forked from XiaoshuiHuang/fmr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
150 lines (122 loc) · 6.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
train the feature-metric registration algorithm
Creator: Xiaoshui Huang
Date: 2020-06-19
"""
import model
from data import dataset
import torch
import os
import argparse
import logging
LOGGER = logging.getLogger(__name__)
LOGGER.addHandler(logging.NullHandler())
def parameters(argv=None):
parser = argparse.ArgumentParser(description='Feature-metric registration')
# required to check
parser.add_argument('-data', '--dataset-type', default='7scene', choices=['modelnet', '7scene'],
metavar='DATASET', help='dataset type (default: modelnet)')
parser.add_argument('-o', '--outfile', default='./result/fmr', type=str,
metavar='BASENAME', help='output filename (prefix)') # the result: ${BASENAME}_model_best.pth
parser.add_argument('--store', default='./result/fmr_model.pth', type=str, metavar='PATH',
help='path to the trained model')
parser.add_argument('--train-type', default=0, type=int,
metavar='type', help='unsupervised (0) or semi-supervised (1) training (default: 0)')
# settings for performance adjust
parser.add_argument('--dim-k', default=1024, type=int,
metavar='K', help='dim. of the feature vector (default: 1024)')
parser.add_argument('--num-points', default=2048, type=int,
metavar='N', help='points in point-cloud (default: 1024)')
parser.add_argument('--mag', default=0.8, type=float,
metavar='T', help='max. mag. of twist-vectors (perturbations) on training (default: 0.8)')
# settings for on training
parser.add_argument('-b', '--batch-size', default=8, type=int,
metavar='N', help='mini-batch size (default: 16)')
parser.add_argument('--epochs', default=200, type=int,
metavar='N', help='number of total epochs to run')
parser.add_argument('--max-iter', default=10, type=int,
metavar='N', help='max-iter on IC algorithm. (default: 10)')
parser.add_argument('--optimizer', default='Adam', choices=['Adam', 'SGD'],
metavar='METHOD', help='name of an optimizer (default: Adam)')
parser.add_argument('-l', '--logfile', default='./result/fmr_training.log', type=str,
metavar='LOGNAME', help='path to logfile (default: fmr_training.log)')
parser.add_argument('-j', '--workers', default=4, type=int,
metavar='N', help='number of data loading workers (default: 4)')
parser.add_argument('--start-epoch', default=0, type=int,
metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--resume', default='', type=str,
metavar='PATH', help='path to latest checkpoint (default: null (no-use))')
parser.add_argument('--pretrained', default='', type=str,
metavar='PATH', help='path to pretrained model file (default: null (no-use))')
parser.add_argument('--device', default='cuda:0', type=str,
metavar='DEVICE', help='use CUDA if available')
parser.add_argument('-i', '--dataset-path', default='./data/ModelNet40', type=str,
metavar='PATH', help='path to the input dataset') # like '/path/to/ModelNet40'
parser.add_argument('-c', '--categoryfile', default='./data/categories/modelnet40_half1.txt', type=str,
metavar='PATH',
help='path to the categories to be trained') # eg. './sampledata/modelnet40_half1.txt'
parser.add_argument('--mode', default='train', help='program mode. This code is for training')
args = parser.parse_args(argv)
return args
def main(args):
# dataset
trainset, testset = dataset.get_datasets(args)
# training
fmr = model.FMRTrain(dim_k=args.dim_k, num_points=args.num_points, train_type=args.train_type)
run(args, trainset, testset, fmr)
def run(args, trainset, testset, action):
if not torch.cuda.is_available():
args.device = 'cpu'
args.device = torch.device(args.device)
model = action.create_model()
if args.store and os.path.isfile(args.store):
model.load_state_dict(torch.load(args.store, map_location='cpu'))
if args.pretrained:
assert os.path.isfile(args.pretrained)
model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
model.to(args.device)
checkpoint = None
if args.resume:
assert os.path.isfile(args.resume)
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
# dataloader
testloader = torch.utils.data.DataLoader(
testset,
batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
# optimizer
min_loss = float('inf')
learnable_params = filter(lambda p: p.requires_grad, model.parameters())
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(learnable_params)
else:
optimizer = torch.optim.SGD(learnable_params, lr=0.1)
if checkpoint is not None:
min_loss = checkpoint['min_loss']
optimizer.load_state_dict(checkpoint['optimizer'])
# training
LOGGER.debug('train, begin')
for epoch in range(args.start_epoch, args.epochs):
running_loss = action.train(model, trainloader, optimizer, args.device)
val_loss = action.validate(model, testloader, args.device)
is_best = val_loss < min_loss
min_loss = min(val_loss, min_loss)
LOGGER.info('epoch, %04d, %f, %f', epoch + 1, running_loss, val_loss)
print('epoch, %04d, floss_train=%f, floss_val=%f' % (epoch + 1, running_loss, val_loss))
if is_best:
save_checkpoint(model.state_dict(), args.outfile, 'model')
LOGGER.debug('train, end')
def save_checkpoint(state, filename, suffix):
torch.save(state, '{}_{}.pth'.format(filename, suffix))
if __name__ == '__main__':
ARGS = parameters()
logging.basicConfig(
level=logging.DEBUG,
format='%(levelname)s:%(name)s, %(asctime)s, %(message)s',
filename=ARGS.logfile)
main(ARGS)
LOGGER.debug('done (PID=%d)', os.getpid())