoes +rushes +chrome +derive +bumps +instability +fiat +pets +##mbe +silas +dye +reckless +settler +##itation +info +heats +##writing +176 +canonical +maltese +fins +mushroom +stacy +aspen +avid +##kur +##loading +vickers +gaston +hillside +statutes +wilde +gail +kung +sabine +comfortably +motorcycles +##rgo +169 +pneumonia +fetch +##sonic +axel +faintly +parallels +##oop +mclaren +spouse +compton +interdisciplinary +miner +##eni +181 +clamped +##chal +##llah +separates +versa +##mler +scarborough +labrador +##lity +##osing +rutgers +hurdles +como +166 +burt +divers +##100 +wichita +cade +coincided +##erson +bruised +mla +##pper +vineyard +##ili +##brush +notch +mentioning +jase +hearted +kits +doe +##acle +pomerania +##ady +ronan +seizure +pavel +problematic +##zaki +domenico +##ulin +catering +penelope +dependence +parental +emilio +ministerial +atkinson +##bolic +clarkson +chargers +colby +grill +peeked +arises +summon +##aged +fools +##grapher +faculties +qaeda +##vial +garner +refurbished +##hwa +geelong +disasters +nudged +bs +shareholder +lori +algae +reinstated +rot +##ades +##nous +invites +stainless +183 +inclusive +##itude +diocesan +til +##icz +denomination +##xa +benton +floral +registers +##ider +##erman +##kell +absurd +brunei +guangzhou +hitter +retaliation +##uled +##eve +blanc +nh +consistency +contamination +##eres +##rner +dire +palermo +broadcasters +diaries +inspire +vols +brewer +tightening +ky +mixtape +hormone +##tok +stokes +##color +##dly +##ssi +pg +##ometer +##lington +sanitation +##tility +intercontinental +apps +##adt +¹⁄₂ +cylinders +economies +favourable +unison +croix +gertrude +odyssey +vanity +dangling +##logists +upgrades +dice +middleweight +practitioner +##ight +206 +henrik +parlor +orion +angered +lac +python +blurted +##rri +sensual +intends +swings +angled +##phs +husky +attain +peerage +precinct +textiles +cheltenham +shuffled +dai +confess +tasting +bhutan +##riation +tyrone +segregation +abrupt +ruiz +##rish +smirked +blackwell +confidential +browning +amounted +##put +vase +scarce +fabulous +raided +staple +guyana +unemployed +glider +shay +##tow +carmine +troll +intervene +squash +superstar +##uce +cylindrical +len +roadway +researched +handy +##rium +##jana +meta +lao +declares +##rring +##tadt +##elin +##kova +willem +shrubs +napoleonic +realms +skater +qi +volkswagen +##ł +tad +hara +archaeologist +awkwardly +eerie +##kind +wiley +##heimer +##24 +titus +organizers +cfl +crusaders +lama +usb +vent +enraged +thankful +occupants +maximilian +##gaard +possessing +textbooks +##oran +collaborator +quaker +##ulo +avalanche +mono +silky +straits +isaiah +mustang +surged +resolutions +potomac +descend +cl +kilograms +plato +strains +saturdays +##olin +bernstein +##ype +holstein +ponytail +##watch +belize +conversely +heroine +perpetual +##ylus +charcoal +piedmont +glee +negotiating +backdrop +prologue +##jah +##mmy +pasadena +climbs +ramos +sunni +##holm +##tner +##tri +anand +deficiency +hertfordshire +stout +##avi +aperture +orioles +##irs +doncaster +intrigued +bombed +coating +otis +##mat +cocktail +##jit +##eto +amir +arousal +sar +##proof +##act +##ories +dixie +pots +##bow +whereabouts +159 +##fted +drains +bullying +cottages +scripture +coherent +fore +poe +appetite +##uration +sampled +##ators +##dp +derrick +rotor +jays +peacock +installment +##rro +advisors +##coming +rodeo +scotch +##mot +##db +##fen +##vant +ensued +rodrigo +dictatorship +martyrs +twenties +##н +towed +incidence +marta +rainforest +sai +scaled +##cles +oceanic +qualifiers +symphonic +mcbride +dislike +generalized +aubrey +colonization +##iation +##lion +##ssing +disliked +lublin +salesman +##ulates +spherical +whatsoever +sweating +avalon +contention +punt +severity +alderman +atari +##dina +##grant +##rop +scarf +seville +vertices +annexation +fairfield +fascination +inspiring +launches +palatinate +regretted +##rca +feral +##iom +elk +nap +olsen +reddy +yong +##leader +##iae +garment +transports +feng +gracie +outrage +viceroy +insides +##esis +breakup +grady +organizer +softer +grimaced +222 +murals +galicia +arranging +vectors +##rsten +bas +##sb +##cens +sloan +##eka +bitten +ara +fender +nausea +bumped +kris +banquet +comrades +detector +persisted +##llan +adjustment +endowed +cinemas +##shot +sellers +##uman +peek +epa +kindly +neglect +simpsons +talon +mausoleum +runaway +hangul +lookout +##cic +rewards +coughed +acquainted +chloride +##ald +quicker +accordion +neolithic +##qa +artemis +coefficient +lenny +pandora +tx +##xed +ecstasy +litter +segunda +chairperson +gemma +hiss +rumor +vow +nasal +antioch +compensate +patiently +transformers +##eded +judo +morrow +penis +posthumous +philips +bandits +husbands +denote +flaming +##any +##phones +langley +yorker +1760 +walters +##uo +##kle +gubernatorial +fatty +samsung +leroy +outlaw +##nine +unpublished +poole +jakob +##ᵢ +##ₙ +crete +distorted +superiority +##dhi +intercept +crust +mig +claus +crashes +positioning +188 +stallion +301 +frontal +armistice +##estinal +elton +aj +encompassing +camel +commemorated +malaria +woodward +calf +cigar +penetrate +##oso +willard +##rno +##uche +illustrate +amusing +convergence +noteworthy +##lma +##rva +journeys +realise +manfred +##sable +410 +##vocation +hearings +fiance +##posed +educators +provoked +adjusting +##cturing +modular +stockton +paterson +vlad +rejects +electors +selena +maureen +##tres +uber +##rce +swirled +##num +proportions +nanny +pawn +naturalist +parma +apostles +awoke +ethel +wen +##bey +monsoon +overview +##inating +mccain +rendition +risky +adorned +##ih +equestrian +germain +nj +conspicuous +confirming +##yoshi +shivering +##imeter +milestone +rumours +flinched +bounds +smacked +token +##bei +lectured +automobiles +##shore +impacted +##iable +nouns +nero +##leaf +ismail +prostitute +trams +##lace +bridget +sud +stimulus +impressions +reins +revolves +##oud +##gned +giro +honeymoon +##swell +criterion +##sms +##uil +libyan +prefers +##osition +211 +preview +sucks +accusation +bursts +metaphor +diffusion +tolerate +faye +betting +cinematographer +liturgical +specials +bitterly +humboldt +##ckle +flux +rattled +##itzer +archaeologists +odor +authorised +marshes +discretion +##ов +alarmed +archaic +inverse +##leton +explorers +##pine +drummond +tsunami +woodlands +##minate +##tland +booklet +insanity +owning +insert +crafted +calculus +##tore +receivers +##bt +stung +##eca +##nched +prevailing +travellers +eyeing +lila +graphs +##borne +178 +julien +##won +morale +adaptive +therapist +erica +cw +libertarian +bowman +pitches +vita +##ional +crook +##ads +##entation +caledonia +mutiny +##sible +1840s +automation +##ß +flock +##pia +ironic +pathology +##imus +remarried +##22 +joker +withstand +energies +##att +shropshire +hostages +madeleine +tentatively +conflicting +mateo +recipes +euros +ol +mercenaries +nico +##ndon +albuquerque +augmented +mythical +bel +freud +##child +cough +##lica +365 +freddy +lillian +genetically +nuremberg +calder +209 +bonn +outdoors +paste +suns +urgency +vin +restraint +tyson +##cera +##selle +barrage +bethlehem +kahn +##par +mounts +nippon +barony +happier +ryu +makeshift +sheldon +blushed +castillo +barking +listener +taped +bethel +fluent +headlines +pornography +rum +disclosure +sighing +mace +doubling +gunther +manly +##plex +rt +interventions +physiological +forwards +emerges +##tooth +##gny +compliment +rib +recession +visibly +barge +faults +connector +exquisite +prefect +##rlin +patio +##cured +elevators +brandt +italics +pena +173 +wasp +satin +ea +botswana +graceful +respectable +##jima +##rter +##oic +franciscan +generates +##dl +alfredo +disgusting +##olate +##iously +sherwood +warns +cod +promo +cheryl +sino +##ة +##escu +twitch +##zhi +brownish +thom +ortiz +##dron +densely +##beat +carmel +reinforce +##bana +187 +anastasia +downhill +vertex +contaminated +remembrance +harmonic +homework +##sol +fiancee +gears +olds +angelica +loft +ramsay +quiz +colliery +sevens +##cape +autism +##hil +walkway +##boats +ruben +abnormal +ounce +khmer +##bbe +zachary +bedside +morphology +punching +##olar +sparrow +convinces +##35 +hewitt +queer +remastered +rods +mabel +solemn +notified +lyricist +symmetric +##xide +174 +encore +passports +wildcats +##uni +baja +##pac +mildly +##ease +bleed +commodity +mounds +glossy +orchestras +##omo +damian +prelude +ambitions +##vet +awhile +remotely +##aud +asserts +imply +##iques +distinctly +modelling +remedy +##dded +windshield +dani +xiao +##endra +audible +powerplant +1300 +invalid +elemental +acquisitions +##hala +immaculate +libby +plata +smuggling +ventilation +denoted +minh +##morphism +430 +differed +dion +kelley +lore +mocking +sabbath +spikes +hygiene +drown +runoff +stylized +tally +liberated +aux +interpreter +righteous +aba +siren +reaper +pearce +millie +##cier +##yra +gaius +##iso +captures +##ttering +dorm +claudio +##sic +benches +knighted +blackness +##ored +discount +fumble +oxidation +routed +##ς +novak +perpendicular +spoiled +fracture +splits +##urt +pads +topology +##cats +axes +fortunate +offenders +protestants +esteem +221 +broadband +convened +frankly +hound +prototypes +isil +facilitated +keel +##sher +sahara +awaited +bubba +orb +prosecutors +186 +hem +520 +##xing +relaxing +remnant +romney +sorted +slalom +stefano +ulrich +##active +exemption +folder +pauses +foliage +hitchcock +epithet +204 +criticisms +##aca +ballistic +brody +hinduism +chaotic +youths +equals +##pala +pts +thicker +analogous +capitalist +improvised +overseeing +sinatra +ascended +beverage +##tl +straightforward +##kon +curran +##west +bois +325 +induce +surveying +emperors +sax +unpopular +##kk +cartoonist +fused +##mble +unto +##yuki +localities +##cko +##ln +darlington +slain +academie +lobbying +sediment +puzzles +##grass +defiance +dickens +manifest +tongues +alumnus +arbor +coincide +184 +appalachian +mustafa +examiner +cabaret +traumatic +yves +bracelet +draining +heroin +magnum +baths +odessa +consonants +mitsubishi +##gua +kellan +vaudeville +##fr +joked +null +straps +probation +##ław +ceded +interfaces +##pas +##zawa +blinding +viet +224 +rothschild +museo +640 +huddersfield +##vr +tactic +##storm +brackets +dazed +incorrectly +##vu +reg +glazed +fearful +manifold +benefited +irony +##sun +stumbling +##rte +willingness +balkans +mei +wraps +##aba +injected +##lea +gu +syed +harmless +##hammer +bray +takeoff +poppy +timor +cardboard +astronaut +purdue +weeping +southbound +cursing +stalls +diagonal +##neer +lamar +bryce +comte +weekdays +harrington +##uba +negatively +##see +lays +grouping +##cken +##henko +affirmed +halle +modernist +##lai +hodges +smelling +aristocratic +baptized +dismiss +justification +oilers +##now +coupling +qin +snack +healer +##qing +gardener +layla +battled +formulated +stephenson +gravitational +##gill +##jun +1768 +granny +coordinating +suites +##cd +##ioned +monarchs +##cote +##hips +sep +blended +apr +barrister +deposition +fia +mina +policemen +paranoid +##pressed +churchyard +covert +crumpled +creep +abandoning +tr +transmit +conceal +barr +understands +readiness +spire +##cology +##enia +##erry +610 +startling +unlock +vida +bowled +slots +##nat +##islav +spaced +trusting +admire +rig +##ink +slack +##70 +mv +207 +casualty +##wei +classmates +##odes +##rar +##rked +amherst +furnished +evolve +foundry +menace +mead +##lein +flu +wesleyan +##kled +monterey +webber +##vos +wil +##mith +##на +bartholomew +justices +restrained +##cke +amenities +191 +mediated +sewage +trenches +ml +mainz +##thus +1800s +##cula +##inski +caine +bonding +213 +converts +spheres +superseded +marianne +crypt +sweaty +ensign +historia +##br +spruce +##post +##ask +forks +thoughtfully +yukon +pamphlet +ames +##uter +karma +##yya +bryn +negotiation +sighs +incapable +##mbre +##ntial +actresses +taft +##mill +luce +prevailed +##amine +1773 +motionless +envoy +testify +investing +sculpted +instructors +provence +kali +cullen +horseback +##while +goodwin +##jos +gaa +norte +##ldon +modify +wavelength +abd +214 +skinned +sprinter +forecast +scheduling +marries +squared +tentative +##chman +boer +##isch +bolts +swap +fisherman +assyrian +impatiently +guthrie +martins +murdoch +194 +tanya +nicely +dolly +lacy +med +##45 +syn +decks +fashionable +millionaire +##ust +surfing +##ml +##ision +heaved +tammy +consulate +attendees +routinely +197 +fuse +saxophonist +backseat +malaya +##lord +scowl +tau +##ishly +193 +sighted +steaming +##rks +303 +911 +##holes +##hong +ching +##wife +bless +conserved +jurassic +stacey +unix +zion +chunk +rigorous +blaine +198 +peabody +slayer +dismay +brewers +nz +##jer +det +##glia +glover +postwar +int +penetration +sylvester +imitation +vertically +airlift +heiress +knoxville +viva +##uin +390 +macon +##rim +##fighter +##gonal +janice +##orescence +##wari +marius +belongings +leicestershire +196 +blanco +inverted +preseason +sanity +sobbing +##due +##elt +##dled +collingwood +regeneration +flickering +shortest +##mount +##osi +feminism +##lat +sherlock +cabinets +fumbled +northbound +precedent +snaps +##mme +researching +##akes +guillaume +insights +manipulated +vapor +neighbour +sap +gangster +frey +f1 +stalking +scarcely +callie +barnett +tendencies +audi +doomed +assessing +slung +panchayat +ambiguous +bartlett +##etto +distributing +violating +wolverhampton +##hetic +swami +histoire +##urus +liable +pounder +groin +hussain +larsen +popping +surprises +##atter +vie +curt +##station +mute +relocate +musicals +authorization +richter +##sef +immortality +tna +bombings +##press +deteriorated +yiddish +##acious +robbed +colchester +cs +pmid +ao +verified +balancing +apostle +swayed +recognizable +oxfordshire +retention +nottinghamshire +contender +judd +invitational +shrimp +uhf +##icient +cleaner +longitudinal +tanker +##mur +acronym +broker +koppen +sundance +suppliers +##gil +4000 +clipped +fuels +petite +##anne +landslide +helene +diversion +populous +landowners +auspices +melville +quantitative +##xes +ferries +nicky +##llus +doo +haunting +roche +carver +downed +unavailable +##pathy +approximation +hiroshima +##hue +garfield +valle +comparatively +keyboardist +traveler +##eit +congestion +calculating +subsidiaries +##bate +serb +modernization +fairies +deepened +ville +averages +##lore +inflammatory +tonga +##itch +co₂ +squads +##hea +gigantic +serum +enjoyment +retailer +verona +35th +cis +##phobic +magna +technicians +##vati +arithmetic +##sport +levin +##dation +amtrak +chow +sienna +##eyer +backstage +entrepreneurship +##otic +learnt +tao +##udy +worcestershire +formulation +baggage +hesitant +bali +sabotage +##kari +barren +enhancing +murmur +pl +freshly +putnam +syntax +aces +medicines +resentment +bandwidth +##sier +grins +chili +guido +##sei +framing +implying +gareth +lissa +genevieve +pertaining +admissions +geo +thorpe +proliferation +sato +bela +analyzing +parting +##gor +awakened +##isman +huddled +secrecy +##kling +hush +gentry +540 +dungeons +##ego +coasts +##utz +sacrificed +##chule +landowner +mutually +prevalence +programmer +adolescent +disrupted +seaside +gee +trusts +vamp +georgie +##nesian +##iol +schedules +sindh +##market +etched +hm +sparse +bey +beaux +scratching +gliding +unidentified +216 +collaborating +gems +jesuits +oro +accumulation +shaping +mbe +anal +##xin +231 +enthusiasts +newscast +##egan +janata +dewey +parkinson +179 +ankara +biennial +towering +dd +inconsistent +950 +##chet +thriving +terminate +cabins +furiously +eats +advocating +donkey +marley +muster +phyllis +leiden +##user +grassland +glittering +iucn +loneliness +217 +memorandum +armenians +##ddle +popularized +rhodesia +60s +lame +##illon +sans +bikini +header +orbits +##xx +##finger +##ulator +sharif +spines +biotechnology +strolled +naughty +yates +##wire +fremantle +milo +##mour +abducted +removes +##atin +humming +wonderland +##chrome +##ester +hume +pivotal +##rates +armand +grams +believers +elector +rte +apron +bis +scraped +##yria +endorsement +initials +##llation +eps +dotted +hints +buzzing +emigration +nearer +##tom +indicators +##ulu +coarse +neutron +protectorate +##uze +directional +exploits +pains +loire +1830s +proponents +guggenheim +rabbits +ritchie +305 +hectare +inputs +hutton +##raz +verify +##ako +boilers +longitude +##lev +skeletal +yer +emilia +citrus +compromised +##gau +pokemon +prescription +paragraph +eduard +cadillac +attire +categorized +kenyan +weddings +charley +##bourg +entertain +monmouth +##lles +nutrients +davey +mesh +incentive +practised +ecosystems +kemp +subdued +overheard +##rya +bodily +maxim +##nius +apprenticeship +ursula +##fight +lodged +rug +silesian +unconstitutional +patel +inspected +coyote +unbeaten +##hak +34th +disruption +convict +parcel +##cl +##nham +collier +implicated +mallory +##iac +##lab +susannah +winkler +##rber +shia +phelps +sediments +graphical +robotic +##sner +adulthood +mart +smoked +##isto +kathryn +clarified +##aran +divides +convictions +oppression +pausing +burying +##mt +federico +mathias +eileen +##tana +kite +hunched +##acies +189 +##atz +disadvantage +liza +kinetic +greedy +paradox +yokohama +dowager +trunks +ventured +##gement +gupta +vilnius +olaf +##thest +crimean +hopper +##ej +progressively +arturo +mouthed +arrondissement +##fusion +rubin +simulcast +oceania +##orum +##stra +##rred +busiest +intensely +navigator +cary +##vine +##hini +##bies +fife +rowe +rowland +posing +insurgents +shafts +lawsuits +activate +conor +inward +culturally +garlic +265 +##eering +eclectic +##hui +##kee +##nl +furrowed +vargas +meteorological +rendezvous +##aus +culinary +commencement +##dition +quota +##notes +mommy +salaries +overlapping +mule +##iology +##mology +sums +wentworth +##isk +##zione +mainline +subgroup +##illy +hack +plaintiff +verdi +bulb +differentiation +engagements +multinational +supplemented +bertrand +caller +regis +##naire +##sler +##arts +##imated +blossom +propagation +kilometer +viaduct +vineyards +##uate +beckett +optimization +golfer +songwriters +seminal +semitic +thud +volatile +evolving +ridley +##wley +trivial +distributions +scandinavia +jiang +##ject +wrestled +insistence +##dio +emphasizes +napkin +##ods +adjunct +rhyme +##ricted +##eti +hopeless +surrounds +tremble +32nd +smoky +##ntly +oils +medicinal +padded +steer +wilkes +219 +255 +concessions +hue +uniquely +blinded +landon +yahoo +##lane +hendrix +commemorating +dex +specify +chicks +##ggio +intercity +1400 +morley +##torm +highlighting +##oting +pang +oblique +stalled +##liner +flirting +newborn +1769 +bishopric +shaved +232 +currie +##ush +dharma +spartan +##ooped +favorites +smug +novella +sirens +abusive +creations +espana +##lage +paradigm +semiconductor +sheen +##rdo +##yen +##zak +nrl +renew +##pose +##tur +adjutant +marches +norma +##enity +ineffective +weimar +grunt +##gat +lordship +plotting +expenditure +infringement +lbs +refrain +av +mimi +mistakenly +postmaster +1771 +##bara +ras +motorsports +tito +199 +subjective +##zza +bully +stew +##kaya +prescott +1a +##raphic +##zam +bids +styling +paranormal +reeve +sneaking +exploding +katz +akbar +migrant +syllables +indefinitely +##ogical +destroys +replaces +applause +##phine +pest +##fide +218 +articulated +bertie +##thing +##cars +##ptic +courtroom +crowley +aesthetics +cummings +tehsil +hormones +titanic +dangerously +##ibe +stadion +jaenelle +auguste +ciudad +##chu +mysore +partisans +##sio +lucan +philipp +##aly +debating +henley +interiors +##rano +##tious +homecoming +beyonce +usher +henrietta +prepares +weeds +##oman +ely +plucked +##pire +##dable +luxurious +##aq +artifact +password +pasture +juno +maddy +minsk +##dder +##ologies +##rone +assessments +martian +royalist +1765 +examines +##mani +##rge +nino +223 +parry +scooped +relativity +##eli +##uting +##cao +congregational +noisy +traverse +##agawa +strikeouts +nickelodeon +obituary +transylvania +binds +depictions +polk +trolley +##yed +##lard +breeders +##under +dryly +hokkaido +1762 +strengths +stacks +bonaparte +connectivity +neared +prostitutes +stamped +anaheim +gutierrez +sinai +##zzling +bram +fresno +madhya +##86 +proton +##lena +##llum +##phon +reelected +wanda +##anus +##lb +ample +distinguishing +##yler +grasping +sermons +tomato +bland +stimulation +avenues +##eux +spreads +scarlett +fern +pentagon +assert +baird +chesapeake +ir +calmed +distortion +fatalities +##olis +correctional +pricing +##astic +##gina +prom +dammit +ying +collaborate +##chia +welterweight +33rd +pointer +substitution +bonded +umpire +communicating +multitude +paddle +##obe +federally +intimacy +##insky +betray +ssr +##lett +##lean +##lves +##therapy +airbus +##tery +functioned +ud +bearer +biomedical +netflix +##hire +##nca +condom +brink +ik +##nical +macy +##bet +flap +gma +experimented +jelly +lavender +##icles +##ulia +munro +##mian +##tial +rye +##rle +60th +gigs +hottest +rotated +predictions +fuji +bu +##erence +##omi +barangay +##fulness +##sas +clocks +##rwood +##liness +cereal +roe +wight +decker +uttered +babu +onion +xml +forcibly +##df +petra +sarcasm +hartley +peeled +storytelling +##42 +##xley +##ysis +##ffa +fibre +kiel +auditor +fig +harald +greenville +##berries +geographically +nell +quartz +##athic +cemeteries +##lr +crossings +nah +holloway +reptiles +chun +sichuan +snowy +660 +corrections +##ivo +zheng +ambassadors +blacksmith +fielded +fluids +hardcover +turnover +medications +melvin +academies +##erton +ro +roach +absorbing +spaniards +colton +##founded +outsider +espionage +kelsey +245 +edible +##ulf +dora +establishes +##sham +##tries +contracting +##tania +cinematic +costello +nesting +##uron +connolly +duff +##nology +mma +##mata +fergus +sexes +gi +optics +spectator +woodstock +banning +##hee +##fle +differentiate +outfielder +refinery +226 +312 +gerhard +horde +lair +drastically +##udi +landfall +##cheng +motorsport +odi +##achi +predominant +quay +skins +##ental +edna +harshly +complementary +murdering +##aves +wreckage +##90 +ono +outstretched +lennox +munitions +galen +reconcile +470 +scalp +bicycles +gillespie +questionable +rosenberg +guillermo +hostel +jarvis +kabul +volvo +opium +yd +##twined +abuses +decca +outpost +##cino +sensible +neutrality +##64 +ponce +anchorage +atkins +turrets +inadvertently +disagree +libre +vodka +reassuring +weighs +##yal +glide +jumper +ceilings +repertory +outs +stain +##bial +envy +##ucible +smashing +heightened +policing +hyun +mixes +lai +prima +##ples +celeste +##bina +lucrative +intervened +kc +manually +##rned +stature +staffed +bun +bastards +nairobi +priced +##auer +thatcher +##kia +tripped +comune +##ogan +##pled +brasil +incentives +emanuel +hereford +musica +##kim +benedictine +biennale +##lani +eureka +gardiner +rb +knocks +sha +##ael +##elled +##onate +efficacy +ventura +masonic +sanford +maize +leverage +##feit +capacities +santana +##aur +novelty +vanilla +##cter +##tour +benin +##oir +##rain +neptune +drafting +tallinn +##cable +humiliation +##boarding +schleswig +fabian +bernardo +liturgy +spectacle +sweeney +pont +routledge +##tment +cosmos +ut +hilt +sleek +universally +##eville +##gawa +typed +##dry +favors +allegheny +glaciers +##rly +recalling +aziz +##log +parasite +requiem +auf +##berto +##llin +illumination +##breaker +##issa +festivities +bows +govern +vibe +vp +333 +sprawled +larson +pilgrim +bwf +leaping +##rts +##ssel +alexei +greyhound +hoarse +##dler +##oration +seneca +##cule +gaping +##ulously +##pura +cinnamon +##gens +##rricular +craven +fantasies +houghton +engined +reigned +dictator +supervising +##oris +bogota +commentaries +unnatural +fingernails +spirituality +tighten +##tm +canadiens +protesting +intentional +cheers +sparta +##ytic +##iere +##zine +widen +belgarath +controllers +dodd +iaaf +navarre +##ication +defect +squire +steiner +whisky +##mins +560 +inevitably +tome +##gold +chew +##uid +##lid +elastic +##aby +streaked +alliances +jailed +regal +##ined +##phy +czechoslovak +narration +absently +##uld +bluegrass +guangdong +quran +criticizing +hose +hari +##liest +##owa +skier +streaks +deploy +##lom +raft +bose +dialed +huff +##eira +haifa +simplest +bursting +endings +ib +sultanate +##titled +franks +whitman +ensures +sven +##ggs +collaborators +forster +organising +ui +banished +napier +injustice +teller +layered +thump +##otti +roc +battleships +evidenced +fugitive +sadie +robotics +##roud +equatorial +geologist +##iza +yielding +##bron +##sr +internationale +mecca +##diment +sbs +skyline +toad +uploaded +reflective +undrafted +lal +leafs +bayern +##dai +lakshmi +shortlisted +##stick +##wicz +camouflage +donate +af +christi +lau +##acio +disclosed +nemesis +1761 +assemble +straining +northamptonshire +tal +##asi +bernardino +premature +heidi +42nd +coefficients +galactic +reproduce +buzzed +sensations +zionist +monsieur +myrtle +##eme +archery +strangled +musically +viewpoint +antiquities +bei +trailers +seahawks +cured +pee +preferring +tasmanian +lange +sul +##mail +##working +colder +overland +lucivar +massey +gatherings +haitian +##smith +disapproval +flaws +##cco +##enbach +1766 +npr +##icular +boroughs +creole +forums +techno +1755 +dent +abdominal +streetcar +##eson +##stream +procurement +gemini +predictable +##tya +acheron +christoph +feeder +fronts +vendor +bernhard +jammu +tumors +slang +##uber +goaltender +twists +curving +manson +vuelta +mer +peanut +confessions +pouch +unpredictable +allowance +theodor +vascular +##factory +bala +authenticity +metabolic +coughing +nanjing +##cea +pembroke +##bard +splendid +36th +ff +hourly +##ahu +elmer +handel +##ivate +awarding +thrusting +dl +experimentation +##hesion +##46 +caressed +entertained +steak +##rangle +biologist +orphans +baroness +oyster +stepfather +##dridge +mirage +reefs +speeding +##31 +barons +1764 +227 +inhabit +preached +repealed +##tral +honoring +boogie +captives +administer +johanna +##imate +gel +suspiciously +1767 +sobs +##dington +backbone +hayward +garry +##folding +##nesia +maxi +##oof +##ppe +ellison +galileo +##stand +crimea +frenzy +amour +bumper +matrices +natalia +baking +garth +palestinians +##grove +smack +conveyed +ensembles +gardening +##manship +##rup +##stituting +1640 +harvesting +topography +jing +shifters +dormitory +##carriage +##lston +ist +skulls +##stadt +dolores +jewellery +sarawak +##wai +##zier +fences +christy +confinement +tumbling +credibility +fir +stench +##bria +##plication +##nged +##sam +virtues +##belt +marjorie +pba +##eem +##made +celebrates +schooner +agitated +barley +fulfilling +anthropologist +##pro +restrict +novi +regulating +##nent +padres +##rani +##hesive +loyola +tabitha +milky +olson +proprietor +crambidae +guarantees +intercollegiate +ljubljana +hilda +##sko +ignorant +hooded +##lts +sardinia +##lidae +##vation +frontman +privileged +witchcraft +##gp +jammed +laude +poking +##than +bracket +amazement +yunnan +##erus +maharaja +linnaeus +264 +commissioning +milano +peacefully +##logies +akira +rani +regulator +##36 +grasses +##rance +luzon +crows +compiler +gretchen +seaman +edouard +tab +buccaneers +ellington +hamlets +whig +socialists +##anto +directorial +easton +mythological +##kr +##vary +rhineland +semantic +taut +dune +inventions +succeeds +##iter +replication +branched +##pired +jul +prosecuted +kangaroo +penetrated +##avian +middlesbrough +doses +bleak +madam +predatory +relentless +##vili +reluctance +##vir +hailey +crore +silvery +1759 +monstrous +swimmers +transmissions +hawthorn +informing +##eral +toilets +caracas +crouch +kb +##sett +295 +cartel +hadley +##aling +alexia +yvonne +##biology +cinderella +eton +superb +blizzard +stabbing +industrialist +maximus +##gm +##orus +groves +maud +clade +oversized +comedic +##bella +rosen +nomadic +fulham +montane +beverages +galaxies +redundant +swarm +##rot +##folia +##llis +buckinghamshire +fen +bearings +bahadur +##rom +gilles +phased +dynamite +faber +benoit +vip +##ount +##wd +booking +fractured +tailored +anya +spices +westwood +cairns +auditions +inflammation +steamed +##rocity +##acion +##urne +skyla +thereof +watford +torment +archdeacon +transforms +lulu +demeanor +fucked +serge +##sor +mckenna +minas +entertainer +##icide +caress +originate +residue +##sty +1740 +##ilised +##org +beech +##wana +subsidies +##ghton +emptied +gladstone +ru +firefighters +voodoo +##rcle +het +nightingale +tamara +edmond +ingredient +weaknesses +silhouette +285 +compatibility +withdrawing +hampson +##mona +anguish +giggling +##mber +bookstore +##jiang +southernmost +tilting +##vance +bai +economical +rf +briefcase +dreadful +hinted +projections +shattering +totaling +##rogate +analogue +indicted +periodical +fullback +##dman +haynes +##tenberg +##ffs +##ishment +1745 +thirst +stumble +penang +vigorous +##ddling +##kor +##lium +octave +##ove +##enstein +##inen +##ones +siberian +##uti +cbn +repeal +swaying +##vington +khalid +tanaka +unicorn +otago +plastered +lobe +riddle +##rella +perch +##ishing +croydon +filtered +graeme +tripoli +##ossa +crocodile +##chers +sufi +mined +##tung +inferno +lsu +##phi +swelled +utilizes +£2 +cale +periodicals +styx +hike +informally +coop +lund +##tidae +ala +hen +qui +transformations +disposed +sheath +chickens +##cade +fitzroy +sas +silesia +unacceptable +odisha +1650 +sabrina +pe +spokane +ratios +athena +massage +shen +dilemma +##drum +##riz +##hul +corona +doubtful +niall +##pha +##bino +fines +cite +acknowledging +bangor +ballard +bathurst +##resh +huron +mustered +alzheimer +garments +kinase +tyre +warship +##cp +flashback +pulmonary +braun +cheat +kamal +cyclists +constructions +grenades +ndp +traveller +excuses +stomped +signalling +trimmed +futsal +mosques +relevance +##wine +wta +##23 +##vah +##lter +hoc +##riding +optimistic +##´s +deco +sim +interacting +rejecting +moniker +waterways +##ieri +##oku +mayors +gdansk +outnumbered +pearls +##ended +##hampton +fairs +totals +dominating +262 +notions +stairway +compiling +pursed +commodities +grease +yeast +##jong +carthage +griffiths +residual +amc +contraction +laird +sapphire +##marine +##ivated +amalgamation +dissolve +inclination +lyle +packaged +altitudes +suez +canons +graded +lurched +narrowing +boasts +guise +wed +enrico +##ovsky +rower +scarred +bree +cub +iberian +protagonists +bargaining +proposing +trainers +voyages +vans +fishes +##aea +##ivist +##verance +encryption +artworks +kazan +sabre +cleopatra +hepburn +rotting +supremacy +mecklenburg +##brate +burrows +hazards +outgoing +flair +organizes +##ctions +scorpion +##usions +boo +234 +chevalier +dunedin +slapping +##34 +ineligible +pensions +##38 +##omic +manufactures +emails +bismarck +238 +weakening +blackish +ding +mcgee +quo +##rling +northernmost +xx +manpower +greed +sampson +clicking +##ange +##horpe +##inations +##roving +torre +##eptive +##moral +symbolism +38th +asshole +meritorious +outfits +splashed +biographies +sprung +astros +##tale +302 +737 +filly +raoul +nw +tokugawa +linden +clubhouse +##apa +tracts +romano +##pio +putin +tags +##note +chained +dickson +gunshot +moe +gunn +rashid +##tails +zipper +##bas +##nea +contrasted +##ply +##udes +plum +pharaoh +##pile +aw +comedies +ingrid +sandwiches +subdivisions +1100 +mariana +nokia +kamen +hz +delaney +veto +herring +##words +possessive +outlines +##roup +siemens +stairwell +rc +gallantry +messiah +palais +yells +233 +zeppelin +##dm +bolivar +##cede +smackdown +mckinley +##mora +##yt +muted +geologic +finely +unitary +avatar +hamas +maynard +rees +bog +contrasting +##rut +liv +chico +disposition +pixel +##erate +becca +dmitry +yeshiva +narratives +##lva +##ulton +mercenary +sharpe +tempered +navigate +stealth +amassed +keynes +##lini +untouched +##rrie +havoc +lithium +##fighting +abyss +graf +southward +wolverine +balloons +implements +ngos +transitions +##icum +ambushed +concacaf +dormant +economists +##dim +costing +csi +rana +universite +boulders +verity +##llon +collin +mellon +misses +cypress +fluorescent +lifeless +spence +##ulla +crewe +shepard +pak +revelations +##م +jolly +gibbons +paw +##dro +##quel +freeing +##test +shack +fries +palatine +##51 +##hiko +accompaniment +cruising +recycled +##aver +erwin +sorting +synthesizers +dyke +realities +sg +strides +enslaved +wetland +##ghan +competence +gunpowder +grassy +maroon +reactors +objection +##oms +carlson +gearbox +macintosh +radios +shelton +##sho +clergyman +prakash +254 +mongols +trophies +oricon +228 +stimuli +twenty20 +cantonese +cortes +mirrored +##saurus +bhp +cristina +melancholy +##lating +enjoyable +nuevo +##wny +downfall +schumacher +##ind +banging +lausanne +rumbled +paramilitary +reflex +ax +amplitude +migratory +##gall +##ups +midi +barnard +lastly +sherry +##hp +##nall +keystone +##kra +carleton +slippery +##53 +coloring +foe +socket +otter +##rgos +mats +##tose +consultants +bafta +bison +topping +##km +490 +primal +abandonment +transplant +atoll +hideous +mort +pained +reproduced +tae +howling +##turn +unlawful +billionaire +hotter +poised +lansing +##chang +dinamo +retro +messing +nfc +domesday +##mina +blitz +timed +##athing +##kley +ascending +gesturing +##izations +signaled +tis +chinatown +mermaid +savanna +jameson +##aint +catalina +##pet +##hers +cochrane +cy +chatting +##kus +alerted +computation +mused +noelle +majestic +mohawk +campo +octagonal +##sant +##hend +241 +aspiring +##mart +comprehend +iona +paralyzed +shimmering +swindon +rhone +##eley +reputed +configurations +pitchfork +agitation +francais +gillian +lipstick +##ilo +outsiders +pontifical +resisting +bitterness +sewer +rockies +##edd +##ucher +misleading +1756 +exiting +galloway +##nging +risked +##heart +246 +commemoration +schultz +##rka +integrating +##rsa +poses +shrieked +##weiler +guineas +gladys +jerking +owls +goldsmith +nightly +penetrating +##unced +lia +##33 +ignited +betsy +##aring +##thorpe +follower +vigorously +##rave +coded +kiran +knit +zoology +tbilisi +##28 +##bered +repository +govt +deciduous +dino +growling +##bba +enhancement +unleashed +chanting +pussy +biochemistry +##eric +kettle +repression +toxicity +nrhp +##arth +##kko +##bush +ernesto +commended +outspoken +242 +mca +parchment +sms +kristen +##aton +bisexual +raked +glamour +navajo +a2 +conditioned +showcased +##hma +spacious +youthful +##esa +usl +appliances +junta +brest +layne +conglomerate +enchanted +chao +loosened +picasso +circulating +inspect +montevideo +##centric +##kti +piazza +spurred +##aith +bari +freedoms +poultry +stamford +lieu +##ect +indigo +sarcastic +bahia +stump +attach +dvds +frankenstein +lille +approx +scriptures +pollen +##script +nmi +overseen +##ivism +tides +proponent +newmarket +inherit +milling +##erland +centralized +##rou +distributors +credentials +drawers +abbreviation +##lco +##xon +downing +uncomfortably +ripe +##oes +erase +franchises +##ever +populace +##bery +##khar +decomposition +pleas +##tet +daryl +sabah +##stle +##wide +fearless +genie +lesions +annette +##ogist +oboe +appendix +nair +dripped +petitioned +maclean +mosquito +parrot +rpg +hampered +1648 +operatic +reservoirs +##tham +irrelevant +jolt +summarized +##fp +medallion +##taff +##− +clawed +harlow +narrower +goddard +marcia +bodied +fremont +suarez +altering +tempest +mussolini +porn +##isms +sweetly +oversees +walkers +solitude +grimly +shrines +hk +ich +supervisors +hostess +dietrich +legitimacy +brushes +expressive +##yp +dissipated +##rse +localized +systemic +##nikov +gettysburg +##js +##uaries +dialogues +muttering +251 +housekeeper +sicilian +discouraged +##frey +beamed +kaladin +halftime +kidnap +##amo +##llet +1754 +synonymous +depleted +instituto +insulin +reprised +##opsis +clashed +##ctric +interrupting +radcliffe +insisting +medici +1715 +ejected +playfully +turbulent +##47 +starvation +##rini +shipment +rebellious +petersen +verification +merits +##rified +cakes +##charged +1757 +milford +shortages +spying +fidelity +##aker +emitted +storylines +harvested +seismic +##iform +cheung +kilda +theoretically +barbie +lynx +##rgy +##tius +goblin +mata +poisonous +##nburg +reactive +residues +obedience +##евич +conjecture +##rac +401 +hating +sixties +kicker +moaning +motown +##bha +emancipation +neoclassical +##hering +consoles +ebert +professorship +##tures +sustaining +assaults +obeyed +affluent +incurred +tornadoes +##eber +##zow +emphasizing +highlanders +cheated +helmets +##ctus +internship +terence +bony +executions +legislators +berries +peninsular +tinged +##aco +1689 +amplifier +corvette +ribbons +lavish +pennant +##lander +worthless +##chfield +##forms +mariano +pyrenees +expenditures +##icides +chesterfield +mandir +tailor +39th +sergey +nestled +willed +aristocracy +devotees +goodnight +raaf +rumored +weaponry +remy +appropriations +harcourt +burr +riaa +##lence +limitation +unnoticed +guo +soaking +swamps +##tica +collapsing +tatiana +descriptive +brigham +psalm +##chment +maddox +##lization +patti +caliph +##aja +akron +injuring +serra +##ganj +basins +##sari +astonished +launcher +##church +hilary +wilkins +sewing +##sf +stinging +##fia +##ncia +underwood +startup +##ition +compilations +vibrations +embankment +jurist +##nity +bard +juventus +groundwater +kern +palaces +helium +boca +cramped +marissa +soto +##worm +jae +princely +##ggy +faso +bazaar +warmly +##voking +229 +pairing +##lite +##grate +##nets +wien +freaked +ulysses +rebirth +##alia +##rent +mummy +guzman +jimenez +stilled +##nitz +trajectory +tha +woken +archival +professions +##pts +##pta +hilly +shadowy +shrink +##bolt +norwood +glued +migrate +stereotypes +devoid +##pheus +625 +evacuate +horrors +infancy +gotham +knowles +optic +downloaded +sachs +kingsley +parramatta +darryl +mor +##onale +shady +commence +confesses +kan +##meter +##placed +marlborough +roundabout +regents +frigates +io +##imating +gothenburg +revoked +carvings +clockwise +convertible +intruder +##sche +banged +##ogo +vicky +bourgeois +##mony +dupont +footing +##gum +pd +##real +buckle +yun +penthouse +sane +720 +serviced +stakeholders +neumann +bb +##eers +comb +##gam +catchment +pinning +rallies +typing +##elles +forefront +freiburg +sweetie +giacomo +widowed +goodwill +worshipped +aspirations +midday +##vat +fishery +##trick +bournemouth +turk +243 +hearth +ethanol +guadalajara +murmurs +sl +##uge +afforded +scripted +##hta +wah +##jn +coroner +translucent +252 +memorials +puck +progresses +clumsy +##race +315 +candace +recounted +##27 +##slin +##uve +filtering +##mac +howl +strata +heron +leveled +##ays +dubious +##oja +##т +##wheel +citations +exhibiting +##laya +##mics +##pods +turkic +##lberg +injunction +##ennial +##mit +antibodies +##44 +organise +##rigues +cardiovascular +cushion +inverness +##zquez +dia +cocoa +sibling +##tman +##roid +expanse +feasible +tunisian +algiers +##relli +rus +bloomberg +dso +westphalia +bro +tacoma +281 +downloads +##ours +konrad +duran +##hdi +continuum +jett +compares +legislator +secession +##nable +##gues +##zuka +translating +reacher +##gley +##ła +aleppo +##agi +tc +orchards +trapping +linguist +versatile +drumming +postage +calhoun +superiors +##mx +barefoot +leary +##cis +ignacio +alfa +kaplan +##rogen +bratislava +mori +##vot +disturb +haas +313 +cartridges +gilmore +radiated +salford +tunic +hades +##ulsive +archeological +delilah +magistrates +auditioned +brewster +charters +empowerment +blogs +cappella +dynasties +iroquois +whipping +##krishna +raceway +truths +myra +weaken +judah +mcgregor +##horse +mic +refueling +37th +burnley +bosses +markus +premio +query +##gga +dunbar +##economic +darkest +lyndon +sealing +commendation +reappeared +##mun +addicted +ezio +slaughtered +satisfactory +shuffle +##eves +##thic +##uj +fortification +warrington +##otto +resurrected +fargo +mane +##utable +##lei +##space +foreword +ox +##aris +##vern +abrams +hua +##mento +sakura +##alo +uv +sentimental +##skaya +midfield +##eses +sturdy +scrolls +macleod +##kyu +entropy +##lance +mitochondrial +cicero +excelled +thinner +convoys +perceive +##oslav +##urable +systematically +grind +burkina +287 +##tagram +ops +##aman +guantanamo +##cloth +##tite +forcefully +wavy +##jou +pointless +##linger +##tze +layton +portico +superficial +clerical +outlaws +##hism +burials +muir +##inn +creditors +hauling +rattle +##leg +calais +monde +archers +reclaimed +dwell +wexford +hellenic +falsely +remorse +##tek +dough +furnishings +##uttered +gabon +neurological +novice +##igraphy +contemplated +pulpit +nightstand +saratoga +##istan +documenting +pulsing +taluk +##firmed +busted +marital +##rien +disagreements +wasps +##yes +hodge +mcdonnell +mimic +fran +pendant +dhabi +musa +##nington +congratulations +argent +darrell +concussion +losers +regrets +thessaloniki +reversal +donaldson +hardwood +thence +achilles +ritter +##eran +demonic +jurgen +prophets +goethe +eki +classmate +buff +##cking +yank +irrational +##inging +perished +seductive +qur +sourced +##crat +##typic +mustard +ravine +barre +horizontally +characterization +phylogenetic +boise +##dit +##runner +##tower +brutally +intercourse +seduce +##bbing +fay +ferris +ogden +amar +nik +unarmed +##inator +evaluating +kyrgyzstan +sweetness +##lford +##oki +mccormick +meiji +notoriety +stimulate +disrupt +figuring +instructional +mcgrath +##zoo +groundbreaking +##lto +flinch +khorasan +agrarian +bengals +mixer +radiating +##sov +ingram +pitchers +nad +tariff +##cript +tata +##codes +##emi +##ungen +appellate +lehigh +##bled +##giri +brawl +duct +texans +##ciation +##ropolis +skipper +speculative +vomit +doctrines +stresses +253 +davy +graders +whitehead +jozef +timely +cumulative +haryana +paints +appropriately +boon +cactus +##ales +##pid +dow +legions +##pit +perceptions +1730 +picturesque +##yse +periphery +rune +wr +##aha +celtics +sentencing +whoa +##erin +confirms +variance +425 +moines +mathews +spade +rave +m1 +fronted +fx +blending +alleging +reared +##gl +237 +##paper +grassroots +eroded +##free +##physical +directs +ordeal +##sław +accelerate +hacker +rooftop +##inia +lev +buys +cebu +devote +##lce +specialising +##ulsion +choreographed +repetition +warehouses +##ryl +paisley +tuscany +analogy +sorcerer +hash +huts +shards +descends +exclude +nix +chaplin +gaga +ito +vane +##drich +causeway +misconduct +limo +orchestrated +glands +jana +##kot +u2 +##mple +##sons +branching +contrasts +scoop +longed +##virus +chattanooga +##75 +syrup +cornerstone +##tized +##mind +##iaceae +careless +precedence +frescoes +##uet +chilled +consult +modelled +snatch +peat +##thermal +caucasian +humane +relaxation +spins +temperance +##lbert +occupations +lambda +hybrids +moons +mp3 +##oese +247 +rolf +societal +yerevan +ness +##ssler +befriended +mechanized +nominate +trough +boasted +cues +seater +##hom +bends +##tangle +conductors +emptiness +##lmer +eurasian +adriatic +tian +##cie +anxiously +lark +propellers +chichester +jock +ev +2a +##holding +credible +recounts +tori +loyalist +abduction +##hoot +##redo +nepali +##mite +ventral +tempting +##ango +##crats +steered +##wice +javelin +dipping +laborers +prentice +looming +titanium +##ː +badges +emir +tensor +##ntation +egyptians +rash +denies +hawthorne +lombard +showers +wehrmacht +dietary +trojan +##reus +welles +executing +horseshoe +lifeboat +##lak +elsa +infirmary +nearing +roberta +boyer +mutter +trillion +joanne +##fine +##oked +sinks +vortex +uruguayan +clasp +sirius +##block +accelerator +prohibit +sunken +byu +chronological +diplomats +ochreous +510 +symmetrical +1644 +maia +##tology +salts +reigns +atrocities +##ия +hess +bared +issn +##vyn +cater +saturated +##cycle +##isse +sable +voyager +dyer +yusuf +##inge +fountains +wolff +##39 +##nni +engraving +rollins +atheist +ominous +##ault +herr +chariot +martina +strung +##fell +##farlane +horrific +sahib +gazes +saetan +erased +ptolemy +##olic +flushing +lauderdale +analytic +##ices +530 +navarro +beak +gorilla +herrera +broom +guadalupe +raiding +sykes +311 +bsc +deliveries +1720 +invasions +carmichael +tajikistan +thematic +ecumenical +sentiments +onstage +##rians +##brand +##sume +catastrophic +flanks +molten +##arns +waller +aimee +terminating +##icing +alternately +##oche +nehru +printers +outraged +##eving +empires +template +banners +repetitive +za +##oise +vegetarian +##tell +guiana +opt +cavendish +lucknow +synthesized +##hani +##mada +finalized +##ctable +fictitious +mayoral +unreliable +##enham +embracing +peppers +rbis +##chio +##neo +inhibition +slashed +togo +orderly +embroidered +safari +salty +236 +barron +benito +totaled +##dak +pubs +simulated +caden +devin +tolkien +momma +welding +sesame +##ept +gottingen +hardness +630 +shaman +temeraire +620 +adequately +pediatric +##kit +ck +assertion +radicals +composure +cadence +seafood +beaufort +lazarus +mani +warily +cunning +kurdistan +249 +cantata +##kir +ares +##41 +##clusive +nape +townland +geared +insulted +flutter +boating +violate +draper +dumping +malmo +##hh +##romatic +firearm +alta +bono +obscured +##clave +exceeds +panorama +unbelievable +##train +preschool +##essed +disconnected +installing +rescuing +secretaries +accessibility +##castle +##drive +##ifice +##film +bouts +slug +waterway +mindanao +##buro +##ratic +halves +##ل +calming +liter +maternity +adorable +bragg +electrification +mcc +##dote +roxy +schizophrenia +##body +munoz +kaye +whaling +239 +mil +tingling +tolerant +##ago +unconventional +volcanoes +##finder +deportivo +##llie +robson +kaufman +neuroscience +wai +deportation +masovian +scraping +converse +##bh +hacking +bulge +##oun +administratively +yao +580 +amp +mammoth +booster +claremont +hooper +nomenclature +pursuits +mclaughlin +melinda +##sul +catfish +barclay +substrates +taxa +zee +originals +kimberly +packets +padma +##ality +borrowing +ostensibly +solvent +##bri +##genesis +##mist +lukas +shreveport +veracruz +##ь +##lou +##wives +cheney +tt +anatolia +hobbs +##zyn +cyclic +radiant +alistair +greenish +siena +dat +independents +##bation +conform +pieter +hyper +applicant +bradshaw +spores +telangana +vinci +inexpensive +nuclei +322 +jang +nme +soho +spd +##ign +cradled +receptionist +pow +##43 +##rika +fascism +##ifer +experimenting +##ading +##iec +##region +345 +jocelyn +maris +stair +nocturnal +toro +constabulary +elgin +##kker +msc +##giving +##schen +##rase +doherty +doping +sarcastically +batter +maneuvers +##cano +##apple +##gai +##git +intrinsic +##nst +##stor +1753 +showtime +cafes +gasps +lviv +ushered +##thed +fours +restart +astonishment +transmitting +flyer +shrugs +##sau +intriguing +cones +dictated +mushrooms +medial +##kovsky +##elman +escorting +gaped +##26 +godfather +##door +##sell +djs +recaptured +timetable +vila +1710 +3a +aerodrome +mortals +scientology +##orne +angelina +mag +convection +unpaid +insertion +intermittent +lego +##nated +endeavor +kota +pereira +##lz +304 +bwv +glamorgan +insults +agatha +fey +##cend +fleetwood +mahogany +protruding +steamship +zeta +##arty +mcguire +suspense +##sphere +advising +urges +##wala +hurriedly +meteor +gilded +inline +arroyo +stalker +##oge +excitedly +revered +##cure +earle +introductory +##break +##ilde +mutants +puff +pulses +reinforcement +##haling +curses +lizards +stalk +correlated +##fixed +fallout +macquarie +##unas +bearded +denton +heaving +802 +##ocation +winery +assign +dortmund +##lkirk +everest +invariant +charismatic +susie +##elling +bled +lesley +telegram +sumner +bk +##ogen +##к +wilcox +needy +colbert +duval +##iferous +##mbled +allotted +attends +imperative +##hita +replacements +hawker +##inda +insurgency +##zee +##eke +casts +##yla +680 +ives +transitioned +##pack +##powering +authoritative +baylor +flex +cringed +plaintiffs +woodrow +##skie +drastic +ape +aroma +unfolded +commotion +nt +preoccupied +theta +routines +lasers +privatization +wand +domino +ek +clenching +nsa +strategically +showered +bile +handkerchief +pere +storing +christophe +insulting +316 +nakamura +romani +asiatic +magdalena +palma +cruises +stripping +405 +konstantin +soaring +##berman +colloquially +forerunner +havilland +incarcerated +parasites +sincerity +##utus +disks +plank +saigon +##ining +corbin +homo +ornaments +powerhouse +##tlement +chong +fastened +feasibility +idf +morphological +usable +##nish +##zuki +aqueduct +jaguars +keepers +##flies +aleksandr +faust +assigns +ewing +bacterium +hurled +tricky +hungarians +integers +wallis +321 +yamaha +##isha +hushed +oblivion +aviator +evangelist +friars +##eller +monograph +ode +##nary +airplanes +labourers +charms +##nee +1661 +hagen +tnt +rudder +fiesta +transcript +dorothea +ska +inhibitor +maccabi +retorted +raining +encompassed +clauses +menacing +1642 +lineman +##gist +vamps +##ape +##dick +gloom +##rera +dealings +easing +seekers +##nut +##pment +helens +unmanned +##anu +##isson +basics +##amy +##ckman +adjustments +1688 +brutality +horne +##zell +sui +##55 +##mable +aggregator +##thal +rhino +##drick +##vira +counters +zoom +##01 +##rting +mn +montenegrin +packard +##unciation +##♭ +##kki +reclaim +scholastic +thugs +pulsed +##icia +syriac +quan +saddam +banda +kobe +blaming +buddies +dissent +##lusion +##usia +corbett +jaya +delle +erratic +lexie +##hesis +435 +amiga +hermes +##pressing +##leen +chapels +gospels +jamal +##uating +compute +revolving +warp +##sso +##thes +armory +##eras +##gol +antrim +loki +##kow +##asian +##good +##zano +braid +handwriting +subdistrict +funky +pantheon +##iculate +concurrency +estimation +improper +juliana +##his +newcomers +johnstone +staten +communicated +##oco +##alle +sausage +stormy +##stered +##tters +superfamily +##grade +acidic +collateral +tabloid +##oped +##rza +bladder +austen +##ellant +mcgraw +##hay +hannibal +mein +aquino +lucifer +wo +badger +boar +cher +christensen +greenberg +interruption +##kken +jem +244 +mocked +bottoms +cambridgeshire +##lide +sprawling +##bbly +eastwood +ghent +synth +##buck +advisers +##bah +nominally +hapoel +qu +daggers +estranged +fabricated +towels +vinnie +wcw +misunderstanding +anglia +nothin +unmistakable +##dust +##lova +chilly +marquette +truss +##edge +##erine +reece +##lty +##chemist +##connected +272 +308 +41st +bash +raion +waterfalls +##ump +##main +labyrinth +queue +theorist +##istle +bharatiya +flexed +soundtracks +rooney +leftist +patrolling +wharton +plainly +alleviate +eastman +schuster +topographic +engages +immensely +unbearable +fairchild +1620 +dona +lurking +parisian +oliveira +ia +indictment +hahn +bangladeshi +##aster +vivo +##uming +##ential +antonia +expects +indoors +kildare +harlan +##logue +##ogenic +##sities +forgiven +##wat +childish +tavi +##mide +##orra +plausible +grimm +successively +scooted +##bola +##dget +##rith +spartans +emery +flatly +azure +epilogue +##wark +flourish +##iny +##tracted +##overs +##oshi +bestseller +distressed +receipt +spitting +hermit +topological +##cot +drilled +subunit +francs +##layer +eel +##fk +##itas +octopus +footprint +petitions +ufo +##say +##foil +interfering +leaking +palo +##metry +thistle +valiant +##pic +narayan +mcpherson +##fast +gonzales +##ym +##enne +dustin +novgorod +solos +##zman +doin +##raph +##patient +##meyer +soluble +ashland +cuffs +carole +pendleton +whistling +vassal +##river +deviation +revisited +constituents +rallied +rotate +loomed +##eil +##nting +amateurs +augsburg +auschwitz +crowns +skeletons +##cona +bonnet +257 +dummy +globalization +simeon +sleeper +mandal +differentiated +##crow +##mare +milne +bundled +exasperated +talmud +owes +segregated +##feng +##uary +dentist +piracy +props +##rang +devlin +##torium +malicious +paws +##laid +dependency +##ergy +##fers +##enna +258 +pistons +rourke +jed +grammatical +tres +maha +wig +512 +ghostly +jayne +##achal +##creen +##ilis +##lins +##rence +designate +##with +arrogance +cambodian +clones +showdown +throttle +twain +##ception +lobes +metz +nagoya +335 +braking +##furt +385 +roaming +##minster +amin +crippled +##37 +##llary +indifferent +hoffmann +idols +intimidating +1751 +261 +influenza +memo +onions +1748 +bandage +consciously +##landa +##rage +clandestine +observes +swiped +tangle +##ener +##jected +##trum +##bill +##lta +hugs +congresses +josiah +spirited +##dek +humanist +managerial +filmmaking +inmate +rhymes +debuting +grimsby +ur +##laze +duplicate +vigor +##tf +republished +bolshevik +refurbishment +antibiotics +martini +methane +newscasts +royale +horizons +levant +iain +visas +##ischen +paler +##around +manifestation +snuck +alf +chop +futile +pedestal +rehab +##kat +bmg +kerman +res +fairbanks +jarrett +abstraction +saharan +##zek +1746 +procedural +clearer +kincaid +sash +luciano +##ffey +crunch +helmut +##vara +revolutionaries +##tute +creamy +leach +##mmon +1747 +permitting +nes +plight +wendell +##lese +contra +ts +clancy +ipa +mach +staples +autopsy +disturbances +nueva +karin +pontiac +##uding +proxy +venerable +haunt +leto +bergman +expands +##helm +wal +##pipe +canning +celine +cords +obesity +##enary +intrusion +planner +##phate +reasoned +sequencing +307 +harrow +##chon +##dora +marred +mcintyre +repay +tarzan +darting +248 +harrisburg +margarita +repulsed +##hur +##lding +belinda +hamburger +novo +compliant +runways +bingham +registrar +skyscraper +ic +cuthbert +improvisation +livelihood +##corp +##elial +admiring +##dened +sporadic +believer +casablanca +popcorn +##29 +asha +shovel +##bek +##dice +coiled +tangible +##dez +casper +elsie +resin +tenderness +rectory +##ivision +avail +sonar +##mori +boutique +##dier +guerre +bathed +upbringing +vaulted +sandals +blessings +##naut +##utnant +1680 +306 +foxes +pia +corrosion +hesitantly +confederates +crystalline +footprints +shapiro +tirana +valentin +drones +45th +microscope +shipments +texted +inquisition +wry +guernsey +unauthorized +resigning +760 +ripple +schubert +stu +reassure +felony +##ardo +brittle +koreans +##havan +##ives +dun +implicit +tyres +##aldi +##lth +magnolia +##ehan +##puri +##poulos +aggressively +fei +gr +familiarity +##poo +indicative +##trust +fundamentally +jimmie +overrun +395 +anchors +moans +##opus +britannia +armagh +##ggle +purposely +seizing +##vao +bewildered +mundane +avoidance +cosmopolitan +geometridae +quartermaster +caf +415 +chatter +engulfed +gleam +purge +##icate +juliette +jurisprudence +guerra +revisions +##bn +casimir +brew +##jm +1749 +clapton +cloudy +conde +hermitage +278 +simulations +torches +vincenzo +matteo +##rill +hidalgo +booming +westbound +accomplishment +tentacles +unaffected +##sius +annabelle +flopped +sloping +##litz +dreamer +interceptor +vu +##loh +consecration +copying +messaging +breaker +climates +hospitalized +1752 +torino +afternoons +winfield +witnessing +##teacher +breakers +choirs +sawmill +coldly +##ege +sipping +haste +uninhabited +conical +bibliography +pamphlets +severn +edict +##oca +deux +illnesses +grips +##pl +rehearsals +sis +thinkers +tame +##keepers +1690 +acacia +reformer +##osed +##rys +shuffling +##iring +##shima +eastbound +ionic +rhea +flees +littered +##oum +rocker +vomiting +groaning +champ +overwhelmingly +civilizations +paces +sloop +adoptive +##tish +skaters +##vres +aiding +mango +##joy +nikola +shriek +##ignon +pharmaceuticals +##mg +tuna +calvert +gustavo +stocked +yearbook +##urai +##mana +computed +subsp +riff +hanoi +kelvin +hamid +moors +pastures +summons +jihad +nectar +##ctors +bayou +untitled +pleasing +vastly +republics +intellect +##η +##ulio +##tou +crumbling +stylistic +sb +##ی +consolation +frequented +h₂o +walden +widows +##iens +404 +##ignment +chunks +improves +288 +grit +recited +##dev +snarl +sociological +##arte +##gul +inquired +##held +bruise +clube +consultancy +homogeneous +hornets +multiplication +pasta +prick +savior +##grin +##kou +##phile +yoon +##gara +grimes +vanishing +cheering +reacting +bn +distillery +##quisite +##vity +coe +dockyard +massif +##jord +escorts +voss +##valent +byte +chopped +hawke +illusions +workings +floats +##koto +##vac +kv +annapolis +madden +##onus +alvaro +noctuidae +##cum +##scopic +avenge +steamboat +forte +illustrates +erika +##trip +570 +dew +nationalities +bran +manifested +thirsty +diversified +muscled +reborn +##standing +arson +##lessness +##dran +##logram +##boys +##kushima +##vious +willoughby +##phobia +286 +alsace +dashboard +yuki +##chai +granville +myspace +publicized +tricked +##gang +adjective +##ater +relic +reorganisation +enthusiastically +indications +saxe +##lassified +consolidate +iec +padua +helplessly +ramps +renaming +regulars +pedestrians +accents +convicts +inaccurate +lowers +mana +##pati +barrie +bjp +outta +someplace +berwick +flanking +invoked +marrow +sparsely +excerpts +clothed +rei +##ginal +wept +##straße +##vish +alexa +excel +##ptive +membranes +aquitaine +creeks +cutler +sheppard +implementations +ns +##dur +fragrance +budge +concordia +magnesium +marcelo +##antes +gladly +vibrating +##rral +##ggles +montrose +##omba +lew +seamus +1630 +cocky +##ament +##uen +bjorn +##rrick +fielder +fluttering +##lase +methyl +kimberley +mcdowell +reductions +barbed +##jic +##tonic +aeronautical +condensed +distracting +##promising +huffed +##cala +##sle +claudius +invincible +missy +pious +balthazar +ci +##lang +butte +combo +orson +##dication +myriad +1707 +silenced +##fed +##rh +coco +netball +yourselves +##oza +clarify +heller +peg +durban +etudes +offender +roast +blackmail +curvature +##woods +vile +309 +illicit +suriname +##linson +overture +1685 +bubbling +gymnast +tucking +##mming +##ouin +maldives +##bala +gurney +##dda +##eased +##oides +backside +pinto +jars +racehorse +tending +##rdial +baronetcy +wiener +duly +##rke +barbarian +cupping +flawed +##thesis +bertha +pleistocene +puddle +swearing +##nob +##tically +fleeting +prostate +amulet +educating +##mined +##iti +##tler +75th +jens +respondents +analytics +cavaliers +papacy +raju +##iente +##ulum +##tip +funnel +271 +disneyland +##lley +sociologist +##iam +2500 +faulkner +louvre +menon +##dson +276 +##ower +afterlife +mannheim +peptide +referees +comedians +meaningless +##anger +##laise +fabrics +hurley +renal +sleeps +##bour +##icle +breakout +kristin +roadside +animator +clover +disdain +unsafe +redesign +##urity +firth +barnsley +portage +reset +narrows +268 +commandos +expansive +speechless +tubular +##lux +essendon +eyelashes +smashwords +##yad +##bang +##claim +craved +sprinted +chet +somme +astor +wrocław +orton +266 +bane +##erving +##uing +mischief +##amps +##sund +scaling +terre +##xious +impairment +offenses +undermine +moi +soy +contiguous +arcadia +inuit +seam +##tops +macbeth +rebelled +##icative +##iot +590 +elaborated +frs +uniformed +##dberg +259 +powerless +priscilla +stimulated +980 +qc +arboretum +frustrating +trieste +bullock +##nified +enriched +glistening +intern +##adia +locus +nouvelle +ollie +ike +lash +starboard +ee +tapestry +headlined +hove +rigged +##vite +pollock +##yme +thrive +clustered +cas +roi +gleamed +olympiad +##lino +pressured +regimes +##hosis +##lick +ripley +##ophone +kickoff +gallon +rockwell +##arable +crusader +glue +revolutions +scrambling +1714 +grover +##jure +englishman +aztec +263 +contemplating +coven +ipad +preach +triumphant +tufts +##esian +rotational +##phus +328 +falkland +##brates +strewn +clarissa +rejoin +environmentally +glint +banded +drenched +moat +albanians +johor +rr +maestro +malley +nouveau +shaded +taxonomy +v6 +adhere +bunk +airfields +##ritan +1741 +encompass +remington +tran +##erative +amelie +mazda +friar +morals +passions +##zai +breadth +vis +##hae +argus +burnham +caressing +insider +rudd +##imov +##mini +##rso +italianate +murderous +textual +wainwright +armada +bam +weave +timer +##taken +##nh +fra +##crest +ardent +salazar +taps +tunis +##ntino +allegro +gland +philanthropic +##chester +implication +##optera +esq +judas +noticeably +wynn +##dara +inched +indexed +crises +villiers +bandit +royalties +patterned +cupboard +interspersed +accessory +isla +kendrick +entourage +stitches +##esthesia +headwaters +##ior +interlude +distraught +draught +1727 +##basket +biased +sy +transient +triad +subgenus +adapting +kidd +shortstop +##umatic +dimly +spiked +mcleod +reprint +nellie +pretoria +windmill +##cek +singled +##mps +273 +reunite +##orous +747 +bankers +outlying +##omp +##ports +##tream +apologies +cosmetics +patsy +##deh +##ocks +##yson +bender +nantes +serene +##nad +lucha +mmm +323 +##cius +##gli +cmll +coinage +nestor +juarez +##rook +smeared +sprayed +twitching +sterile +irina +embodied +juveniles +enveloped +miscellaneous +cancers +dq +gulped +luisa +crested +swat +donegal +ref +##anov +##acker +hearst +mercantile +##lika +doorbell +ua +vicki +##alla +##som +bilbao +psychologists +stryker +sw +horsemen +turkmenistan +wits +##national +anson +mathew +screenings +##umb +rihanna +##agne +##nessy +aisles +##iani +##osphere +hines +kenton +saskatoon +tasha +truncated +##champ +##itan +mildred +advises +fredrik +interpreting +inhibitors +##athi +spectroscopy +##hab +##kong +karim +panda +##oia +##nail +##vc +conqueror +kgb +leukemia +##dity +arrivals +cheered +pisa +phosphorus +shielded +##riated +mammal +unitarian +urgently +chopin +sanitary +##mission +spicy +drugged +hinges +##tort +tipping +trier +impoverished +westchester +##caster +267 +epoch +nonstop +##gman +##khov +aromatic +centrally +cerro +##tively +##vio +billions +modulation +sedimentary +283 +facilitating +outrageous +goldstein +##eak +##kt +ld +maitland +penultimate +pollard +##dance +fleets +spaceship +vertebrae +##nig +alcoholism +als +recital +##bham +##ference +##omics +m2 +##bm +trois +##tropical +##в +commemorates +##meric +marge +##raction +1643 +670 +cosmetic +ravaged +##ige +catastrophe +eng +##shida +albrecht +arterial +bellamy +decor +harmon +##rde +bulbs +synchronized +vito +easiest +shetland +shielding +wnba +##glers +##ssar +##riam +brianna +cumbria +##aceous +##rard +cores +thayer +##nsk +brood +hilltop +luminous +carts +keynote +larkin +logos +##cta +##ا +##mund +##quay +lilith +tinted +277 +wrestle +mobilization +##uses +sequential +siam +bloomfield +takahashi +274 +##ieving +presenters +ringo +blazed +witty +##oven +##ignant +devastation +haydn +harmed +newt +therese +##peed +gershwin +molina +rabbis +sudanese +001 +innate +restarted +##sack +##fus +slices +wb +##shah +enroll +hypothetical +hysterical +1743 +fabio +indefinite +warped +##hg +exchanging +525 +unsuitable +##sboro +gallo +1603 +bret +cobalt +homemade +##hunter +mx +operatives +##dhar +terraces +durable +latch +pens +whorls +##ctuated +##eaux +billing +ligament +succumbed +##gly +regulators +spawn +##brick +##stead +filmfare +rochelle +##nzo +1725 +circumstance +saber +supplements +##nsky +##tson +crowe +wellesley +carrot +##9th +##movable +primate +drury +sincerely +topical +##mad +##rao +callahan +kyiv +smarter +tits +undo +##yeh +announcements +anthologies +barrio +nebula +##islaus +##shaft +##tyn +bodyguards +2021 +assassinate +barns +emmett +scully +##mah +##yd +##eland +##tino +##itarian +demoted +gorman +lashed +prized +adventist +writ +##gui +alla +invertebrates +##ausen +1641 +amman +1742 +align +healy +redistribution +##gf +##rize +insulation +##drop +adherents +hezbollah +vitro +ferns +yanking +269 +php +registering +uppsala +cheerleading +confines +mischievous +tully +##ross +49th +docked +roam +stipulated +pumpkin +##bry +prompt +##ezer +blindly +shuddering +craftsmen +frail +scented +katharine +scramble +shaggy +sponge +helix +zaragoza +279 +##52 +43rd +backlash +fontaine +seizures +posse +cowan +nonfiction +telenovela +wwii +hammered +undone +##gpur +encircled +irs +##ivation +artefacts +oneself +searing +smallpox +##belle +##osaurus +shandong +breached +upland +blushing +rankin +infinitely +psyche +tolerated +docking +evicted +##col +unmarked +##lving +gnome +lettering +litres +musique +##oint +benevolent +##jal +blackened +##anna +mccall +racers +tingle +##ocene +##orestation +introductions +radically +292 +##hiff +##باد +1610 +1739 +munchen +plead +##nka +condo +scissors +##sight +##tens +apprehension +##cey +##yin +hallmark +watering +formulas +sequels +##llas +aggravated +bae +commencing +##building +enfield +prohibits +marne +vedic +civilized +euclidean +jagger +beforehand +blasts +dumont +##arney +##nem +740 +conversions +hierarchical +rios +simulator +##dya +##lellan +hedges +oleg +thrusts +shadowed +darby +maximize +1744 +gregorian +##nded +##routed +sham +unspecified +##hog +emory +factual +##smo +##tp +fooled +##rger +ortega +wellness +marlon +##oton +##urance +casket +keating +ley +enclave +##ayan +char +influencing +jia +##chenko +412 +ammonia +erebidae +incompatible +violins +cornered +##arat +grooves +astronauts +columbian +rampant +fabrication +kyushu +mahmud +vanish +##dern +mesopotamia +##lete +ict +##rgen +caspian +kenji +pitted +##vered +999 +grimace +roanoke +tchaikovsky +twinned +##analysis +##awan +xinjiang +arias +clemson +kazakh +sizable +1662 +##khand +##vard +plunge +tatum +vittorio +##nden +cholera +##dana +##oper +bracing +indifference +projectile +superliga +##chee +realises +upgrading +299 +porte +retribution +##vies +nk +stil +##resses +ama +bureaucracy +blackberry +bosch +testosterone +collapses +greer +##pathic +ioc +fifties +malls +##erved +bao +baskets +adolescents +siegfried +##osity +##tosis +mantra +detecting +existent +fledgling +##cchi +dissatisfied +gan +telecommunication +mingled +sobbed +6000 +controversies +outdated +taxis +##raus +fright +slams +##lham +##fect +##tten +detectors +fetal +tanned +##uw +fray +goth +olympian +skipping +mandates +scratches +sheng +unspoken +hyundai +tracey +hotspur +restrictive +##buch +americana +mundo +##bari +burroughs +diva +vulcan +##6th +distinctions +thumping +##ngen +mikey +sheds +fide +rescues +springsteen +vested +valuation +##ece +##ely +pinnacle +rake +sylvie +##edo +almond +quivering +##irus +alteration +faltered +##wad +51st +hydra +ticked +##kato +recommends +##dicated +antigua +arjun +stagecoach +wilfred +trickle +pronouns +##pon +aryan +nighttime +##anian +gall +pea +stitch +##hei +leung +milos +##dini +eritrea +nexus +starved +snowfall +kant +parasitic +cot +discus +hana +strikers +appleton +kitchens +##erina +##partisan +##itha +##vius +disclose +metis +##channel +1701 +tesla +##vera +fitch +1735 +blooded +##tila +decimal +##tang +##bai +cyclones +eun +bottled +peas +pensacola +basha +bolivian +crabs +boil +lanterns +partridge +roofed +1645 +necks +##phila +opined +patting +##kla +##lland +chuckles +volta +whereupon +##nche +devout +euroleague +suicidal +##dee +inherently +involuntary +knitting +nasser +##hide +puppets +colourful +courageous +southend +stills +miraculous +hodgson +richer +rochdale +ethernet +greta +uniting +prism +umm +##haya +##itical +##utation +deterioration +pointe +prowess +##ropriation +lids +scranton +billings +subcontinent +##koff +##scope +brute +kellogg +psalms +degraded +##vez +stanisław +##ructured +ferreira +pun +astonishing +gunnar +##yat +arya +prc +gottfried +##tight +excursion +##ographer +dina +##quil +##nare +huffington +illustrious +wilbur +gundam +verandah +##zard +naacp +##odle +constructive +fjord +kade +##naud +generosity +thrilling +baseline +cayman +frankish +plastics +accommodations +zoological +##fting +cedric +qb +motorized +##dome +##otted +squealed +tackled +canucks +budgets +situ +asthma +dail +gabled +grasslands +whimpered +writhing +judgments +##65 +minnie +pv +##carbon +bananas +grille +domes +monique +odin +maguire +markham +tierney +##estra +##chua +libel +poke +speedy +atrium +laval +notwithstanding +##edly +fai +kala +##sur +robb +##sma +listings +luz +supplementary +tianjin +##acing +enzo +jd +ric +scanner +croats +transcribed +##49 +arden +cv +##hair +##raphy +##lver +##uy +357 +seventies +staggering +alam +horticultural +hs +regression +timbers +blasting +##ounded +montagu +manipulating +##cit +catalytic +1550 +troopers +##meo +condemnation +fitzpatrick +##oire +##roved +inexperienced +1670 +castes +##lative +outing +314 +dubois +flicking +quarrel +ste +learners +1625 +iq +whistled +##class +282 +classify +tariffs +temperament +355 +folly +liszt +##yles +immersed +jordanian +ceasefire +apparel +extras +maru +fished +##bio +harta +stockport +assortment +craftsman +paralysis +transmitters +##cola +blindness +##wk +fatally +proficiency +solemnly +##orno +repairing +amore +groceries +ultraviolet +##chase +schoolhouse +##tua +resurgence +nailed +##otype +##× +ruse +saliva +diagrams +##tructing +albans +rann +thirties +1b +antennas +hilarious +cougars +paddington +stats +##eger +breakaway +ipod +reza +authorship +prohibiting +scoffed +##etz +##ttle +conscription +defected +trondheim +##fires +ivanov +keenan +##adan +##ciful +##fb +##slow +locating +##ials +##tford +cadiz +basalt +blankly +interned +rags +rattling +##tick +carpathian +reassured +sync +bum +guildford +iss +staunch +##onga +astronomers +sera +sofie +emergencies +susquehanna +##heard +duc +mastery +vh1 +williamsburg +bayer +buckled +craving +##khan +##rdes +bloomington +##write +alton +barbecue +##bians +justine +##hri +##ndt +delightful +smartphone +newtown +photon +retrieval +peugeot +hissing +##monium +##orough +flavors +lighted +relaunched +tainted +##games +##lysis +anarchy +microscopic +hopping +adept +evade +evie +##beau +inhibit +sinn +adjustable +hurst +intuition +wilton +cisco +44th +lawful +lowlands +stockings +thierry +##dalen +##hila +##nai +fates +prank +tb +maison +lobbied +provocative +1724 +4a +utopia +##qual +carbonate +gujarati +purcell +##rford +curtiss +##mei +overgrown +arenas +mediation +swallows +##rnik +respectful +turnbull +##hedron +##hope +alyssa +ozone +##ʻi +ami +gestapo +johansson +snooker +canteen +cuff +declines +empathy +stigma +##ags +##iner +##raine +taxpayers +gui +volga +##wright +##copic +lifespan +overcame +tattooed +enactment +giggles +##ador +##camp +barrington +bribe +obligatory +orbiting +peng +##enas +elusive +sucker +##vating +cong +hardship +empowered +anticipating +estrada +cryptic +greasy +detainees +planck +sudbury +plaid +dod +marriott +kayla +##ears +##vb +##zd +mortally +##hein +cognition +radha +319 +liechtenstein +meade +richly +argyle +harpsichord +liberalism +trumpets +lauded +tyrant +salsa +tiled +lear +promoters +reused +slicing +trident +##chuk +##gami +##lka +cantor +checkpoint +##points +gaul +leger +mammalian +##tov +##aar +##schaft +doha +frenchman +nirvana +##vino +delgado +headlining +##eron +##iography +jug +tko +1649 +naga +intersections +##jia +benfica +nawab +##suka +ashford +gulp +##deck +##vill +##rug +brentford +frazier +pleasures +dunne +potsdam +shenzhen +dentistry +##tec +flanagan +##dorff +##hear +chorale +dinah +prem +quezon +##rogated +relinquished +sutra +terri +##pani +flaps +##rissa +poly +##rnet +homme +aback +##eki +linger +womb +##kson +##lewood +doorstep +orthodoxy +threaded +westfield +##rval +dioceses +fridays +subsided +##gata +loyalists +##biotic +##ettes +letterman +lunatic +prelate +tenderly +invariably +souza +thug +winslow +##otide +furlongs +gogh +jeopardy +##runa +pegasus +##umble +humiliated +standalone +tagged +##roller +freshmen +klan +##bright +attaining +initiating +transatlantic +logged +viz +##uance +1723 +combatants +intervening +stephane +chieftain +despised +grazed +317 +cdc +galveston +godzilla +macro +simulate +##planes +parades +##esses +960 +##ductive +##unes +equator +overdose +##cans +##hosh +##lifting +joshi +epstein +sonora +treacherous +aquatics +manchu +responsive +##sation +supervisory +##christ +##llins +##ibar +##balance +##uso +kimball +karlsruhe +mab +##emy +ignores +phonetic +reuters +spaghetti +820 +almighty +danzig +rumbling +tombstone +designations +lured +outset +##felt +supermarkets +##wt +grupo +kei +kraft +susanna +##blood +comprehension +genealogy +##aghan +##verted +redding +##ythe +1722 +bowing +##pore +##roi +lest +sharpened +fulbright +valkyrie +sikhs +##unds +swans +bouquet +merritt +##tage +##venting +commuted +redhead +clerks +leasing +cesare +dea +hazy +##vances +fledged +greenfield +servicemen +##gical +armando +blackout +dt +sagged +downloadable +intra +potion +pods +##4th +##mism +xp +attendants +gambia +stale +##ntine +plump +asteroids +rediscovered +buds +flea +hive +##neas +1737 +classifications +debuts +##eles +olympus +scala +##eurs +##gno +##mute +hummed +sigismund +visuals +wiggled +await +pilasters +clench +sulfate +##ances +bellevue +enigma +trainee +snort +##sw +clouded +denim +##rank +##rder +churning +hartman +lodges +riches +sima +##missible +accountable +socrates +regulates +mueller +##cr +1702 +avoids +solids +himalayas +nutrient +pup +##jevic +squat +fades +nec +##lates +##pina +##rona +##ου +privateer +tequila +##gative +##mpton +apt +hornet +immortals +##dou +asturias +cleansing +dario +##rries +##anta +etymology +servicing +zhejiang +##venor +##nx +horned +erasmus +rayon +relocating +£10 +##bags +escalated +promenade +stubble +2010s +artisans +axial +liquids +mora +sho +yoo +##tsky +bundles +oldies +##nally +notification +bastion +##ths +sparkle +##lved +1728 +leash +pathogen +highs +##hmi +immature +880 +gonzaga +ignatius +mansions +monterrey +sweets +bryson +##loe +polled +regatta +brightest +pei +rosy +squid +hatfield +payroll +addict +meath +cornerback +heaviest +lodging +##mage +capcom +rippled +##sily +barnet +mayhem +ymca +snuggled +rousseau +##cute +blanchard +284 +fragmented +leighton +chromosomes +risking +##md +##strel +##utter +corinne +coyotes +cynical +hiroshi +yeomanry +##ractive +ebook +grading +mandela +plume +agustin +magdalene +##rkin +bea +femme +trafford +##coll +##lun +##tance +52nd +fourier +upton +##mental +camilla +gust +iihf +islamabad +longevity +##kala +feldman +netting +##rization +endeavour +foraging +mfa +orr +##open +greyish +contradiction +graz +##ruff +handicapped +marlene +tweed +oaxaca +spp +campos +miocene +pri +configured +cooks +pluto +cozy +pornographic +##entes +70th +fairness +glided +jonny +lynne +rounding +sired +##emon +##nist +remade +uncover +##mack +complied +lei +newsweek +##jured +##parts +##enting +##pg +293 +finer +guerrillas +athenian +deng +disused +stepmother +accuse +gingerly +seduction +521 +confronting +##walker +##going +gora +nostalgia +sabres +virginity +wrenched +##minated +syndication +wielding +eyre +##56 +##gnon +##igny +behaved +taxpayer +sweeps +##growth +childless +gallant +##ywood +amplified +geraldine +scrape +##ffi +babylonian +fresco +##rdan +##kney +##position +1718 +restricting +tack +fukuoka +osborn +selector +partnering +##dlow +318 +gnu +kia +tak +whitley +gables +##54 +##mania +mri +softness +immersion +##bots +##evsky +1713 +chilling +insignificant +pcs +##uis +elites +lina +purported +supplemental +teaming +##americana +##dding +##inton +proficient +rouen +##nage +##rret +niccolo +selects +##bread +fluffy +1621 +gruff +knotted +mukherjee +polgara +thrash +nicholls +secluded +smoothing +thru +corsica +loaf +whitaker +inquiries +##rrier +##kam +indochina +289 +marlins +myles +peking +##tea +extracts +pastry +superhuman +connacht +vogel +##ditional +##het +##udged +##lash +gloss +quarries +refit +teaser +##alic +##gaon +20s +materialized +sling +camped +pickering +tung +tracker +pursuant +##cide +cranes +soc +##cini +##typical +##viere +anhalt +overboard +workout +chores +fares +orphaned +stains +##logie +fenton +surpassing +joyah +triggers +##itte +grandmaster +##lass +##lists +clapping +fraudulent +ledger +nagasaki +##cor +##nosis +##tsa +eucalyptus +tun +##icio +##rney +##tara +dax +heroism +ina +wrexham +onboard +unsigned +##dates +moshe +galley +winnie +droplets +exiles +praises +watered +noodles +##aia +fein +adi +leland +multicultural +stink +bingo +comets +erskine +modernized +canned +constraint +domestically +chemotherapy +featherweight +stifled +##mum +darkly +irresistible +refreshing +hasty +isolate +##oys +kitchener +planners +##wehr +cages +yarn +implant +toulon +elects +childbirth +yue +##lind +##lone +cn +rightful +sportsman +junctions +remodeled +specifies +##rgh +291 +##oons +complimented +##urgent +lister +ot +##logic +bequeathed +cheekbones +fontana +gabby +##dial +amadeus +corrugated +maverick +resented +triangles +##hered +##usly +nazareth +tyrol +1675 +assent +poorer +sectional +aegean +##cous +296 +nylon +ghanaian +##egorical +##weig +cushions +forbid +fusiliers +obstruction +somerville +##scia +dime +earrings +elliptical +leyte +oder +polymers +timmy +atm +midtown +piloted +settles +continual +externally +mayfield +##uh +enrichment +henson +keane +persians +1733 +benji +braden +pep +324 +##efe +contenders +pepsi +valet +##isches +298 +##asse +##earing +goofy +stroll +##amen +authoritarian +occurrences +adversary +ahmedabad +tangent +toppled +dorchester +1672 +modernism +marxism +islamist +charlemagne +exponential +racks +unicode +brunette +mbc +pic +skirmish +##bund +##lad +##powered +##yst +hoisted +messina +shatter +##ctum +jedi +vantage +##music +##neil +clemens +mahmoud +corrupted +authentication +lowry +nils +##washed +omnibus +wounding +jillian +##itors +##opped +serialized +narcotics +handheld +##arm +##plicity +intersecting +stimulating +##onis +crate +fellowships +hemingway +casinos +climatic +fordham +copeland +drip +beatty +leaflets +robber +brothel +madeira +##hedral +sphinx +ultrasound +##vana +valor +forbade +leonid +villas +##aldo +duane +marquez +##cytes +disadvantaged +forearms +kawasaki +reacts +consular +lax +uncles +uphold +##hopper +concepcion +dorsey +lass +##izan +arching +passageway +1708 +researches +tia +internationals +##graphs +##opers +distinguishes +javanese +divert +##uven +plotted +##listic +##rwin +##erik +##tify +affirmative +signifies +validation +##bson +kari +felicity +georgina +zulu +##eros +##rained +##rath +overcoming +##dot +argyll +##rbin +1734 +chiba +ratification +windy +earls +parapet +##marks +hunan +pristine +astrid +punta +##gart +brodie +##kota +##oder +malaga +minerva +rouse +##phonic +bellowed +pagoda +portals +reclamation +##gur +##odies +##⁄₄ +parentheses +quoting +allergic +palette +showcases +benefactor +heartland +nonlinear +##tness +bladed +cheerfully +scans +##ety +##hone +1666 +girlfriends +pedersen +hiram +sous +##liche +##nator +1683 +##nery +##orio +##umen +bobo +primaries +smiley +##cb +unearthed +uniformly +fis +metadata +1635 +ind +##oted +recoil +##titles +##tura +##ια +406 +hilbert +jamestown +mcmillan +tulane +seychelles +##frid +antics +coli +fated +stucco +##grants +1654 +bulky +accolades +arrays +caledonian +carnage +optimism +puebla +##tative +##cave +enforcing +rotherham +seo +dunlop +aeronautics +chimed +incline +zoning +archduke +hellenistic +##oses +##sions +candi +thong +##ople +magnate +rustic +##rsk +projective +slant +##offs +danes +hollis +vocalists +##ammed +congenital +contend +gesellschaft +##ocating +##pressive +douglass +quieter +##cm +##kshi +howled +salim +spontaneously +townsville +buena +southport +##bold +kato +1638 +faerie +stiffly +##vus +##rled +297 +flawless +realising +taboo +##7th +bytes +straightening +356 +jena +##hid +##rmin +cartwright +berber +bertram +soloists +411 +noses +417 +coping +fission +hardin +inca +##cen +1717 +mobilized +vhf +##raf +biscuits +curate +##85 +##anial +331 +gaunt +neighbourhoods +1540 +##abas +blanca +bypassed +sockets +behold +coincidentally +##bane +nara +shave +splinter +terrific +##arion +##erian +commonplace +juris +redwood +waistband +boxed +caitlin +fingerprints +jennie +naturalized +##ired +balfour +craters +jody +bungalow +hugely +quilt +glitter +pigeons +undertaker +bulging +constrained +goo +##sil +##akh +assimilation +reworked +##person +persuasion +##pants +felicia +##cliff +##ulent +1732 +explodes +##dun +##inium +##zic +lyman +vulture +hog +overlook +begs +northwards +ow +spoil +##urer +fatima +favorably +accumulate +sargent +sorority +corresponded +dispersal +kochi +toned +##imi +##lita +internacional +newfound +##agger +##lynn +##rigue +booths +peanuts +##eborg +medicare +muriel +nur +##uram +crates +millennia +pajamas +worsened +##breakers +jimi +vanuatu +yawned +##udeau +carousel +##hony +hurdle +##ccus +##mounted +##pod +rv +##eche +airship +ambiguity +compulsion +recapture +##claiming +arthritis +##osomal +1667 +asserting +ngc +sniffing +dade +discontent +glendale +ported +##amina +defamation +rammed +##scent +fling +livingstone +##fleet +875 +##ppy +apocalyptic +comrade +lcd +##lowe +cessna +eine +persecuted +subsistence +demi +hoop +reliefs +710 +coptic +progressing +stemmed +perpetrators +1665 +priestess +##nio +dobson +ebony +rooster +itf +tortricidae +##bbon +##jian +cleanup +##jean +##øy +1721 +eighties +taxonomic +holiness +##hearted +##spar +antilles +showcasing +stabilized +##nb +gia +mascara +michelangelo +dawned +##uria +##vinsky +extinguished +fitz +grotesque +£100 +##fera +##loid +##mous +barges +neue +throbbed +cipher +johnnie +##a1 +##mpt +outburst +##swick +spearheaded +administrations +c1 +heartbreak +pixels +pleasantly +##enay +lombardy +plush +##nsed +bobbie +##hly +reapers +tremor +xiang +minogue +substantive +hitch +barak +##wyl +kwan +##encia +910 +obscene +elegance +indus +surfer +bribery +conserve +##hyllum +##masters +horatio +##fat +apes +rebound +psychotic +##pour +iteration +##mium +##vani +botanic +horribly +antiques +dispose +paxton +##hli +##wg +timeless +1704 +disregard +engraver +hounds +##bau +##version +looted +uno +facilitates +groans +masjid +rutland +antibody +disqualification +decatur +footballers +quake +slacks +48th +rein +scribe +stabilize +commits +exemplary +tho +##hort +##chison +pantry +traversed +##hiti +disrepair +identifiable +vibrated +baccalaureate +##nnis +csa +interviewing +##iensis +##raße +greaves +wealthiest +343 +classed +jogged +£5 +##58 +##atal +illuminating +knicks +respecting +##uno +scrubbed +##iji +##dles +kruger +moods +growls +raider +silvia +chefs +kam +vr +cree +percival +##terol +gunter +counterattack +defiant +henan +ze +##rasia +##riety +equivalence +submissions +##fra +##thor +bautista +mechanically +##heater +cornice +herbal +templar +##mering +outputs +ruining +ligand +renumbered +extravagant +mika +blockbuster +eta +insurrection +##ilia +darkening +ferocious +pianos +strife +kinship +##aer +melee +##anor +##iste +##may +##oue +decidedly +weep +##jad +##missive +##ppel +354 +puget +unease +##gnant +1629 +hammering +kassel +ob +wessex +##lga +bromwich +egan +paranoia +utilization +##atable +##idad +contradictory +provoke +##ols +##ouring +##tangled +knesset +##very +##lette +plumbing +##sden +##¹ +greensboro +occult +sniff +338 +zev +beaming +gamer +haggard +mahal +##olt +##pins +mendes +utmost +briefing +gunnery +##gut +##pher +##zh +##rok +1679 +khalifa +sonya +##boot +principals +urbana +wiring +##liffe +##minating +##rrado +dahl +nyu +skepticism +np +townspeople +ithaca +lobster +somethin +##fur +##arina +##−1 +freighter +zimmerman +biceps +contractual +##herton +amend +hurrying +subconscious +##anal +336 +meng +clermont +spawning +##eia +##lub +dignitaries +impetus +snacks +spotting +twigs +##bilis +##cz +##ouk +libertadores +nic +skylar +##aina +##firm +gustave +asean +##anum +dieter +legislatures +flirt +bromley +trolls +umar +##bbies +##tyle +blah +parc +bridgeport +crank +negligence +##nction +46th +constantin +molded +bandages +seriousness +00pm +siegel +carpets +compartments +upbeat +statehood +##dner +##edging +marko +730 +platt +##hane +paving +##iy +1738 +abbess +impatience +limousine +nbl +##talk +441 +lucille +mojo +nightfall +robbers +##nais +karel +brisk +calves +replicate +ascribed +telescopes +##olf +intimidated +##reen +ballast +specialization +##sit +aerodynamic +caliphate +rainer +visionary +##arded +epsilon +##aday +##onte +aggregation +auditory +boosted +reunification +kathmandu +loco +robyn +402 +acknowledges +appointing +humanoid +newell +redeveloped +restraints +##tained +barbarians +chopper +1609 +italiana +##lez +##lho +investigates +wrestlemania +##anies +##bib +690 +##falls +creaked +dragoons +gravely +minions +stupidity +volley +##harat +##week +musik +##eries +##uously +fungal +massimo +semantics +malvern +##ahl +##pee +discourage +embryo +imperialism +1910s +profoundly +##ddled +jiangsu +sparkled +stat +##holz +sweatshirt +tobin +##iction +sneered +##cheon +##oit +brit +causal +smyth +##neuve +diffuse +perrin +silvio +##ipes +##recht +detonated +iqbal +selma +##nism +##zumi +roasted +##riders +tay +##ados +##mament +##mut +##rud +840 +completes +nipples +cfa +flavour +hirsch +##laus +calderon +sneakers +moravian +##ksha +1622 +rq +294 +##imeters +bodo +##isance +##pre +##ronia +anatomical +excerpt +##lke +dh +kunst +##tablished +##scoe +biomass +panted +unharmed +gael +housemates +montpellier +##59 +coa +rodents +tonic +hickory +singleton +##taro +451 +1719 +aldo +breaststroke +dempsey +och +rocco +##cuit +merton +dissemination +midsummer +serials +##idi +haji +polynomials +##rdon +gs +enoch +prematurely +shutter +taunton +£3 +##grating +##inates +archangel +harassed +##asco +326 +archway +dazzling +##ecin +1736 +sumo +wat +##kovich +1086 +honneur +##ently +##nostic +##ttal +##idon +1605 +403 +1716 +blogger +rents +##gnan +hires +##ikh +##dant +howie +##rons +handler +retracted +shocks +1632 +arun +duluth +kepler +trumpeter +##lary +peeking +seasoned +trooper +##mara +laszlo +##iciencies +##rti +heterosexual +##inatory +##ssion +indira +jogging +##inga +##lism +beit +dissatisfaction +malice +##ately +nedra +peeling +##rgeon +47th +stadiums +475 +vertigo +##ains +iced +restroom +##plify +##tub +illustrating +pear +##chner +##sibility +inorganic +rappers +receipts +watery +##kura +lucinda +##oulos +reintroduced +##8th +##tched +gracefully +saxons +nutritional +wastewater +rained +favourites +bedrock +fisted +hallways +likeness +upscale +##lateral +1580 +blinds +prequel +##pps +##tama +deter +humiliating +restraining +tn +vents +1659 +laundering +recess +rosary +tractors +coulter +federer +##ifiers +##plin +persistence +##quitable +geschichte +pendulum +quakers +##beam +bassett +pictorial +buffet +koln +##sitor +drills +reciprocal +shooters +##57 +##cton +##tees +converge +pip +dmitri +donnelly +yamamoto +aqua +azores +demographics +hypnotic +spitfire +suspend +wryly +roderick +##rran +sebastien +##asurable +mavericks +##fles +##200 +himalayan +prodigy +##iance +transvaal +demonstrators +handcuffs +dodged +mcnamara +sublime +1726 +crazed +##efined +##till +ivo +pondered +reconciled +shrill +sava +##duk +bal +cad +heresy +jaipur +goran +##nished +341 +lux +shelly +whitehall +##hre +israelis +peacekeeping +##wled +1703 +demetrius +ousted +##arians +##zos +beale +anwar +backstroke +raged +shrinking +cremated +##yck +benign +towing +wadi +darmstadt +landfill +parana +soothe +colleen +sidewalks +mayfair +tumble +hepatitis +ferrer +superstructure +##gingly +##urse +##wee +anthropological +translators +##mies +closeness +hooves +##pw +mondays +##roll +##vita +landscaping +##urized +purification +sock +thorns +thwarted +jalan +tiberius +##taka +saline +##rito +confidently +khyber +sculptors +##ij +brahms +hammersmith +inspectors +battista +fivb +fragmentation +hackney +##uls +arresting +exercising +antoinette +bedfordshire +##zily +dyed +##hema +1656 +racetrack +variability +##tique +1655 +austrians +deteriorating +madman +theorists +aix +lehman +weathered +1731 +decreed +eruptions +1729 +flaw +quinlan +sorbonne +flutes +nunez +1711 +adored +downwards +fable +rasped +1712 +moritz +mouthful +renegade +shivers +stunts +dysfunction +restrain +translit +327 +pancakes +##avio +##cision +##tray +351 +vial +##lden +bain +##maid +##oxide +chihuahua +malacca +vimes +##rba +##rnier +1664 +donnie +plaques +##ually +337 +bangs +floppy +huntsville +loretta +nikolay +##otte +eater +handgun +ubiquitous +##hett +eras +zodiac +1634 +##omorphic +1820s +##zog +cochran +##bula +##lithic +warring +##rada +dalai +excused +blazers +mcconnell +reeling +bot +este +##abi +geese +hoax +taxon +##bla +guitarists +##icon +condemning +hunts +inversion +moffat +taekwondo +##lvis +1624 +stammered +##rest +##rzy +sousa +fundraiser +marylebone +navigable +uptown +cabbage +daniela +salman +shitty +whimper +##kian +##utive +programmers +protections +rm +##rmi +##rued +forceful +##enes +fuss +##tao +##wash +brat +oppressive +reykjavik +spartak +ticking +##inkles +##kiewicz +adolph +horst +maui +protege +straighten +cpc +landau +concourse +clements +resultant +##ando +imaginative +joo +reactivated +##rem +##ffled +##uising +consultative +##guide +flop +kaitlyn +mergers +parenting +somber +##vron +supervise +vidhan +##imum +courtship +exemplified +harmonies +medallist +refining +##rrow +##ка +amara +##hum +780 +goalscorer +sited +overshadowed +rohan +displeasure +secretive +multiplied +osman +##orth +engravings +padre +##kali +##veda +miniatures +mis +##yala +clap +pali +rook +##cana +1692 +57th +antennae +astro +oskar +1628 +bulldog +crotch +hackett +yucatan +##sure +amplifiers +brno +ferrara +migrating +##gree +thanking +turing +##eza +mccann +ting +andersson +onslaught +gaines +ganga +incense +standardization +##mation +sentai +scuba +stuffing +turquoise +waivers +alloys +##vitt +regaining +vaults +##clops +##gizing +digger +furry +memorabilia +probing +##iad +payton +rec +deutschland +filippo +opaque +seamen +zenith +afrikaans +##filtration +disciplined +inspirational +##merie +banco +confuse +grafton +tod +##dgets +championed +simi +anomaly +biplane +##ceptive +electrode +##para +1697 +cleavage +crossbow +swirl +informant +##lars +##osta +afi +bonfire +spec +##oux +lakeside +slump +##culus +##lais +##qvist +##rrigan +1016 +facades +borg +inwardly +cervical +xl +pointedly +050 +stabilization +##odon +chests +1699 +hacked +ctv +orthogonal +suzy +##lastic +gaulle +jacobite +rearview +##cam +##erted +ashby +##drik +##igate +##mise +##zbek +affectionately +canine +disperse +latham +##istles +##ivar +spielberg +##orin +##idium +ezekiel +cid +##sg +durga +middletown +##cina +customized +frontiers +harden +##etano +##zzy +1604 +bolsheviks +##66 +coloration +yoko +##bedo +briefs +slabs +debra +liquidation +plumage +##oin +blossoms +dementia +subsidy +1611 +proctor +relational +jerseys +parochial +ter +##ici +esa +peshawar +cavalier +loren +cpi +idiots +shamrock +1646 +dutton +malabar +mustache +##endez +##ocytes +referencing +terminates +marche +yarmouth +##sop +acton +mated +seton +subtly +baptised +beige +extremes +jolted +kristina +telecast +##actic +safeguard +waldo +##baldi +##bular +endeavors +sloppy +subterranean +##ensburg +##itung +delicately +pigment +tq +##scu +1626 +##ound +collisions +coveted +herds +##personal +##meister +##nberger +chopra +##ricting +abnormalities +defective +galician +lucie +##dilly +alligator +likened +##genase +burundi +clears +complexion +derelict +deafening +diablo +fingered +champaign +dogg +enlist +isotope +labeling +mrna +##erre +brilliance +marvelous +##ayo +1652 +crawley +ether +footed +dwellers +deserts +hamish +rubs +warlock +skimmed +##lizer +870 +buick +embark +heraldic +irregularities +##ajan +kiara +##kulam +##ieg +antigen +kowalski +##lge +oakley +visitation +##mbit +vt +##suit +1570 +murderers +##miento +##rites +chimneys +##sling +condemn +custer +exchequer +havre +##ghi +fluctuations +##rations +dfb +hendricks +vaccines +##tarian +nietzsche +biking +juicy +##duced +brooding +scrolling +selangor +##ragan +352 +annum +boomed +seminole +sugarcane +##dna +departmental +dismissing +innsbruck +arteries +ashok +batavia +daze +kun +overtook +##rga +##tlan +beheaded +gaddafi +holm +electronically +faulty +galilee +fractures +kobayashi +##lized +gunmen +magma +aramaic +mala +eastenders +inference +messengers +bf +##qu +407 +bathrooms +##vere +1658 +flashbacks +ideally +misunderstood +##jali +##weather +mendez +##grounds +505 +uncanny +##iii +1709 +friendships +##nbc +sacrament +accommodated +reiterated +logistical +pebbles +thumped +##escence +administering +decrees +drafts +##flight +##cased +##tula +futuristic +picket +intimidation +winthrop +##fahan +interfered +339 +afar +francoise +morally +uta +cochin +croft +dwarfs +##bruck +##dents +##nami +biker +##hner +##meral +nano +##isen +##ometric +##pres +##ан +brightened +meek +parcels +securely +gunners +##jhl +##zko +agile +hysteria +##lten +##rcus +bukit +champs +chevy +cuckoo +leith +sadler +theologians +welded +##section +1663 +jj +plurality +xander +##rooms +##formed +shredded +temps +intimately +pau +tormented +##lok +##stellar +1618 +charred +ems +essen +##mmel +alarms +spraying +ascot +blooms +twinkle +##abia +##apes +internment +obsidian +##chaft +snoop +##dav +##ooping +malibu +##tension +quiver +##itia +hays +mcintosh +travers +walsall +##ffie +1623 +beverley +schwarz +plunging +structurally +m3 +rosenthal +vikram +##tsk +770 +ghz +##onda +##tiv +chalmers +groningen +pew +reckon +unicef +##rvis +55th +##gni +1651 +sulawesi +avila +cai +metaphysical +screwing +turbulence +##mberg +augusto +samba +56th +baffled +momentary +toxin +##urian +##wani +aachen +condoms +dali +steppe +##3d +##app +##oed +##year +adolescence +dauphin +electrically +inaccessible +microscopy +nikita +##ega +atv +##cel +##enter +##oles +##oteric +##ы +accountants +punishments +wrongly +bribes +adventurous +clinch +flinders +southland +##hem +##kata +gough +##ciency +lads +soared +##ה +undergoes +deformation +outlawed +rubbish +##arus +##mussen +##nidae +##rzburg +arcs +##ingdon +##tituted +1695 +wheelbase +wheeling +bombardier +campground +zebra +##lices +##oj +##bain +lullaby +##ecure +donetsk +wylie +grenada +##arding +##ης +squinting +eireann +opposes +##andra +maximal +runes +##broken +##cuting +##iface +##ror +##rosis +additive +britney +adultery +triggering +##drome +detrimental +aarhus +containment +jc +swapped +vichy +##ioms +madly +##oric +##rag +brant +##ckey +##trix +1560 +1612 +broughton +rustling +##stems +##uder +asbestos +mentoring +##nivorous +finley +leaps +##isan +apical +pry +slits +substitutes +##dict +intuitive +fantasia +insistent +unreasonable +##igen +##vna +domed +hannover +margot +ponder +##zziness +impromptu +jian +lc +rampage +stemming +##eft +andrey +gerais +whichever +amnesia +appropriated +anzac +clicks +modifying +ultimatum +cambrian +maids +verve +yellowstone +##mbs +conservatoire +##scribe +adherence +dinners +spectra +imperfect +mysteriously +sidekick +tatar +tuba +##aks +##ifolia +distrust +##athan +##zle +c2 +ronin +zac +##pse +celaena +instrumentalist +scents +skopje +##mbling +comical +compensated +vidal +condor +intersect +jingle +wavelengths +##urrent +mcqueen +##izzly +carp +weasel +422 +kanye +militias +postdoctoral +eugen +gunslinger +##ɛ +faux +hospice +##for +appalled +derivation +dwarves +##elis +dilapidated +##folk +astoria +philology +##lwyn +##otho +##saka +inducing +philanthropy +##bf +##itative +geek +markedly +sql +##yce +bessie +indices +rn +##flict +495 +frowns +resolving +weightlifting +tugs +cleric +contentious +1653 +mania +rms +##miya +##reate +##ruck +##tucket +bien +eels +marek +##ayton +##cence +discreet +unofficially +##ife +leaks +##bber +1705 +332 +dung +compressor +hillsborough +pandit +shillings +distal +##skin +381 +##tat +##you +nosed +##nir +mangrove +undeveloped +##idia +textures +##inho +##500 +##rise +ae +irritating +nay +amazingly +bancroft +apologetic +compassionate +kata +symphonies +##lovic +airspace +##lch +930 +gifford +precautions +fulfillment +sevilla +vulgar +martinique +##urities +looting +piccolo +tidy +##dermott +quadrant +armchair +incomes +mathematicians +stampede +nilsson +##inking +##scan +foo +quarterfinal +##ostal +shang +shouldered +squirrels +##owe +344 +vinegar +##bner +##rchy +##systems +delaying +##trics +ars +dwyer +rhapsody +sponsoring +##gration +bipolar +cinder +starters +##olio +##urst +421 +signage +##nty +aground +figurative +mons +acquaintances +duets +erroneously +soyuz +elliptic +recreated +##cultural +##quette +##ssed +##tma +##zcz +moderator +scares +##itaire +##stones +##udence +juniper +sighting +##just +##nsen +britten +calabria +ry +bop +cramer +forsyth +stillness +##л +airmen +gathers +unfit +##umber +##upt +taunting +##rip +seeker +streamlined +##bution +holster +schumann +tread +vox +##gano +##onzo +strive +dil +reforming +covent +newbury +predicting +##orro +decorate +tre +##puted +andover +ie +asahi +dept +dunkirk +gills +##tori +buren +huskies +##stis +##stov +abstracts +bets +loosen +##opa +1682 +yearning +##glio +##sir +berman +effortlessly +enamel +napoli +persist +##peration +##uez +attache +elisa +b1 +invitations +##kic +accelerating +reindeer +boardwalk +clutches +nelly +polka +starbucks +##kei +adamant +huey +lough +unbroken +adventurer +embroidery +inspecting +stanza +##ducted +naia +taluka +##pone +##roids +chases +deprivation +florian +##jing +##ppet +earthly +##lib +##ssee +colossal +foreigner +vet +freaks +patrice +rosewood +triassic +upstate +##pkins +dominates +ata +chants +ks +vo +##400 +##bley +##raya +##rmed +555 +agra +infiltrate +##ailing +##ilation +##tzer +##uppe +##werk +binoculars +enthusiast +fujian +squeak +##avs +abolitionist +almeida +boredom +hampstead +marsden +rations +##ands +inflated +334 +bonuses +rosalie +patna +##rco +329 +detachments +penitentiary +54th +flourishing +woolf +##dion +##etched +papyrus +##lster +##nsor +##toy +bobbed +dismounted +endelle +inhuman +motorola +tbs +wince +wreath +##ticus +hideout +inspections +sanjay +disgrace +infused +pudding +stalks +##urbed +arsenic +leases +##hyl +##rrard +collarbone +##waite +##wil +dowry +##bant +##edance +genealogical +nitrate +salamanca +scandals +thyroid +necessitated +##! +##" +### +##$ +##% +##& +##' +##( +##) +##* +##+ +##, +##- +##. +##/ +##: +##; +##< +##= +##> +##? +##@ +##[ +##\ +##] +##^ +##_ +##` +##{ +##| +##} +##~ +##¡ +##¢ +##£ +##¤ +##¥ +##¦ +##§ +##¨ +##© +##ª +##« +##¬ +##® +##± +##´ +##µ +##¶ +##· +##º +##» +##¼ +##¾ +##¿ +##æ +##ð +##÷ +##þ +##đ +##ħ +##ŋ +##œ +##ƒ +##ɐ +##ɑ +##ɒ +##ɔ +##ɕ +##ə +##ɡ +##ɣ +##ɨ +##ɪ +##ɫ +##ɬ +##ɯ +##ɲ +##ɴ +##ɹ +##ɾ +##ʀ +##ʁ +##ʂ +##ʃ +##ʉ +##ʊ +##ʋ +##ʌ +##ʎ +##ʐ +##ʑ +##ʒ +##ʔ +##ʰ +##ʲ +##ʳ +##ʷ +##ʸ +##ʻ +##ʼ +##ʾ +##ʿ +##ˈ +##ˡ +##ˢ +##ˣ +##ˤ +##β +##γ +##δ +##ε +##ζ +##θ +##κ +##λ +##μ +##ξ +##ο +##π +##ρ +##σ +##τ +##υ +##φ +##χ +##ψ +##ω +##б +##г +##д +##ж +##з +##м +##п +##с +##у +##ф +##х +##ц +##ч +##ш +##щ +##ъ +##э +##ю +##ђ +##є +##і +##ј +##љ +##њ +##ћ +##ӏ +##ա +##բ +##գ +##դ +##ե +##թ +##ի +##լ +##կ +##հ +##մ +##յ +##ն +##ո +##պ +##ս +##վ +##տ +##ր +##ւ +##ք +##־ +##א +##ב +##ג +##ד +##ו +##ז +##ח +##ט +##י +##ך +##כ +##ל +##ם +##מ +##ן +##נ +##ס +##ע +##ף +##פ +##ץ +##צ +##ק +##ר +##ש +##ת +##، +##ء +##ب +##ت +##ث +##ج +##ح +##خ +##ذ +##ز +##س +##ش +##ص +##ض +##ط +##ظ +##ع +##غ +##ـ +##ف +##ق +##ك +##و +##ى +##ٹ +##پ +##چ +##ک +##گ +##ں +##ھ +##ہ +##ے +##अ +##आ +##उ +##ए +##क +##ख +##ग +##च +##ज +##ट +##ड +##ण +##त +##थ +##द +##ध +##न +##प +##ब +##भ +##म +##य +##र +##ल +##व +##श +##ष +##स +##ह +##ा +##ि +##ी +##ो +##। +##॥ +##ং +##অ +##আ +##ই +##উ +##এ +##ও +##ক +##খ +##গ +##চ +##ছ +##জ +##ট +##ড +##ণ +##ত +##থ +##দ +##ধ +##ন +##প +##ব +##ভ +##ম +##য +##র +##ল +##শ +##ষ +##স +##হ +##া +##ি +##ী +##ে +##க +##ச +##ட +##த +##ந +##ன +##ப +##ம +##ய +##ர +##ல +##ள +##வ +##ா +##ி +##ு +##ே +##ை +##ನ +##ರ +##ಾ +##ක +##ය +##ර +##ල +##ව +##ා +##ก +##ง +##ต +##ท +##น +##พ +##ม +##ย +##ร +##ล +##ว +##ส +##อ +##า +##เ +##་ +##། +##ག +##ང +##ད +##ན +##པ +##བ +##མ +##འ +##ར +##ལ +##ས +##မ +##ა +##ბ +##გ +##დ +##ე +##ვ +##თ +##ი +##კ +##ლ +##მ +##ნ +##ო +##რ +##ს +##ტ +##უ +##ᄀ +##ᄂ +##ᄃ +##ᄅ +##ᄆ +##ᄇ +##ᄉ +##ᄊ +##ᄋ +##ᄌ +##ᄎ +##ᄏ +##ᄐ +##ᄑ +##ᄒ +##ᅡ +##ᅢ +##ᅥ +##ᅦ +##ᅧ +##ᅩ +##ᅪ +##ᅭ +##ᅮ +##ᅯ +##ᅲ +##ᅳ +##ᅴ +##ᅵ +##ᆨ +##ᆫ +##ᆯ +##ᆷ +##ᆸ +##ᆼ +##ᴬ +##ᴮ +##ᴰ +##ᴵ +##ᴺ +##ᵀ +##ᵃ +##ᵇ +##ᵈ +##ᵉ +##ᵍ +##ᵏ +##ᵐ +##ᵒ +##ᵖ +##ᵗ +##ᵘ +##ᵣ +##ᵤ +##ᵥ +##ᶜ +##ᶠ +##‐ +##‑ +##‒ +##– +##— +##― +##‖ +##‘ +##’ +##‚ +##“ +##” +##„ +##† +##‡ +##• +##… +##‰ +##′ +##″ +##› +##‿ +##⁄ +##⁰ +##ⁱ +##⁴ +##⁵ +##⁶ +##⁷ +##⁸ +##⁹ +##⁻ +##ⁿ +##₅ +##₆ +##₇ +##₈ +##₉ +##₊ +##₍ +##₎ +##ₐ +##ₑ +##ₒ +##ₓ +##ₕ +##ₖ +##ₗ +##ₘ +##ₚ +##ₛ +##ₜ +##₤ +##₩ +##€ +##₱ +##₹ +##ℓ +##№ +##ℝ +##™ +##⅓ +##⅔ +##← +##↑ +##→ +##↓ +##↔ +##↦ +##⇄ +##⇌ +##⇒ +##∂ +##∅ +##∆ +##∇ +##∈ +##∗ +##∘ +##√ +##∞ +##∧ +##∨ +##∩ +##∪ +##≈ +##≡ +##≤ +##≥ +##⊂ +##⊆ +##⊕ +##⊗ +##⋅ +##─ +##│ +##■ +##▪ +##● +##★ +##☆ +##☉ +##♠ +##♣ +##♥ +##♦ +##♯ +##⟨ +##⟩ +##ⱼ +##⺩ +##⺼ +##⽥ +##、 +##。 +##〈 +##〉 +##《 +##》 +##「 +##」 +##『 +##』 +##〜 +##あ +##い +##う +##え +##お +##か +##き +##く +##け +##こ +##さ +##し +##す +##せ +##そ +##た +##ち +##っ +##つ +##て +##と +##な +##に +##ぬ +##ね +##の +##は +##ひ +##ふ +##へ +##ほ +##ま +##み +##む +##め +##も +##や +##ゆ +##よ +##ら +##り +##る +##れ +##ろ +##を +##ん +##ァ +##ア +##ィ +##イ +##ウ +##ェ +##エ +##オ +##カ +##キ +##ク +##ケ +##コ +##サ +##シ +##ス +##セ +##タ +##チ +##ッ +##ツ +##テ +##ト +##ナ +##ニ +##ノ +##ハ +##ヒ +##フ +##ヘ +##ホ +##マ +##ミ +##ム +##メ +##モ +##ャ +##ュ +##ョ +##ラ +##リ +##ル +##レ +##ロ +##ワ +##ン +##・ +##ー +##一 +##三 +##上 +##下 +##不 +##世 +##中 +##主 +##久 +##之 +##也 +##事 +##二 +##五 +##井 +##京 +##人 +##亻 +##仁 +##介 +##代 +##仮 +##伊 +##会 +##佐 +##侍 +##保 +##信 +##健 +##元 +##光 +##八 +##公 +##内 +##出 +##分 +##前 +##劉 +##力 +##加 +##勝 +##北 +##区 +##十 +##千 +##南 +##博 +##原 +##口 +##古 +##史 +##司 +##合 +##吉 +##同 +##名 +##和 +##囗 +##四 +##国 +##國 +##土 +##地 +##坂 +##城 +##堂 +##場 +##士 +##夏 +##外 +##大 +##天 +##太 +##夫 +##奈 +##女 +##子 +##学 +##宀 +##宇 +##安 +##宗 +##定 +##宣 +##宮 +##家 +##宿 +##寺 +##將 +##小 +##尚 +##山 +##岡 +##島 +##崎 +##川 +##州 +##巿 +##帝 +##平 +##年 +##幸 +##广 +##弘 +##張 +##彳 +##後 +##御 +##德 +##心 +##忄 +##志 +##忠 +##愛 +##成 +##我 +##戦 +##戸 +##手 +##扌 +##政 +##文 +##新 +##方 +##日 +##明 +##星 +##春 +##昭 +##智 +##曲 +##書 +##月 +##有 +##朝 +##木 +##本 +##李 +##村 +##東 +##松 +##林 +##森 +##楊 +##樹 +##橋 +##歌 +##止 +##正 +##武 +##比 +##氏 +##民 +##水 +##氵 +##氷 +##永 +##江 +##沢 +##河 +##治 +##法 +##海 +##清 +##漢 +##瀬 +##火 +##版 +##犬 +##王 +##生 +##田 +##男 +##疒 +##発 +##白 +##的 +##皇 +##目 +##相 +##省 +##真 +##石 +##示 +##社 +##神 +##福 +##禾 +##秀 +##秋 +##空 +##立 +##章 +##竹 +##糹 +##美 +##義 +##耳 +##良 +##艹 +##花 +##英 +##華 +##葉 +##藤 +##行 +##街 +##西 +##見 +##訁 +##語 +##谷 +##貝 +##貴 +##車 +##軍 +##辶 +##道 +##郎 +##郡 +##部 +##都 +##里 +##野 +##金 +##鈴 +##镇 +##長 +##門 +##間 +##阝 +##阿 +##陳 +##陽 +##雄 +##青 +##面 +##風 +##食 +##香 +##馬 +##高 +##龍 +##龸 +##fi +##fl +##! +##( +##) +##, +##- +##. +##/ +##: +##? +##~ diff --git a/extras/BLIP/models/blip.py b/extras/BLIP/models/blip.py new file mode 100644 index 0000000..0f8c1d2 --- /dev/null +++ b/extras/BLIP/models/blip.py @@ -0,0 +1,239 @@ +''' + * Copyright (c) 2022, salesforce.com, inc. + * All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause + * By Junnan Li +''' +import warnings +warnings.filterwarnings("ignore") + +from extras.BLIP.models.vit import VisionTransformer, interpolate_pos_embed +from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel +from transformers import BertTokenizer + +import torch +from torch import nn +import torch.nn.functional as F + +import os +from urllib.parse import urlparse +from timm.models.hub import download_cached_file + +class BLIP_Base(nn.Module): + def __init__(self, + med_config = 'configs/med_config.json', + image_size = 224, + vit = 'base', + vit_grad_ckpt = False, + vit_ckpt_layer = 0, + ): + """ + Args: + med_config (str): path for the mixture of encoder-decoder model's configuration file + image_size (int): input image size + vit (str): model size of vision transformer + """ + super().__init__() + + self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) + self.tokenizer = init_tokenizer() + med_config = BertConfig.from_json_file(med_config) + med_config.encoder_width = vision_width + self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) + + + def forward(self, image, caption, mode): + + assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal" + text = self.tokenizer(caption, return_tensors="pt").to(image.device) + + if mode=='image': + # return image features + image_embeds = self.visual_encoder(image) + return image_embeds + + elif mode=='text': + # return text features + text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, + return_dict = True, mode = 'text') + return text_output.last_hidden_state + + elif mode=='multimodal': + # return multimodel features + image_embeds = self.visual_encoder(image) + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) + + text.input_ids[:,0] = self.tokenizer.enc_token_id + output = self.text_encoder(text.input_ids, + attention_mask = text.attention_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + return_dict = True, + ) + return output.last_hidden_state + + + +class BLIP_Decoder(nn.Module): + def __init__(self, + med_config = 'configs/med_config.json', + image_size = 384, + vit = 'base', + vit_grad_ckpt = False, + vit_ckpt_layer = 0, + prompt = 'a picture of ', + ): + """ + Args: + med_config (str): path for the mixture of encoder-decoder model's configuration file + image_size (int): input image size + vit (str): model size of vision transformer + """ + super().__init__() + + self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) + self.tokenizer = init_tokenizer() + med_config = BertConfig.from_json_file(med_config) + med_config.encoder_width = vision_width + self.text_decoder = BertLMHeadModel(config=med_config) + + self.prompt = prompt + self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1 + + + def forward(self, image, caption): + + image_embeds = self.visual_encoder(image) + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) + + text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) + + text.input_ids[:,0] = self.tokenizer.bos_token_id + + decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100) + decoder_targets[:,:self.prompt_length] = -100 + + decoder_output = self.text_decoder(text.input_ids, + attention_mask = text.attention_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + labels = decoder_targets, + return_dict = True, + ) + loss_lm = decoder_output.loss + + return loss_lm + + def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0): + image_embeds = self.visual_encoder(image) + + if not sample: + image_embeds = image_embeds.repeat_interleave(num_beams,dim=0) + + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) + model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts} + + prompt = [self.prompt] * image.size(0) + input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) + input_ids[:,0] = self.tokenizer.bos_token_id + input_ids = input_ids[:, :-1] + + if sample: + #nucleus sampling + outputs = self.text_decoder.generate(input_ids=input_ids, + max_length=max_length, + min_length=min_length, + do_sample=True, + top_p=top_p, + num_return_sequences=1, + eos_token_id=self.tokenizer.sep_token_id, + pad_token_id=self.tokenizer.pad_token_id, + repetition_penalty=1.1, + **model_kwargs) + else: + #beam search + outputs = self.text_decoder.generate(input_ids=input_ids, + max_length=max_length, + min_length=min_length, + num_beams=num_beams, + eos_token_id=self.tokenizer.sep_token_id, + pad_token_id=self.tokenizer.pad_token_id, + repetition_penalty=repetition_penalty, + **model_kwargs) + + captions = [] + for output in outputs: + caption = self.tokenizer.decode(output, skip_special_tokens=True) + captions.append(caption[len(self.prompt):]) + return captions + + +def blip_decoder(pretrained='',**kwargs): + model = BLIP_Decoder(**kwargs) + if pretrained: + model,msg = load_checkpoint(model,pretrained) + assert(len(msg.missing_keys)==0) + return model + +def blip_feature_extractor(pretrained='',**kwargs): + model = BLIP_Base(**kwargs) + if pretrained: + model,msg = load_checkpoint(model,pretrained) + assert(len(msg.missing_keys)==0) + return model + +def init_tokenizer(): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "bert_tokenizer") + tokenizer = BertTokenizer.from_pretrained(tokenizer_path) + tokenizer.add_special_tokens({'bos_token':'[DEC]'}) + tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) + tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] + return tokenizer + + +def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): + + assert vit in ['base', 'large'], "vit parameter must be base or large" + if vit=='base': + vision_width = 768 + visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, + num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, + drop_path_rate=0 or drop_path_rate + ) + elif vit=='large': + vision_width = 1024 + visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, + num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, + drop_path_rate=0.1 or drop_path_rate + ) + return visual_encoder, vision_width + +def is_url(url_or_filename): + parsed = urlparse(url_or_filename) + return parsed.scheme in ("http", "https") + +def load_checkpoint(model,url_or_filename): + if is_url(url_or_filename): + cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) + checkpoint = torch.load(cached_file, map_location='cpu', weights_only=True) + elif os.path.isfile(url_or_filename): + checkpoint = torch.load(url_or_filename, map_location='cpu', weights_only=True) + else: + raise RuntimeError('checkpoint url or path is invalid') + + state_dict = checkpoint['model'] + + state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) + if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): + state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], + model.visual_encoder_m) + for key in model.state_dict().keys(): + if key in state_dict.keys(): + if state_dict[key].shape!=model.state_dict()[key].shape: + del state_dict[key] + + msg = model.load_state_dict(state_dict,strict=False) + print('load checkpoint from %s'%url_or_filename) + return model,msg + diff --git a/extras/BLIP/models/blip_itm.py b/extras/BLIP/models/blip_itm.py new file mode 100644 index 0000000..6f4da82 --- /dev/null +++ b/extras/BLIP/models/blip_itm.py @@ -0,0 +1,76 @@ +from extras.BLIP.models.med import BertConfig, BertModel +from transformers import BertTokenizer + +import torch +from torch import nn +import torch.nn.functional as F + +from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint + +class BLIP_ITM(nn.Module): + def __init__(self, + med_config = 'configs/med_config.json', + image_size = 384, + vit = 'base', + vit_grad_ckpt = False, + vit_ckpt_layer = 0, + embed_dim = 256, + ): + """ + Args: + med_config (str): path for the mixture of encoder-decoder model's configuration file + image_size (int): input image size + vit (str): model size of vision transformer + """ + super().__init__() + + self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) + self.tokenizer = init_tokenizer() + med_config = BertConfig.from_json_file(med_config) + med_config.encoder_width = vision_width + self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) + + text_width = self.text_encoder.config.hidden_size + + self.vision_proj = nn.Linear(vision_width, embed_dim) + self.text_proj = nn.Linear(text_width, embed_dim) + + self.itm_head = nn.Linear(text_width, 2) + + + def forward(self, image, caption, match_head='itm'): + + image_embeds = self.visual_encoder(image) + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) + + text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, + return_tensors="pt").to(image.device) + + + if match_head=='itm': + output = self.text_encoder(text.input_ids, + attention_mask = text.attention_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + return_dict = True, + ) + itm_output = self.itm_head(output.last_hidden_state[:,0,:]) + return itm_output + + elif match_head=='itc': + text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, + return_dict = True, mode = 'text') + image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) + text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) + + sim = image_feat @ text_feat.t() + return sim + + +def blip_itm(pretrained='',**kwargs): + model = BLIP_ITM(**kwargs) + if pretrained: + model,msg = load_checkpoint(model,pretrained) + assert(len(msg.missing_keys)==0) + return model + \ No newline at end of file diff --git a/extras/BLIP/models/blip_nlvr.py b/extras/BLIP/models/blip_nlvr.py new file mode 100644 index 0000000..159d031 --- /dev/null +++ b/extras/BLIP/models/blip_nlvr.py @@ -0,0 +1,105 @@ +from extras.BLIP.models.med import BertConfig +from extras.BLIP.models.nlvr_encoder import BertModel +from extras.BLIP.models.vit import interpolate_pos_embed +from extras.BLIP.models.blip import create_vit, init_tokenizer, is_url + +from timm.models.hub import download_cached_file + +import torch +from torch import nn +import torch.nn.functional as F +from transformers import BertTokenizer +import numpy as np +import os + + +class BLIP_NLVR(nn.Module): + def __init__(self, + med_config = 'configs/med_config.json', + image_size = 480, + vit = 'base', + vit_grad_ckpt = False, + vit_ckpt_layer = 0, + ): + """ + Args: + med_config (str): path for the mixture of encoder-decoder model's configuration file + image_size (int): input image size + vit (str): model size of vision transformer + """ + super().__init__() + + self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1) + self.tokenizer = init_tokenizer() + med_config = BertConfig.from_json_file(med_config) + med_config.encoder_width = vision_width + self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) + + self.cls_head = nn.Sequential( + nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size), + nn.ReLU(), + nn.Linear(self.text_encoder.config.hidden_size, 2) + ) + + def forward(self, image, text, targets, train=True): + + image_embeds = self.visual_encoder(image) + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) + image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0)) + + text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device) + text.input_ids[:,0] = self.tokenizer.enc_token_id + + output = self.text_encoder(text.input_ids, + attention_mask = text.attention_mask, + encoder_hidden_states = [image0_embeds,image1_embeds], + encoder_attention_mask = [image_atts[:image0_embeds.size(0)], + image_atts[image0_embeds.size(0):]], + return_dict = True, + ) + hidden_state = output.last_hidden_state[:,0,:] + prediction = self.cls_head(hidden_state) + + if train: + loss = F.cross_entropy(prediction, targets) + return loss + else: + return prediction + +def blip_nlvr(pretrained='',**kwargs): + model = BLIP_NLVR(**kwargs) + if pretrained: + model,msg = load_checkpoint(model,pretrained) + print("missing keys:") + print(msg.missing_keys) + return model + + +def load_checkpoint(model,url_or_filename): + if is_url(url_or_filename): + cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) + checkpoint = torch.load(cached_file, map_location='cpu', weights_only=True) + elif os.path.isfile(url_or_filename): + checkpoint = torch.load(url_or_filename, map_location='cpu', weights_only=True) + else: + raise RuntimeError('checkpoint url or path is invalid') + state_dict = checkpoint['model'] + + state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) + + for key in list(state_dict.keys()): + if 'crossattention.self.' in key: + new_key0 = key.replace('self','self0') + new_key1 = key.replace('self','self1') + state_dict[new_key0] = state_dict[key] + state_dict[new_key1] = state_dict[key] + elif 'crossattention.output.dense.' in key: + new_key0 = key.replace('dense','dense0') + new_key1 = key.replace('dense','dense1') + state_dict[new_key0] = state_dict[key] + state_dict[new_key1] = state_dict[key] + + msg = model.load_state_dict(state_dict,strict=False) + print('load checkpoint from %s'%url_or_filename) + return model,msg + \ No newline at end of file diff --git a/extras/BLIP/models/blip_pretrain.py b/extras/BLIP/models/blip_pretrain.py new file mode 100644 index 0000000..9b8a3a4 --- /dev/null +++ b/extras/BLIP/models/blip_pretrain.py @@ -0,0 +1,339 @@ +''' + * Copyright (c) 2022, salesforce.com, inc. + * All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause + * By Junnan Li +''' +from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel +from transformers import BertTokenizer +import transformers +transformers.logging.set_verbosity_error() + +import torch +from torch import nn +import torch.nn.functional as F + +from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint + +class BLIP_Pretrain(nn.Module): + def __init__(self, + med_config = 'configs/bert_config.json', + image_size = 224, + vit = 'base', + vit_grad_ckpt = False, + vit_ckpt_layer = 0, + embed_dim = 256, + queue_size = 57600, + momentum = 0.995, + ): + """ + Args: + med_config (str): path for the mixture of encoder-decoder model's configuration file + image_size (int): input image size + vit (str): model size of vision transformer + """ + super().__init__() + + self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0) + + if vit=='base': + checkpoint = torch.hub.load_state_dict_from_url( + url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", + map_location="cpu", check_hash=True) + state_dict = checkpoint["model"] + msg = self.visual_encoder.load_state_dict(state_dict,strict=False) + elif vit=='large': + from timm.models.helpers import load_custom_pretrained + from timm.models.vision_transformer import default_cfgs + load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k']) + + self.tokenizer = init_tokenizer() + encoder_config = BertConfig.from_json_file(med_config) + encoder_config.encoder_width = vision_width + self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False) + self.text_encoder.resize_token_embeddings(len(self.tokenizer)) + + text_width = self.text_encoder.config.hidden_size + + self.vision_proj = nn.Linear(vision_width, embed_dim) + self.text_proj = nn.Linear(text_width, embed_dim) + + self.itm_head = nn.Linear(text_width, 2) + + # create momentum encoders + self.visual_encoder_m, vision_width = create_vit(vit,image_size) + self.vision_proj_m = nn.Linear(vision_width, embed_dim) + self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False) + self.text_proj_m = nn.Linear(text_width, embed_dim) + + self.model_pairs = [[self.visual_encoder,self.visual_encoder_m], + [self.vision_proj,self.vision_proj_m], + [self.text_encoder,self.text_encoder_m], + [self.text_proj,self.text_proj_m], + ] + self.copy_params() + + # create the queue + self.register_buffer("image_queue", torch.randn(embed_dim, queue_size)) + self.register_buffer("text_queue", torch.randn(embed_dim, queue_size)) + self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) + + self.image_queue = nn.functional.normalize(self.image_queue, dim=0) + self.text_queue = nn.functional.normalize(self.text_queue, dim=0) + + self.queue_size = queue_size + self.momentum = momentum + self.temp = nn.Parameter(0.07*torch.ones([])) + + # create the decoder + decoder_config = BertConfig.from_json_file(med_config) + decoder_config.encoder_width = vision_width + self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config) + self.text_decoder.resize_token_embeddings(len(self.tokenizer)) + tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention') + + + def forward(self, image, caption, alpha): + with torch.no_grad(): + self.temp.clamp_(0.001,0.5) + + image_embeds = self.visual_encoder(image) + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) + image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) + + text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30, + return_tensors="pt").to(image.device) + text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, + return_dict = True, mode = 'text') + text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) + + # get momentum features + with torch.no_grad(): + self._momentum_update() + image_embeds_m = self.visual_encoder_m(image) + image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1) + image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1) + + text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask, + return_dict = True, mode = 'text') + text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) + text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1) + + sim_i2t_m = image_feat_m @ text_feat_all / self.temp + sim_t2i_m = text_feat_m @ image_feat_all / self.temp + + sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device) + sim_targets.fill_diagonal_(1) + + sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets + sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets + + sim_i2t = image_feat @ text_feat_all / self.temp + sim_t2i = text_feat @ image_feat_all / self.temp + + loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean() + loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() + + loss_ita = (loss_i2t+loss_t2i)/2 + + self._dequeue_and_enqueue(image_feat_m, text_feat_m) + + ###============== Image-text Matching ===================### + encoder_input_ids = text.input_ids.clone() + encoder_input_ids[:,0] = self.tokenizer.enc_token_id + + # forward the positve image-text pair + bs = image.size(0) + output_pos = self.text_encoder(encoder_input_ids, + attention_mask = text.attention_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + return_dict = True, + ) + with torch.no_grad(): + weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4 + weights_t2i.fill_diagonal_(0) + weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4 + weights_i2t.fill_diagonal_(0) + + # select a negative image for each text + image_embeds_neg = [] + for b in range(bs): + neg_idx = torch.multinomial(weights_t2i[b], 1).item() + image_embeds_neg.append(image_embeds[neg_idx]) + image_embeds_neg = torch.stack(image_embeds_neg,dim=0) + + # select a negative text for each image + text_ids_neg = [] + text_atts_neg = [] + for b in range(bs): + neg_idx = torch.multinomial(weights_i2t[b], 1).item() + text_ids_neg.append(encoder_input_ids[neg_idx]) + text_atts_neg.append(text.attention_mask[neg_idx]) + + text_ids_neg = torch.stack(text_ids_neg,dim=0) + text_atts_neg = torch.stack(text_atts_neg,dim=0) + + text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0) + text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0) + + image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0) + image_atts_all = torch.cat([image_atts,image_atts],dim=0) + + output_neg = self.text_encoder(text_ids_all, + attention_mask = text_atts_all, + encoder_hidden_states = image_embeds_all, + encoder_attention_mask = image_atts_all, + return_dict = True, + ) + + vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0) + vl_output = self.itm_head(vl_embeddings) + + itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)], + dim=0).to(image.device) + loss_itm = F.cross_entropy(vl_output, itm_labels) + + ##================= LM ========================## + decoder_input_ids = text.input_ids.clone() + decoder_input_ids[:,0] = self.tokenizer.bos_token_id + decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100) + + decoder_output = self.text_decoder(decoder_input_ids, + attention_mask = text.attention_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + labels = decoder_targets, + return_dict = True, + ) + + loss_lm = decoder_output.loss + return loss_ita, loss_itm, loss_lm + + + + @torch.no_grad() + def copy_params(self): + for model_pair in self.model_pairs: + for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): + param_m.data.copy_(param.data) # initialize + param_m.requires_grad = False # not update by gradient + + + @torch.no_grad() + def _momentum_update(self): + for model_pair in self.model_pairs: + for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): + param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum) + + + @torch.no_grad() + def _dequeue_and_enqueue(self, image_feat, text_feat): + # gather keys before updating queue + image_feats = concat_all_gather(image_feat) + text_feats = concat_all_gather(text_feat) + + batch_size = image_feats.shape[0] + + ptr = int(self.queue_ptr) + assert self.queue_size % batch_size == 0 # for simplicity + + # replace the keys at ptr (dequeue and enqueue) + self.image_queue[:, ptr:ptr + batch_size] = image_feats.T + self.text_queue[:, ptr:ptr + batch_size] = text_feats.T + ptr = (ptr + batch_size) % self.queue_size # move pointer + + self.queue_ptr[0] = ptr + + +def blip_pretrain(**kwargs): + model = BLIP_Pretrain(**kwargs) + return model + + +@torch.no_grad() +def concat_all_gather(tensor): + """ + Performs all_gather operation on the provided tensors. + *** Warning ***: torch.distributed.all_gather has no gradient. + """ + tensors_gather = [torch.ones_like(tensor) + for _ in range(torch.distributed.get_world_size())] + torch.distributed.all_gather(tensors_gather, tensor, async_op=False) + + output = torch.cat(tensors_gather, dim=0) + return output + + +from typing import List +def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str): + uninitialized_encoder_weights: List[str] = [] + if decoder.__class__ != encoder.__class__: + print( + f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized." + ) + + def tie_encoder_to_decoder_recursively( + decoder_pointer: nn.Module, + encoder_pointer: nn.Module, + module_name: str, + uninitialized_encoder_weights: List[str], + skip_key: str, + depth=0, + ): + assert isinstance(decoder_pointer, nn.Module) and isinstance( + encoder_pointer, nn.Module + ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" + if hasattr(decoder_pointer, "weight") and skip_key not in module_name: + assert hasattr(encoder_pointer, "weight") + encoder_pointer.weight = decoder_pointer.weight + if hasattr(decoder_pointer, "bias"): + assert hasattr(encoder_pointer, "bias") + encoder_pointer.bias = decoder_pointer.bias + print(module_name+' is tied') + return + + encoder_modules = encoder_pointer._modules + decoder_modules = decoder_pointer._modules + if len(decoder_modules) > 0: + assert ( + len(encoder_modules) > 0 + ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" + + all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) + encoder_layer_pos = 0 + for name, module in decoder_modules.items(): + if name.isdigit(): + encoder_name = str(int(name) + encoder_layer_pos) + decoder_name = name + if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( + encoder_modules + ) != len(decoder_modules): + # this can happen if the name corresponds to the position in a list module list of layers + # in this case the decoder has added a cross-attention that the encoder does not have + # thus skip this step and subtract one layer pos from encoder + encoder_layer_pos -= 1 + continue + elif name not in encoder_modules: + continue + elif depth > 500: + raise ValueError( + "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." + ) + else: + decoder_name = encoder_name = name + tie_encoder_to_decoder_recursively( + decoder_modules[decoder_name], + encoder_modules[encoder_name], + module_name + "/" + name, + uninitialized_encoder_weights, + skip_key, + depth=depth + 1, + ) + all_encoder_weights.remove(module_name + "/" + encoder_name) + + uninitialized_encoder_weights += list(all_encoder_weights) + + # tie weights recursively + tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key) diff --git a/extras/BLIP/models/blip_retrieval.py b/extras/BLIP/models/blip_retrieval.py new file mode 100644 index 0000000..0949358 --- /dev/null +++ b/extras/BLIP/models/blip_retrieval.py @@ -0,0 +1,319 @@ +from extras.BLIP.models.med import BertConfig, BertModel +from transformers import BertTokenizer + +import torch +from torch import nn +import torch.nn.functional as F + +from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint + +class BLIP_Retrieval(nn.Module): + def __init__(self, + med_config = 'configs/med_config.json', + image_size = 384, + vit = 'base', + vit_grad_ckpt = False, + vit_ckpt_layer = 0, + embed_dim = 256, + queue_size = 57600, + momentum = 0.995, + negative_all_rank = False, + ): + """ + Args: + med_config (str): path for the mixture of encoder-decoder model's configuration file + image_size (int): input image size + vit (str): model size of vision transformer + """ + super().__init__() + + self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) + self.tokenizer = init_tokenizer() + med_config = BertConfig.from_json_file(med_config) + med_config.encoder_width = vision_width + self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) + + text_width = self.text_encoder.config.hidden_size + + self.vision_proj = nn.Linear(vision_width, embed_dim) + self.text_proj = nn.Linear(text_width, embed_dim) + + self.itm_head = nn.Linear(text_width, 2) + + # create momentum encoders + self.visual_encoder_m, vision_width = create_vit(vit,image_size) + self.vision_proj_m = nn.Linear(vision_width, embed_dim) + self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False) + self.text_proj_m = nn.Linear(text_width, embed_dim) + + self.model_pairs = [[self.visual_encoder,self.visual_encoder_m], + [self.vision_proj,self.vision_proj_m], + [self.text_encoder,self.text_encoder_m], + [self.text_proj,self.text_proj_m], + ] + self.copy_params() + + # create the queue + self.register_buffer("image_queue", torch.randn(embed_dim, queue_size)) + self.register_buffer("text_queue", torch.randn(embed_dim, queue_size)) + self.register_buffer("idx_queue", torch.full((1,queue_size),-100)) + self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long)) + + self.image_queue = nn.functional.normalize(self.image_queue, dim=0) + self.text_queue = nn.functional.normalize(self.text_queue, dim=0) + + self.queue_size = queue_size + self.momentum = momentum + self.temp = nn.Parameter(0.07*torch.ones([])) + + self.negative_all_rank = negative_all_rank + + + def forward(self, image, caption, alpha, idx): + with torch.no_grad(): + self.temp.clamp_(0.001,0.5) + + image_embeds = self.visual_encoder(image) + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) + image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) + + text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, + return_tensors="pt").to(image.device) + + text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, + return_dict = True, mode = 'text') + text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) + + ###============== Image-text Contrastive Learning ===================### + idx = idx.view(-1,1) + idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1) + pos_idx = torch.eq(idx, idx_all).float() + sim_targets = pos_idx / pos_idx.sum(1,keepdim=True) + + # get momentum features + with torch.no_grad(): + self._momentum_update() + image_embeds_m = self.visual_encoder_m(image) + image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1) + image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1) + + text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask, + return_dict = True, mode = 'text') + text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) + text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1) + + sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp + sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp + + sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets + sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets + + sim_i2t = image_feat @ text_feat_m_all / self.temp + sim_t2i = text_feat @ image_feat_m_all / self.temp + + loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean() + loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() + + loss_ita = (loss_i2t+loss_t2i)/2 + + idxs = concat_all_gather(idx) + self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs) + + ###============== Image-text Matching ===================### + encoder_input_ids = text.input_ids.clone() + encoder_input_ids[:,0] = self.tokenizer.enc_token_id + + # forward the positve image-text pair + bs = image.size(0) + output_pos = self.text_encoder(encoder_input_ids, + attention_mask = text.attention_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + return_dict = True, + ) + + + if self.negative_all_rank: + # compute sample similarity + with torch.no_grad(): + mask = torch.eq(idx, idxs.t()) + + image_feat_world = concat_all_gather(image_feat) + text_feat_world = concat_all_gather(text_feat) + + sim_i2t = image_feat @ text_feat_world.t() / self.temp + sim_t2i = text_feat @ image_feat_world.t() / self.temp + + weights_i2t = F.softmax(sim_i2t,dim=1) + weights_i2t.masked_fill_(mask, 0) + + weights_t2i = F.softmax(sim_t2i,dim=1) + weights_t2i.masked_fill_(mask, 0) + + image_embeds_world = all_gather_with_grad(image_embeds) + + # select a negative image (from all ranks) for each text + image_embeds_neg = [] + for b in range(bs): + neg_idx = torch.multinomial(weights_t2i[b], 1).item() + image_embeds_neg.append(image_embeds_world[neg_idx]) + image_embeds_neg = torch.stack(image_embeds_neg,dim=0) + + # select a negative text (from all ranks) for each image + input_ids_world = concat_all_gather(encoder_input_ids) + att_mask_world = concat_all_gather(text.attention_mask) + + text_ids_neg = [] + text_atts_neg = [] + for b in range(bs): + neg_idx = torch.multinomial(weights_i2t[b], 1).item() + text_ids_neg.append(input_ids_world[neg_idx]) + text_atts_neg.append(att_mask_world[neg_idx]) + + else: + with torch.no_grad(): + mask = torch.eq(idx, idx.t()) + + sim_i2t = image_feat @ text_feat.t() / self.temp + sim_t2i = text_feat @ image_feat.t() / self.temp + + weights_i2t = F.softmax(sim_i2t,dim=1) + weights_i2t.masked_fill_(mask, 0) + + weights_t2i = F.softmax(sim_t2i,dim=1) + weights_t2i.masked_fill_(mask, 0) + + # select a negative image (from same rank) for each text + image_embeds_neg = [] + for b in range(bs): + neg_idx = torch.multinomial(weights_t2i[b], 1).item() + image_embeds_neg.append(image_embeds[neg_idx]) + image_embeds_neg = torch.stack(image_embeds_neg,dim=0) + + # select a negative text (from same rank) for each image + text_ids_neg = [] + text_atts_neg = [] + for b in range(bs): + neg_idx = torch.multinomial(weights_i2t[b], 1).item() + text_ids_neg.append(encoder_input_ids[neg_idx]) + text_atts_neg.append(text.attention_mask[neg_idx]) + + text_ids_neg = torch.stack(text_ids_neg,dim=0) + text_atts_neg = torch.stack(text_atts_neg,dim=0) + + text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0) + text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0) + + image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0) + image_atts_all = torch.cat([image_atts,image_atts],dim=0) + + output_neg = self.text_encoder(text_ids_all, + attention_mask = text_atts_all, + encoder_hidden_states = image_embeds_all, + encoder_attention_mask = image_atts_all, + return_dict = True, + ) + + + vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0) + vl_output = self.itm_head(vl_embeddings) + + itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)], + dim=0).to(image.device) + loss_itm = F.cross_entropy(vl_output, itm_labels) + + return loss_ita, loss_itm + + + @torch.no_grad() + def copy_params(self): + for model_pair in self.model_pairs: + for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): + param_m.data.copy_(param.data) # initialize + param_m.requires_grad = False # not update by gradient + + + @torch.no_grad() + def _momentum_update(self): + for model_pair in self.model_pairs: + for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): + param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum) + + + @torch.no_grad() + def _dequeue_and_enqueue(self, image_feat, text_feat, idxs): + # gather keys before updating queue + image_feats = concat_all_gather(image_feat) + text_feats = concat_all_gather(text_feat) + + + batch_size = image_feats.shape[0] + + ptr = int(self.ptr_queue) + assert self.queue_size % batch_size == 0 # for simplicity + + # replace the keys at ptr (dequeue and enqueue) + self.image_queue[:, ptr:ptr + batch_size] = image_feats.T + self.text_queue[:, ptr:ptr + batch_size] = text_feats.T + self.idx_queue[:, ptr:ptr + batch_size] = idxs.T + ptr = (ptr + batch_size) % self.queue_size # move pointer + + self.ptr_queue[0] = ptr + + +def blip_retrieval(pretrained='',**kwargs): + model = BLIP_Retrieval(**kwargs) + if pretrained: + model,msg = load_checkpoint(model,pretrained) + print("missing keys:") + print(msg.missing_keys) + return model + + +@torch.no_grad() +def concat_all_gather(tensor): + """ + Performs all_gather operation on the provided tensors. + *** Warning ***: torch.distributed.all_gather has no gradient. + """ + tensors_gather = [torch.ones_like(tensor) + for _ in range(torch.distributed.get_world_size())] + torch.distributed.all_gather(tensors_gather, tensor, async_op=False) + + output = torch.cat(tensors_gather, dim=0) + return output + + +class GatherLayer(torch.autograd.Function): + """ + Gather tensors from all workers with support for backward propagation: + This implementation does not cut the gradients as torch.distributed.all_gather does. + """ + + @staticmethod + def forward(ctx, x): + output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())] + torch.distributed.all_gather(output, x) + return tuple(output) + + @staticmethod + def backward(ctx, *grads): + all_gradients = torch.stack(grads) + torch.distributed.all_reduce(all_gradients) + return all_gradients[torch.distributed.get_rank()] + + +def all_gather_with_grad(tensors): + """ + Performs all_gather operation on the provided tensors. + Graph remains connected for backward grad computation. + """ + # Queue the gathered tensors + world_size = torch.distributed.get_world_size() + # There is no need for reduction in the single-proc case + if world_size == 1: + return tensors + + tensor_all = GatherLayer.apply(tensors) + + return torch.cat(tensor_all, dim=0) diff --git a/extras/BLIP/models/blip_vqa.py b/extras/BLIP/models/blip_vqa.py new file mode 100644 index 0000000..99928a8 --- /dev/null +++ b/extras/BLIP/models/blip_vqa.py @@ -0,0 +1,186 @@ +from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel +from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint + +import torch +from torch import nn +import torch.nn.functional as F +from transformers import BertTokenizer +import numpy as np + +class BLIP_VQA(nn.Module): + def __init__(self, + med_config = 'configs/med_config.json', + image_size = 480, + vit = 'base', + vit_grad_ckpt = False, + vit_ckpt_layer = 0, + ): + """ + Args: + med_config (str): path for the mixture of encoder-decoder model's configuration file + image_size (int): input image size + vit (str): model size of vision transformer + """ + super().__init__() + + self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1) + self.tokenizer = init_tokenizer() + + encoder_config = BertConfig.from_json_file(med_config) + encoder_config.encoder_width = vision_width + self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False) + + decoder_config = BertConfig.from_json_file(med_config) + self.text_decoder = BertLMHeadModel(config=decoder_config) + + + def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128): + + image_embeds = self.visual_encoder(image) + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) + + question = self.tokenizer(question, padding='longest', truncation=True, max_length=35, + return_tensors="pt").to(image.device) + question.input_ids[:,0] = self.tokenizer.enc_token_id + + if train: + ''' + n: number of answers for each question + weights: weight for each answer + ''' + answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device) + answer.input_ids[:,0] = self.tokenizer.bos_token_id + answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100) + + question_output = self.text_encoder(question.input_ids, + attention_mask = question.attention_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + return_dict = True) + + question_states = [] + question_atts = [] + for b, n in enumerate(n): + question_states += [question_output.last_hidden_state[b]]*n + question_atts += [question.attention_mask[b]]*n + question_states = torch.stack(question_states,0) + question_atts = torch.stack(question_atts,0) + + answer_output = self.text_decoder(answer.input_ids, + attention_mask = answer.attention_mask, + encoder_hidden_states = question_states, + encoder_attention_mask = question_atts, + labels = answer_targets, + return_dict = True, + reduction = 'none', + ) + + loss = weights * answer_output.loss + loss = loss.sum()/image.size(0) + + return loss + + + else: + question_output = self.text_encoder(question.input_ids, + attention_mask = question.attention_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + return_dict = True) + + if inference=='generate': + num_beams = 3 + question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0) + question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device) + model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts} + + bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device) + + outputs = self.text_decoder.generate(input_ids=bos_ids, + max_length=10, + min_length=1, + num_beams=num_beams, + eos_token_id=self.tokenizer.sep_token_id, + pad_token_id=self.tokenizer.pad_token_id, + **model_kwargs) + + answers = [] + for output in outputs: + answer = self.tokenizer.decode(output, skip_special_tokens=True) + answers.append(answer) + return answers + + elif inference=='rank': + max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask, + answer.input_ids, answer.attention_mask, k_test) + return max_ids + + + + def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k): + + num_ques = question_states.size(0) + start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token + + start_output = self.text_decoder(start_ids, + encoder_hidden_states = question_states, + encoder_attention_mask = question_atts, + return_dict = True, + reduction = 'none') + logits = start_output.logits[:,0,:] # first token's logit + + # topk_probs: top-k probability + # topk_ids: [num_question, k] + answer_first_token = answer_ids[:,1] + prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token) + topk_probs, topk_ids = prob_first_token.topk(k,dim=1) + + # answer input: [num_question*k, answer_len] + input_ids = [] + input_atts = [] + for b, topk_id in enumerate(topk_ids): + input_ids.append(answer_ids.index_select(dim=0, index=topk_id)) + input_atts.append(answer_atts.index_select(dim=0, index=topk_id)) + input_ids = torch.cat(input_ids,dim=0) + input_atts = torch.cat(input_atts,dim=0) + + targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100) + + # repeat encoder's output for top-k answers + question_states = tile(question_states, 0, k) + question_atts = tile(question_atts, 0, k) + + output = self.text_decoder(input_ids, + attention_mask = input_atts, + encoder_hidden_states = question_states, + encoder_attention_mask = question_atts, + labels = targets_ids, + return_dict = True, + reduction = 'none') + + log_probs_sum = -output.loss + log_probs_sum = log_probs_sum.view(num_ques,k) + + max_topk_ids = log_probs_sum.argmax(dim=1) + max_ids = topk_ids[max_topk_ids>=0,max_topk_ids] + + return max_ids + + +def blip_vqa(pretrained='',**kwargs): + model = BLIP_VQA(**kwargs) + if pretrained: + model,msg = load_checkpoint(model,pretrained) +# assert(len(msg.missing_keys)==0) + return model + + +def tile(x, dim, n_tile): + init_dim = x.size(dim) + repeat_idx = [1] * x.dim() + repeat_idx[dim] = n_tile + x = x.repeat(*(repeat_idx)) + order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])) + return torch.index_select(x, dim, order_index.to(x.device)) + + \ No newline at end of file diff --git a/extras/BLIP/models/med.py b/extras/BLIP/models/med.py new file mode 100644 index 0000000..7b00a35 --- /dev/null +++ b/extras/BLIP/models/med.py @@ -0,0 +1,955 @@ +''' + * Copyright (c) 2022, salesforce.com, inc. + * All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause + * By Junnan Li + * Based on huggingface code base + * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert +''' + +import math +import os +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple + +import torch +from torch import Tensor, device, dtype, nn +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss +import torch.nn.functional as F + +from transformers.activations import ACT2FN +from transformers.file_utils import ( + ModelOutput, +) +from transformers.modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + NextSentencePredictorOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from transformers.modeling_utils import ( + PreTrainedModel, + apply_chunking_to_forward, + find_pruneable_heads_and_indices, + prune_linear_layer, +) +from transformers.utils import logging +from transformers.models.bert.configuration_bert import BertConfig + + +logger = logging.get_logger(__name__) + + +class BertEmbeddings(nn.Module): + """Construct the embeddings from word and position embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + + self.config = config + + def forward( + self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + embeddings = inputs_embeds + + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class BertSelfAttention(nn.Module): + def __init__(self, config, is_cross_attention): + super().__init__() + self.config = config + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + "The hidden size (%d) is not a multiple of the number of attention " + "heads (%d)" % (config.hidden_size, config.num_attention_heads) + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + if is_cross_attention: + self.key = nn.Linear(config.encoder_width, self.all_head_size) + self.value = nn.Linear(config.encoder_width, self.all_head_size) + else: + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + self.save_attention = False + + def save_attn_gradients(self, attn_gradients): + self.attn_gradients = attn_gradients + + def get_attn_gradients(self): + return self.attn_gradients + + def save_attention_map(self, attention_map): + self.attention_map = attention_map + + def get_attention_map(self): + return self.attention_map + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + seq_length = hidden_states.size()[1] + position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + if is_cross_attention and self.save_attention: + self.save_attention_map(attention_probs) + attention_probs.register_hook(self.save_attn_gradients) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs_dropped = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs_dropped = attention_probs_dropped * head_mask + + context_layer = torch.matmul(attention_probs_dropped, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + outputs = outputs + (past_key_value,) + return outputs + + +class BertSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BertAttention(nn.Module): + def __init__(self, config, is_cross_attention=False): + super().__init__() + self.self = BertSelfAttention(config, is_cross_attention) + self.output = BertSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class BertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class BertOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BertLayer(nn.Module): + def __init__(self, config, layer_num): + super().__init__() + self.config = config + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = BertAttention(config) + self.layer_num = layer_num + if self.config.add_cross_attention: + self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention) + self.intermediate = BertIntermediate(config) + self.output = BertOutput(config) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + mode=None, + ): + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + + if mode=='multimodal': + assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers" + + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + output_attentions=output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class BertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + mode='multimodal', + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + + for i in range(self.config.num_hidden_layers): + layer_module = self.layer[i] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + + if use_cache: + logger.warn( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs, past_key_value, output_attentions) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(layer_module), + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + mode=mode, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + mode=mode, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class BertPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class BertPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class BertLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = BertPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +class BertOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = BertLMPredictionHead(config) + + def forward(self, sequence_output): + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class BertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BertConfig + base_model_prefix = "bert" + _keys_to_ignore_on_load_missing = [r"position_ids"] + + def _init_weights(self, module): + """ Initialize the weights """ + if isinstance(module, (nn.Linear, nn.Embedding)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + + +class BertModel(BertPreTrainedModel): + """ + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in `Attention is + all you need `__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an + input to the forward pass. + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = BertEmbeddings(config) + + self.encoder = BertEncoder(config) + + self.pooler = BertPooler(config) if add_pooling_layer else None + + self.init_weights() + + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + + def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor: + """ + Makes broadcastable attention and causal masks so that future and masked tokens are ignored. + + Arguments: + attention_mask (:obj:`torch.Tensor`): + Mask with ones indicating tokens to attend to, zeros for tokens to ignore. + input_shape (:obj:`Tuple[int]`): + The shape of the input to the model. + device: (:obj:`torch.device`): + The device of the input to the model. + + Returns: + :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. + """ + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + if attention_mask.dim() == 3: + extended_attention_mask = attention_mask[:, None, :, :] + elif attention_mask.dim() == 2: + # Provided a padding mask of dimensions [batch_size, seq_length] + # - if the model is a decoder, apply a causal mask in addition to the padding mask + # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] + if is_decoder: + batch_size, seq_length = input_shape + + seq_ids = torch.arange(seq_length, device=device) + causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] + # in case past_key_values are used we need to add a prefix ones mask to the causal mask + # causal and attention masks must have same type with pytorch version < 1.3 + causal_mask = causal_mask.to(attention_mask.dtype) + + if causal_mask.shape[1] < attention_mask.shape[1]: + prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] + causal_mask = torch.cat( + [ + torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype), + causal_mask, + ], + axis=-1, + ) + + extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] + else: + extended_attention_mask = attention_mask[:, None, None, :] + else: + raise ValueError( + "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( + input_shape, attention_mask.shape + ) + ) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 + return extended_attention_mask + + def forward( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + is_decoder=False, + mode='multimodal', + ): + r""" + encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` + (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` + instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. + use_cache (:obj:`bool`, `optional`): + If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up + decoding (see :obj:`past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + batch_size, seq_length = input_shape + device = input_ids.device + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size, seq_length = input_shape + device = inputs_embeds.device + elif encoder_embeds is not None: + input_shape = encoder_embeds.size()[:-1] + batch_size, seq_length = input_shape + device = encoder_embeds.device + else: + raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, + device, is_decoder) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if encoder_hidden_states is not None: + if type(encoder_hidden_states) == list: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() + else: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + + if type(encoder_attention_mask) == list: + encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] + elif encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + if encoder_embeds is None: + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + else: + embedding_output = encoder_embeds + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + mode=mode, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + + +class BertLMHeadModel(BertPreTrainedModel): + + _keys_to_ignore_on_load_unexpected = [r"pooler"] + _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + self.bert = BertModel(config, add_pooling_layer=False) + self.cls = BertOnlyMLMHead(config) + + self.init_weights() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + def forward( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + labels=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + return_logits=False, + is_decoder=True, + reduction='mean', + mode='multimodal', + ): + r""" + encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are + ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` + past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` + (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` + instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. + use_cache (:obj:`bool`, `optional`): + If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up + decoding (see :obj:`past_key_values`). + Returns: + Example:: + >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig + >>> import torch + >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') + >>> config = BertConfig.from_pretrained("bert-base-cased") + >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + >>> prediction_logits = outputs.logits + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + is_decoder=is_decoder, + mode=mode, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + if return_logits: + return prediction_scores[:, :-1, :].contiguous() + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + if reduction=='none': + lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past is used + if past is not None: + input_ids = input_ids[:, -1:] + + return { + "input_ids": input_ids, + "attention_mask": attention_mask, + "past_key_values": past, + "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), + "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), + "is_decoder": True, + } + + def _reorder_cache(self, past, beam_idx): + reordered_past = () + for layer_past in past: + reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) + return reordered_past diff --git a/extras/BLIP/models/nlvr_encoder.py b/extras/BLIP/models/nlvr_encoder.py new file mode 100644 index 0000000..1946bb4 --- /dev/null +++ b/extras/BLIP/models/nlvr_encoder.py @@ -0,0 +1,843 @@ +import math +import os +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple + +import torch +from torch import Tensor, device, dtype, nn +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss +import torch.nn.functional as F + +from transformers.activations import ACT2FN +from transformers.file_utils import ( + ModelOutput, +) +from transformers.modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + NextSentencePredictorOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from transformers.modeling_utils import ( + PreTrainedModel, + apply_chunking_to_forward, + find_pruneable_heads_and_indices, + prune_linear_layer, +) +from transformers.utils import logging +from transformers.models.bert.configuration_bert import BertConfig + + +logger = logging.get_logger(__name__) + + +class BertEmbeddings(nn.Module): + """Construct the embeddings from word and position embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + + self.config = config + + def forward( + self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + embeddings = inputs_embeds + + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class BertSelfAttention(nn.Module): + def __init__(self, config, is_cross_attention): + super().__init__() + self.config = config + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + "The hidden size (%d) is not a multiple of the number of attention " + "heads (%d)" % (config.hidden_size, config.num_attention_heads) + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + if is_cross_attention: + self.key = nn.Linear(config.encoder_width, self.all_head_size) + self.value = nn.Linear(config.encoder_width, self.all_head_size) + else: + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + self.save_attention = False + + def save_attn_gradients(self, attn_gradients): + self.attn_gradients = attn_gradients + + def get_attn_gradients(self): + return self.attn_gradients + + def save_attention_map(self, attention_map): + self.attention_map = attention_map + + def get_attention_map(self): + return self.attention_map + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + seq_length = hidden_states.size()[1] + position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + if is_cross_attention and self.save_attention: + self.save_attention_map(attention_probs) + attention_probs.register_hook(self.save_attn_gradients) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs_dropped = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs_dropped = attention_probs_dropped * head_mask + + context_layer = torch.matmul(attention_probs_dropped, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + outputs = outputs + (past_key_value,) + return outputs + + +class BertSelfOutput(nn.Module): + def __init__(self, config, twin=False, merge=False): + super().__init__() + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + if twin: + self.dense0 = nn.Linear(config.hidden_size, config.hidden_size) + self.dense1 = nn.Linear(config.hidden_size, config.hidden_size) + else: + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if merge: + self.act = ACT2FN[config.hidden_act] + self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size) + self.merge = True + else: + self.merge = False + + def forward(self, hidden_states, input_tensor): + if type(hidden_states) == list: + hidden_states0 = self.dense0(hidden_states[0]) + hidden_states1 = self.dense1(hidden_states[1]) + if self.merge: + #hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1))) + hidden_states = self.merge_layer(torch.cat([hidden_states0,hidden_states1],dim=-1)) + else: + hidden_states = (hidden_states0+hidden_states1)/2 + else: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BertAttention(nn.Module): + def __init__(self, config, is_cross_attention=False, layer_num=-1): + super().__init__() + if is_cross_attention: + self.self0 = BertSelfAttention(config, is_cross_attention) + self.self1 = BertSelfAttention(config, is_cross_attention) + else: + self.self = BertSelfAttention(config, is_cross_attention) + self.output = BertSelfOutput(config, twin=is_cross_attention, merge=(is_cross_attention and layer_num>=6)) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + if type(encoder_hidden_states)==list: + self_outputs0 = self.self0( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states[0], + encoder_attention_mask[0], + past_key_value, + output_attentions, + ) + self_outputs1 = self.self1( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states[1], + encoder_attention_mask[1], + past_key_value, + output_attentions, + ) + attention_output = self.output([self_outputs0[0],self_outputs1[0]], hidden_states) + + outputs = (attention_output,) + self_outputs0[1:] # add attentions if we output them + else: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class BertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class BertOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class BertLayer(nn.Module): + def __init__(self, config, layer_num): + super().__init__() + self.config = config + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = BertAttention(config) + self.layer_num = layer_num + if self.config.add_cross_attention: + self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention, layer_num=layer_num) + self.intermediate = BertIntermediate(config) + self.output = BertOutput(config) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + mode=None, + ): + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + + if mode=='multimodal': + assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers" + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + output_attentions=output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class BertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + mode='multimodal', + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + + for i in range(self.config.num_hidden_layers): + layer_module = self.layer[i] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + + if use_cache: + logger.warn( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs, past_key_value, output_attentions) + + return custom_forward + + layer_outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(layer_module), + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + mode=mode, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + mode=mode, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class BertPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class BertPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class BertLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = BertPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +class BertOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = BertLMPredictionHead(config) + + def forward(self, sequence_output): + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class BertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BertConfig + base_model_prefix = "bert" + _keys_to_ignore_on_load_missing = [r"position_ids"] + + def _init_weights(self, module): + """ Initialize the weights """ + if isinstance(module, (nn.Linear, nn.Embedding)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + + +class BertModel(BertPreTrainedModel): + """ + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in `Attention is + all you need `__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an + input to the forward pass. + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = BertEmbeddings(config) + + self.encoder = BertEncoder(config) + + self.pooler = BertPooler(config) if add_pooling_layer else None + + self.init_weights() + + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + + def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor: + """ + Makes broadcastable attention and causal masks so that future and masked tokens are ignored. + + Arguments: + attention_mask (:obj:`torch.Tensor`): + Mask with ones indicating tokens to attend to, zeros for tokens to ignore. + input_shape (:obj:`Tuple[int]`): + The shape of the input to the model. + device: (:obj:`torch.device`): + The device of the input to the model. + + Returns: + :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. + """ + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + if attention_mask.dim() == 3: + extended_attention_mask = attention_mask[:, None, :, :] + elif attention_mask.dim() == 2: + # Provided a padding mask of dimensions [batch_size, seq_length] + # - if the model is a decoder, apply a causal mask in addition to the padding mask + # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] + if is_decoder: + batch_size, seq_length = input_shape + + seq_ids = torch.arange(seq_length, device=device) + causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] + # in case past_key_values are used we need to add a prefix ones mask to the causal mask + # causal and attention masks must have same type with pytorch version < 1.3 + causal_mask = causal_mask.to(attention_mask.dtype) + + if causal_mask.shape[1] < attention_mask.shape[1]: + prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] + causal_mask = torch.cat( + [ + torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype), + causal_mask, + ], + axis=-1, + ) + + extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] + else: + extended_attention_mask = attention_mask[:, None, None, :] + else: + raise ValueError( + "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( + input_shape, attention_mask.shape + ) + ) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility + extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 + return extended_attention_mask + + def forward( + self, + input_ids=None, + attention_mask=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + is_decoder=False, + mode='multimodal', + ): + r""" + encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` + (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` + instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. + use_cache (:obj:`bool`, `optional`): + If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up + decoding (see :obj:`past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + batch_size, seq_length = input_shape + device = input_ids.device + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size, seq_length = input_shape + device = inputs_embeds.device + elif encoder_embeds is not None: + input_shape = encoder_embeds.size()[:-1] + batch_size, seq_length = input_shape + device = encoder_embeds.device + else: + raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, + device, is_decoder) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if encoder_hidden_states is not None: + if type(encoder_hidden_states) == list: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() + else: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + + if type(encoder_attention_mask) == list: + encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] + elif encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + if encoder_embeds is None: + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + else: + embedding_output = encoder_embeds + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + mode=mode, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + diff --git a/extras/BLIP/models/vit.py b/extras/BLIP/models/vit.py new file mode 100644 index 0000000..91c0ada --- /dev/null +++ b/extras/BLIP/models/vit.py @@ -0,0 +1,308 @@ +''' + * Copyright (c) 2022, salesforce.com, inc. + * All rights reserved. + * SPDX-License-Identifier: BSD-3-Clause + * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause + * By Junnan Li + * Based on timm code base + * https://github.com/rwightman/pytorch-image-models/tree/master/timm +''' + +import torch +import torch.nn as nn +import torch.nn.functional as F +from functools import partial + +from timm.models.vision_transformer import _cfg, PatchEmbed +from timm.models.registry import register_model +from timm.models.layers import trunc_normal_, DropPath +from timm.models.helpers import named_apply, adapt_input_conv + + +def checkpoint_wrapper(x): + return x + + +class Mlp(nn.Module): + """ MLP as used in Vision Transformer, MLP-Mixer and related networks + """ + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +class Attention(nn.Module): + def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights + self.scale = qk_scale or head_dim ** -0.5 + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.attn_gradients = None + self.attention_map = None + + def save_attn_gradients(self, attn_gradients): + self.attn_gradients = attn_gradients + + def get_attn_gradients(self): + return self.attn_gradients + + def save_attention_map(self, attention_map): + self.attention_map = attention_map + + def get_attention_map(self): + return self.attention_map + + def forward(self, x, register_hook=False): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + if register_hook: + self.save_attention_map(attn) + attn.register_hook(self.save_attn_gradients) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if use_grad_checkpointing: + self.attn = checkpoint_wrapper(self.attn) + self.mlp = checkpoint_wrapper(self.mlp) + + def forward(self, x, register_hook=False): + x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class VisionTransformer(nn.Module): + """ Vision Transformer + A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - + https://arxiv.org/abs/2010.11929 + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, + num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, + drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, + use_grad_checkpointing=False, ckpt_layer=0): + """ + Args: + img_size (int, tuple): input image size + patch_size (int, tuple): patch size + in_chans (int): number of input channels + num_classes (int): number of classes for classification head + embed_dim (int): embedding dimension + depth (int): depth of transformer + num_heads (int): number of attention heads + mlp_ratio (int): ratio of mlp hidden dim to embedding dim + qkv_bias (bool): enable bias for qkv if True + qk_scale (float): override default qk scale of head_dim ** -0.5 if set + representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set + drop_rate (float): dropout rate + attn_drop_rate (float): attention dropout rate + drop_path_rate (float): stochastic depth rate + norm_layer: (nn.Module): normalization layer + """ + super().__init__() + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + + num_patches = self.patch_embed.num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + self.pos_drop = nn.Dropout(p=drop_rate) + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, + use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer) + ) + for i in range(depth)]) + self.norm = norm_layer(embed_dim) + + trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.cls_token, std=.02) + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + def forward(self, x, register_blk=-1): + B = x.shape[0] + x = self.patch_embed(x) + + cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + + x = x + self.pos_embed[:,:x.size(1),:] + x = self.pos_drop(x) + + for i,blk in enumerate(self.blocks): + x = blk(x, register_blk==i) + x = self.norm(x) + + return x + + @torch.jit.ignore() + def load_pretrained(self, checkpoint_path, prefix=''): + _load_weights(self, checkpoint_path, prefix) + + +@torch.no_grad() +def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): + """ Load weights from .npz checkpoints for official Google Brain Flax implementation + """ + import numpy as np + + def _n2p(w, t=True): + if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: + w = w.flatten() + if t: + if w.ndim == 4: + w = w.transpose([3, 2, 0, 1]) + elif w.ndim == 3: + w = w.transpose([2, 0, 1]) + elif w.ndim == 2: + w = w.transpose([1, 0]) + return torch.from_numpy(w) + + w = np.load(checkpoint_path) + if not prefix and 'opt/target/embedding/kernel' in w: + prefix = 'opt/target/' + + if hasattr(model.patch_embed, 'backbone'): + # hybrid + backbone = model.patch_embed.backbone + stem_only = not hasattr(backbone, 'stem') + stem = backbone if stem_only else backbone.stem + stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) + stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) + stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) + if not stem_only: + for i, stage in enumerate(backbone.stages): + for j, block in enumerate(stage.blocks): + bp = f'{prefix}block{i + 1}/unit{j + 1}/' + for r in range(3): + getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) + getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) + getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) + if block.downsample is not None: + block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) + block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) + block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) + embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) + else: + embed_conv_w = adapt_input_conv( + model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) + model.patch_embed.proj.weight.copy_(embed_conv_w) + model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) + model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) + pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) + if pos_embed_w.shape != model.pos_embed.shape: + pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights + pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) + model.pos_embed.copy_(pos_embed_w) + model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) + model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) +# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: +# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) +# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) +# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: +# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) +# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) + for i, block in enumerate(model.blocks.children()): + block_prefix = f'{prefix}Transformer/encoderblock_{i}/' + mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' + block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) + block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) + block.attn.qkv.weight.copy_(torch.cat([ + _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) + block.attn.qkv.bias.copy_(torch.cat([ + _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) + block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) + block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) + for r in range(2): + getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) + getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) + block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) + block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) + + +def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder): + # interpolate position embedding + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = visual_encoder.patch_embed.num_patches + num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + + if orig_size!=new_size: + # class_token and dist_token are kept unchanged + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2)) + + return new_pos_embed + else: + return pos_embed_checkpoint \ No newline at end of file diff --git a/extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py b/extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py new file mode 100644 index 0000000..c2e6468 --- /dev/null +++ b/extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py @@ -0,0 +1,43 @@ +batch_size = 1 +modelname = "groundingdino" +backbone = "swin_T_224_1k" +position_embedding = "sine" +pe_temperatureH = 20 +pe_temperatureW = 20 +return_interm_indices = [1, 2, 3] +backbone_freeze_keywords = None +enc_layers = 6 +dec_layers = 6 +pre_norm = False +dim_feedforward = 2048 +hidden_dim = 256 +dropout = 0.0 +nheads = 8 +num_queries = 900 +query_dim = 4 +num_patterns = 0 +num_feature_levels = 4 +enc_n_points = 4 +dec_n_points = 4 +two_stage_type = "standard" +two_stage_bbox_embed_share = False +two_stage_class_embed_share = False +transformer_activation = "relu" +dec_pred_bbox_embed_share = True +dn_box_noise_scale = 1.0 +dn_label_noise_ratio = 0.5 +dn_label_coef = 1.0 +dn_bbox_coef = 1.0 +embed_init_tgt = True +dn_labelbook_size = 2000 +max_text_len = 256 +text_encoder_type = "bert-base-uncased" +use_text_enhancer = True +use_fusion_layer = True +use_checkpoint = True +use_transformer_ckpt = True +use_text_cross_attention = True +text_dropout = 0.0 +fusion_dropout = 0.0 +fusion_droppath = 0.1 +sub_sentence_present = True \ No newline at end of file diff --git a/extras/GroundingDINO/util/inference.py b/extras/GroundingDINO/util/inference.py new file mode 100644 index 0000000..34ab8f0 --- /dev/null +++ b/extras/GroundingDINO/util/inference.py @@ -0,0 +1,100 @@ +from typing import Tuple, List + +import ldm_patched.modules.model_management as model_management +from ldm_patched.modules.model_patcher import ModelPatcher +from modules.config import path_inpaint +from modules.model_loader import load_file_from_url + +import numpy as np +import supervision as sv +import torch +from groundingdino.util.inference import Model +from groundingdino.util.inference import load_model, preprocess_caption, get_phrases_from_posmap + + +class GroundingDinoModel(Model): + def __init__(self): + self.config_file = 'extras/GroundingDINO/config/GroundingDINO_SwinT_OGC.py' + self.model = None + self.load_device = torch.device('cpu') + self.offload_device = torch.device('cpu') + + @torch.no_grad() + @torch.inference_mode() + def predict_with_caption( + self, + image: np.ndarray, + caption: str, + box_threshold: float = 0.35, + text_threshold: float = 0.25 + ) -> Tuple[sv.Detections, torch.Tensor, torch.Tensor, List[str]]: + if self.model is None: + filename = load_file_from_url( + url="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth", + file_name='groundingdino_swint_ogc.pth', + model_dir=path_inpaint) + model = load_model(model_config_path=self.config_file, model_checkpoint_path=filename) + + self.load_device = model_management.text_encoder_device() + self.offload_device = model_management.text_encoder_offload_device() + + model.to(self.offload_device) + + self.model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) + + model_management.load_model_gpu(self.model) + + processed_image = GroundingDinoModel.preprocess_image(image_bgr=image).to(self.load_device) + boxes, logits, phrases = predict( + model=self.model, + image=processed_image, + caption=caption, + box_threshold=box_threshold, + text_threshold=text_threshold, + device=self.load_device) + source_h, source_w, _ = image.shape + detections = GroundingDinoModel.post_process_result( + source_h=source_h, + source_w=source_w, + boxes=boxes, + logits=logits) + return detections, boxes, logits, phrases + + +def predict( + model, + image: torch.Tensor, + caption: str, + box_threshold: float, + text_threshold: float, + device: str = "cuda" +) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: + caption = preprocess_caption(caption=caption) + + # override to use model wrapped by patcher + model = model.model.to(device) + image = image.to(device) + + with torch.no_grad(): + outputs = model(image[None], captions=[caption]) + + prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256) + prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4) + + mask = prediction_logits.max(dim=1)[0] > box_threshold + logits = prediction_logits[mask] # logits.shape = (n, 256) + boxes = prediction_boxes[mask] # boxes.shape = (n, 4) + + tokenizer = model.tokenizer + tokenized = tokenizer(caption) + + phrases = [ + get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '') + for logit + in logits + ] + + return boxes, logits.max(dim=1)[0], phrases + + +default_groundingdino = GroundingDinoModel().predict_with_caption diff --git a/extras/censor.py b/extras/censor.py new file mode 100644 index 0000000..c5dea3f --- /dev/null +++ b/extras/censor.py @@ -0,0 +1,60 @@ +import os + +import numpy as np +import torch +from transformers import CLIPConfig, CLIPImageProcessor + +import ldm_patched.modules.model_management as model_management +import modules.config +from extras.safety_checker.models.safety_checker import StableDiffusionSafetyChecker +from ldm_patched.modules.model_patcher import ModelPatcher + +safety_checker_repo_root = os.path.join(os.path.dirname(__file__), 'safety_checker') +config_path = os.path.join(safety_checker_repo_root, "configs", "config.json") +preprocessor_config_path = os.path.join(safety_checker_repo_root, "configs", "preprocessor_config.json") + + +class Censor: + def __init__(self): + self.safety_checker_model: ModelPatcher | None = None + self.clip_image_processor: CLIPImageProcessor | None = None + self.load_device = torch.device('cpu') + self.offload_device = torch.device('cpu') + + def init(self): + if self.safety_checker_model is None and self.clip_image_processor is None: + safety_checker_model = modules.config.downloading_safety_checker_model() + self.clip_image_processor = CLIPImageProcessor.from_json_file(preprocessor_config_path) + clip_config = CLIPConfig.from_json_file(config_path) + model = StableDiffusionSafetyChecker.from_pretrained(safety_checker_model, config=clip_config) + model.eval() + + self.load_device = model_management.text_encoder_device() + self.offload_device = model_management.text_encoder_offload_device() + + model.to(self.offload_device) + + self.safety_checker_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) + + def censor(self, images: list | np.ndarray) -> list | np.ndarray: + self.init() + model_management.load_model_gpu(self.safety_checker_model) + + single = False + if not isinstance(images, (list, np.ndarray)): + images = [images] + single = True + + safety_checker_input = self.clip_image_processor(images, return_tensors="pt") + safety_checker_input.to(device=self.load_device) + checked_images, has_nsfw_concept = self.safety_checker_model.model(images=images, + clip_input=safety_checker_input.pixel_values) + checked_images = [image.astype(np.uint8) for image in checked_images] + + if single: + checked_images = checked_images[0] + + return checked_images + + +default_censor = Censor().censor diff --git a/extras/expansion.py b/extras/expansion.py new file mode 100644 index 0000000..34c1ee8 --- /dev/null +++ b/extras/expansion.py @@ -0,0 +1,129 @@ +# Fooocus GPT2 Expansion +# Algorithm created by Lvmin Zhang at 2023, Stanford +# If used inside Fooocus, any use is permitted. +# If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0). +# This applies to the word list, vocab, model, and algorithm. + + +import os +import torch +import math +import ldm_patched.modules.model_management as model_management + +from transformers.generation.logits_process import LogitsProcessorList +from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed +from modules.config import path_fooocus_expansion +from ldm_patched.modules.model_patcher import ModelPatcher + + +# limitation of np.random.seed(), called from transformers.set_seed() +SEED_LIMIT_NUMPY = 2**32 +neg_inf = - 8192.0 + + +def safe_str(x): + x = str(x) + for _ in range(16): + x = x.replace(' ', ' ') + return x.strip(",. \r\n") + + +def remove_pattern(x, pattern): + for p in pattern: + x = x.replace(p, '') + return x + + +class FooocusExpansion: + def __init__(self): + self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion) + + positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'), + encoding='utf-8').read().splitlines() + positive_words = ['Ġ' + x.lower() for x in positive_words if x != ''] + + self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf + + debug_list = [] + for k, v in self.tokenizer.vocab.items(): + if k in positive_words: + self.logits_bias[0, v] = 0 + debug_list.append(k[1:]) + + print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.') + + # debug_list = '\n'.join(sorted(debug_list)) + # print(debug_list) + + # t11 = self.tokenizer(',', return_tensors="np") + # t198 = self.tokenizer('\n', return_tensors="np") + # eos = self.tokenizer.eos_token_id + + self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion) + self.model.eval() + + load_device = model_management.text_encoder_device() + offload_device = model_management.text_encoder_offload_device() + + # MPS hack + if model_management.is_device_mps(load_device): + load_device = torch.device('cpu') + offload_device = torch.device('cpu') + + use_fp16 = model_management.should_use_fp16(device=load_device) + + if use_fp16: + self.model.half() + + self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device) + print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.') + + @torch.no_grad() + @torch.inference_mode() + def logits_processor(self, input_ids, scores): + assert scores.ndim == 2 and scores.shape[0] == 1 + self.logits_bias = self.logits_bias.to(scores) + + bias = self.logits_bias.clone() + bias[0, input_ids[0].to(bias.device).long()] = neg_inf + bias[0, 11] = 0 + + return scores + bias + + @torch.no_grad() + @torch.inference_mode() + def __call__(self, prompt, seed): + if prompt == '': + return '' + + if self.patcher.current_device != self.patcher.load_device: + print('Fooocus Expansion loaded by itself.') + model_management.load_model_gpu(self.patcher) + + seed = int(seed) % SEED_LIMIT_NUMPY + set_seed(seed) + prompt = safe_str(prompt) + ',' + + tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt") + tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device) + tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device) + + current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1]) + max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0)) + max_new_tokens = max_token_length - current_token_length + + if max_new_tokens == 0: + return prompt[:-1] + + # https://huggingface.co/blog/introducing-csearch + # https://huggingface.co/docs/transformers/generation_strategies + features = self.model.generate(**tokenized_kwargs, + top_k=100, + max_new_tokens=max_new_tokens, + do_sample=True, + logits_processor=LogitsProcessorList([self.logits_processor])) + + response = self.tokenizer.batch_decode(features, skip_special_tokens=True) + result = safe_str(response[0]) + + return result diff --git a/extras/face_crop.py b/extras/face_crop.py new file mode 100644 index 0000000..d4da7e8 --- /dev/null +++ b/extras/face_crop.py @@ -0,0 +1,50 @@ +import cv2 +import numpy as np +import modules.config + + +faceRestoreHelper = None + + +def align_warp_face(self, landmark, border_mode='constant'): + affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0] + self.affine_matrices.append(affine_matrix) + if border_mode == 'constant': + border_mode = cv2.BORDER_CONSTANT + elif border_mode == 'reflect101': + border_mode = cv2.BORDER_REFLECT101 + elif border_mode == 'reflect': + border_mode = cv2.BORDER_REFLECT + input_img = self.input_img + cropped_face = cv2.warpAffine(input_img, affine_matrix, self.face_size, + borderMode=border_mode, borderValue=(135, 133, 132)) + return cropped_face + + +def crop_image(img_rgb): + global faceRestoreHelper + + if faceRestoreHelper is None: + from extras.facexlib.utils.face_restoration_helper import FaceRestoreHelper + faceRestoreHelper = FaceRestoreHelper( + upscale_factor=1, + model_rootpath=modules.config.path_controlnet, + device='cpu' # use cpu is safer since we are out of memory management + ) + + faceRestoreHelper.clean_all() + faceRestoreHelper.read_image(np.ascontiguousarray(img_rgb[:, :, ::-1].copy())) + faceRestoreHelper.get_face_landmarks_5() + + landmarks = faceRestoreHelper.all_landmarks_5 + # landmarks are already sorted with confidence. + + if len(landmarks) == 0: + print('No face detected') + return img_rgb + else: + print(f'Detected {len(landmarks)} faces') + + result = align_warp_face(faceRestoreHelper, landmarks[0]) + + return np.ascontiguousarray(result[:, :, ::-1].copy()) diff --git a/extras/facexlib/detection/__init__.py b/extras/facexlib/detection/__init__.py new file mode 100644 index 0000000..4391384 --- /dev/null +++ b/extras/facexlib/detection/__init__.py @@ -0,0 +1,31 @@ +import torch +from copy import deepcopy + +from extras.facexlib.utils import load_file_from_url +from .retinaface import RetinaFace + + +def init_detection_model(model_name, half=False, device='cuda', model_rootpath=None): + if model_name == 'retinaface_resnet50': + model = RetinaFace(network_name='resnet50', half=half, device=device) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth' + elif model_name == 'retinaface_mobile0.25': + model = RetinaFace(network_name='mobile0.25', half=half, device=device) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth' + else: + raise NotImplementedError(f'{model_name} is not implemented.') + + model_path = load_file_from_url( + url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath) + + # TODO: clean pretrained model + load_net = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True) + # remove unnecessary 'module.' + for k, v in deepcopy(load_net).items(): + if k.startswith('module.'): + load_net[k[7:]] = v + load_net.pop(k) + model.load_state_dict(load_net, strict=True) + model.eval() + model = model.to(device) + return model diff --git a/extras/facexlib/detection/align_trans.py b/extras/facexlib/detection/align_trans.py new file mode 100644 index 0000000..07f1eb3 --- /dev/null +++ b/extras/facexlib/detection/align_trans.py @@ -0,0 +1,219 @@ +import cv2 +import numpy as np + +from .matlab_cp2tform import get_similarity_transform_for_cv2 + +# reference facial points, a list of coordinates (x,y) +REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278], + [33.54930115, 92.3655014], [62.72990036, 92.20410156]] + +DEFAULT_CROP_SIZE = (96, 112) + + +class FaceWarpException(Exception): + + def __str__(self): + return 'In File {}:{}'.format(__file__, super.__str__(self)) + + +def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False): + """ + Function: + ---------- + get reference 5 key points according to crop settings: + 0. Set default crop_size: + if default_square: + crop_size = (112, 112) + else: + crop_size = (96, 112) + 1. Pad the crop_size by inner_padding_factor in each side; + 2. Resize crop_size into (output_size - outer_padding*2), + pad into output_size with outer_padding; + 3. Output reference_5point; + Parameters: + ---------- + @output_size: (w, h) or None + size of aligned face image + @inner_padding_factor: (w_factor, h_factor) + padding factor for inner (w, h) + @outer_padding: (w_pad, h_pad) + each row is a pair of coordinates (x, y) + @default_square: True or False + if True: + default crop_size = (112, 112) + else: + default crop_size = (96, 112); + !!! make sure, if output_size is not None: + (output_size - outer_padding) + = some_scale * (default crop_size * (1.0 + + inner_padding_factor)) + Returns: + ---------- + @reference_5point: 5x2 np.array + each row is a pair of transformed coordinates (x, y) + """ + + tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) + tmp_crop_size = np.array(DEFAULT_CROP_SIZE) + + # 0) make the inner region a square + if default_square: + size_diff = max(tmp_crop_size) - tmp_crop_size + tmp_5pts += size_diff / 2 + tmp_crop_size += size_diff + + if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]): + + return tmp_5pts + + if (inner_padding_factor == 0 and outer_padding == (0, 0)): + if output_size is None: + return tmp_5pts + else: + raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size)) + + # check output size + if not (0 <= inner_padding_factor <= 1.0): + raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') + + if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None): + output_size = tmp_crop_size * \ + (1 + inner_padding_factor * 2).astype(np.int32) + output_size += np.array(outer_padding) + if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]): + raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])') + + # 1) pad the inner region according inner_padding_factor + if inner_padding_factor > 0: + size_diff = tmp_crop_size * inner_padding_factor * 2 + tmp_5pts += size_diff / 2 + tmp_crop_size += np.round(size_diff).astype(np.int32) + + # 2) resize the padded inner region + size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 + + if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: + raise FaceWarpException('Must have (output_size - outer_padding)' + '= some_scale * (crop_size * (1.0 + inner_padding_factor)') + + scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] + tmp_5pts = tmp_5pts * scale_factor + # size_diff = tmp_crop_size * (scale_factor - min(scale_factor)) + # tmp_5pts = tmp_5pts + size_diff / 2 + tmp_crop_size = size_bf_outer_pad + + # 3) add outer_padding to make output_size + reference_5point = tmp_5pts + np.array(outer_padding) + tmp_crop_size = output_size + + return reference_5point + + +def get_affine_transform_matrix(src_pts, dst_pts): + """ + Function: + ---------- + get affine transform matrix 'tfm' from src_pts to dst_pts + Parameters: + ---------- + @src_pts: Kx2 np.array + source points matrix, each row is a pair of coordinates (x, y) + @dst_pts: Kx2 np.array + destination points matrix, each row is a pair of coordinates (x, y) + Returns: + ---------- + @tfm: 2x3 np.array + transform matrix from src_pts to dst_pts + """ + + tfm = np.float32([[1, 0, 0], [0, 1, 0]]) + n_pts = src_pts.shape[0] + ones = np.ones((n_pts, 1), src_pts.dtype) + src_pts_ = np.hstack([src_pts, ones]) + dst_pts_ = np.hstack([dst_pts, ones]) + + A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_) + + if rank == 3: + tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]]) + elif rank == 2: + tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]]) + + return tfm + + +def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'): + """ + Function: + ---------- + apply affine transform 'trans' to uv + Parameters: + ---------- + @src_img: 3x3 np.array + input image + @facial_pts: could be + 1)a list of K coordinates (x,y) + or + 2) Kx2 or 2xK np.array + each row or col is a pair of coordinates (x, y) + @reference_pts: could be + 1) a list of K coordinates (x,y) + or + 2) Kx2 or 2xK np.array + each row or col is a pair of coordinates (x, y) + or + 3) None + if None, use default reference facial points + @crop_size: (w, h) + output face image size + @align_type: transform type, could be one of + 1) 'similarity': use similarity transform + 2) 'cv2_affine': use the first 3 points to do affine transform, + by calling cv2.getAffineTransform() + 3) 'affine': use all points to do affine transform + Returns: + ---------- + @face_img: output face image with size (w, h) = @crop_size + """ + + if reference_pts is None: + if crop_size[0] == 96 and crop_size[1] == 112: + reference_pts = REFERENCE_FACIAL_POINTS + else: + default_square = False + inner_padding_factor = 0 + outer_padding = (0, 0) + output_size = crop_size + + reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding, + default_square) + + ref_pts = np.float32(reference_pts) + ref_pts_shp = ref_pts.shape + if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: + raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2') + + if ref_pts_shp[0] == 2: + ref_pts = ref_pts.T + + src_pts = np.float32(facial_pts) + src_pts_shp = src_pts.shape + if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: + raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2') + + if src_pts_shp[0] == 2: + src_pts = src_pts.T + + if src_pts.shape != ref_pts.shape: + raise FaceWarpException('facial_pts and reference_pts must have the same shape') + + if align_type == 'cv2_affine': + tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3]) + elif align_type == 'affine': + tfm = get_affine_transform_matrix(src_pts, ref_pts) + else: + tfm = get_similarity_transform_for_cv2(src_pts, ref_pts) + + face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1])) + + return face_img diff --git a/extras/facexlib/detection/matlab_cp2tform.py b/extras/facexlib/detection/matlab_cp2tform.py new file mode 100644 index 0000000..b2a8b54 --- /dev/null +++ b/extras/facexlib/detection/matlab_cp2tform.py @@ -0,0 +1,317 @@ +import numpy as np +from numpy.linalg import inv, lstsq +from numpy.linalg import matrix_rank as rank +from numpy.linalg import norm + + +class MatlabCp2tormException(Exception): + + def __str__(self): + return 'In File {}:{}'.format(__file__, super.__str__(self)) + + +def tformfwd(trans, uv): + """ + Function: + ---------- + apply affine transform 'trans' to uv + + Parameters: + ---------- + @trans: 3x3 np.array + transform matrix + @uv: Kx2 np.array + each row is a pair of coordinates (x, y) + + Returns: + ---------- + @xy: Kx2 np.array + each row is a pair of transformed coordinates (x, y) + """ + uv = np.hstack((uv, np.ones((uv.shape[0], 1)))) + xy = np.dot(uv, trans) + xy = xy[:, 0:-1] + return xy + + +def tforminv(trans, uv): + """ + Function: + ---------- + apply the inverse of affine transform 'trans' to uv + + Parameters: + ---------- + @trans: 3x3 np.array + transform matrix + @uv: Kx2 np.array + each row is a pair of coordinates (x, y) + + Returns: + ---------- + @xy: Kx2 np.array + each row is a pair of inverse-transformed coordinates (x, y) + """ + Tinv = inv(trans) + xy = tformfwd(Tinv, uv) + return xy + + +def findNonreflectiveSimilarity(uv, xy, options=None): + options = {'K': 2} + + K = options['K'] + M = xy.shape[0] + x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector + y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector + + tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) + tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) + X = np.vstack((tmp1, tmp2)) + + u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector + v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector + U = np.vstack((u, v)) + + # We know that X * r = U + if rank(X) >= 2 * K: + r, _, _, _ = lstsq(X, U, rcond=-1) + r = np.squeeze(r) + else: + raise Exception('cp2tform:twoUniquePointsReq') + sc = r[0] + ss = r[1] + tx = r[2] + ty = r[3] + + Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]]) + T = inv(Tinv) + T[:, 2] = np.array([0, 0, 1]) + + return T, Tinv + + +def findSimilarity(uv, xy, options=None): + options = {'K': 2} + + # uv = np.array(uv) + # xy = np.array(xy) + + # Solve for trans1 + trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) + + # Solve for trans2 + + # manually reflect the xy data across the Y-axis + xyR = xy + xyR[:, 0] = -1 * xyR[:, 0] + + trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) + + # manually reflect the tform to undo the reflection done on xyR + TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) + + trans2 = np.dot(trans2r, TreflectY) + + # Figure out if trans1 or trans2 is better + xy1 = tformfwd(trans1, uv) + norm1 = norm(xy1 - xy) + + xy2 = tformfwd(trans2, uv) + norm2 = norm(xy2 - xy) + + if norm1 <= norm2: + return trans1, trans1_inv + else: + trans2_inv = inv(trans2) + return trans2, trans2_inv + + +def get_similarity_transform(src_pts, dst_pts, reflective=True): + """ + Function: + ---------- + Find Similarity Transform Matrix 'trans': + u = src_pts[:, 0] + v = src_pts[:, 1] + x = dst_pts[:, 0] + y = dst_pts[:, 1] + [x, y, 1] = [u, v, 1] * trans + + Parameters: + ---------- + @src_pts: Kx2 np.array + source points, each row is a pair of coordinates (x, y) + @dst_pts: Kx2 np.array + destination points, each row is a pair of transformed + coordinates (x, y) + @reflective: True or False + if True: + use reflective similarity transform + else: + use non-reflective similarity transform + + Returns: + ---------- + @trans: 3x3 np.array + transform matrix from uv to xy + trans_inv: 3x3 np.array + inverse of trans, transform matrix from xy to uv + """ + + if reflective: + trans, trans_inv = findSimilarity(src_pts, dst_pts) + else: + trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts) + + return trans, trans_inv + + +def cvt_tform_mat_for_cv2(trans): + """ + Function: + ---------- + Convert Transform Matrix 'trans' into 'cv2_trans' which could be + directly used by cv2.warpAffine(): + u = src_pts[:, 0] + v = src_pts[:, 1] + x = dst_pts[:, 0] + y = dst_pts[:, 1] + [x, y].T = cv_trans * [u, v, 1].T + + Parameters: + ---------- + @trans: 3x3 np.array + transform matrix from uv to xy + + Returns: + ---------- + @cv2_trans: 2x3 np.array + transform matrix from src_pts to dst_pts, could be directly used + for cv2.warpAffine() + """ + cv2_trans = trans[:, 0:2].T + + return cv2_trans + + +def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): + """ + Function: + ---------- + Find Similarity Transform Matrix 'cv2_trans' which could be + directly used by cv2.warpAffine(): + u = src_pts[:, 0] + v = src_pts[:, 1] + x = dst_pts[:, 0] + y = dst_pts[:, 1] + [x, y].T = cv_trans * [u, v, 1].T + + Parameters: + ---------- + @src_pts: Kx2 np.array + source points, each row is a pair of coordinates (x, y) + @dst_pts: Kx2 np.array + destination points, each row is a pair of transformed + coordinates (x, y) + reflective: True or False + if True: + use reflective similarity transform + else: + use non-reflective similarity transform + + Returns: + ---------- + @cv2_trans: 2x3 np.array + transform matrix from src_pts to dst_pts, could be directly used + for cv2.warpAffine() + """ + trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective) + cv2_trans = cvt_tform_mat_for_cv2(trans) + + return cv2_trans + + +if __name__ == '__main__': + """ + u = [0, 6, -2] + v = [0, 3, 5] + x = [-1, 0, 4] + y = [-1, -10, 4] + + # In Matlab, run: + # + # uv = [u'; v']; + # xy = [x'; y']; + # tform_sim=cp2tform(uv,xy,'similarity'); + # + # trans = tform_sim.tdata.T + # ans = + # -0.0764 -1.6190 0 + # 1.6190 -0.0764 0 + # -3.2156 0.0290 1.0000 + # trans_inv = tform_sim.tdata.Tinv + # ans = + # + # -0.0291 0.6163 0 + # -0.6163 -0.0291 0 + # -0.0756 1.9826 1.0000 + # xy_m=tformfwd(tform_sim, u,v) + # + # xy_m = + # + # -3.2156 0.0290 + # 1.1833 -9.9143 + # 5.0323 2.8853 + # uv_m=tforminv(tform_sim, x,y) + # + # uv_m = + # + # 0.5698 1.3953 + # 6.0872 2.2733 + # -2.6570 4.3314 + """ + u = [0, 6, -2] + v = [0, 3, 5] + x = [-1, 0, 4] + y = [-1, -10, 4] + + uv = np.array((u, v)).T + xy = np.array((x, y)).T + + print('\n--->uv:') + print(uv) + print('\n--->xy:') + print(xy) + + trans, trans_inv = get_similarity_transform(uv, xy) + + print('\n--->trans matrix:') + print(trans) + + print('\n--->trans_inv matrix:') + print(trans_inv) + + print('\n---> apply transform to uv') + print('\nxy_m = uv_augmented * trans') + uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1)))) + xy_m = np.dot(uv_aug, trans) + print(xy_m) + + print('\nxy_m = tformfwd(trans, uv)') + xy_m = tformfwd(trans, uv) + print(xy_m) + + print('\n---> apply inverse transform to xy') + print('\nuv_m = xy_augmented * trans_inv') + xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1)))) + uv_m = np.dot(xy_aug, trans_inv) + print(uv_m) + + print('\nuv_m = tformfwd(trans_inv, xy)') + uv_m = tformfwd(trans_inv, xy) + print(uv_m) + + uv_m = tforminv(trans, xy) + print('\nuv_m = tforminv(trans, xy)') + print(uv_m) diff --git a/extras/facexlib/detection/retinaface.py b/extras/facexlib/detection/retinaface.py new file mode 100644 index 0000000..5e0b4f0 --- /dev/null +++ b/extras/facexlib/detection/retinaface.py @@ -0,0 +1,366 @@ +import cv2 +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from PIL import Image +from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter + +from extras.facexlib.detection.align_trans import get_reference_facial_points, warp_and_crop_face +from extras.facexlib.detection.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head +from extras.facexlib.detection.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm, + py_cpu_nms) + + +def generate_config(network_name): + + cfg_mnet = { + 'name': 'mobilenet0.25', + 'min_sizes': [[16, 32], [64, 128], [256, 512]], + 'steps': [8, 16, 32], + 'variance': [0.1, 0.2], + 'clip': False, + 'loc_weight': 2.0, + 'gpu_train': True, + 'batch_size': 32, + 'ngpu': 1, + 'epoch': 250, + 'decay1': 190, + 'decay2': 220, + 'image_size': 640, + 'return_layers': { + 'stage1': 1, + 'stage2': 2, + 'stage3': 3 + }, + 'in_channel': 32, + 'out_channel': 64 + } + + cfg_re50 = { + 'name': 'Resnet50', + 'min_sizes': [[16, 32], [64, 128], [256, 512]], + 'steps': [8, 16, 32], + 'variance': [0.1, 0.2], + 'clip': False, + 'loc_weight': 2.0, + 'gpu_train': True, + 'batch_size': 24, + 'ngpu': 4, + 'epoch': 100, + 'decay1': 70, + 'decay2': 90, + 'image_size': 840, + 'return_layers': { + 'layer2': 1, + 'layer3': 2, + 'layer4': 3 + }, + 'in_channel': 256, + 'out_channel': 256 + } + + if network_name == 'mobile0.25': + return cfg_mnet + elif network_name == 'resnet50': + return cfg_re50 + else: + raise NotImplementedError(f'network_name={network_name}') + + +class RetinaFace(nn.Module): + + def __init__(self, network_name='resnet50', half=False, phase='test', device=None): + self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device + + super(RetinaFace, self).__init__() + self.half_inference = half + cfg = generate_config(network_name) + self.backbone = cfg['name'] + + self.model_name = f'retinaface_{network_name}' + self.cfg = cfg + self.phase = phase + self.target_size, self.max_size = 1600, 2150 + self.resize, self.scale, self.scale1 = 1., None, None + self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]], device=self.device) + self.reference = get_reference_facial_points(default_square=True) + # Build network. + backbone = None + if cfg['name'] == 'mobilenet0.25': + backbone = MobileNetV1() + self.body = IntermediateLayerGetter(backbone, cfg['return_layers']) + elif cfg['name'] == 'Resnet50': + import torchvision.models as models + backbone = models.resnet50(weights=None) + self.body = IntermediateLayerGetter(backbone, cfg['return_layers']) + + in_channels_stage2 = cfg['in_channel'] + in_channels_list = [ + in_channels_stage2 * 2, + in_channels_stage2 * 4, + in_channels_stage2 * 8, + ] + + out_channels = cfg['out_channel'] + self.fpn = FPN(in_channels_list, out_channels) + self.ssh1 = SSH(out_channels, out_channels) + self.ssh2 = SSH(out_channels, out_channels) + self.ssh3 = SSH(out_channels, out_channels) + + self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel']) + self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel']) + self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel']) + + self.to(self.device) + self.eval() + if self.half_inference: + self.half() + + def forward(self, inputs): + out = self.body(inputs) + + if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50': + out = list(out.values()) + # FPN + fpn = self.fpn(out) + + # SSH + feature1 = self.ssh1(fpn[0]) + feature2 = self.ssh2(fpn[1]) + feature3 = self.ssh3(fpn[2]) + features = [feature1, feature2, feature3] + + bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1) + classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1) + tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)] + ldm_regressions = (torch.cat(tmp, dim=1)) + + if self.phase == 'train': + output = (bbox_regressions, classifications, ldm_regressions) + else: + output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions) + return output + + def __detect_faces(self, inputs): + # get scale + height, width = inputs.shape[2:] + self.scale = torch.tensor([width, height, width, height], dtype=torch.float32, device=self.device) + tmp = [width, height, width, height, width, height, width, height, width, height] + self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device) + + # forawrd + inputs = inputs.to(self.device) + if self.half_inference: + inputs = inputs.half() + loc, conf, landmarks = self(inputs) + + # get priorbox + priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:]) + priors = priorbox.forward().to(self.device) + + return loc, conf, landmarks, priors + + # single image detection + def transform(self, image, use_origin_size): + # convert to opencv format + if isinstance(image, Image.Image): + image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) + image = image.astype(np.float32) + + # testing scale + im_size_min = np.min(image.shape[0:2]) + im_size_max = np.max(image.shape[0:2]) + resize = float(self.target_size) / float(im_size_min) + + # prevent bigger axis from being more than max_size + if np.round(resize * im_size_max) > self.max_size: + resize = float(self.max_size) / float(im_size_max) + resize = 1 if use_origin_size else resize + + # resize + if resize != 1: + image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) + + # convert to torch.tensor format + # image -= (104, 117, 123) + image = image.transpose(2, 0, 1) + image = torch.from_numpy(image).unsqueeze(0) + + return image, resize + + def detect_faces( + self, + image, + conf_threshold=0.8, + nms_threshold=0.4, + use_origin_size=True, + ): + image, self.resize = self.transform(image, use_origin_size) + image = image.to(self.device) + if self.half_inference: + image = image.half() + image = image - self.mean_tensor + + loc, conf, landmarks, priors = self.__detect_faces(image) + + boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance']) + boxes = boxes * self.scale / self.resize + boxes = boxes.cpu().numpy() + + scores = conf.squeeze(0).data.cpu().numpy()[:, 1] + + landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance']) + landmarks = landmarks * self.scale1 / self.resize + landmarks = landmarks.cpu().numpy() + + # ignore low scores + inds = np.where(scores > conf_threshold)[0] + boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds] + + # sort + order = scores.argsort()[::-1] + boxes, landmarks, scores = boxes[order], landmarks[order], scores[order] + + # do NMS + bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) + keep = py_cpu_nms(bounding_boxes, nms_threshold) + bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep] + # self.t['forward_pass'].toc() + # print(self.t['forward_pass'].average_time) + # import sys + # sys.stdout.flush() + return np.concatenate((bounding_boxes, landmarks), axis=1) + + def __align_multi(self, image, boxes, landmarks, limit=None): + + if len(boxes) < 1: + return [], [] + + if limit: + boxes = boxes[:limit] + landmarks = landmarks[:limit] + + faces = [] + for landmark in landmarks: + facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)] + + warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112)) + faces.append(warped_face) + + return np.concatenate((boxes, landmarks), axis=1), faces + + def align_multi(self, img, conf_threshold=0.8, limit=None): + + rlt = self.detect_faces(img, conf_threshold=conf_threshold) + boxes, landmarks = rlt[:, 0:5], rlt[:, 5:] + + return self.__align_multi(img, boxes, landmarks, limit) + + # batched detection + def batched_transform(self, frames, use_origin_size): + """ + Arguments: + frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c], + type=np.float32, BGR format). + use_origin_size: whether to use origin size. + """ + from_PIL = True if isinstance(frames[0], Image.Image) else False + + # convert to opencv format + if from_PIL: + frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames] + frames = np.asarray(frames, dtype=np.float32) + + # testing scale + im_size_min = np.min(frames[0].shape[0:2]) + im_size_max = np.max(frames[0].shape[0:2]) + resize = float(self.target_size) / float(im_size_min) + + # prevent bigger axis from being more than max_size + if np.round(resize * im_size_max) > self.max_size: + resize = float(self.max_size) / float(im_size_max) + resize = 1 if use_origin_size else resize + + # resize + if resize != 1: + if not from_PIL: + frames = F.interpolate(frames, scale_factor=resize) + else: + frames = [ + cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) + for frame in frames + ] + + # convert to torch.tensor format + if not from_PIL: + frames = frames.transpose(1, 2).transpose(1, 3).contiguous() + else: + frames = frames.transpose((0, 3, 1, 2)) + frames = torch.from_numpy(frames) + + return frames, resize + + def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True): + """ + Arguments: + frames: a list of PIL.Image, or np.array(shape=[n, h, w, c], + type=np.uint8, BGR format). + conf_threshold: confidence threshold. + nms_threshold: nms threshold. + use_origin_size: whether to use origin size. + Returns: + final_bounding_boxes: list of np.array ([n_boxes, 5], + type=np.float32). + final_landmarks: list of np.array ([n_boxes, 10], type=np.float32). + """ + # self.t['forward_pass'].tic() + frames, self.resize = self.batched_transform(frames, use_origin_size) + frames = frames.to(self.device) + frames = frames - self.mean_tensor + + b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames) + + final_bounding_boxes, final_landmarks = [], [] + + # decode + priors = priors.unsqueeze(0) + b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize + b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize + b_conf = b_conf[:, :, 1] + + # index for selection + b_indice = b_conf > conf_threshold + + # concat + b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float() + + for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice): + + # ignore low scores + pred, landm = pred[inds, :], landm[inds, :] + if pred.shape[0] == 0: + final_bounding_boxes.append(np.array([], dtype=np.float32)) + final_landmarks.append(np.array([], dtype=np.float32)) + continue + + # sort + # order = score.argsort(descending=True) + # box, landm, score = box[order], landm[order], score[order] + + # to CPU + bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy() + + # NMS + keep = py_cpu_nms(bounding_boxes, nms_threshold) + bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep] + + # append + final_bounding_boxes.append(bounding_boxes) + final_landmarks.append(landmarks) + # self.t['forward_pass'].toc(average=True) + # self.batch_time += self.t['forward_pass'].diff + # self.total_frame += len(frames) + # print(self.batch_time / self.total_frame) + + return final_bounding_boxes, final_landmarks diff --git a/extras/facexlib/detection/retinaface_net.py b/extras/facexlib/detection/retinaface_net.py new file mode 100644 index 0000000..ab6aa82 --- /dev/null +++ b/extras/facexlib/detection/retinaface_net.py @@ -0,0 +1,196 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def conv_bn(inp, oup, stride=1, leaky=0): + return nn.Sequential( + nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), + nn.LeakyReLU(negative_slope=leaky, inplace=True)) + + +def conv_bn_no_relu(inp, oup, stride): + return nn.Sequential( + nn.Conv2d(inp, oup, 3, stride, 1, bias=False), + nn.BatchNorm2d(oup), + ) + + +def conv_bn1X1(inp, oup, stride, leaky=0): + return nn.Sequential( + nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup), + nn.LeakyReLU(negative_slope=leaky, inplace=True)) + + +def conv_dw(inp, oup, stride, leaky=0.1): + return nn.Sequential( + nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), + nn.BatchNorm2d(inp), + nn.LeakyReLU(negative_slope=leaky, inplace=True), + nn.Conv2d(inp, oup, 1, 1, 0, bias=False), + nn.BatchNorm2d(oup), + nn.LeakyReLU(negative_slope=leaky, inplace=True), + ) + + +class SSH(nn.Module): + + def __init__(self, in_channel, out_channel): + super(SSH, self).__init__() + assert out_channel % 4 == 0 + leaky = 0 + if (out_channel <= 64): + leaky = 0.1 + self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1) + + self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky) + self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) + + self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky) + self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) + + def forward(self, input): + conv3X3 = self.conv3X3(input) + + conv5X5_1 = self.conv5X5_1(input) + conv5X5 = self.conv5X5_2(conv5X5_1) + + conv7X7_2 = self.conv7X7_2(conv5X5_1) + conv7X7 = self.conv7x7_3(conv7X7_2) + + out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1) + out = F.relu(out) + return out + + +class FPN(nn.Module): + + def __init__(self, in_channels_list, out_channels): + super(FPN, self).__init__() + leaky = 0 + if (out_channels <= 64): + leaky = 0.1 + self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky) + self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky) + self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky) + + self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky) + self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky) + + def forward(self, input): + # names = list(input.keys()) + # input = list(input.values()) + + output1 = self.output1(input[0]) + output2 = self.output2(input[1]) + output3 = self.output3(input[2]) + + up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest') + output2 = output2 + up3 + output2 = self.merge2(output2) + + up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest') + output1 = output1 + up2 + output1 = self.merge1(output1) + + out = [output1, output2, output3] + return out + + +class MobileNetV1(nn.Module): + + def __init__(self): + super(MobileNetV1, self).__init__() + self.stage1 = nn.Sequential( + conv_bn(3, 8, 2, leaky=0.1), # 3 + conv_dw(8, 16, 1), # 7 + conv_dw(16, 32, 2), # 11 + conv_dw(32, 32, 1), # 19 + conv_dw(32, 64, 2), # 27 + conv_dw(64, 64, 1), # 43 + ) + self.stage2 = nn.Sequential( + conv_dw(64, 128, 2), # 43 + 16 = 59 + conv_dw(128, 128, 1), # 59 + 32 = 91 + conv_dw(128, 128, 1), # 91 + 32 = 123 + conv_dw(128, 128, 1), # 123 + 32 = 155 + conv_dw(128, 128, 1), # 155 + 32 = 187 + conv_dw(128, 128, 1), # 187 + 32 = 219 + ) + self.stage3 = nn.Sequential( + conv_dw(128, 256, 2), # 219 +3 2 = 241 + conv_dw(256, 256, 1), # 241 + 64 = 301 + ) + self.avg = nn.AdaptiveAvgPool2d((1, 1)) + self.fc = nn.Linear(256, 1000) + + def forward(self, x): + x = self.stage1(x) + x = self.stage2(x) + x = self.stage3(x) + x = self.avg(x) + # x = self.model(x) + x = x.view(-1, 256) + x = self.fc(x) + return x + + +class ClassHead(nn.Module): + + def __init__(self, inchannels=512, num_anchors=3): + super(ClassHead, self).__init__() + self.num_anchors = num_anchors + self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0) + + def forward(self, x): + out = self.conv1x1(x) + out = out.permute(0, 2, 3, 1).contiguous() + + return out.view(out.shape[0], -1, 2) + + +class BboxHead(nn.Module): + + def __init__(self, inchannels=512, num_anchors=3): + super(BboxHead, self).__init__() + self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0) + + def forward(self, x): + out = self.conv1x1(x) + out = out.permute(0, 2, 3, 1).contiguous() + + return out.view(out.shape[0], -1, 4) + + +class LandmarkHead(nn.Module): + + def __init__(self, inchannels=512, num_anchors=3): + super(LandmarkHead, self).__init__() + self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0) + + def forward(self, x): + out = self.conv1x1(x) + out = out.permute(0, 2, 3, 1).contiguous() + + return out.view(out.shape[0], -1, 10) + + +def make_class_head(fpn_num=3, inchannels=64, anchor_num=2): + classhead = nn.ModuleList() + for i in range(fpn_num): + classhead.append(ClassHead(inchannels, anchor_num)) + return classhead + + +def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2): + bboxhead = nn.ModuleList() + for i in range(fpn_num): + bboxhead.append(BboxHead(inchannels, anchor_num)) + return bboxhead + + +def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2): + landmarkhead = nn.ModuleList() + for i in range(fpn_num): + landmarkhead.append(LandmarkHead(inchannels, anchor_num)) + return landmarkhead diff --git a/extras/facexlib/detection/retinaface_utils.py b/extras/facexlib/detection/retinaface_utils.py new file mode 100644 index 0000000..8c35775 --- /dev/null +++ b/extras/facexlib/detection/retinaface_utils.py @@ -0,0 +1,421 @@ +import numpy as np +import torch +import torchvision +from itertools import product as product +from math import ceil + + +class PriorBox(object): + + def __init__(self, cfg, image_size=None, phase='train'): + super(PriorBox, self).__init__() + self.min_sizes = cfg['min_sizes'] + self.steps = cfg['steps'] + self.clip = cfg['clip'] + self.image_size = image_size + self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps] + self.name = 's' + + def forward(self): + anchors = [] + for k, f in enumerate(self.feature_maps): + min_sizes = self.min_sizes[k] + for i, j in product(range(f[0]), range(f[1])): + for min_size in min_sizes: + s_kx = min_size / self.image_size[1] + s_ky = min_size / self.image_size[0] + dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]] + dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]] + for cy, cx in product(dense_cy, dense_cx): + anchors += [cx, cy, s_kx, s_ky] + + # back to torch land + output = torch.Tensor(anchors).view(-1, 4) + if self.clip: + output.clamp_(max=1, min=0) + return output + + +def py_cpu_nms(dets, thresh): + """Pure Python NMS baseline.""" + keep = torchvision.ops.nms( + boxes=torch.Tensor(dets[:, :4]), + scores=torch.Tensor(dets[:, 4]), + iou_threshold=thresh, + ) + + return list(keep) + + +def point_form(boxes): + """ Convert prior_boxes to (xmin, ymin, xmax, ymax) + representation for comparison to point form ground truth data. + Args: + boxes: (tensor) center-size default boxes from priorbox layers. + Return: + boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. + """ + return torch.cat( + ( + boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin + boxes[:, :2] + boxes[:, 2:] / 2), + 1) # xmax, ymax + + +def center_size(boxes): + """ Convert prior_boxes to (cx, cy, w, h) + representation for comparison to center-size form ground truth data. + Args: + boxes: (tensor) point_form boxes + Return: + boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. + """ + return torch.cat( + (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy + boxes[:, 2:] - boxes[:, :2], + 1) # w, h + + +def intersect(box_a, box_b): + """ We resize both tensors to [A,B,2] without new malloc: + [A,2] -> [A,1,2] -> [A,B,2] + [B,2] -> [1,B,2] -> [A,B,2] + Then we compute the area of intersect between box_a and box_b. + Args: + box_a: (tensor) bounding boxes, Shape: [A,4]. + box_b: (tensor) bounding boxes, Shape: [B,4]. + Return: + (tensor) intersection area, Shape: [A,B]. + """ + A = box_a.size(0) + B = box_b.size(0) + max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2)) + min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) + inter = torch.clamp((max_xy - min_xy), min=0) + return inter[:, :, 0] * inter[:, :, 1] + + +def jaccard(box_a, box_b): + """Compute the jaccard overlap of two sets of boxes. The jaccard overlap + is simply the intersection over union of two boxes. Here we operate on + ground truth boxes and default boxes. + E.g.: + A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) + Args: + box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4] + box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4] + Return: + jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)] + """ + inter = intersect(box_a, box_b) + area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B] + area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B] + union = area_a + area_b - inter + return inter / union # [A,B] + + +def matrix_iou(a, b): + """ + return iou of a and b, numpy version for data augenmentation + """ + lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) + rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) + + area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) + area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) + area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) + return area_i / (area_a[:, np.newaxis] + area_b - area_i) + + +def matrix_iof(a, b): + """ + return iof of a and b, numpy version for data augenmentation + """ + lt = np.maximum(a[:, np.newaxis, :2], b[:, :2]) + rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) + + area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2) + area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) + return area_i / np.maximum(area_a[:, np.newaxis], 1) + + +def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx): + """Match each prior box with the ground truth box of the highest jaccard + overlap, encode the bounding boxes, then return the matched indices + corresponding to both confidence and location preds. + Args: + threshold: (float) The overlap threshold used when matching boxes. + truths: (tensor) Ground truth boxes, Shape: [num_obj, 4]. + priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4]. + variances: (tensor) Variances corresponding to each prior coord, + Shape: [num_priors, 4]. + labels: (tensor) All the class labels for the image, Shape: [num_obj]. + landms: (tensor) Ground truth landms, Shape [num_obj, 10]. + loc_t: (tensor) Tensor to be filled w/ encoded location targets. + conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds. + landm_t: (tensor) Tensor to be filled w/ encoded landm targets. + idx: (int) current batch index + Return: + The matched indices corresponding to 1)location 2)confidence + 3)landm preds. + """ + # jaccard index + overlaps = jaccard(truths, point_form(priors)) + # (Bipartite Matching) + # [1,num_objects] best prior for each ground truth + best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True) + + # ignore hard gt + valid_gt_idx = best_prior_overlap[:, 0] >= 0.2 + best_prior_idx_filter = best_prior_idx[valid_gt_idx, :] + if best_prior_idx_filter.shape[0] <= 0: + loc_t[idx] = 0 + conf_t[idx] = 0 + return + + # [1,num_priors] best ground truth for each prior + best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True) + best_truth_idx.squeeze_(0) + best_truth_overlap.squeeze_(0) + best_prior_idx.squeeze_(1) + best_prior_idx_filter.squeeze_(1) + best_prior_overlap.squeeze_(1) + best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior + # TODO refactor: index best_prior_idx with long tensor + # ensure every gt matches with its prior of max overlap + for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes + best_truth_idx[best_prior_idx[j]] = j + matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来 + conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来 + conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本 + loc = encode(matches, priors, variances) + + matches_landm = landms[best_truth_idx] + landm = encode_landm(matches_landm, priors, variances) + loc_t[idx] = loc # [num_priors,4] encoded offsets to learn + conf_t[idx] = conf # [num_priors] top class label for each prior + landm_t[idx] = landm + + +def encode(matched, priors, variances): + """Encode the variances from the priorbox layers into the ground truth boxes + we have matched (based on jaccard overlap) with the prior boxes. + Args: + matched: (tensor) Coords of ground truth for each prior in point-form + Shape: [num_priors, 4]. + priors: (tensor) Prior boxes in center-offset form + Shape: [num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + encoded boxes (tensor), Shape: [num_priors, 4] + """ + + # dist b/t match center and prior's center + g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] + # encode variance + g_cxcy /= (variances[0] * priors[:, 2:]) + # match wh / prior wh + g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] + g_wh = torch.log(g_wh) / variances[1] + # return target for smooth_l1_loss + return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4] + + +def encode_landm(matched, priors, variances): + """Encode the variances from the priorbox layers into the ground truth boxes + we have matched (based on jaccard overlap) with the prior boxes. + Args: + matched: (tensor) Coords of ground truth for each prior in point-form + Shape: [num_priors, 10]. + priors: (tensor) Prior boxes in center-offset form + Shape: [num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + encoded landm (tensor), Shape: [num_priors, 10] + """ + + # dist b/t match center and prior's center + matched = torch.reshape(matched, (matched.size(0), 5, 2)) + priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) + priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) + priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) + priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) + priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2) + g_cxcy = matched[:, :, :2] - priors[:, :, :2] + # encode variance + g_cxcy /= (variances[0] * priors[:, :, 2:]) + # g_cxcy /= priors[:, :, 2:] + g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1) + # return target for smooth_l1_loss + return g_cxcy + + +# Adapted from https://github.com/Hakuyume/chainer-ssd +def decode(loc, priors, variances): + """Decode locations from predictions using priors to undo + the encoding we did for offset regression at train time. + Args: + loc (tensor): location predictions for loc layers, + Shape: [num_priors,4] + priors (tensor): Prior boxes in center-offset form. + Shape: [num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + decoded bounding box predictions + """ + + boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], + priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) + boxes[:, :2] -= boxes[:, 2:] / 2 + boxes[:, 2:] += boxes[:, :2] + return boxes + + +def decode_landm(pre, priors, variances): + """Decode landm from predictions using priors to undo + the encoding we did for offset regression at train time. + Args: + pre (tensor): landm predictions for loc layers, + Shape: [num_priors,10] + priors (tensor): Prior boxes in center-offset form. + Shape: [num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + decoded landm predictions + """ + tmp = ( + priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], + priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:], + priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:], + priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:], + priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:], + ) + landms = torch.cat(tmp, dim=1) + return landms + + +def batched_decode(b_loc, priors, variances): + """Decode locations from predictions using priors to undo + the encoding we did for offset regression at train time. + Args: + b_loc (tensor): location predictions for loc layers, + Shape: [num_batches,num_priors,4] + priors (tensor): Prior boxes in center-offset form. + Shape: [1,num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + decoded bounding box predictions + """ + boxes = ( + priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:], + priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]), + ) + boxes = torch.cat(boxes, dim=2) + + boxes[:, :, :2] -= boxes[:, :, 2:] / 2 + boxes[:, :, 2:] += boxes[:, :, :2] + return boxes + + +def batched_decode_landm(pre, priors, variances): + """Decode landm from predictions using priors to undo + the encoding we did for offset regression at train time. + Args: + pre (tensor): landm predictions for loc layers, + Shape: [num_batches,num_priors,10] + priors (tensor): Prior boxes in center-offset form. + Shape: [1,num_priors,4]. + variances: (list[float]) Variances of priorboxes + Return: + decoded landm predictions + """ + landms = ( + priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:], + priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:], + priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:], + priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:], + priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:], + ) + landms = torch.cat(landms, dim=2) + return landms + + +def log_sum_exp(x): + """Utility function for computing log_sum_exp while determining + This will be used to determine unaveraged confidence loss across + all examples in a batch. + Args: + x (Variable(tensor)): conf_preds from conf layers + """ + x_max = x.data.max() + return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max + + +# Original author: Francisco Massa: +# https://github.com/fmassa/object-detection.torch +# Ported to PyTorch by Max deGroot (02/01/2017) +def nms(boxes, scores, overlap=0.5, top_k=200): + """Apply non-maximum suppression at test time to avoid detecting too many + overlapping bounding boxes for a given object. + Args: + boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. + scores: (tensor) The class predscores for the img, Shape:[num_priors]. + overlap: (float) The overlap thresh for suppressing unnecessary boxes. + top_k: (int) The Maximum number of box preds to consider. + Return: + The indices of the kept boxes with respect to num_priors. + """ + + keep = torch.Tensor(scores.size(0)).fill_(0).long() + if boxes.numel() == 0: + return keep + x1 = boxes[:, 0] + y1 = boxes[:, 1] + x2 = boxes[:, 2] + y2 = boxes[:, 3] + area = torch.mul(x2 - x1, y2 - y1) + v, idx = scores.sort(0) # sort in ascending order + # I = I[v >= 0.01] + idx = idx[-top_k:] # indices of the top-k largest vals + xx1 = boxes.new() + yy1 = boxes.new() + xx2 = boxes.new() + yy2 = boxes.new() + w = boxes.new() + h = boxes.new() + + # keep = torch.Tensor() + count = 0 + while idx.numel() > 0: + i = idx[-1] # index of current largest val + # keep.append(i) + keep[count] = i + count += 1 + if idx.size(0) == 1: + break + idx = idx[:-1] # remove kept element from view + # load bboxes of next highest vals + torch.index_select(x1, 0, idx, out=xx1) + torch.index_select(y1, 0, idx, out=yy1) + torch.index_select(x2, 0, idx, out=xx2) + torch.index_select(y2, 0, idx, out=yy2) + # store element-wise max with next highest score + xx1 = torch.clamp(xx1, min=x1[i]) + yy1 = torch.clamp(yy1, min=y1[i]) + xx2 = torch.clamp(xx2, max=x2[i]) + yy2 = torch.clamp(yy2, max=y2[i]) + w.resize_as_(xx2) + h.resize_as_(yy2) + w = xx2 - xx1 + h = yy2 - yy1 + # check sizes of xx1 and xx2.. after each iteration + w = torch.clamp(w, min=0.0) + h = torch.clamp(h, min=0.0) + inter = w * h + # IoU = i / (area(a) + area(b) - i) + rem_areas = torch.index_select(area, 0, idx) # load remaining areas) + union = (rem_areas - inter) + area[i] + IoU = inter / union # store result in iou + # keep only elements with an IoU <= overlap + idx = idx[IoU.le(overlap)] + return keep, count diff --git a/extras/facexlib/parsing/__init__.py b/extras/facexlib/parsing/__init__.py new file mode 100644 index 0000000..ed5009c --- /dev/null +++ b/extras/facexlib/parsing/__init__.py @@ -0,0 +1,24 @@ +import torch + +from extras.facexlib.utils import load_file_from_url +from .bisenet import BiSeNet +from .parsenet import ParseNet + + +def init_parsing_model(model_name='bisenet', half=False, device='cuda', model_rootpath=None): + if model_name == 'bisenet': + model = BiSeNet(num_class=19) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/parsing_bisenet.pth' + elif model_name == 'parsenet': + model = ParseNet(in_size=512, out_size=512, parsing_ch=19) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth' + else: + raise NotImplementedError(f'{model_name} is not implemented.') + + model_path = load_file_from_url( + url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath) + load_net = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True) + model.load_state_dict(load_net, strict=True) + model.eval() + model = model.to(device) + return model diff --git a/extras/facexlib/parsing/bisenet.py b/extras/facexlib/parsing/bisenet.py new file mode 100644 index 0000000..3898cab --- /dev/null +++ b/extras/facexlib/parsing/bisenet.py @@ -0,0 +1,140 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .resnet import ResNet18 + + +class ConvBNReLU(nn.Module): + + def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1): + super(ConvBNReLU, self).__init__() + self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False) + self.bn = nn.BatchNorm2d(out_chan) + + def forward(self, x): + x = self.conv(x) + x = F.relu(self.bn(x)) + return x + + +class BiSeNetOutput(nn.Module): + + def __init__(self, in_chan, mid_chan, num_class): + super(BiSeNetOutput, self).__init__() + self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) + self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False) + + def forward(self, x): + feat = self.conv(x) + out = self.conv_out(feat) + return out, feat + + +class AttentionRefinementModule(nn.Module): + + def __init__(self, in_chan, out_chan): + super(AttentionRefinementModule, self).__init__() + self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) + self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False) + self.bn_atten = nn.BatchNorm2d(out_chan) + self.sigmoid_atten = nn.Sigmoid() + + def forward(self, x): + feat = self.conv(x) + atten = F.avg_pool2d(feat, feat.size()[2:]) + atten = self.conv_atten(atten) + atten = self.bn_atten(atten) + atten = self.sigmoid_atten(atten) + out = torch.mul(feat, atten) + return out + + +class ContextPath(nn.Module): + + def __init__(self): + super(ContextPath, self).__init__() + self.resnet = ResNet18() + self.arm16 = AttentionRefinementModule(256, 128) + self.arm32 = AttentionRefinementModule(512, 128) + self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) + self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) + self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0) + + def forward(self, x): + feat8, feat16, feat32 = self.resnet(x) + h8, w8 = feat8.size()[2:] + h16, w16 = feat16.size()[2:] + h32, w32 = feat32.size()[2:] + + avg = F.avg_pool2d(feat32, feat32.size()[2:]) + avg = self.conv_avg(avg) + avg_up = F.interpolate(avg, (h32, w32), mode='nearest') + + feat32_arm = self.arm32(feat32) + feat32_sum = feat32_arm + avg_up + feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest') + feat32_up = self.conv_head32(feat32_up) + + feat16_arm = self.arm16(feat16) + feat16_sum = feat16_arm + feat32_up + feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest') + feat16_up = self.conv_head16(feat16_up) + + return feat8, feat16_up, feat32_up # x8, x8, x16 + + +class FeatureFusionModule(nn.Module): + + def __init__(self, in_chan, out_chan): + super(FeatureFusionModule, self).__init__() + self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) + self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False) + self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False) + self.relu = nn.ReLU(inplace=True) + self.sigmoid = nn.Sigmoid() + + def forward(self, fsp, fcp): + fcat = torch.cat([fsp, fcp], dim=1) + feat = self.convblk(fcat) + atten = F.avg_pool2d(feat, feat.size()[2:]) + atten = self.conv1(atten) + atten = self.relu(atten) + atten = self.conv2(atten) + atten = self.sigmoid(atten) + feat_atten = torch.mul(feat, atten) + feat_out = feat_atten + feat + return feat_out + + +class BiSeNet(nn.Module): + + def __init__(self, num_class): + super(BiSeNet, self).__init__() + self.cp = ContextPath() + self.ffm = FeatureFusionModule(256, 256) + self.conv_out = BiSeNetOutput(256, 256, num_class) + self.conv_out16 = BiSeNetOutput(128, 64, num_class) + self.conv_out32 = BiSeNetOutput(128, 64, num_class) + + def forward(self, x, return_feat=False): + h, w = x.size()[2:] + feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature + feat_sp = feat_res8 # replace spatial path feature with res3b1 feature + feat_fuse = self.ffm(feat_sp, feat_cp8) + + out, feat = self.conv_out(feat_fuse) + out16, feat16 = self.conv_out16(feat_cp8) + out32, feat32 = self.conv_out32(feat_cp16) + + out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True) + out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True) + out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True) + + if return_feat: + feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True) + feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True) + feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True) + return out, out16, out32, feat, feat16, feat32 + else: + return out, out16, out32 diff --git a/extras/facexlib/parsing/parsenet.py b/extras/facexlib/parsing/parsenet.py new file mode 100644 index 0000000..e178ebe --- /dev/null +++ b/extras/facexlib/parsing/parsenet.py @@ -0,0 +1,194 @@ +"""Modified from https://github.com/chaofengc/PSFRGAN +""" +import numpy as np +import torch.nn as nn +from torch.nn import functional as F + + +class NormLayer(nn.Module): + """Normalization Layers. + + Args: + channels: input channels, for batch norm and instance norm. + input_size: input shape without batch size, for layer norm. + """ + + def __init__(self, channels, normalize_shape=None, norm_type='bn'): + super(NormLayer, self).__init__() + norm_type = norm_type.lower() + self.norm_type = norm_type + if norm_type == 'bn': + self.norm = nn.BatchNorm2d(channels, affine=True) + elif norm_type == 'in': + self.norm = nn.InstanceNorm2d(channels, affine=False) + elif norm_type == 'gn': + self.norm = nn.GroupNorm(32, channels, affine=True) + elif norm_type == 'pixel': + self.norm = lambda x: F.normalize(x, p=2, dim=1) + elif norm_type == 'layer': + self.norm = nn.LayerNorm(normalize_shape) + elif norm_type == 'none': + self.norm = lambda x: x * 1.0 + else: + assert 1 == 0, f'Norm type {norm_type} not support.' + + def forward(self, x, ref=None): + if self.norm_type == 'spade': + return self.norm(x, ref) + else: + return self.norm(x) + + +class ReluLayer(nn.Module): + """Relu Layer. + + Args: + relu type: type of relu layer, candidates are + - ReLU + - LeakyReLU: default relu slope 0.2 + - PRelu + - SELU + - none: direct pass + """ + + def __init__(self, channels, relu_type='relu'): + super(ReluLayer, self).__init__() + relu_type = relu_type.lower() + if relu_type == 'relu': + self.func = nn.ReLU(True) + elif relu_type == 'leakyrelu': + self.func = nn.LeakyReLU(0.2, inplace=True) + elif relu_type == 'prelu': + self.func = nn.PReLU(channels) + elif relu_type == 'selu': + self.func = nn.SELU(True) + elif relu_type == 'none': + self.func = lambda x: x * 1.0 + else: + assert 1 == 0, f'Relu type {relu_type} not support.' + + def forward(self, x): + return self.func(x) + + +class ConvLayer(nn.Module): + + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + scale='none', + norm_type='none', + relu_type='none', + use_pad=True, + bias=True): + super(ConvLayer, self).__init__() + self.use_pad = use_pad + self.norm_type = norm_type + if norm_type in ['bn']: + bias = False + + stride = 2 if scale == 'down' else 1 + + self.scale_func = lambda x: x + if scale == 'up': + self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest') + + self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2))) + self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias) + + self.relu = ReluLayer(out_channels, relu_type) + self.norm = NormLayer(out_channels, norm_type=norm_type) + + def forward(self, x): + out = self.scale_func(x) + if self.use_pad: + out = self.reflection_pad(out) + out = self.conv2d(out) + out = self.norm(out) + out = self.relu(out) + return out + + +class ResidualBlock(nn.Module): + """ + Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html + """ + + def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'): + super(ResidualBlock, self).__init__() + + if scale == 'none' and c_in == c_out: + self.shortcut_func = lambda x: x + else: + self.shortcut_func = ConvLayer(c_in, c_out, 3, scale) + + scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']} + scale_conf = scale_config_dict[scale] + + self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type) + self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none') + + def forward(self, x): + identity = self.shortcut_func(x) + + res = self.conv1(x) + res = self.conv2(res) + return identity + res + + +class ParseNet(nn.Module): + + def __init__(self, + in_size=128, + out_size=128, + min_feat_size=32, + base_ch=64, + parsing_ch=19, + res_depth=10, + relu_type='LeakyReLU', + norm_type='bn', + ch_range=[32, 256]): + super().__init__() + self.res_depth = res_depth + act_args = {'norm_type': norm_type, 'relu_type': relu_type} + min_ch, max_ch = ch_range + + ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731 + min_feat_size = min(in_size, min_feat_size) + + down_steps = int(np.log2(in_size // min_feat_size)) + up_steps = int(np.log2(out_size // min_feat_size)) + + # =============== define encoder-body-decoder ==================== + self.encoder = [] + self.encoder.append(ConvLayer(3, base_ch, 3, 1)) + head_ch = base_ch + for i in range(down_steps): + cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2) + self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args)) + head_ch = head_ch * 2 + + self.body = [] + for i in range(res_depth): + self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args)) + + self.decoder = [] + for i in range(up_steps): + cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2) + self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args)) + head_ch = head_ch // 2 + + self.encoder = nn.Sequential(*self.encoder) + self.body = nn.Sequential(*self.body) + self.decoder = nn.Sequential(*self.decoder) + self.out_img_conv = ConvLayer(ch_clip(head_ch), 3) + self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch) + + def forward(self, x): + feat = self.encoder(x) + x = feat + self.body(feat) + x = self.decoder(x) + out_img = self.out_img_conv(x) + out_mask = self.out_mask_conv(x) + return out_mask, out_img diff --git a/extras/facexlib/parsing/resnet.py b/extras/facexlib/parsing/resnet.py new file mode 100644 index 0000000..fec8e82 --- /dev/null +++ b/extras/facexlib/parsing/resnet.py @@ -0,0 +1,69 @@ +import torch.nn as nn +import torch.nn.functional as F + + +def conv3x3(in_planes, out_planes, stride=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) + + +class BasicBlock(nn.Module): + + def __init__(self, in_chan, out_chan, stride=1): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(in_chan, out_chan, stride) + self.bn1 = nn.BatchNorm2d(out_chan) + self.conv2 = conv3x3(out_chan, out_chan) + self.bn2 = nn.BatchNorm2d(out_chan) + self.relu = nn.ReLU(inplace=True) + self.downsample = None + if in_chan != out_chan or stride != 1: + self.downsample = nn.Sequential( + nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(out_chan), + ) + + def forward(self, x): + residual = self.conv1(x) + residual = F.relu(self.bn1(residual)) + residual = self.conv2(residual) + residual = self.bn2(residual) + + shortcut = x + if self.downsample is not None: + shortcut = self.downsample(x) + + out = shortcut + residual + out = self.relu(out) + return out + + +def create_layer_basic(in_chan, out_chan, bnum, stride=1): + layers = [BasicBlock(in_chan, out_chan, stride=stride)] + for i in range(bnum - 1): + layers.append(BasicBlock(out_chan, out_chan, stride=1)) + return nn.Sequential(*layers) + + +class ResNet18(nn.Module): + + def __init__(self): + super(ResNet18, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1) + self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2) + self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2) + self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2) + + def forward(self, x): + x = self.conv1(x) + x = F.relu(self.bn1(x)) + x = self.maxpool(x) + + x = self.layer1(x) + feat8 = self.layer2(x) # 1/8 + feat16 = self.layer3(feat8) # 1/16 + feat32 = self.layer4(feat16) # 1/32 + return feat8, feat16, feat32 diff --git a/extras/facexlib/utils/__init__.py b/extras/facexlib/utils/__init__.py new file mode 100644 index 0000000..706e077 --- /dev/null +++ b/extras/facexlib/utils/__init__.py @@ -0,0 +1,7 @@ +from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back +from .misc import img2tensor, load_file_from_url, scandir + +__all__ = [ + 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url', 'paste_face_back', + 'img2tensor', 'scandir' +] diff --git a/extras/facexlib/utils/face_restoration_helper.py b/extras/facexlib/utils/face_restoration_helper.py new file mode 100644 index 0000000..2a39361 --- /dev/null +++ b/extras/facexlib/utils/face_restoration_helper.py @@ -0,0 +1,374 @@ +import cv2 +import numpy as np +import os +import torch +from torchvision.transforms.functional import normalize + +from extras.facexlib.detection import init_detection_model +from extras.facexlib.parsing import init_parsing_model +from extras.facexlib.utils.misc import img2tensor, imwrite + + +def get_largest_face(det_faces, h, w): + + def get_location(val, length): + if val < 0: + return 0 + elif val > length: + return length + else: + return val + + face_areas = [] + for det_face in det_faces: + left = get_location(det_face[0], w) + right = get_location(det_face[2], w) + top = get_location(det_face[1], h) + bottom = get_location(det_face[3], h) + face_area = (right - left) * (bottom - top) + face_areas.append(face_area) + largest_idx = face_areas.index(max(face_areas)) + return det_faces[largest_idx], largest_idx + + +def get_center_face(det_faces, h=0, w=0, center=None): + if center is not None: + center = np.array(center) + else: + center = np.array([w / 2, h / 2]) + center_dist = [] + for det_face in det_faces: + face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2]) + dist = np.linalg.norm(face_center - center) + center_dist.append(dist) + center_idx = center_dist.index(min(center_dist)) + return det_faces[center_idx], center_idx + + +class FaceRestoreHelper(object): + """Helper for the face restoration pipeline (base class).""" + + def __init__(self, + upscale_factor, + face_size=512, + crop_ratio=(1, 1), + det_model='retinaface_resnet50', + save_ext='png', + template_3points=False, + pad_blur=False, + use_parse=False, + device=None, + model_rootpath=None): + self.template_3points = template_3points # improve robustness + self.upscale_factor = upscale_factor + # the cropped face ratio based on the square face + self.crop_ratio = crop_ratio # (h, w) + assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1' + self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0])) + + if self.template_3points: + self.face_template = np.array([[192, 240], [319, 240], [257, 371]]) + else: + # standard 5 landmarks for FFHQ faces with 512 x 512 + self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935], + [201.26117, 371.41043], [313.08905, 371.15118]]) + self.face_template = self.face_template * (face_size / 512.0) + if self.crop_ratio[0] > 1: + self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2 + if self.crop_ratio[1] > 1: + self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2 + self.save_ext = save_ext + self.pad_blur = pad_blur + if self.pad_blur is True: + self.template_3points = False + + self.all_landmarks_5 = [] + self.det_faces = [] + self.affine_matrices = [] + self.inverse_affine_matrices = [] + self.cropped_faces = [] + self.restored_faces = [] + self.pad_input_imgs = [] + + if device is None: + self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + else: + self.device = device + + # init face detection model + self.face_det = init_detection_model(det_model, half=False, device=self.device, model_rootpath=model_rootpath) + + # init face parsing model + self.use_parse = use_parse + self.face_parse = init_parsing_model(model_name='parsenet', device=self.device, model_rootpath=model_rootpath) + + def set_upscale_factor(self, upscale_factor): + self.upscale_factor = upscale_factor + + def read_image(self, img): + """img can be image path or cv2 loaded image.""" + # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255] + if isinstance(img, str): + img = cv2.imread(img) + + if np.max(img) > 256: # 16-bit image + img = img / 65535 * 255 + if len(img.shape) == 2: # gray image + img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) + elif img.shape[2] == 4: # RGBA image with alpha channel + img = img[:, :, 0:3] + + self.input_img = img + + def get_face_landmarks_5(self, + only_keep_largest=False, + only_center_face=False, + resize=None, + blur_ratio=0.01, + eye_dist_threshold=None): + if resize is None: + scale = 1 + input_img = self.input_img + else: + h, w = self.input_img.shape[0:2] + scale = min(h, w) / resize + h, w = int(h / scale), int(w / scale) + input_img = cv2.resize(self.input_img, (w, h), interpolation=cv2.INTER_LANCZOS4) + + with torch.no_grad(): + bboxes = self.face_det.detect_faces(input_img, 0.97) * scale + for bbox in bboxes: + # remove faces with too small eye distance: side faces or too small faces + eye_dist = np.linalg.norm([bbox[5] - bbox[7], bbox[6] - bbox[8]]) + if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold): + continue + + if self.template_3points: + landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)]) + else: + landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)]) + self.all_landmarks_5.append(landmark) + self.det_faces.append(bbox[0:5]) + if len(self.det_faces) == 0: + return 0 + if only_keep_largest: + h, w, _ = self.input_img.shape + self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w) + self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]] + elif only_center_face: + h, w, _ = self.input_img.shape + self.det_faces, center_idx = get_center_face(self.det_faces, h, w) + self.all_landmarks_5 = [self.all_landmarks_5[center_idx]] + + # pad blurry images + if self.pad_blur: + self.pad_input_imgs = [] + for landmarks in self.all_landmarks_5: + # get landmarks + eye_left = landmarks[0, :] + eye_right = landmarks[1, :] + eye_avg = (eye_left + eye_right) * 0.5 + mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5 + eye_to_eye = eye_right - eye_left + eye_to_mouth = mouth_avg - eye_avg + + # Get the oriented crop rectangle + # x: half width of the oriented crop rectangle + x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] + # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise + # norm with the hypotenuse: get the direction + x /= np.hypot(*x) # get the hypotenuse of a right triangle + rect_scale = 1.5 + x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) + # y: half height of the oriented crop rectangle + y = np.flipud(x) * [-1, 1] + + # c: center + c = eye_avg + eye_to_mouth * 0.1 + # quad: (left_top, left_bottom, right_bottom, right_top) + quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) + # qsize: side length of the square + qsize = np.hypot(*x) * 2 + border = max(int(np.rint(qsize * 0.1)), 3) + + # get pad + # pad: (width_left, height_top, width_right, height_bottom) + pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + pad = [ + max(-pad[0] + border, 1), + max(-pad[1] + border, 1), + max(pad[2] - self.input_img.shape[0] + border, 1), + max(pad[3] - self.input_img.shape[1] + border, 1) + ] + + if max(pad) > 1: + # pad image + pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') + # modify landmark coords + landmarks[:, 0] += pad[0] + landmarks[:, 1] += pad[1] + # blur pad images + h, w, _ = pad_img.shape + y, x, _ = np.ogrid[:h, :w, :1] + mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], + np.float32(w - 1 - x) / pad[2]), + 1.0 - np.minimum(np.float32(y) / pad[1], + np.float32(h - 1 - y) / pad[3])) + blur = int(qsize * blur_ratio) + if blur % 2 == 0: + blur += 1 + blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur)) + # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0) + + pad_img = pad_img.astype('float32') + pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) + pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0) + pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255] + self.pad_input_imgs.append(pad_img) + else: + self.pad_input_imgs.append(np.copy(self.input_img)) + + return len(self.all_landmarks_5) + + def align_warp_face(self, save_cropped_path=None, border_mode='constant'): + """Align and warp faces with face template. + """ + if self.pad_blur: + assert len(self.pad_input_imgs) == len( + self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}' + for idx, landmark in enumerate(self.all_landmarks_5): + # use 5 landmarks to get affine matrix + # use cv2.LMEDS method for the equivalence to skimage transform + # ref: https://blog.csdn.net/yichxi/article/details/115827338 + affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0] + self.affine_matrices.append(affine_matrix) + # warp and crop faces + if border_mode == 'constant': + border_mode = cv2.BORDER_CONSTANT + elif border_mode == 'reflect101': + border_mode = cv2.BORDER_REFLECT101 + elif border_mode == 'reflect': + border_mode = cv2.BORDER_REFLECT + if self.pad_blur: + input_img = self.pad_input_imgs[idx] + else: + input_img = self.input_img + cropped_face = cv2.warpAffine( + input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray + self.cropped_faces.append(cropped_face) + # save the cropped face + if save_cropped_path is not None: + path = os.path.splitext(save_cropped_path)[0] + save_path = f'{path}_{idx:02d}.{self.save_ext}' + imwrite(cropped_face, save_path) + + def get_inverse_affine(self, save_inverse_affine_path=None): + """Get inverse affine matrix.""" + for idx, affine_matrix in enumerate(self.affine_matrices): + inverse_affine = cv2.invertAffineTransform(affine_matrix) + inverse_affine *= self.upscale_factor + self.inverse_affine_matrices.append(inverse_affine) + # save inverse affine matrices + if save_inverse_affine_path is not None: + path, _ = os.path.splitext(save_inverse_affine_path) + save_path = f'{path}_{idx:02d}.pth' + torch.save(inverse_affine, save_path) + + def add_restored_face(self, face): + self.restored_faces.append(face) + + def paste_faces_to_input_image(self, save_path=None, upsample_img=None): + h, w, _ = self.input_img.shape + h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor) + + if upsample_img is None: + # simply resize the background + upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4) + else: + upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4) + + assert len(self.restored_faces) == len( + self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.') + for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices): + # Add an offset to inverse affine matrix, for more precise back alignment + if self.upscale_factor > 1: + extra_offset = 0.5 * self.upscale_factor + else: + extra_offset = 0 + inverse_affine[:, 2] += extra_offset + inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up)) + + if self.use_parse: + # inference + face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR) + face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True) + normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) + face_input = torch.unsqueeze(face_input, 0).to(self.device) + with torch.no_grad(): + out = self.face_parse(face_input)[0] + out = out.argmax(dim=1).squeeze().cpu().numpy() + + mask = np.zeros(out.shape) + MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0] + for idx, color in enumerate(MASK_COLORMAP): + mask[out == idx] = color + # blur the mask + mask = cv2.GaussianBlur(mask, (101, 101), 11) + mask = cv2.GaussianBlur(mask, (101, 101), 11) + # remove the black borders + thres = 10 + mask[:thres, :] = 0 + mask[-thres:, :] = 0 + mask[:, :thres] = 0 + mask[:, -thres:] = 0 + mask = mask / 255. + + mask = cv2.resize(mask, restored_face.shape[:2]) + mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up), flags=3) + inv_soft_mask = mask[:, :, None] + pasted_face = inv_restored + + else: # use square parse maps + mask = np.ones(self.face_size, dtype=np.float32) + inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up)) + # remove the black borders + inv_mask_erosion = cv2.erode( + inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8)) + pasted_face = inv_mask_erosion[:, :, None] * inv_restored + total_face_area = np.sum(inv_mask_erosion) # // 3 + # compute the fusion edge based on the area of face + w_edge = int(total_face_area**0.5) // 20 + erosion_radius = w_edge * 2 + inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) + blur_size = w_edge * 2 + inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) + if len(upsample_img.shape) == 2: # upsample_img is gray image + upsample_img = upsample_img[:, :, None] + inv_soft_mask = inv_soft_mask[:, :, None] + + if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel + alpha = upsample_img[:, :, 3:] + upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3] + upsample_img = np.concatenate((upsample_img, alpha), axis=2) + else: + upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img + + if np.max(upsample_img) > 256: # 16-bit image + upsample_img = upsample_img.astype(np.uint16) + else: + upsample_img = upsample_img.astype(np.uint8) + if save_path is not None: + path = os.path.splitext(save_path)[0] + save_path = f'{path}.{self.save_ext}' + imwrite(upsample_img, save_path) + return upsample_img + + def clean_all(self): + self.all_landmarks_5 = [] + self.restored_faces = [] + self.affine_matrices = [] + self.cropped_faces = [] + self.inverse_affine_matrices = [] + self.det_faces = [] + self.pad_input_imgs = [] diff --git a/extras/facexlib/utils/face_utils.py b/extras/facexlib/utils/face_utils.py new file mode 100644 index 0000000..0bbe43c --- /dev/null +++ b/extras/facexlib/utils/face_utils.py @@ -0,0 +1,250 @@ +import cv2 +import numpy as np +import torch + + +def compute_increased_bbox(bbox, increase_area, preserve_aspect=True): + left, top, right, bot = bbox + width = right - left + height = bot - top + + if preserve_aspect: + width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width)) + height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height)) + else: + width_increase = height_increase = increase_area + left = int(left - width_increase * width) + top = int(top - height_increase * height) + right = int(right + width_increase * width) + bot = int(bot + height_increase * height) + return (left, top, right, bot) + + +def get_valid_bboxes(bboxes, h, w): + left = max(bboxes[0], 0) + top = max(bboxes[1], 0) + right = min(bboxes[2], w) + bottom = min(bboxes[3], h) + return (left, top, right, bottom) + + +def align_crop_face_landmarks(img, + landmarks, + output_size, + transform_size=None, + enable_padding=True, + return_inverse_affine=False, + shrink_ratio=(1, 1)): + """Align and crop face with landmarks. + + The output_size and transform_size are based on width. The height is + adjusted based on shrink_ratio_h/shring_ration_w. + + Modified from: + https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py + + Args: + img (Numpy array): Input image. + landmarks (Numpy array): 5 or 68 or 98 landmarks. + output_size (int): Output face size. + transform_size (ing): Transform size. Usually the four time of + output_size. + enable_padding (float): Default: True. + shrink_ratio (float | tuple[float] | list[float]): Shring the whole + face for height and width (crop larger area). Default: (1, 1). + + Returns: + (Numpy array): Cropped face. + """ + lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5 + + if isinstance(shrink_ratio, (float, int)): + shrink_ratio = (shrink_ratio, shrink_ratio) + if transform_size is None: + transform_size = output_size * 4 + + # Parse landmarks + lm = np.array(landmarks) + if lm.shape[0] == 5 and lm_type == 'retinaface_5': + eye_left = lm[0] + eye_right = lm[1] + mouth_avg = (lm[3] + lm[4]) * 0.5 + elif lm.shape[0] == 5 and lm_type == 'dlib_5': + lm_eye_left = lm[2:4] + lm_eye_right = lm[0:2] + eye_left = np.mean(lm_eye_left, axis=0) + eye_right = np.mean(lm_eye_right, axis=0) + mouth_avg = lm[4] + elif lm.shape[0] == 68: + lm_eye_left = lm[36:42] + lm_eye_right = lm[42:48] + eye_left = np.mean(lm_eye_left, axis=0) + eye_right = np.mean(lm_eye_right, axis=0) + mouth_avg = (lm[48] + lm[54]) * 0.5 + elif lm.shape[0] == 98: + lm_eye_left = lm[60:68] + lm_eye_right = lm[68:76] + eye_left = np.mean(lm_eye_left, axis=0) + eye_right = np.mean(lm_eye_right, axis=0) + mouth_avg = (lm[76] + lm[82]) * 0.5 + + eye_avg = (eye_left + eye_right) * 0.5 + eye_to_eye = eye_right - eye_left + eye_to_mouth = mouth_avg - eye_avg + + # Get the oriented crop rectangle + # x: half width of the oriented crop rectangle + x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] + # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise + # norm with the hypotenuse: get the direction + x /= np.hypot(*x) # get the hypotenuse of a right triangle + rect_scale = 1 # TODO: you can edit it to get larger rect + x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale) + # y: half height of the oriented crop rectangle + y = np.flipud(x) * [-1, 1] + + x *= shrink_ratio[1] # width + y *= shrink_ratio[0] # height + + # c: center + c = eye_avg + eye_to_mouth * 0.1 + # quad: (left_top, left_bottom, right_bottom, right_top) + quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) + # qsize: side length of the square + qsize = np.hypot(*x) * 2 + + quad_ori = np.copy(quad) + # Shrink, for large face + # TODO: do we really need shrink + shrink = int(np.floor(qsize / output_size * 0.5)) + if shrink > 1: + h, w = img.shape[0:2] + rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink))) + img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA) + quad /= shrink + qsize /= shrink + + # Crop + h, w = img.shape[0:2] + border = max(int(np.rint(qsize * 0.1)), 3) + crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h)) + if crop[2] - crop[0] < w or crop[3] - crop[1] < h: + img = img[crop[1]:crop[3], crop[0]:crop[2], :] + quad -= crop[0:2] + + # Pad + # pad: (width_left, height_top, width_right, height_bottom) + h, w = img.shape[0:2] + pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0)) + if enable_padding and max(pad) > border - 4: + pad = np.maximum(pad, int(np.rint(qsize * 0.3))) + img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') + h, w = img.shape[0:2] + y, x, _ = np.ogrid[:h, :w, :1] + mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], + np.float32(w - 1 - x) / pad[2]), + 1.0 - np.minimum(np.float32(y) / pad[1], + np.float32(h - 1 - y) / pad[3])) + blur = int(qsize * 0.02) + if blur % 2 == 0: + blur += 1 + blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur)) + + img = img.astype('float32') + img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) + img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) + img = np.clip(img, 0, 255) # float32, [0, 255] + quad += pad[:2] + + # Transform use cv2 + h_ratio = shrink_ratio[0] / shrink_ratio[1] + dst_h, dst_w = int(transform_size * h_ratio), transform_size + template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) + # use cv2.LMEDS method for the equivalence to skimage transform + # ref: https://blog.csdn.net/yichxi/article/details/115827338 + affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0] + cropped_face = cv2.warpAffine( + img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray + + if output_size < transform_size: + cropped_face = cv2.resize( + cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR) + + if return_inverse_affine: + dst_h, dst_w = int(output_size * h_ratio), output_size + template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]]) + # use cv2.LMEDS method for the equivalence to skimage transform + # ref: https://blog.csdn.net/yichxi/article/details/115827338 + affine_matrix = cv2.estimateAffinePartial2D( + quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0] + inverse_affine = cv2.invertAffineTransform(affine_matrix) + else: + inverse_affine = None + return cropped_face, inverse_affine + + +def paste_face_back(img, face, inverse_affine): + h, w = img.shape[0:2] + face_h, face_w = face.shape[0:2] + inv_restored = cv2.warpAffine(face, inverse_affine, (w, h)) + mask = np.ones((face_h, face_w, 3), dtype=np.float32) + inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h)) + # remove the black borders + inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8)) + inv_restored_remove_border = inv_mask_erosion * inv_restored + total_face_area = np.sum(inv_mask_erosion) // 3 + # compute the fusion edge based on the area of face + w_edge = int(total_face_area**0.5) // 20 + erosion_radius = w_edge * 2 + inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)) + blur_size = w_edge * 2 + inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0) + img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img + # float32, [0, 255] + return img + + +if __name__ == '__main__': + import os + + from extras.facexlib.detection import init_detection_model + from extras.facexlib.utils.face_restoration_helper import get_largest_face + from extras.facexlib.visualization import visualize_detection + + img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png' + img_name = os.splitext(os.path.basename(img_path))[0] + + # initialize model + det_net = init_detection_model('retinaface_resnet50', half=False) + img_ori = cv2.imread(img_path) + h, w = img_ori.shape[0:2] + # if larger than 800, scale it + scale = max(h / 800, w / 800) + if scale > 1: + img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR) + + with torch.no_grad(): + bboxes = det_net.detect_faces(img, 0.97) + if scale > 1: + bboxes *= scale # the score is incorrect + bboxes = get_largest_face(bboxes, h, w)[0] + visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png') + + landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)]) + + cropped_face, inverse_affine = align_crop_face_landmarks( + img_ori, + landmarks, + output_size=512, + transform_size=None, + enable_padding=True, + return_inverse_affine=True, + shrink_ratio=(1, 1)) + + cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face) + img = paste_face_back(img_ori, cropped_face, inverse_affine) + cv2.imwrite(f'tmp/{img_name}_back.png', img) diff --git a/extras/facexlib/utils/misc.py b/extras/facexlib/utils/misc.py new file mode 100644 index 0000000..b1a597c --- /dev/null +++ b/extras/facexlib/utils/misc.py @@ -0,0 +1,118 @@ +import cv2 +import os +import os.path as osp +import torch +from torch.hub import download_url_to_file, get_dir +from urllib.parse import urlparse + +ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + + +def imwrite(img, file_path, params=None, auto_mkdir=True): + """Write image to file. + + Args: + img (ndarray): Image array to be written. + file_path (str): Image file path. + params (None or list): Same as opencv's :func:`imwrite` interface. + auto_mkdir (bool): If the parent folder of `file_path` does not exist, + whether to create it automatically. + + Returns: + bool: Successful or not. + """ + if auto_mkdir: + dir_name = os.path.abspath(os.path.dirname(file_path)) + os.makedirs(dir_name, exist_ok=True) + return cv2.imwrite(file_path, img, params) + + +def img2tensor(imgs, bgr2rgb=True, float32=True): + """Numpy array to tensor. + + Args: + imgs (list[ndarray] | ndarray): Input images. + bgr2rgb (bool): Whether to change bgr to rgb. + float32 (bool): Whether to change to float32. + + Returns: + list[tensor] | tensor: Tensor images. If returned results only have + one element, just return tensor. + """ + + def _totensor(img, bgr2rgb, float32): + if img.shape[2] == 3 and bgr2rgb: + if img.dtype == 'float64': + img = img.astype('float32') + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = torch.from_numpy(img.transpose(2, 0, 1)) + if float32: + img = img.float() + return img + + if isinstance(imgs, list): + return [_totensor(img, bgr2rgb, float32) for img in imgs] + else: + return _totensor(imgs, bgr2rgb, float32) + + +def load_file_from_url(url, model_dir=None, progress=True, file_name=None, save_dir=None): + """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py + """ + if model_dir is None: + hub_dir = get_dir() + model_dir = os.path.join(hub_dir, 'checkpoints') + + if save_dir is None: + save_dir = os.path.join(ROOT_DIR, model_dir) + os.makedirs(save_dir, exist_ok=True) + + parts = urlparse(url) + filename = os.path.basename(parts.path) + if file_name is not None: + filename = file_name + cached_file = os.path.abspath(os.path.join(save_dir, filename)) + if not os.path.exists(cached_file): + print(f'Downloading: "{url}" to {cached_file}\n') + download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) + return cached_file + + +def scandir(dir_path, suffix=None, recursive=False, full_path=False): + """Scan a directory to find the interested files. + Args: + dir_path (str): Path of the directory. + suffix (str | tuple(str), optional): File suffix that we are + interested in. Default: None. + recursive (bool, optional): If set to True, recursively scan the + directory. Default: False. + full_path (bool, optional): If set to True, include the dir_path. + Default: False. + Returns: + A generator for all the interested files with relative paths. + """ + + if (suffix is not None) and not isinstance(suffix, (str, tuple)): + raise TypeError('"suffix" must be a string or tuple of strings') + + root = dir_path + + def _scandir(dir_path, suffix, recursive): + for entry in os.scandir(dir_path): + if not entry.name.startswith('.') and entry.is_file(): + if full_path: + return_path = entry.path + else: + return_path = osp.relpath(entry.path, root) + + if suffix is None: + yield return_path + elif return_path.endswith(suffix): + yield return_path + else: + if recursive: + yield from _scandir(entry.path, suffix=suffix, recursive=recursive) + else: + continue + + return _scandir(dir_path, suffix=suffix, recursive=recursive) diff --git a/extras/inpaint_mask.py b/extras/inpaint_mask.py new file mode 100644 index 0000000..086b7da --- /dev/null +++ b/extras/inpaint_mask.py @@ -0,0 +1,130 @@ +import sys + +import modules.config +import numpy as np +import torch +from extras.GroundingDINO.util.inference import default_groundingdino +from extras.sam.predictor import SamPredictor +from rembg import remove, new_session +from segment_anything import sam_model_registry +from segment_anything.utils.amg import remove_small_regions + + +class SAMOptions: + def __init__(self, + # GroundingDINO + dino_prompt: str = '', + dino_box_threshold=0.3, + dino_text_threshold=0.25, + dino_erode_or_dilate=0, + dino_debug=False, + + # SAM + max_detections=2, + model_type='vit_b' + ): + self.dino_prompt = dino_prompt + self.dino_box_threshold = dino_box_threshold + self.dino_text_threshold = dino_text_threshold + self.dino_erode_or_dilate = dino_erode_or_dilate + self.dino_debug = dino_debug + self.max_detections = max_detections + self.model_type = model_type + + +def optimize_masks(masks: torch.Tensor) -> torch.Tensor: + """ + removes small disconnected regions and holes + """ + fine_masks = [] + for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w] + fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0]) + masks = np.stack(fine_masks, axis=0)[:, np.newaxis] + return torch.from_numpy(masks) + + +def generate_mask_from_image(image: np.ndarray, mask_model: str = 'sam', extras=None, + sam_options: SAMOptions | None = SAMOptions) -> tuple[np.ndarray | None, int | None, int | None, int | None]: + dino_detection_count = 0 + sam_detection_count = 0 + sam_detection_on_mask_count = 0 + + if image is None: + return None, dino_detection_count, sam_detection_count, sam_detection_on_mask_count + + if extras is None: + extras = {} + + if 'image' in image: + image = image['image'] + + if mask_model != 'sam' or sam_options is None: + result = remove( + image, + session=new_session(mask_model, **extras), + only_mask=True, + **extras + ) + + return result, dino_detection_count, sam_detection_count, sam_detection_on_mask_count + + detections, boxes, logits, phrases = default_groundingdino( + image=image, + caption=sam_options.dino_prompt, + box_threshold=sam_options.dino_box_threshold, + text_threshold=sam_options.dino_text_threshold + ) + + H, W = image.shape[0], image.shape[1] + boxes = boxes * torch.Tensor([W, H, W, H]) + boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2 + boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2] + + sam_checkpoint = modules.config.download_sam_model(sam_options.model_type) + sam = sam_model_registry[sam_options.model_type](checkpoint=sam_checkpoint) + + sam_predictor = SamPredictor(sam) + final_mask_tensor = torch.zeros((image.shape[0], image.shape[1])) + dino_detection_count = boxes.size(0) + + if dino_detection_count > 0: + sam_predictor.set_image(image) + + if sam_options.dino_erode_or_dilate != 0: + for index in range(boxes.size(0)): + assert boxes.size(1) == 4 + boxes[index][0] -= sam_options.dino_erode_or_dilate + boxes[index][1] -= sam_options.dino_erode_or_dilate + boxes[index][2] += sam_options.dino_erode_or_dilate + boxes[index][3] += sam_options.dino_erode_or_dilate + + if sam_options.dino_debug: + from PIL import ImageDraw, Image + debug_dino_image = Image.new("RGB", (image.shape[1], image.shape[0]), color="black") + draw = ImageDraw.Draw(debug_dino_image) + for box in boxes.numpy(): + draw.rectangle(box.tolist(), fill="white") + return np.array(debug_dino_image), dino_detection_count, sam_detection_count, sam_detection_on_mask_count + + transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2]) + masks, _, _ = sam_predictor.predict_torch( + point_coords=None, + point_labels=None, + boxes=transformed_boxes, + multimask_output=False, + ) + + masks = optimize_masks(masks) + sam_detection_count = len(masks) + if sam_options.max_detections == 0: + sam_options.max_detections = sys.maxsize + sam_objects = min(len(logits), sam_options.max_detections) + for obj_ind in range(sam_objects): + mask_tensor = masks[obj_ind][0] + final_mask_tensor += mask_tensor + sam_detection_on_mask_count += 1 + + final_mask_tensor = (final_mask_tensor > 0).to('cpu').numpy() + mask_image = np.dstack((final_mask_tensor, final_mask_tensor, final_mask_tensor)) * 255 + mask_image = np.array(mask_image, dtype=np.uint8) + return mask_image, dino_detection_count, sam_detection_count, sam_detection_on_mask_count diff --git a/extras/interrogate.py b/extras/interrogate.py new file mode 100644 index 0000000..410d685 --- /dev/null +++ b/extras/interrogate.py @@ -0,0 +1,63 @@ +import os +import torch +import ldm_patched.modules.model_management as model_management + +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode +from modules.model_loader import load_file_from_url +from modules.config import path_clip_vision +from ldm_patched.modules.model_patcher import ModelPatcher +from extras.BLIP.models.blip import blip_decoder + + +blip_image_eval_size = 384 +blip_repo_root = os.path.join(os.path.dirname(__file__), 'BLIP') + + +class Interrogator: + def __init__(self): + self.blip_model = None + self.load_device = torch.device('cpu') + self.offload_device = torch.device('cpu') + self.dtype = torch.float32 + + @torch.no_grad() + @torch.inference_mode() + def interrogate(self, img_rgb): + if self.blip_model is None: + filename = load_file_from_url( + url='https://huggingface.co/lllyasviel/misc/resolve/main/model_base_caption_capfilt_large.pth', + model_dir=path_clip_vision, + file_name='model_base_caption_capfilt_large.pth', + ) + + model = blip_decoder(pretrained=filename, image_size=blip_image_eval_size, vit='base', + med_config=os.path.join(blip_repo_root, "configs", "med_config.json")) + model.eval() + + self.load_device = model_management.text_encoder_device() + self.offload_device = model_management.text_encoder_offload_device() + self.dtype = torch.float32 + + model.to(self.offload_device) + + if model_management.should_use_fp16(device=self.load_device): + model.half() + self.dtype = torch.float16 + + self.blip_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) + + model_management.load_model_gpu(self.blip_model) + + gpu_image = transforms.Compose([ + transforms.ToTensor(), + transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), + transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) + ])(img_rgb).unsqueeze(0).to(device=self.load_device, dtype=self.dtype) + + caption = self.blip_model.model.generate(gpu_image, sample=True, num_beams=1, max_length=75)[0] + + return caption + + +default_interrogator = Interrogator().interrogate diff --git a/extras/ip_adapter.py b/extras/ip_adapter.py new file mode 100644 index 0000000..d29f1de --- /dev/null +++ b/extras/ip_adapter.py @@ -0,0 +1,284 @@ +import torch +import ldm_patched.modules.clip_vision +import safetensors.torch as sf +import ldm_patched.modules.model_management as model_management +import ldm_patched.ldm.modules.attention as attention + +from extras.resampler import Resampler +from ldm_patched.modules.model_patcher import ModelPatcher +from modules.core import numpy_to_pytorch +from modules.ops import use_patched_ops +from ldm_patched.modules.ops import manual_cast + + +SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2 +SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20 + + +def sdp(q, k, v, extra_options): + return attention.optimized_attention(q, k, v, heads=extra_options["n_heads"], mask=None) + + +class ImageProjModel(torch.nn.Module): + def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): + super().__init__() + + self.cross_attention_dim = cross_attention_dim + self.clip_extra_context_tokens = clip_extra_context_tokens + self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) + self.norm = torch.nn.LayerNorm(cross_attention_dim) + + def forward(self, image_embeds): + embeds = image_embeds + clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, + self.cross_attention_dim) + clip_extra_context_tokens = self.norm(clip_extra_context_tokens) + return clip_extra_context_tokens + + +class To_KV(torch.nn.Module): + def __init__(self, cross_attention_dim): + super().__init__() + + channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS + self.to_kvs = torch.nn.ModuleList( + [torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels]) + + def load_state_dict_ordered(self, sd): + state_dict = [] + for i in range(4096): + for k in ['k', 'v']: + key = f'{i}.to_{k}_ip.weight' + if key in sd: + state_dict.append(sd[key]) + for i, v in enumerate(state_dict): + self.to_kvs[i].weight = torch.nn.Parameter(v, requires_grad=False) + + +class IPAdapterModel(torch.nn.Module): + def __init__(self, state_dict, plus, cross_attention_dim=768, clip_embeddings_dim=1024, clip_extra_context_tokens=4, + sdxl_plus=False): + super().__init__() + self.plus = plus + if self.plus: + self.image_proj_model = Resampler( + dim=1280 if sdxl_plus else cross_attention_dim, + depth=4, + dim_head=64, + heads=20 if sdxl_plus else 12, + num_queries=clip_extra_context_tokens, + embedding_dim=clip_embeddings_dim, + output_dim=cross_attention_dim, + ff_mult=4 + ) + else: + self.image_proj_model = ImageProjModel( + cross_attention_dim=cross_attention_dim, + clip_embeddings_dim=clip_embeddings_dim, + clip_extra_context_tokens=clip_extra_context_tokens + ) + + self.image_proj_model.load_state_dict(state_dict["image_proj"]) + self.ip_layers = To_KV(cross_attention_dim) + self.ip_layers.load_state_dict_ordered(state_dict["ip_adapter"]) + + +clip_vision: ldm_patched.modules.clip_vision.ClipVisionModel = None +ip_negative: torch.Tensor = None +ip_adapters: dict = {} + + +def load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path): + global clip_vision, ip_negative, ip_adapters + + if clip_vision is None and isinstance(clip_vision_path, str): + clip_vision = ldm_patched.modules.clip_vision.load(clip_vision_path) + + if ip_negative is None and isinstance(ip_negative_path, str): + ip_negative = sf.load_file(ip_negative_path)['data'] + + if not isinstance(ip_adapter_path, str) or ip_adapter_path in ip_adapters: + return + + load_device = model_management.get_torch_device() + offload_device = torch.device('cpu') + + use_fp16 = model_management.should_use_fp16(device=load_device) + ip_state_dict = torch.load(ip_adapter_path, map_location="cpu", weights_only=True) + plus = "latents" in ip_state_dict["image_proj"] + cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1] + sdxl = cross_attention_dim == 2048 + sdxl_plus = sdxl and plus + + if plus: + clip_extra_context_tokens = ip_state_dict["image_proj"]["latents"].shape[1] + clip_embeddings_dim = ip_state_dict["image_proj"]["latents"].shape[2] + else: + clip_extra_context_tokens = ip_state_dict["image_proj"]["proj.weight"].shape[0] // cross_attention_dim + clip_embeddings_dim = None + + with use_patched_ops(manual_cast): + ip_adapter = IPAdapterModel( + ip_state_dict, + plus=plus, + cross_attention_dim=cross_attention_dim, + clip_embeddings_dim=clip_embeddings_dim, + clip_extra_context_tokens=clip_extra_context_tokens, + sdxl_plus=sdxl_plus + ) + + ip_adapter.sdxl = sdxl + ip_adapter.load_device = load_device + ip_adapter.offload_device = offload_device + ip_adapter.dtype = torch.float16 if use_fp16 else torch.float32 + ip_adapter.to(offload_device, dtype=ip_adapter.dtype) + + image_proj_model = ModelPatcher(model=ip_adapter.image_proj_model, load_device=load_device, + offload_device=offload_device) + ip_layers = ModelPatcher(model=ip_adapter.ip_layers, load_device=load_device, + offload_device=offload_device) + + ip_adapters[ip_adapter_path] = dict( + ip_adapter=ip_adapter, + image_proj_model=image_proj_model, + ip_layers=ip_layers, + ip_unconds=None + ) + + return + + +@torch.no_grad() +@torch.inference_mode() +def clip_preprocess(image): + mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=image.device, dtype=image.dtype).view([1, 3, 1, 1]) + std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=image.device, dtype=image.dtype).view([1, 3, 1, 1]) + image = image.movedim(-1, 1) + + # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 + B, C, H, W = image.shape + assert H == 224 and W == 224 + + return (image - mean) / std + + +@torch.no_grad() +@torch.inference_mode() +def preprocess(img, ip_adapter_path): + global ip_adapters + entry = ip_adapters[ip_adapter_path] + + ldm_patched.modules.model_management.load_model_gpu(clip_vision.patcher) + pixel_values = clip_preprocess(numpy_to_pytorch(img).to(clip_vision.load_device)) + outputs = clip_vision.model(pixel_values=pixel_values, output_hidden_states=True) + + ip_adapter = entry['ip_adapter'] + ip_layers = entry['ip_layers'] + image_proj_model = entry['image_proj_model'] + ip_unconds = entry['ip_unconds'] + + if ip_adapter.plus: + cond = outputs.hidden_states[-2] + else: + cond = outputs.image_embeds + + cond = cond.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype) + + ldm_patched.modules.model_management.load_model_gpu(image_proj_model) + cond = image_proj_model.model(cond).to(device=ip_adapter.load_device, dtype=ip_adapter.dtype) + + ldm_patched.modules.model_management.load_model_gpu(ip_layers) + + if ip_unconds is None: + uncond = ip_negative.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype) + ip_unconds = [m(uncond).cpu() for m in ip_layers.model.to_kvs] + entry['ip_unconds'] = ip_unconds + + ip_conds = [m(cond).cpu() for m in ip_layers.model.to_kvs] + + return ip_conds, ip_unconds + + +@torch.no_grad() +@torch.inference_mode() +def patch_model(model, tasks): + new_model = model.clone() + + def make_attn_patcher(ip_index): + def patcher(n, context_attn2, value_attn2, extra_options): + org_dtype = n.dtype + current_step = float(model.model.diffusion_model.current_step.detach().cpu().numpy()[0]) + cond_or_uncond = extra_options['cond_or_uncond'] + + q = n + k = [context_attn2] + v = [value_attn2] + b, _, _ = q.shape + + for (cs, ucs), cn_stop, cn_weight in tasks: + if current_step < cn_stop: + ip_k_c = cs[ip_index * 2].to(q) + ip_v_c = cs[ip_index * 2 + 1].to(q) + ip_k_uc = ucs[ip_index * 2].to(q) + ip_v_uc = ucs[ip_index * 2 + 1].to(q) + + ip_k = torch.cat([(ip_k_c, ip_k_uc)[i] for i in cond_or_uncond], dim=0) + ip_v = torch.cat([(ip_v_c, ip_v_uc)[i] for i in cond_or_uncond], dim=0) + + # Midjourney's attention formulation of image prompt (non-official reimplementation) + # Written by Lvmin Zhang at Stanford University, 2023 Dec + # For non-commercial use only - if you use this in commercial project then + # probably it has some intellectual property issues. + # Contact lvminzhang@acm.org if you are not sure. + + # Below is the sensitive part with potential intellectual property issues. + + ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True) + ip_v_offset = ip_v - ip_v_mean + + B, F, C = ip_k.shape + channel_penalty = float(C) / 1280.0 + weight = cn_weight * channel_penalty + + ip_k = ip_k * weight + ip_v = ip_v_offset + ip_v_mean * weight + + k.append(ip_k) + v.append(ip_v) + + k = torch.cat(k, dim=1) + v = torch.cat(v, dim=1) + out = sdp(q, k, v, extra_options) + + + return out.to(dtype=org_dtype) + return patcher + + def set_model_patch_replace(model, number, key): + to = model.model_options["transformer_options"] + if "patches_replace" not in to: + to["patches_replace"] = {} + if "attn2" not in to["patches_replace"]: + to["patches_replace"]["attn2"] = {} + if key not in to["patches_replace"]["attn2"]: + to["patches_replace"]["attn2"][key] = make_attn_patcher(number) + + number = 0 + + for id in [4, 5, 7, 8]: + block_indices = range(2) if id in [4, 5] else range(10) + for index in block_indices: + set_model_patch_replace(new_model, number, ("input", id, index)) + number += 1 + + for id in range(6): + block_indices = range(2) if id in [3, 4, 5] else range(10) + for index in block_indices: + set_model_patch_replace(new_model, number, ("output", id, index)) + number += 1 + + for index in range(10): + set_model_patch_replace(new_model, number, ("middle", 0, index)) + number += 1 + + return new_model diff --git a/extras/preprocessors.py b/extras/preprocessors.py new file mode 100644 index 0000000..0aa8310 --- /dev/null +++ b/extras/preprocessors.py @@ -0,0 +1,81 @@ +import cv2 +import numpy as np + + +def centered_canny(x: np.ndarray, canny_low_threshold, canny_high_threshold): + assert isinstance(x, np.ndarray) + assert x.ndim == 2 and x.dtype == np.uint8 + + y = cv2.Canny(x, int(canny_low_threshold), int(canny_high_threshold)) + y = y.astype(np.float32) / 255.0 + return y + + +def centered_canny_color(x: np.ndarray, canny_low_threshold, canny_high_threshold): + assert isinstance(x, np.ndarray) + assert x.ndim == 3 and x.shape[2] == 3 + + result = [centered_canny(x[..., i], canny_low_threshold, canny_high_threshold) for i in range(3)] + result = np.stack(result, axis=2) + return result + + +def pyramid_canny_color(x: np.ndarray, canny_low_threshold, canny_high_threshold): + assert isinstance(x, np.ndarray) + assert x.ndim == 3 and x.shape[2] == 3 + + H, W, C = x.shape + acc_edge = None + + for k in [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: + Hs, Ws = int(H * k), int(W * k) + small = cv2.resize(x, (Ws, Hs), interpolation=cv2.INTER_AREA) + edge = centered_canny_color(small, canny_low_threshold, canny_high_threshold) + if acc_edge is None: + acc_edge = edge + else: + acc_edge = cv2.resize(acc_edge, (edge.shape[1], edge.shape[0]), interpolation=cv2.INTER_LINEAR) + acc_edge = acc_edge * 0.75 + edge * 0.25 + + return acc_edge + + +def norm255(x, low=4, high=96): + assert isinstance(x, np.ndarray) + assert x.ndim == 2 and x.dtype == np.float32 + + v_min = np.percentile(x, low) + v_max = np.percentile(x, high) + + x -= v_min + x /= v_max - v_min + + return x * 255.0 + + +def canny_pyramid(x, canny_low_threshold, canny_high_threshold): + # For some reasons, SAI's Control-lora Canny seems to be trained on canny maps with non-standard resolutions. + # Then we use pyramid to use all resolutions to avoid missing any structure in specific resolutions. + + color_canny = pyramid_canny_color(x, canny_low_threshold, canny_high_threshold) + result = np.sum(color_canny, axis=2) + + return norm255(result, low=1, high=99).clip(0, 255).astype(np.uint8) + + +def cpds(x): + # cv2.decolor is not "decolor", it is Cewu Lu's method + # See http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html + # See https://docs.opencv.org/3.0-beta/modules/photo/doc/decolor.html + + raw = cv2.GaussianBlur(x, (0, 0), 0.8) + density, boost = cv2.decolor(raw) + + raw = raw.astype(np.float32) + density = density.astype(np.float32) + boost = boost.astype(np.float32) + + offset = np.sum((raw - boost) ** 2.0, axis=2) ** 0.5 + result = density + offset + + return norm255(result, low=4, high=96).clip(0, 255).astype(np.uint8) diff --git a/extras/resampler.py b/extras/resampler.py new file mode 100644 index 0000000..539f309 --- /dev/null +++ b/extras/resampler.py @@ -0,0 +1,120 @@ +# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py +import math + +import torch +import torch.nn as nn + + +# FFN +def FeedForward(dim, mult=4): + inner_dim = int(dim * mult) + return nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, inner_dim, bias=False), + nn.GELU(), + nn.Linear(inner_dim, dim, bias=False), + ) + + +def reshape_tensor(x, heads): + bs, length, width = x.shape + #(bs, length, width) --> (bs, length, n_heads, dim_per_head) + x = x.view(bs, length, heads, -1) + # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) + x = x.transpose(1, 2) + # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) + x = x.reshape(bs, heads, length, -1) + return x + + +class PerceiverAttention(nn.Module): + def __init__(self, *, dim, dim_head=64, heads=8): + super().__init__() + self.scale = dim_head**-0.5 + self.dim_head = dim_head + self.heads = heads + inner_dim = dim_head * heads + + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) + self.to_out = nn.Linear(inner_dim, dim, bias=False) + + + def forward(self, x, latents): + """ + Args: + x (torch.Tensor): image features + shape (b, n1, D) + latent (torch.Tensor): latent features + shape (b, n2, D) + """ + x = self.norm1(x) + latents = self.norm2(latents) + + b, l, _ = latents.shape + + q = self.to_q(latents) + kv_input = torch.cat((x, latents), dim=-2) + k, v = self.to_kv(kv_input).chunk(2, dim=-1) + + q = reshape_tensor(q, self.heads) + k = reshape_tensor(k, self.heads) + v = reshape_tensor(v, self.heads) + + # attention + scale = 1 / math.sqrt(math.sqrt(self.dim_head)) + weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + out = weight @ v + + out = out.permute(0, 2, 1, 3).reshape(b, l, -1) + + return self.to_out(out) + + +class Resampler(nn.Module): + def __init__( + self, + dim=1024, + depth=8, + dim_head=64, + heads=16, + num_queries=8, + embedding_dim=768, + output_dim=1024, + ff_mult=4, + ): + super().__init__() + + self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) + + self.proj_in = nn.Linear(embedding_dim, dim) + + self.proj_out = nn.Linear(dim, output_dim) + self.norm_out = nn.LayerNorm(output_dim) + + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append( + nn.ModuleList( + [ + PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), + FeedForward(dim=dim, mult=ff_mult), + ] + ) + ) + + def forward(self, x): + latents = self.latents.repeat(x.size(0), 1, 1).to(x) + + x = self.proj_in(x) + + for attn, ff in self.layers: + latents = attn(x, latents) + latents + latents = ff(latents) + latents + + latents = self.proj_out(latents) + return self.norm_out(latents) diff --git a/extras/safety_checker/configs/config.json b/extras/safety_checker/configs/config.json new file mode 100644 index 0000000..aa454d2 --- /dev/null +++ b/extras/safety_checker/configs/config.json @@ -0,0 +1,171 @@ +{ + "_name_or_path": "clip-vit-large-patch14/", + "architectures": [ + "SafetyChecker" + ], + "initializer_factor": 1.0, + "logit_scale_init_value": 2.6592, + "model_type": "clip", + "projection_dim": 768, + "text_config": { + "_name_or_path": "", + "add_cross_attention": false, + "architectures": null, + "attention_dropout": 0.0, + "bad_words_ids": null, + "bos_token_id": 0, + "chunk_size_feed_forward": 0, + "cross_attention_hidden_size": null, + "decoder_start_token_id": null, + "diversity_penalty": 0.0, + "do_sample": false, + "dropout": 0.0, + "early_stopping": false, + "encoder_no_repeat_ngram_size": 0, + "eos_token_id": 2, + "exponential_decay_length_penalty": null, + "finetuning_task": null, + "forced_bos_token_id": null, + "forced_eos_token_id": null, + "hidden_act": "quick_gelu", + "hidden_size": 768, + "id2label": { + "0": "LABEL_0", + "1": "LABEL_1" + }, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 3072, + "is_decoder": false, + "is_encoder_decoder": false, + "label2id": { + "LABEL_0": 0, + "LABEL_1": 1 + }, + "layer_norm_eps": 1e-05, + "length_penalty": 1.0, + "max_length": 20, + "max_position_embeddings": 77, + "min_length": 0, + "model_type": "clip_text_model", + "no_repeat_ngram_size": 0, + "num_attention_heads": 12, + "num_beam_groups": 1, + "num_beams": 1, + "num_hidden_layers": 12, + "num_return_sequences": 1, + "output_attentions": false, + "output_hidden_states": false, + "output_scores": false, + "pad_token_id": 1, + "prefix": null, + "problem_type": null, + "pruned_heads": {}, + "remove_invalid_values": false, + "repetition_penalty": 1.0, + "return_dict": true, + "return_dict_in_generate": false, + "sep_token_id": null, + "task_specific_params": null, + "temperature": 1.0, + "tie_encoder_decoder": false, + "tie_word_embeddings": true, + "tokenizer_class": null, + "top_k": 50, + "top_p": 1.0, + "torch_dtype": null, + "torchscript": false, + "transformers_version": "4.21.0.dev0", + "typical_p": 1.0, + "use_bfloat16": false, + "vocab_size": 49408 + }, + "text_config_dict": { + "hidden_size": 768, + "intermediate_size": 3072, + "num_attention_heads": 12, + "num_hidden_layers": 12 + }, + "torch_dtype": "float32", + "transformers_version": null, + "vision_config": { + "_name_or_path": "", + "add_cross_attention": false, + "architectures": null, + "attention_dropout": 0.0, + "bad_words_ids": null, + "bos_token_id": null, + "chunk_size_feed_forward": 0, + "cross_attention_hidden_size": null, + "decoder_start_token_id": null, + "diversity_penalty": 0.0, + "do_sample": false, + "dropout": 0.0, + "early_stopping": false, + "encoder_no_repeat_ngram_size": 0, + "eos_token_id": null, + "exponential_decay_length_penalty": null, + "finetuning_task": null, + "forced_bos_token_id": null, + "forced_eos_token_id": null, + "hidden_act": "quick_gelu", + "hidden_size": 1024, + "id2label": { + "0": "LABEL_0", + "1": "LABEL_1" + }, + "image_size": 224, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 4096, + "is_decoder": false, + "is_encoder_decoder": false, + "label2id": { + "LABEL_0": 0, + "LABEL_1": 1 + }, + "layer_norm_eps": 1e-05, + "length_penalty": 1.0, + "max_length": 20, + "min_length": 0, + "model_type": "clip_vision_model", + "no_repeat_ngram_size": 0, + "num_attention_heads": 16, + "num_beam_groups": 1, + "num_beams": 1, + "num_hidden_layers": 24, + "num_return_sequences": 1, + "output_attentions": false, + "output_hidden_states": false, + "output_scores": false, + "pad_token_id": null, + "patch_size": 14, + "prefix": null, + "problem_type": null, + "pruned_heads": {}, + "remove_invalid_values": false, + "repetition_penalty": 1.0, + "return_dict": true, + "return_dict_in_generate": false, + "sep_token_id": null, + "task_specific_params": null, + "temperature": 1.0, + "tie_encoder_decoder": false, + "tie_word_embeddings": true, + "tokenizer_class": null, + "top_k": 50, + "top_p": 1.0, + "torch_dtype": null, + "torchscript": false, + "transformers_version": "4.21.0.dev0", + "typical_p": 1.0, + "use_bfloat16": false + }, + "vision_config_dict": { + "hidden_size": 1024, + "intermediate_size": 4096, + "num_attention_heads": 16, + "num_hidden_layers": 24, + "patch_size": 14 + } +} diff --git a/extras/safety_checker/configs/preprocessor_config.json b/extras/safety_checker/configs/preprocessor_config.json new file mode 100644 index 0000000..5294955 --- /dev/null +++ b/extras/safety_checker/configs/preprocessor_config.json @@ -0,0 +1,20 @@ +{ + "crop_size": 224, + "do_center_crop": true, + "do_convert_rgb": true, + "do_normalize": true, + "do_resize": true, + "feature_extractor_type": "CLIPFeatureExtractor", + "image_mean": [ + 0.48145466, + 0.4578275, + 0.40821073 + ], + "image_std": [ + 0.26862954, + 0.26130258, + 0.27577711 + ], + "resample": 3, + "size": 224 +} diff --git a/extras/safety_checker/models/safety_checker.py b/extras/safety_checker/models/safety_checker.py new file mode 100644 index 0000000..ea38bf0 --- /dev/null +++ b/extras/safety_checker/models/safety_checker.py @@ -0,0 +1,126 @@ +# from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py + +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import torch +import torch.nn as nn +from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel +from transformers.utils import logging + +logger = logging.get_logger(__name__) + + +def cosine_distance(image_embeds, text_embeds): + normalized_image_embeds = nn.functional.normalize(image_embeds) + normalized_text_embeds = nn.functional.normalize(text_embeds) + return torch.mm(normalized_image_embeds, normalized_text_embeds.t()) + + +class StableDiffusionSafetyChecker(PreTrainedModel): + config_class = CLIPConfig + main_input_name = "clip_input" + + _no_split_modules = ["CLIPEncoderLayer"] + + def __init__(self, config: CLIPConfig): + super().__init__(config) + + self.vision_model = CLIPVisionModel(config.vision_config) + self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) + + self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) + self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) + + self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) + self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False) + + @torch.no_grad() + def forward(self, clip_input, images): + pooled_output = self.vision_model(clip_input)[1] # pooled_output + image_embeds = self.visual_projection(pooled_output) + + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() + cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() + + result = [] + batch_size = image_embeds.shape[0] + for i in range(batch_size): + result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} + + # increase this value to create a stronger `nfsw` filter + # at the cost of increasing the possibility of filtering benign images + adjustment = 0.0 + + for concept_idx in range(len(special_cos_dist[0])): + concept_cos = special_cos_dist[i][concept_idx] + concept_threshold = self.special_care_embeds_weights[concept_idx].item() + result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) + if result_img["special_scores"][concept_idx] > 0: + result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) + adjustment = 0.01 + + for concept_idx in range(len(cos_dist[0])): + concept_cos = cos_dist[i][concept_idx] + concept_threshold = self.concept_embeds_weights[concept_idx].item() + result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) + if result_img["concept_scores"][concept_idx] > 0: + result_img["bad_concepts"].append(concept_idx) + + result.append(result_img) + + has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result] + + for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): + if has_nsfw_concept: + if torch.is_tensor(images) or torch.is_tensor(images[0]): + images[idx] = torch.zeros_like(images[idx]) # black image + else: + images[idx] = np.zeros(images[idx].shape) # black image + + if any(has_nsfw_concepts): + logger.warning( + "Potential NSFW content was detected in one or more images. A black image will be returned instead." + " Try again with a different prompt and/or seed." + ) + + return images, has_nsfw_concepts + + @torch.no_grad() + def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor): + pooled_output = self.vision_model(clip_input)[1] # pooled_output + image_embeds = self.visual_projection(pooled_output) + + special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) + cos_dist = cosine_distance(image_embeds, self.concept_embeds) + + # increase this value to create a stronger `nsfw` filter + # at the cost of increasing the possibility of filtering benign images + adjustment = 0.0 + + special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment + # special_scores = special_scores.round(decimals=3) + special_care = torch.any(special_scores > 0, dim=1) + special_adjustment = special_care * 0.01 + special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) + + concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment + # concept_scores = concept_scores.round(decimals=3) + has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) + + images[has_nsfw_concepts] = 0.0 # black image + + return images, has_nsfw_concepts diff --git a/extras/sam/predictor.py b/extras/sam/predictor.py new file mode 100644 index 0000000..337c549 --- /dev/null +++ b/extras/sam/predictor.py @@ -0,0 +1,288 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import numpy as np +import torch +from ldm_patched.modules import model_management +from ldm_patched.modules.model_patcher import ModelPatcher + +from segment_anything.modeling import Sam + +from typing import Optional, Tuple + +from segment_anything.utils.transforms import ResizeLongestSide + + +class SamPredictor: + def __init__( + self, + model: Sam, + load_device=model_management.text_encoder_device(), + offload_device=model_management.text_encoder_offload_device() + ) -> None: + """ + Uses SAM to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + model (Sam): The model to use for mask prediction. + """ + super().__init__() + + self.load_device = load_device + self.offload_device = offload_device + # can't use model.half() here as slow_conv2d_cpu is not implemented for half + model.to(self.offload_device) + + self.patcher = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) + + self.transform = ResizeLongestSide(model.image_encoder.img_size) + self.reset_image() + + def set_image( + self, + image: np.ndarray, + image_format: str = "RGB", + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray): The image for calculating masks. Expects an + image in HWC uint8 format, with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + assert image_format in [ + "RGB", + "BGR", + ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." + if image_format != self.patcher.model.image_format: + image = image[..., ::-1] + + # Transform the image to the form expected by the model + input_image = self.transform.apply_image(image) + input_image_torch = torch.as_tensor(input_image, device=self.load_device) + input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] + + self.set_torch_image(input_image_torch, image.shape[:2]) + + @torch.no_grad() + def set_torch_image( + self, + transformed_image: torch.Tensor, + original_image_size: Tuple[int, ...], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. Expects the input + image to be already transformed to the format expected by the model. + + Arguments: + transformed_image (torch.Tensor): The input image, with shape + 1x3xHxW, which has been transformed with ResizeLongestSide. + original_image_size (tuple(int, int)): The size of the image + before transformation, in (H, W) format. + """ + assert ( + len(transformed_image.shape) == 4 + and transformed_image.shape[1] == 3 + and max(*transformed_image.shape[2:]) == self.patcher.model.image_encoder.img_size + ), f"set_torch_image input must be BCHW with long side {self.patcher.model.image_encoder.img_size}." + self.reset_image() + + self.original_size = original_image_size + self.input_size = tuple(transformed_image.shape[-2:]) + model_management.load_model_gpu(self.patcher) + input_image = self.patcher.model.preprocess(transformed_image.to(self.load_device)) + self.features = self.patcher.model.image_encoder(input_image) + self.is_image_set = True + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") + + # Transform input prompts + coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = self.transform.apply_coords(point_coords, self.original_size) + coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.load_device) + labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.load_device) + coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] + if box is not None: + box = self.transform.apply_boxes(box, self.original_size) + box_torch = torch.as_tensor(box, dtype=torch.float, device=self.load_device) + box_torch = box_torch[None, :] + if mask_input is not None: + mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.load_device) + mask_input_torch = mask_input_torch[None, :, :, :] + + masks, iou_predictions, low_res_masks = self.predict_torch( + coords_torch, + labels_torch, + box_torch, + mask_input_torch, + multimask_output, + return_logits=return_logits, + ) + + masks = masks[0].detach().cpu().numpy() + iou_predictions = iou_predictions[0].detach().cpu().numpy() + low_res_masks = low_res_masks[0].detach().cpu().numpy() + return masks, iou_predictions, low_res_masks + + @torch.no_grad() + def predict_torch( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using ResizeLongestSide. + + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") + + if point_coords is not None: + points = (point_coords.to(self.load_device), point_labels.to(self.load_device)) + else: + points = None + + # load + if boxes is not None: + boxes = boxes.to(self.load_device) + if mask_input is not None: + mask_input = mask_input.to(self.load_device) + model_management.load_model_gpu(self.patcher) + + # Embed prompts + sparse_embeddings, dense_embeddings = self.patcher.model.prompt_encoder( + points=points, + boxes=boxes, + masks=mask_input, + ) + + # Predict masks + low_res_masks, iou_predictions = self.patcher.model.mask_decoder( + image_embeddings=self.features, + image_pe=self.patcher.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + + # Upscale the masks to the original image resolution + masks = self.patcher.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) + + if not return_logits: + masks = masks > self.patcher.model.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert self.features is not None, "Features must exist if an image has been set." + return self.features + + @property + def device(self) -> torch.device: + return self.patcher.model.device + + def reset_image(self) -> None: + """Resets the currently set image.""" + self.is_image_set = False + self.features = None + self.orig_h = None + self.orig_w = None + self.input_h = None + self.input_w = None diff --git a/extras/vae_interpose.py b/extras/vae_interpose.py new file mode 100644 index 0000000..d407ca8 --- /dev/null +++ b/extras/vae_interpose.py @@ -0,0 +1,109 @@ +# https://github.com/city96/SD-Latent-Interposer/blob/main/interposer.py + +import os + +import safetensors.torch as sf +import torch +import torch.nn as nn + +import ldm_patched.modules.model_management +from ldm_patched.modules.model_patcher import ModelPatcher +from modules.config import path_vae_approx + + +class ResBlock(nn.Module): + """Block with residuals""" + + def __init__(self, ch): + super().__init__() + self.join = nn.ReLU() + self.norm = nn.BatchNorm2d(ch) + self.long = nn.Sequential( + nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), + nn.SiLU(), + nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), + nn.SiLU(), + nn.Conv2d(ch, ch, kernel_size=3, stride=1, padding=1), + nn.Dropout(0.1) + ) + + def forward(self, x): + x = self.norm(x) + return self.join(self.long(x) + x) + + +class ExtractBlock(nn.Module): + """Increase no. of channels by [out/in]""" + + def __init__(self, ch_in, ch_out): + super().__init__() + self.join = nn.ReLU() + self.short = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1) + self.long = nn.Sequential( + nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1), + nn.SiLU(), + nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1), + nn.SiLU(), + nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1), + nn.Dropout(0.1) + ) + + def forward(self, x): + return self.join(self.long(x) + self.short(x)) + + +class InterposerModel(nn.Module): + """Main neural network""" + + def __init__(self, ch_in=4, ch_out=4, ch_mid=64, scale=1.0, blocks=12): + super().__init__() + self.ch_in = ch_in + self.ch_out = ch_out + self.ch_mid = ch_mid + self.blocks = blocks + self.scale = scale + + self.head = ExtractBlock(self.ch_in, self.ch_mid) + self.core = nn.Sequential( + nn.Upsample(scale_factor=self.scale, mode="nearest"), + *[ResBlock(self.ch_mid) for _ in range(blocks)], + nn.BatchNorm2d(self.ch_mid), + nn.SiLU(), + ) + self.tail = nn.Conv2d(self.ch_mid, self.ch_out, kernel_size=3, stride=1, padding=1) + + def forward(self, x): + y = self.head(x) + z = self.core(y) + return self.tail(z) + + +vae_approx_model = None +vae_approx_filename = os.path.join(path_vae_approx, 'xl-to-v1_interposer-v4.0.safetensors') + + +def parse(x): + global vae_approx_model + + x_origin = x.clone() + + if vae_approx_model is None: + model = InterposerModel() + model.eval() + sd = sf.load_file(vae_approx_filename) + model.load_state_dict(sd) + fp16 = ldm_patched.modules.model_management.should_use_fp16() + if fp16: + model = model.half() + vae_approx_model = ModelPatcher( + model=model, + load_device=ldm_patched.modules.model_management.get_torch_device(), + offload_device=torch.device('cpu') + ) + vae_approx_model.dtype = torch.float16 if fp16 else torch.float32 + + ldm_patched.modules.model_management.load_model_gpu(vae_approx_model) + + x = x_origin.to(device=vae_approx_model.load_device, dtype=vae_approx_model.dtype) + x = vae_approx_model.model(x).to(x_origin) + return x diff --git a/extras/wd14tagger.py b/extras/wd14tagger.py new file mode 100644 index 0000000..368c13d --- /dev/null +++ b/extras/wd14tagger.py @@ -0,0 +1,98 @@ +# https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags +# https://github.com/pythongosssss/ComfyUI-WD14-Tagger/blob/main/wd14tagger.py + +# { +# "wd-v1-4-moat-tagger-v2": "https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2", +# "wd-v1-4-convnextv2-tagger-v2": "https://huggingface.co/SmilingWolf/wd-v1-4-convnextv2-tagger-v2", +# "wd-v1-4-convnext-tagger-v2": "https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2", +# "wd-v1-4-convnext-tagger": "https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger", +# "wd-v1-4-vit-tagger-v2": "https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger-v2" +# } + + +import numpy as np +import csv +import onnxruntime as ort + +from PIL import Image +from onnxruntime import InferenceSession +from modules.config import path_clip_vision +from modules.model_loader import load_file_from_url + + +global_model = None +global_csv = None + + +def default_interrogator(image_rgb, threshold=0.35, character_threshold=0.85, exclude_tags=""): + global global_model, global_csv + + model_name = "wd-v1-4-moat-tagger-v2" + + model_onnx_filename = load_file_from_url( + url=f'https://huggingface.co/lllyasviel/misc/resolve/main/{model_name}.onnx', + model_dir=path_clip_vision, + file_name=f'{model_name}.onnx', + ) + + model_csv_filename = load_file_from_url( + url=f'https://huggingface.co/lllyasviel/misc/resolve/main/{model_name}.csv', + model_dir=path_clip_vision, + file_name=f'{model_name}.csv', + ) + + if global_model is not None: + model = global_model + else: + model = InferenceSession(model_onnx_filename, providers=ort.get_available_providers()) + global_model = model + + input = model.get_inputs()[0] + height = input.shape[1] + + image = Image.fromarray(image_rgb) # RGB + ratio = float(height)/max(image.size) + new_size = tuple([int(x*ratio) for x in image.size]) + image = image.resize(new_size, Image.LANCZOS) + square = Image.new("RGB", (height, height), (255, 255, 255)) + square.paste(image, ((height-new_size[0])//2, (height-new_size[1])//2)) + + image = np.array(square).astype(np.float32) + image = image[:, :, ::-1] # RGB -> BGR + image = np.expand_dims(image, 0) + + if global_csv is not None: + csv_lines = global_csv + else: + csv_lines = [] + with open(model_csv_filename) as f: + reader = csv.reader(f) + next(reader) + for row in reader: + csv_lines.append(row) + global_csv = csv_lines + + tags = [] + general_index = None + character_index = None + for line_num, row in enumerate(csv_lines): + if general_index is None and row[2] == "0": + general_index = line_num + elif character_index is None and row[2] == "4": + character_index = line_num + tags.append(row[1]) + + label_name = model.get_outputs()[0].name + probs = model.run([label_name], {input.name: image})[0] + + result = list(zip(tags, probs[0])) + + general = [item for item in result[general_index:character_index] if item[1] > threshold] + character = [item for item in result[character_index:] if item[1] > character_threshold] + + all = character + general + remove = [s.strip() for s in exclude_tags.lower().split(",")] + all = [tag for tag in all if tag[0] not in remove] + + res = ", ".join((item[0].replace("(", "\\(").replace(")", "\\)") for item in all)).replace('_', ' ') + return res From 00c1f4187e8b3c8e03dc1ba78780432ce6910b7a Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Thu, 15 Aug 2024 15:39:05 +0800 Subject: [PATCH 12/15] fix upscale custom error --- fooocusapi/models/common/requests.py | 1 - fooocusapi/models/requests_v1.py | 1 + fooocusapi/models/requests_v2.py | 1 + fooocusapi/worker.py | 19 ++++++------------- 4 files changed, 8 insertions(+), 14 deletions(-) diff --git a/fooocusapi/models/common/requests.py b/fooocusapi/models/common/requests.py index 66f95cd..fa341b7 100644 --- a/fooocusapi/models/common/requests.py +++ b/fooocusapi/models/common/requests.py @@ -86,7 +86,6 @@ class AdvancedParams(BaseModel): inpaint_erode_or_dilate: int = Field(0, description="Mask Erode or Dilate", ge=-64, le=64) black_out_nsfw: bool = Field(False, description="Block out NSFW") vae_name: str = Field(default_vae, description="VAE name") - save_final_enhanced_image_only: bool = Field(True, description="Save Final Enhanced Image Only") debugging_dino: bool = Field(False, description="Debug DINO") dino_erode_or_dilate: int = Field(0, description="Mask Erode or Dilate", ge=-64, le=64) debugging_enhance_masks_checkbox: bool = Field(False, description="Debug Enhance Masks") diff --git a/fooocusapi/models/requests_v1.py b/fooocusapi/models/requests_v1.py index 09a73c2..8e9e42b 100644 --- a/fooocusapi/models/requests_v1.py +++ b/fooocusapi/models/requests_v1.py @@ -282,6 +282,7 @@ class ImageEnhanceRequest(CommonRequest): enhance_uov_method: UpscaleOrVaryMethod = Form(default=UpscaleOrVaryMethod.strong_variation, description="Upscale or vary method") enhance_uov_processing_order: str = Form(default="Before First Enhancement", description="Upscale or vary processing order") enhance_uov_prompt_type: str = Form(default="Original Prompts", description="Upscale or vary prompt type") + save_final_enhanced_image_only: bool = Form(True, description="Save Final Enhanced Image Only") enhance_ctrlnets: List[EnhanceCtrlNets] @classmethod diff --git a/fooocusapi/models/requests_v2.py b/fooocusapi/models/requests_v2.py index 2e52e74..1cd5c0a 100644 --- a/fooocusapi/models/requests_v2.py +++ b/fooocusapi/models/requests_v2.py @@ -59,4 +59,5 @@ class ImageEnhanceRequestJson(CommonRequest): enhance_uov_method: UpscaleOrVaryMethod = Field(default=UpscaleOrVaryMethod.strong_variation, description="Upscale or vary method") enhance_uov_processing_order: str = Field(default="Before First Enhancement", description="Upscale or vary processing order") enhance_uov_prompt_type: str = Field(default="Original Prompts", description="Upscale or vary prompt type") + save_final_enhanced_image_only: bool = Field(True, description="Save Final Enhanced Image Only") enhance_ctrlnets: List[EnhanceCtrlNets] diff --git a/fooocusapi/worker.py b/fooocusapi/worker.py index 6fbb7ed..f3ddaf9 100644 --- a/fooocusapi/worker.py +++ b/fooocusapi/worker.py @@ -79,6 +79,7 @@ def __init__(self, args: ImageGenerationParams): self.current_tab = args.current_tab self.uov_method = args.uov_method self.uov_input_image = args.uov_input_image + self.upscale_value = args.upscale_value self.outpaint_selections = args.outpaint_selections self.inpaint_input_image = args.inpaint_input_image self.inpaint_additional_prompt = args.inpaint_additional_prompt @@ -685,18 +686,10 @@ def apply_upscale(async_task, uov_input_image, uov_method, switch, current_progr f = 1.5 elif '2x' in uov_method: f = 2.0 + elif uov_method == 'Upscale (Custom)'.lower() and async_task.upscale_value > 0 and async_task.upscale_value < 5: + f = async_task.upscale_value else: - # @freek99 - pattern = r"([0-9]+(?:\.[0-9]+)?)x" - matches = re.findall(pattern, uov_method) - try: - f = float(matches[0]) - if f < 1.0: - f = 1.0 - if f > 5.0: - f = 5.0 - except Exception: - f = 1.0 + f = 2.0 shape_ceil = get_shape_ceil(H * f, W * f) if shape_ceil < 1024: print(f'[Upscale] Image is resized because it is too small.') @@ -1299,7 +1292,7 @@ def enhance_upscale(all_steps, async_task, base_progress, callback, controlnet_c uov_input_image_path = log(async_task.uov_input_image, d, output_format=async_task.output_format) yield_result(async_task, uov_input_image_path, 100, async_task.black_out_nsfw, False, do_not_show_finished_images=True) - return + # return_result(async_task, []) if 'inpaint' in goals: try: @@ -1578,7 +1571,7 @@ def callback(step, x0, x, total_steps, y): return async_job.task_result return except Exception as e: - raise e + # raise e if not async_job.is_finished: async_job.set_result([], True, str(e)) worker_queue.finish_task(async_job.job_id) From f3c778ffb298e421faa5a7d9eb7fed7622f1b9d5 Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Thu, 15 Aug 2024 17:13:48 +0800 Subject: [PATCH 13/15] move out save_final_enhanced_image_only from adv_params update version update doc --- README.md | 11 ----------- README_zh.md | 13 +------------ docs/change_logs.md | 8 ++++++-- docs/change_logs_zh.md | 6 +++++- fooocus_api_version.py | 2 +- fooocusapi/parameters.py | 2 ++ fooocusapi/sql_client.py | 9 +++++++++ fooocusapi/utils/api_utils.py | 21 ++++++++++++++++----- fooocusapi/worker.py | 2 +- 9 files changed, 41 insertions(+), 33 deletions(-) diff --git a/README.md b/README.md index 7f963ce..cbcaa38 100644 --- a/README.md +++ b/README.md @@ -19,17 +19,6 @@ - [License](#license) - [Thanks :purple\_heart:](#thanks-purple_heart) -If this is the first time to use it, it is recommended to use a rewritten new project [FooocusAPI](https://github.com/mrhan1993/FooocusAPI) - -A migration guide is provided [here](./docs/migrate.md). - -# :warning: Compatibility warning :warning: - -When upgrading from version 3.x to version 4.0, please read the following incompatibility notes: - -1. If you are using an external Fooocus model (that is, the model is not located in the `repositories` directory), delete the `repositories` directory directly, and then update the `git pull`. -2. If not, move the `repositories` directory to any directory, delete the `repositories` directory, then update the `git pull`, and move the `models` directory back to its original location when it is finished. - # Introduction FastAPI powered API for [Fooocus](https://github.com/lllyasviel/Fooocus). diff --git a/README_zh.md b/README_zh.md index 7da3293..25c2408 100644 --- a/README_zh.md +++ b/README_zh.md @@ -19,22 +19,11 @@ - [License](#license) - [感谢 :purple\_heart:](#感谢-purple_heart) -如果是第一次使用,推荐使用重写后的新项目 [FooocusAPI](https://github.com/mrhan1993/FooocusAPI) - -我还准备了一个[迁移指南](./docs/migrate_zh.md) - -# :warning: 兼容性警告 :warning: - -如果是从 0.3.x 版本升级到 0.4.0 版本,请务必阅读以下兼容性说明: - -1. 如果你使用的是外部 Fooocus 模型(即模型不是位于 `repositories/Fooocus/models` 目录下),直接删除 `repositories` 目录,然后执行 `git pull` 更新即可 -2. 如果不是上述方式,将 `repositories/Fooocus/models` 目录移动到任意目录,删除 `repositories` 目录,然后执行 `git pull` 更新,完成后将 `models` 目录移动回原位置 - # 简介 使用 FastAPI 构建的 [Fooocus](https://github.com/lllyasviel/Fooocus) 的 API。 -当前支持的 Fooocus 版本: [2.3.1](https://github.com/lllyasviel/Fooocus/blob/main/update_log.md)。 +当前支持的 Fooocus 版本: [2.5.3](https://github.com/lllyasviel/Fooocus/blob/main/update_log.md)。 ## Fooocus diff --git a/docs/change_logs.md b/docs/change_logs.md index 26e7477..16c9455 100644 --- a/docs/change_logs.md +++ b/docs/change_logs.md @@ -1,9 +1,13 @@ # ChangeLog for Fooocus-API -## [UNRELEASE] +## [v0.5.0.1] ### Changed +- Fooocus to v2.5.3 +- Add enhance image endpoint +- Add generate mask endpoint +- Influenced by Fooocus, the worker.py was reconstructed - Update docs -- Returnd base64 str now include identifier like this `data:image/jpeg;base64,` +- Returned base64 str now include identifier like this `data:image/jpeg;base64,` ### Fixed - Issue #375 diff --git a/docs/change_logs_zh.md b/docs/change_logs_zh.md index 425efcf..2de06dc 100644 --- a/docs/change_logs_zh.md +++ b/docs/change_logs_zh.md @@ -1,7 +1,11 @@ # ChangeLog for Fooocus-API -## [UNRELEASE] +## [v0.5.0.1] ### Changed +- 合并到 Fooocus 2.5.3 +- 增加图像增强接口 +- 增加遮罩生成接口 +- 受 Fooocus 影响,重构了 worker.py - 更新文档 - 返回数据中的 base64 字符串现在包含图像标识符,比如 `data:image/jpeg;base64,` diff --git a/fooocus_api_version.py b/fooocus_api_version.py index 576e0fc..7d0aeba 100644 --- a/fooocus_api_version.py +++ b/fooocus_api_version.py @@ -1 +1 @@ -version = '0.4.1.1' +version = '0.5.0.1' diff --git a/fooocusapi/parameters.py b/fooocusapi/parameters.py index a8408db..f26ffb9 100644 --- a/fooocusapi/parameters.py +++ b/fooocusapi/parameters.py @@ -38,6 +38,7 @@ def __init__( enhance_uov_method: str, enhance_uov_processing_order, enhance_uov_prompt_type, + save_final_enhanced_image_only, enhance_ctrlnets: List[EnhanceCtrlNets], image_prompts: List[Tuple[np.ndarray, float, float, str]], read_wildcards_in_order: bool, @@ -77,6 +78,7 @@ def __init__( self.enhance_uov_method = enhance_uov_method self.enhance_uov_processing_order = enhance_uov_processing_order self.enhance_uov_prompt_type = enhance_uov_prompt_type + self.save_final_enhanced_image_only = save_final_enhanced_image_only self.enhance_ctrlnets = enhance_ctrlnets[:config.default_enhance_tabs] if len(enhance_ctrlnets) > config.default_enhance_tabs else enhance_ctrlnets self.current_tab = None self.read_wildcards_in_order = read_wildcards_in_order diff --git a/fooocusapi/sql_client.py b/fooocusapi/sql_client.py index ef5012e..eb0db83 100644 --- a/fooocusapi/sql_client.py +++ b/fooocusapi/sql_client.py @@ -285,12 +285,21 @@ def add_history( params["result_url"] = result_url params["finish_reason"] = finish_reason + del params["enhance_input_image"] + del params["enhance_checkbox"] + del params["enhance_uov_method"] + del params["enhance_uov_processing_order"] + del params["enhance_uov_prompt_type"] + del params["save_final_enhanced_image_only"] + del params["enhance_ctrlnets"] del params["inpaint_input_image"] del params["uov_input_image"] del params["save_extension"] del params["save_meta"] del params["save_name"] del params["meta_scheme"] + del params["read_wildcards_in_order"] + del params["current_tab"] db.store_history(params) diff --git a/fooocusapi/utils/api_utils.py b/fooocusapi/utils/api_utils.py index 554bfbf..4df92db 100644 --- a/fooocusapi/utils/api_utils.py +++ b/fooocusapi/utils/api_utils.py @@ -186,11 +186,21 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: dp = (None, 0.5, 0.6, 'ImagePrompt') image_prompts += [dp] * (config.default_controlnet_image_count - len(image_prompts)) - enhance_input_image = None if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else read_input_image(req.enhance_input_image) - enhance_checkbox = True - enhance_uov_method = flags.disabled if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_method - enhance_uov_processing_order = "Before First Enhancement" if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_processing_order - enhance_uov_prompt_type = "Original Prompts" if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)) else req.enhance_uov_prompt_type + if isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)): + enhance_checkbox = True + enhance_input_image = read_input_image(req.enhance_input_image) + enhance_uov_method = req.enhance_uov_method + enhance_uov_processing_order = req.enhance_uov_processing_order + enhance_uov_prompt_type = req.enhance_uov_prompt_type + save_final_enhanced_image_only = True + else: + enhance_checkbox = False + enhance_input_image = None + enhance_uov_method = flags.disabled + enhance_uov_processing_order = "Before First Enhancement" + enhance_uov_prompt_type = "Original Prompts" + save_final_enhanced_image_only = False + if not isinstance(req, (ImageEnhanceRequest, ImageEnhanceRequestJson)): enhance_ctrlnets = [EnhanceCtrlNets()] * config.default_enhance_tabs else: @@ -247,6 +257,7 @@ def req_to_params(req: Text2ImgRequest) -> ImageGenerationParams: enhance_uov_method=enhance_uov_method, enhance_uov_processing_order=enhance_uov_processing_order, enhance_uov_prompt_type=enhance_uov_prompt_type, + save_final_enhanced_image_only=save_final_enhanced_image_only, enhance_ctrlnets=enhance_ctrlnets, read_wildcards_in_order=req.read_wildcards_in_order, image_prompts=image_prompts, diff --git a/fooocusapi/worker.py b/fooocusapi/worker.py index f3ddaf9..e2b4623 100644 --- a/fooocusapi/worker.py +++ b/fooocusapi/worker.py @@ -124,7 +124,7 @@ def __init__(self, args: ImageGenerationParams): self.inpaint_advanced_masking_checkbox = adp.inpaint_advanced_masking_checkbox self.invert_mask_checkbox = adp.invert_mask_checkbox self.inpaint_erode_or_dilate = adp.inpaint_erode_or_dilate - self.save_final_enhanced_image_only = adp.save_final_enhanced_image_only if not args_manager.args.disable_image_log else False + self.save_final_enhanced_image_only = args.save_final_enhanced_image_only if not args_manager.args.disable_image_log else False self.save_metadata_to_images = args.save_meta self.metadata_scheme = MetadataScheme( args.meta_scheme) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS From 76a87df62ae9980c33734293a383aa7a2bed7687 Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Thu, 15 Aug 2024 23:36:16 +0800 Subject: [PATCH 14/15] update readme --- README.md | 57 ++++++++++++++++++++++++++++++++++++++++++++++++++++ README_zh.md | 57 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 114 insertions(+) diff --git a/README.md b/README.md index cbcaa38..af796c6 100644 --- a/README.md +++ b/README.md @@ -19,6 +19,63 @@ - [License](#license) - [Thanks :purple\_heart:](#thanks-purple_heart) +> Note: +> +> Fooocus 2.5 includes a significant update, with most dependencies upgraded. Therefore, after updating, do not use `--skip-pip` unless you have already performed a manual update. +> +> Additionally, `groundingdino-py` may encounter installation errors, especially in Chinese Windows environments. The solution can be found in the following [issue](https://github.com/IDEA-Research/GroundingDINO/issues/206). + +# Instructions for Using the ImageEnhance Interface +Below are examples of parameters that include the main parameters required for ImageEnhance. The V1 interface adopts a form-like approach similar to ImagePrompt to break down the enhance controller. + + +```python +{ + "enhance_input_image": "", + "enhance_checkbox": true, + "enhance_uov_method": "Vary (Strong)", + "enhance_uov_processing_order": "Before First Enhancement", + "enhance_uov_prompt_type": "Original Prompts", + "save_final_enhanced_image_only": true, + "enhance_ctrlnets": [ + { + "enhance_enabled": false, + "enhance_mask_dino_prompt": "face", + "enhance_prompt": "", + "enhance_negative_prompt": "", + "enhance_mask_model": "sam", + "enhance_mask_cloth_category": "full", + "enhance_mask_sam_model": "vit_b", + "enhance_mask_text_threshold": 0.25, + "enhance_mask_box_threshold": 0.3, + "enhance_mask_sam_max_detections": 0, + "enhance_inpaint_disable_initial_latent": false, + "enhance_inpaint_engine": "v2.6", + "enhance_inpaint_strength": 1, + "enhance_inpaint_respective_field": 0.618, + "enhance_inpaint_erode_or_dilate": 0, + "enhance_mask_invert": false + } + ] +} +``` + +- enhance_input_image: The image to be enhanced, which is required and can be provided as an image URL for the V2 interface. +- enhance_checkbox: A toggle switch that must be set to true if you want to use the enhance image feature. +- save_final_enhanced_image_only: Since image enhancement is a pipeline operation, it can produce multiple result images. This parameter allows you to only return the final enhanced image. + +There are three parameters related to UpscaleVary, which are used to perform Upscale or Vary before or after enhancement. + +- enhance_uov_method: Similar to the UpscaleOrVary interface, Disabled turns it off. +- enhance_uov_processing_order: Determines whether to process the image before or after enhancement. +- enhance_uov_prompt_type: I'm not sure about the specific function; you might want to research it based on the WebUI. + +The `enhance_ctrlnets` element is a list of ImageEnhance controller objects, with a maximum of three elements in the list, any additional elements will be discarded. The parameters correspond roughly to the WebUI, and the notable parameters are: + +- enhance_enabled: This parameter controls whether the enhance controller is active. If there are no enabled enhance controllers, the task will be skipped. +- enhance_mask_dino_prompt: This parameter is required and indicates the area to be enhanced. If it is empty, even if the enhance controller is enabled, the task will be skipped. + + # Introduction FastAPI powered API for [Fooocus](https://github.com/lllyasviel/Fooocus). diff --git a/README_zh.md b/README_zh.md index 25c2408..fe10a5b 100644 --- a/README_zh.md +++ b/README_zh.md @@ -19,6 +19,63 @@ - [License](#license) - [感谢 :purple\_heart:](#感谢-purple_heart) + +> 注意: +> +> Fooocus 2.5 包含大量更新,其中多数依赖进行了升级,因此,更新后请不要使用 `--skip-pip`. 除非你已经进行过手动更新 +> +> 此外, `groundingdino-py` 可能会遇到安装错误, 特别是在中文 windows 环境中, 解决办法参考: [issues](https://github.com/IDEA-Research/GroundingDINO/issues/206) + +# ImageEnhance 接口的使用说明 + +以下面的参数为例,它包含了 ImageEnhance 所需要的主要参数,V1 接口采用和 ImagePrompt 类似的方式将 enhance 控制器拆分成表单形式: + +```python +{ + "enhance_input_image": "", + "enhance_checkbox": true, + "enhance_uov_method": "Vary (Strong)", + "enhance_uov_processing_order": "Before First Enhancement", + "enhance_uov_prompt_type": "Original Prompts", + "save_final_enhanced_image_only": true, + "enhance_ctrlnets": [ + { + "enhance_enabled": false, + "enhance_mask_dino_prompt": "face", + "enhance_prompt": "", + "enhance_negative_prompt": "", + "enhance_mask_model": "sam", + "enhance_mask_cloth_category": "full", + "enhance_mask_sam_model": "vit_b", + "enhance_mask_text_threshold": 0.25, + "enhance_mask_box_threshold": 0.3, + "enhance_mask_sam_max_detections": 0, + "enhance_inpaint_disable_initial_latent": false, + "enhance_inpaint_engine": "v2.6", + "enhance_inpaint_strength": 1, + "enhance_inpaint_respective_field": 0.618, + "enhance_inpaint_erode_or_dilate": 0, + "enhance_mask_invert": false + } + ] +} +``` + +- enhance_input_image:需要增强的图像,如果是 v2 接口,可以提供一个图像 url,必选 +- enhance_checkbox:总开关,使用 enhance image 必须设置为 true +- save_final_enhanced_image_only:图像增强是一个管道作业,因此会产生多个结果图像,使用该参数仅返回最终图像 + +有三个和 UpscaleVary 相关的参数,其作用是执行增强之前或完成增强之后执行 Upscale 或 Vary + +- enhance_uov_method:和 UpscaleOrVary 接口一样,Disabled 是关闭 +- enhance_uov_processing_order:在增强之前处理还是处理增强后的图像 +- enhance_uov_prompt_type:我也不知道具体作用,对着 WebUI 研究研究🧐 + +`enhance_ctrlnets` 元素为 ImageEnhance 控制器对象列表,该列表最多包含 3 个元素,多余会被丢弃。参数和 WebUI 基本一一对应,需要注意的参数是: + +- enhance_enabled:参数控制该 enhance 控制器是否工作,如果没有开启的 enhance 控制器,任务会被跳过 +- enhance_mask_dino_prompt:该参数必选,表示需要增强的部位,如果该参数为空,即便 enhance 控制器处于开启状态,也会跳过 + # 简介 使用 FastAPI 构建的 [Fooocus](https://github.com/lllyasviel/Fooocus) 的 API。 From c64d672ab0d4606676cf39f0f11e969b69e20e29 Mon Sep 17 00:00:00 2001 From: mrhan1993 <50648276+mrhan1993@users.noreply.github.com> Date: Thu, 15 Aug 2024 23:51:59 +0800 Subject: [PATCH 15/15] update readme add example for enhance image --- README.md | 3 +++ README_zh.md | 2 ++ examples/examples_v1.py | 36 ++++++++++++++++++++++++++ examples/examples_v2.py | 56 +++++++++++++++++++++++++++++++++++++++++ 4 files changed, 97 insertions(+) diff --git a/README.md b/README.md index af796c6..817c4d0 100644 --- a/README.md +++ b/README.md @@ -25,6 +25,9 @@ > > Additionally, `groundingdino-py` may encounter installation errors, especially in Chinese Windows environments. The solution can be found in the following [issue](https://github.com/IDEA-Research/GroundingDINO/issues/206). + +> GenerateMask is same as DescribeImage, It is not process as a task, result will directly return + # Instructions for Using the ImageEnhance Interface Below are examples of parameters that include the main parameters required for ImageEnhance. The V1 interface adopts a form-like approach similar to ImagePrompt to break down the enhance controller. diff --git a/README_zh.md b/README_zh.md index fe10a5b..d6f0a6f 100644 --- a/README_zh.md +++ b/README_zh.md @@ -26,6 +26,8 @@ > > 此外, `groundingdino-py` 可能会遇到安装错误, 特别是在中文 windows 环境中, 解决办法参考: [issues](https://github.com/IDEA-Research/GroundingDINO/issues/206) +> 和 DescribeImage 一样,GenerateMask 不会作为 task 处理而是直接返回结果 + # ImageEnhance 接口的使用说明 以下面的参数为例,它包含了 ImageEnhance 所需要的主要参数,V1 接口采用和 ImagePrompt 类似的方式将 enhance 控制器拆分成表单形式: diff --git a/examples/examples_v1.py b/examples/examples_v1.py index 864e5bd..1da9dbc 100644 --- a/examples/examples_v1.py +++ b/examples/examples_v1.py @@ -228,3 +228,39 @@ def image_prompt( cn_img2=ImageList.image_prompt_1, ) print(json.dumps(ip_result)) + +# ############################################################### +# Image Enhance +# ################################################################ + +# Image Enhance + +import requests + +url = "http://localhost:8888/v1/generation/image-enhance" + +# Define the file path and other form data +file_path = "./examples/imgs/source_face_man.png" +form_data = { + "enhance_checkbox": True, + "enhance_uov_method": "Disabled", + "enhance_enabled_1": True, + "enhance_mask_dino_prompt_1": "face", + "enhance_enabled_2": True, + "enhance_mask_dino_prompt_2": "eyes", +} + +# Open the file and prepare it for the request +with open(file_path, "rb") as f: + image = f.read() + f.close() + +# Send the request +response = requests.post( + url, + files={"enhance_input_image": image}, + data=form_data, + timeout=180) + +# Print the response content +print(response.text) diff --git a/examples/examples_v2.py b/examples/examples_v2.py index ac1ef87..2400614 100644 --- a/examples/examples_v2.py +++ b/examples/examples_v2.py @@ -230,3 +230,59 @@ def text2image_image_prompt(params: dict) -> dict: t2i_ip_result = text2image_image_prompt(params=t2i_ip_params) print(json.dumps(t2i_ip_result)) + +# ################################################################ +# Image Enhance +# ################################################################ + +# Image Enhance + +import requests +import json + +url = "http://localhost:8888/v2/generation/image-enhance" + +headers = { + "Content-Type": "application/json" +} + +data = { + "enhance_input_image": "https://raw.githubusercontent.com/mrhan1993/Fooocus-API/main/examples/imgs/source_face_man.png", + "enhance_checkbox": True, + "enhance_uov_method": "Vary (Strong)", + "enhance_uov_processing_order": "Before First Enhancement", + "enhance_uov_prompt_type": "Original Prompts", + "enhance_ctrlnets": [ + { + "enhance_enabled": True, + "enhance_mask_dino_prompt": "face", + "enhance_prompt": "", + "enhance_negative_prompt": "", + "enhance_mask_model": "sam", + "enhance_mask_cloth_category": "full", + "enhance_mask_sam_model": "vit_b", + "enhance_mask_text_threshold": 0.25, + "enhance_mask_box_threshold": 0.3, + "enhance_mask_sam_max_detections": 0, + "enhance_inpaint_disable_initial_latent": False, + "enhance_inpaint_engine": "v2.6", + "enhance_inpaint_strength": 1.0, + "enhance_inpaint_respective_field": 0.618, + "enhance_inpaint_erode_or_dilate": 0.0, + "enhance_mask_invert": False + } + ] +} + +response = requests.post( + url, + headers=headers, + data=json.dumps(data), + timeout=180) + +if response.status_code == 200: + print("Request successful!") + print("Response:", response.json()) +else: + print("Request failed with status code:", response.status_code) + print("Response:", response.text)