-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
199 lines (167 loc) · 6.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import matplotlib.pyplot as plt
import pandas as pd
import statsmodels.api as sm
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.linear_model import LinearRegression
from scipy import stats
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from markdown import markdown
df = pd.read_csv("./breastData.csv", sep='\s*,\s*',
header=0, encoding='ascii', engine='python')
def regression_data(X, y, featureName):
# plt.scatter(X, y, color='black')
plt.plot(X, y, 'ro')
plt.axis()
# plt.xticks(())
# plt.yticks(())
# plt.show()
plt.savefig(f"./results/plots/{featureName}.png")
X = sm.add_constant(X)
results = sm.OLS(y, X).fit()
return results.summary()
# Call this function to save the summary of all features regression with y and save the data in results folder
def save_all_linear_regressions():
for x in range(1, len(df.columns.tolist()) - 1):
print(df.columns.tolist()[x])
X = df[df.columns.tolist()[x]]
y = df["class"]
f = open("./results/" + df.columns.tolist()[x] + ".txt", "w")
f.write(str(regression_data(X, y, df.columns.tolist()[x])))
# Call this function to save the summary of all features multipleRegression result in allFeatures.txt
def save_multiple_linear_regression_for_all_features():
features = df.columns.tolist()
del features[10]
del features[0]
X = df[features]
y = df["class"]
rss = get_rss(X, y)
f = open("./results/allFeatures.txt", "w")
f.write("\nRss :"+str(rss) +"\n\n"+ str(regression_data(X, y,"allFeatures")) )
def get_rss(X, y):
linearRegression = LinearRegression()
linearRegression.fit(X, y)
predictions = linearRegression.predict(X)
RSS = sum((predictions - y) ** 2)
return RSS
# Call this function to save the summary of significant features multipleRegression result in allFeatures.txt
def save_multiple_linear_regression_for_all_significant_features():
features = ["clumpThickness", "uniformityOfCellSize", "bareNuclei", "blandChromatin",
"normalNucleoli", "uniformityOfCellSize"]
X = df[features]
y = df["class"]
rss = get_rss(X, y)
f = open("./results/allSignificantFeatures.txt", "w")
f.write("\nRss :"+str(rss) +"\n\n"+str(regression_data(X, y,"allSignificantFeatures")))
def save_ridge_regression():
features = df.columns.tolist()
del features[10]
del features[0]
X = df[features]
y = df["class"]
baseAlpha = 0.1
Ridgemodel = Ridge(alpha=baseAlpha)
Ridgemodel.fit(X, y)
baseScore = Ridgemodel.score(X, y, sample_weight=None)
for x in range(1, 1000):
alpha = 0.1 * x
Ridgemodel = Ridge(alpha=alpha)
Ridgemodel.fit(X, y)
if (Ridgemodel.score(X, y, sample_weight=None) > baseScore):
baseAlpha = alpha
baseScore = Ridgemodel.score(X, y, sample_weight=None)
Ridgemodel = Ridge(alpha=baseAlpha)
Ridgemodel.fit(X, y)
params = np.append(Ridgemodel.intercept_, Ridgemodel.coef_)
predictions = Ridgemodel.predict(X)
myDF3 = get_formatted_data_frame_from_predictions(X, y, predictions, params, features)
f = open("./results/ridgeRegression.txt", "w")
f.write("Alpha = " + str(baseAlpha) + "\n\n")
f.write("R-squared = " + str(Ridgemodel.score(X, y, sample_weight=None)) + "\n\n")
f.write(str(myDF3))
def save_Lasso_regression():
features = df.columns.tolist()
del features[10]
del features[0]
X = df[features]
y = df["class"]
baseAlpha = 0.1
LassoModel = Lasso(alpha=baseAlpha)
LassoModel.fit(X, y)
baseScore = LassoModel.score(X, y, sample_weight=None)
for x in range(1, 1000):
alpha = 0.1 * x
LassoModel = Lasso(alpha=alpha)
LassoModel.fit(X, y)
if (LassoModel.score(X, y, sample_weight=None) > baseScore):
baseAlpha = alpha
baseScore = LassoModel.score(X, y, sample_weight=None)
LassoModel = Lasso(alpha=baseAlpha)
LassoModel.fit(X, y)
params = np.append(LassoModel.intercept_, LassoModel.coef_)
predictions = LassoModel.predict(X)
myDF3 = get_formatted_data_frame_from_predictions(X, y, predictions, params, features)
f = open("./results/lassoRegression.txt", "w")
f.write("Alpha = " + str(baseAlpha) + "\n\n")
f.write("R-squared = " + str(LassoModel.score(X, y, sample_weight=None)) + "\n\n")
f.write(str(myDF3))
def save_elastic_net_regression():
features = df.columns.tolist()
del features[10]
del features[0]
X = df[features]
y = df["class"]
baseAlpha = 0.1
ElNet = ElasticNet(random_state=0, alpha=baseAlpha)
ElNet.fit(X, y)
baseScore = ElNet.score(X, y, sample_weight=None)
for x in range(1, 1000):
alpha = 0.1 * x
ElNet = ElasticNet(random_state=0, alpha=alpha)
ElNet.fit(X, y)
# print("alpha : ", str(alpha), ", score: "
# , str(ElNet.score(X, y, sample_weight=None)))
if (ElNet.score(X, y, sample_weight=None) > baseScore):
baseAlpha = alpha
baseScore = ElNet.score(X, y, sample_weight=None)
ElNet = ElasticNet(random_state=0, alpha=baseAlpha)
ElNet.fit(X, y)
params = np.append(ElNet.intercept_, ElNet.coef_)
predictions = ElNet.predict(X)
params = np.round(params, 4)
myDF3 = get_formatted_data_frame_from_predictions(X, y, predictions, params, features)
f = open("./results/elasticNetRegression.txt", "w")
f.write("Alpha = " + str(baseAlpha) + "\n\n")
f.write("R-squared = " + str(ElNet.score(X, y, sample_weight=None)) + "\n\n")
f.write(str(myDF3))
def get_formatted_data_frame_from_predictions(X, y, predictions, params, features):
newX = pd.DataFrame({"Constant": np.ones(len(X))}).join(pd.DataFrame(X))
MSE = (sum((y - predictions) ** 2)) / (len(newX) - len(newX.columns))
var_b = MSE * (np.linalg.inv(np.dot(newX.T, newX)).diagonal())
sd_b = np.sqrt(var_b)
ts_b = params / sd_b
p_values = [2 * (1 - stats.t.cdf(np.abs(i), (len(newX) - 1))) for i in ts_b]
sd_b = np.round(sd_b, 3)
ts_b = np.round(ts_b, 3)
p_values = np.round(p_values, 3)
params = np.round(params, 4)
myDF3 = pd.DataFrame()
features.insert(0, "constants")
myDF3["Feature"], myDF3["Coefficients"], myDF3["t values"], myDF3["Standard Errors"], myDF3["Probabilites"] = [
features, params, ts_b, sd_b, p_values]
return myDF3
def generate_readme_html():
input_filename = 'Readme.md'
output_filename = 'Readme.html'
f = open(input_filename, 'r')
html_text = markdown(f.read(), output_format='html4')
file = open(output_filename, "w")
file.write(str(html_text))
# generate_readme_html()
save_all_linear_regressions()
save_multiple_linear_regression_for_all_features()
save_multiple_linear_regression_for_all_significant_features()
save_elastic_net_regression()
save_ridge_regression()
save_Lasso_regression()