forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mter_example.py
64 lines (57 loc) · 1.87 KB
/
mter_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Multi-Task Explainable Recommendation"""
from cornac.datasets import amazon_toy
from cornac.data import SentimentModality
from cornac.eval_methods import RatioSplit
from cornac.metrics import NDCG, RMSE
from cornac.models import MTER
from cornac import Experiment
# Load rating and sentiment information
data = amazon_toy.load_feedback()
sentiment = amazon_toy.load_sentiment()
# Instantiate a SentimentModality, it makes it convenient to work with sentiment information
md = SentimentModality(data=sentiment)
# Define an evaluation method to split feedback into train and test sets
eval_method = RatioSplit(
data,
test_size=0.2,
rating_threshold=1.0,
sentiment=md,
exclude_unknowns=True,
verbose=True,
seed=123,
)
# Instantiate the MTER model
mter = MTER(
n_user_factors=15,
n_item_factors=15,
n_aspect_factors=12,
n_opinion_factors=12,
n_bpr_samples=1000,
n_element_samples=50,
lambda_reg=0.1,
lambda_bpr=10,
max_iter=100000,
lr=0.1,
verbose=True,
seed=123,
)
# Instantiate and run an experiment
Experiment(
eval_method=eval_method,
models=[mter],
metrics=[RMSE(), NDCG(k=10), NDCG(k=20), NDCG(k=50), NDCG(k=100)],
).run()