forked from facebookresearch/fairo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base_util.py
220 lines (174 loc) · 6 KB
/
base_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
Copyright (c) Facebook, Inc. and its affiliates.
"""
from collections import defaultdict, namedtuple
import binascii
import hashlib
import numpy as np
from word2number.w2n import word_to_num
from typing import Tuple, List, TypeVar
import uuid
XYZ = Tuple[int, int, int]
# two points p0(x0, y0, z0), p1(x1, y1, z1) determine a 3d cube(point_at_target)
POINT_AT_TARGET = Tuple[int, int, int, int, int, int]
IDM = Tuple[int, int]
Block = Tuple[XYZ, IDM]
Hole = Tuple[List[XYZ], IDM]
T = TypeVar("T") # generic type
"""FIXME!!!!!! make all these dicts all through code"""
Pos = namedtuple("pos", "x, y, z", defaults=(None,) * 3)
Look = namedtuple("look", "yaw, pitch")
Player = namedtuple("Player", "entityId, name, pos, look")
def number_from_span(s):
try:
n = float(s)
except:
try:
n = float(word_to_num(s))
except:
return
return n
def hash_user(username):
"""Encrypt username"""
# uuid is used to generate a random number
salt = uuid.uuid4().hex
return hashlib.sha256(salt.encode() + username.encode()).hexdigest() + ":" + salt
def check_username(hashed_username, username):
"""Compare the username with the hash to check if they
are same"""
user, salt = hashed_username.split(":")
return user == hashlib.sha256(salt.encode() + username.encode()).hexdigest()
def group_by(items, key_fn):
"""Return a dict of {k: list[x]}, where key_fn(x) == k"""
d = defaultdict(list)
for x in items:
d[key_fn(x)].append(x)
return d
def euclid_dist(a, b):
"""Return euclidean distance between a and b"""
return ((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2 + (a[2] - b[2]) ** 2) ** 0.5
def manhat_dist(a, b):
"""Return manhattan distance between a and b"""
return abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2])
def pos_to_np(pos):
"""Convert pos to numpy array"""
if pos is None:
return None
return np.array((pos.x, pos.y, pos.z))
def shasum_file(path):
"""Return shasum of the file at a given path"""
sha = hashlib.sha1()
with open(path, "rb") as f:
block = f.read(2**16)
while len(block) != 0:
sha.update(block)
block = f.read(2**16)
return binascii.hexlify(sha.digest())
# TODO make this just a dict, and change in memory and agent
# eg in object_looked_at and PlayerNode
def to_player_struct(pos, yaw, pitch, eid, name):
if len(pos) == 2:
pos = Pos(pos[0], 0.0, pos[1])
else:
pos = Pos(pos[0], pos[1], pos[2])
look = Look(yaw, pitch)
return Player(eid, name, pos, look)
def npy_to_blocks_list(npy, origin=(0, 0, 0)):
"""Convert a numpy array to block list ((x, y, z), (id, meta))"""
blocks = []
sy, sz, sx, _ = npy.shape
for ry in range(sy):
for rz in range(sz):
for rx in range(sx):
idm = tuple(npy[ry, rz, rx, :])
if idm[0] == 0:
continue
xyz = tuple(np.array([rx, ry, rz]) + origin)
blocks.append((xyz, idm))
return blocks
def blocks_list_to_npy(blocks, xyz=False):
"""Convert a list of blockid meta (x, y, z), (id, meta) to numpy"""
xyzbm = np.array([(x, y, z, b, m) for ((x, y, z), (b, m)) in blocks])
mx, my, mz = np.min(xyzbm[:, :3], axis=0)
Mx, My, Mz = np.max(xyzbm[:, :3], axis=0)
npy = np.zeros((My - my + 1, Mz - mz + 1, Mx - mx + 1, 2), dtype="int32")
for x, y, z, b, m in xyzbm:
npy[y - my, z - mz, x - mx] = (b, m)
offsets = (my, mz, mx)
if xyz:
npy = np.swapaxes(np.swapaxes(npy, 1, 2), 0, 1)
offsets = (mx, my, mz)
return npy, offsets
def prepend_a_an(name):
"""Add a/an to a name"""
if name[0] in ["a", "e", "i", "o", "u"]:
return "an " + name
else:
return "a " + name
def to_block_pos(array):
"""Convert array to block position"""
return np.round(array).astype("int32")
def to_block_center(array):
"""Return the array centered at [0.5, 0.5, 0.5]"""
return to_block_pos(array).astype("float") + [0.5, 0.5, 0.5]
def adjacent(p):
"""Return the positions adjacent to position p"""
return (
(p[0] + 1, p[1], p[2]),
(p[0] - 1, p[1], p[2]),
(p[0], p[1] + 1, p[2]),
(p[0], p[1] - 1, p[2]),
(p[0], p[1], p[2] + 1),
(p[0], p[1], p[2] - 1),
)
def depth_first_search(blocks_shape, pos, fn, adj_fn=adjacent):
"""Do depth-first search on array with blocks_shape starting
from pos
Calls fn(p) on each index `p` in DFS-order. If fn returns True,
continue searching. If False, do not add adjacent blocks.
Args:
- blocks_shape: a tuple giving the shape of the blocks
- pos: a relative position in blocks
- fn: a function called on each position in DFS-order. Return
True to continue searching from that node
- adj_fn: a function (pos) -> list[pos], of adjacent positions
Returns: visited, a bool array with blocks.shape
"""
visited = np.zeros(blocks_shape, dtype="bool")
q = [tuple(pos)]
visited[tuple(pos)] = True
i = 0
while i < len(q):
p = q.pop()
if fn(p):
for a in adj_fn(p):
try:
if not visited[a]:
visited[a] = True
q.append(a)
except IndexError:
pass
return visited
def diag_adjacent(p):
"""Return the adjacent positions to p including diagonal adjaceny"""
return [
(x, y, z)
for x in range(p[0] - 1, p[0] + 2)
for y in range(p[1] - 1, p[1] + 2)
for z in range(p[2] - 1, p[2] + 2)
if (x, y, z) != p
]
def get_bounds(S):
"""
S should be a list of tuples, where each tuple is a pair of
(x, y, z) and ids;
else a list of (x, y, z)
"""
if len(S) == 0:
return 0, 0, 0, 0, 0, 0
if len(S[0]) == 3:
T = [(l, (0, 0)) for l in S]
else:
T = S
x, y, z = list(zip(*list(zip(*T))[0]))
return min(x), max(x), min(y), max(y), min(z), max(z)