forked from sipie800/ComfyUI-PuLID-Flux-Enhanced
-
Notifications
You must be signed in to change notification settings - Fork 0
/
online_train1.py
88 lines (73 loc) · 2.58 KB
/
online_train1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# supervised by a global average embedding, which is a biased estimation of the true embedding
# use projection to enable a complex decoding
# makes no big difference than mean so far, the decoding may not work 🤦
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch
from tqdm import tqdm
import random
class Transform(nn.Module):
def __init__(self, n=2, token_size=32, input_dim=2048):
super().__init__()
self.n=n
self.dim= input_dim*token_size
self.token_size=token_size
self.input_dim=input_dim
self.weight = nn.Parameter(torch.ones(self.n,1),requires_grad=True)
self.projections = nn.ModuleList([nn.Sequential(
nn.Linear(self.dim, 512),
nn.ReLU(),
nn.Linear(512, self.dim)
) for _ in range(self.n)])
def encode(self, x):
x = x.view(-1, self.dim)
x = self.weight*x
return x
def decode(self, x):
out=[]
for i in range(self.n):
t = self.projections[i](x[i])
out.append(t)
x = torch.stack(out, dim=0)
x=x.view(self.n,self.token_size,self.input_dim)
x=torch.mean(x,dim=0)
return x
def forward(self, x):
x = self.encode(x)
x = self.decode(x)
return x
def online_train(cond, device="cuda:1",step=1000):
old_device=cond.device
dtype=cond.dtype
cond = cond.clone().to(device,torch.float32)
cond.requires_grad=False
torch.set_grad_enabled(True)
print("online training, initializing model...")
n=cond.shape[0]
model=Transform(n=n)
optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.0001)
criterion = nn.MSELoss()
model.to(device)
model.train()
y=torch.mean(cond,dim=0)
random.seed(42)
bar=tqdm(range(step))
for s in bar:
optimizer.zero_grad()
attack_weight=[random.uniform(0.5,1.5) for _ in range(n)]
attack_weight=torch.tensor(attack_weight)[:,None,None].to(device)
x=attack_weight*cond
output = model(x)
loss = criterion(output, y)
loss.backward()
optimizer.step()
bar.set_postfix(loss=loss.item())
weight=model.weight
cond=weight[:,:,None]*cond
print(weight)
print("online training, ending...")
del model
del optimizer
cond=torch.mean(cond,dim=0).unsqueeze(0)
return cond.to(old_device,dtype=dtype)