-
Notifications
You must be signed in to change notification settings - Fork 160
/
predict.py
316 lines (284 loc) · 12.2 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""
Prediction interface for Cog ⚙️
https://github.com/replicate/cog/blob/main/docs/python.md
"""
import copy
import os
from typing import List
import numpy as np
from PIL import Image
from cog import BasePredictor, BaseModel, Input, Path
from fooocusapi.utils.lora_manager import LoraManager
from fooocusapi.utils.file_utils import output_dir
from fooocusapi.models.common.task import GenerationFinishReason
from fooocusapi.configs.default import (
available_aspect_ratios,
uov_methods,
outpaint_expansions,
default_styles,
default_base_model_name,
default_refiner_model_name,
default_loras,
default_refiner_switch,
default_cfg_scale,
default_prompt_negative
)
from fooocusapi.parameters import ImageGenerationParams
from fooocusapi.task_queue import TaskType
class Output(BaseModel):
"""
Output model
"""
seeds: List[str]
paths: List[Path]
class Predictor(BasePredictor):
"""Predictor"""
def setup(self) -> None:
"""
Load the model into memory to make running multiple predictions efficient
"""
from main import pre_setup
pre_setup()
def predict(
self,
prompt: str = Input(
default='',
description="Prompt for image generation"),
negative_prompt: str = Input(
default=default_prompt_negative,
description="Negative prompt for image generation"),
style_selections: str = Input(
default=','.join(default_styles),
description="Fooocus styles applied for image generation, separated by comma"),
performance_selection: str = Input(
default='Speed',
choices=['Speed', 'Quality', 'Extreme Speed', 'Lightning'],
description="Performance selection"),
aspect_ratios_selection: str = Input(
default='1152*896',
choices=available_aspect_ratios,
description="The generated image's size"),
image_number: int = Input(
default=1,
ge=1, le=8,
description="How many image to generate"),
image_seed: int = Input(
default=-1,
description="Seed to generate image, -1 for random"),
use_default_loras: bool = Input(
default=True,
description="Use default LoRAs"),
loras_custom_urls: str = Input(
default="",
description="Custom LoRAs URLs in the format 'url,weight' provide multiple separated by ; (example 'url1,0.3;url2,0.1')"),
sharpness: float = Input(
default=2.0,
ge=0.0, le=30.0),
guidance_scale: float = Input(
default=default_cfg_scale,
ge=1.0, le=30.0),
refiner_switch: float = Input(
default=default_refiner_switch,
ge=0.1, le=1.0),
uov_input_image: Path = Input(
default=None,
description="Input image for upscale or variation, keep None for not upscale or variation"),
uov_method: str = Input(
default='Disabled',
choices=uov_methods),
uov_upscale_value: float = Input(
default=0,
description="Only when Upscale (Custom)"),
inpaint_additional_prompt: str = Input(
default='',
description="Prompt for image generation"),
inpaint_input_image: Path = Input(
default=None,
description="Input image for inpaint or outpaint, keep None for not inpaint or outpaint. Please noticed, `uov_input_image` has bigger priority is not None."),
inpaint_input_mask: Path = Input(
default=None,
description="Input mask for inpaint"),
outpaint_selections: str = Input(
default='',
description="Outpaint expansion selections, literal 'Left', 'Right', 'Top', 'Bottom' separated by comma"),
outpaint_distance_left: int = Input(
default=0,
description="Outpaint expansion distance from Left of the image"),
outpaint_distance_top: int = Input(
default=0,
description="Outpaint expansion distance from Top of the image"),
outpaint_distance_right: int = Input(
default=0,
description="Outpaint expansion distance from Right of the image"),
outpaint_distance_bottom: int = Input(
default=0,
description="Outpaint expansion distance from Bottom of the image"),
cn_img1: Path = Input(
default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop1: float = Input(
default=None,
ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight1: float = Input(
default=None,
ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type1: str = Input(
default='ImagePrompt',
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'],
description="ControlNet type for image prompt"),
cn_img2: Path = Input(
default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop2: float = Input(
default=None,
ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight2: float = Input(
default=None,
ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type2: str = Input(
default='ImagePrompt',
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'],
description="ControlNet type for image prompt"),
cn_img3: Path = Input(
default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop3: float = Input(
default=None,
ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight3: float = Input(
default=None,
ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type3: str = Input(
default='ImagePrompt',
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'],
description="ControlNet type for image prompt"),
cn_img4: Path = Input(
default=None,
description="Input image for image prompt. If all cn_img[n] are None, image prompt will not applied."),
cn_stop4: float = Input(
default=None,
ge=0, le=1,
description="Stop at for image prompt, None for default value"),
cn_weight4: float = Input(
default=None,
ge=0, le=2,
description="Weight for image prompt, None for default value"),
cn_type4: str = Input(
default='ImagePrompt',
choices=['ImagePrompt', 'FaceSwap', 'PyraCanny', 'CPDS'],
description="ControlNet type for image prompt")
) -> Output:
"""Run a single prediction on the model"""
from modules import flags
from modules.sdxl_styles import legal_style_names
from fooocusapi.worker import blocking_get_task_result, worker_queue
base_model_name = default_base_model_name
refiner_model_name = default_refiner_model_name
lora_manager = LoraManager()
# Use default loras if selected
loras = copy.copy(default_loras) if use_default_loras else []
# add custom user loras if provided
if loras_custom_urls:
urls = [url.strip() for url in loras_custom_urls.split(';')]
loras_with_weights = [url.split(',') for url in urls]
custom_lora_paths = lora_manager.check([lw[0] for lw in loras_with_weights])
custom_loras = [[path, float(lw[1]) if len(lw) > 1 else 1.0] for path, lw in
zip(custom_lora_paths, loras_with_weights)]
loras.extend(custom_loras)
style_selections_arr = []
for s in style_selections.strip().split(','):
style = s.strip()
if style in legal_style_names:
style_selections_arr.append(style)
if uov_input_image is not None:
im = Image.open(str(uov_input_image))
uov_input_image = np.array(im)
inpaint_input_image_dict = None
if inpaint_input_image is not None:
im = Image.open(str(inpaint_input_image))
inpaint_input_image = np.array(im)
if inpaint_input_mask is not None:
im = Image.open(str(inpaint_input_mask))
inpaint_input_mask = np.array(im)
inpaint_input_image_dict = {
'image': inpaint_input_image,
'mask': inpaint_input_mask
}
outpaint_selections_arr = []
for e in outpaint_selections.strip().split(','):
expansion = e.strip()
if expansion in outpaint_expansions:
outpaint_selections_arr.append(expansion)
image_prompts = []
image_prompt_config = [
(cn_img1, cn_stop1, cn_weight1, cn_type1),
(cn_img2, cn_stop2, cn_weight2, cn_type2),
(cn_img3, cn_stop3, cn_weight3, cn_type3),
(cn_img4, cn_stop4, cn_weight4, cn_type4)]
for config in image_prompt_config:
cn_img, cn_stop, cn_weight, cn_type = config
if cn_img is not None:
im = Image.open(str(cn_img))
cn_img = np.array(im)
if cn_stop is None:
cn_stop = flags.default_parameters[cn_type][0]
if cn_weight is None:
cn_weight = flags.default_parameters[cn_type][1]
image_prompts.append((cn_img, cn_stop, cn_weight, cn_type))
advanced_params = None
params = ImageGenerationParams(
prompt=prompt,
negative_prompt=negative_prompt,
style_selections=style_selections_arr,
performance_selection=performance_selection,
aspect_ratios_selection=aspect_ratios_selection,
image_number=image_number,
image_seed=image_seed,
sharpness=sharpness,
guidance_scale=guidance_scale,
base_model_name=base_model_name,
refiner_model_name=refiner_model_name,
refiner_switch=refiner_switch,
loras=loras,
uov_input_image=uov_input_image,
uov_method=uov_method,
upscale_value=uov_upscale_value,
outpaint_selections=outpaint_selections_arr,
inpaint_input_image=inpaint_input_image_dict,
image_prompts=image_prompts,
advanced_params=advanced_params,
inpaint_additional_prompt=inpaint_additional_prompt,
outpaint_distance_left=outpaint_distance_left,
outpaint_distance_top=outpaint_distance_top,
outpaint_distance_right=outpaint_distance_right,
outpaint_distance_bottom=outpaint_distance_bottom,
save_meta=True,
meta_scheme='fooocus',
save_extension='png',
save_name='',
require_base64=False,
)
print(f"[Predictor Predict] Params: {params.__dict__}")
async_task = worker_queue.add_task(
TaskType.text_2_img,
params)
if async_task is None:
print("[Task Queue] The task queue has reached limit")
raise Exception("The task queue has reached limit.")
results = blocking_get_task_result(async_task.job_id)
output_paths: List[Path] = []
output_seeds: List[str] = []
for r in results:
if r.finish_reason == GenerationFinishReason.success and r.im is not None:
output_seeds.append(r.seed)
output_paths.append(Path(os.path.join(output_dir, r.im)))
print(f"[Predictor Predict] Finished with {len(output_paths)} images")
if len(output_paths) == 0:
raise Exception("Process failed.")
return Output(seeds=output_seeds, paths=output_paths)