-
Notifications
You must be signed in to change notification settings - Fork 19
/
pipeline.py
280 lines (249 loc) · 10.1 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright (c) Alibaba, Inc. and its affiliates.
import argparse
import logging
import math
import os
import sys
import yaml
from modelscope.trainers import build_trainer
from modelscope.utils.logger import get_logger
from download import Musan, AIShell2, DNSChallenge
from evaluate.batch_roc import batch_roc, check_conf
from evaluate.roc_sort import roc_sort
MODEL_ID = 'damo/speech_dfsmn_kws_char_farfield_16k_nihaomiya'
REVISION = 'v1.1.0'
BASE_POS_DATA = 'data_pos'
BASE_ANNO = 'data_annotation'
BASE_NEG_DATA = 'data_neg'
MAX_EPOCHS = 500
BASETRAIN_RATIO_FIRST = 0.5
BASETRAIN_RATIO_SECOND = 0.05
# max false alarm (times/hour)
FAR_TH = 0.2
# max false rejection rate threshold
FRR_TH = 0.1
logger = get_logger(log_file='train.txt', log_level=logging.DEBUG)
def main(cfg, download_dir, base_only):
"""
后续还需要增加的配置项:
唤醒词:kws_decode_desc, kws_level
输入通道: numins, chorder, 可能还需要 nummics, numrefs, bf_algorithm
"""
check_conf(cfg, download_dir)
work_dir = cfg['work_dir']
if download_dir:
os.makedirs(download_dir, exist_ok=True)
prepare_data(download_dir, cfg)
with open(os.path.join(work_dir, 'config_updated.yml'), 'w') as f:
yaml.dump(cfg, f)
first_train_dir = os.path.join(work_dir, 'first')
os.makedirs(first_train_dir, exist_ok=True)
first_epoch_num = MAX_EPOCHS
if 'max_epochs' in cfg:
first_epoch_num = cfg['max_epochs']
train(cfg, first_train_dir, max_epochs=first_epoch_num)
model_pth_path = validate(cfg, work_dir, first_train_dir)
logger.info(f'model path: {model_pth_path}')
if base_only:
return
second_train_dir = os.path.join(work_dir, 'second')
os.makedirs(second_train_dir, exist_ok=True)
# 通过动态计算关联前后两次训练的轮数,目前有两种习惯配置:
# 1) base_rate=0.05, second_epoch_num=100
# 2) base_rate=0.1, second_epoch_num=200
second_epoch_num = int(first_epoch_num * BASETRAIN_RATIO_SECOND * 4)
train(cfg,
second_train_dir,
single_rate=BASETRAIN_RATIO_SECOND,
max_epochs=second_epoch_num,
model_bin=model_pth_path)
model_pth_path = validate(cfg, work_dir, second_train_dir)
logger.info(f'model path: {model_pth_path}')
def prepare_data(download_dir, cfg):
""" 下载开源数据,生成音频列表和配置
目标是每个列表中不同开源数据的取用时长相同
由于训练程序是按配置比例选取音频文件数,而每个数据集的音频文件长度不同,所以配置中的比例并不相同
"""
musan = Musan(download_dir)
musan.fetch()
dns = DNSChallenge(download_dir)
dns.fetch()
aishell = AIShell2(download_dir)
aishell.fetch()
neg_list = (aishell.list_files['all'], dns.list_files['clean'])
merge_conf(cfg, 'train_neg_list', neg_list)
ref_list = (aishell.list_files['all'] + ',1.8',
musan.list_files['music'] + ',0.1',
musan.list_files['speech'] + ',0.1')
merge_conf(cfg, 'train_ref_list', ref_list)
merge_conf(cfg, 'train_interf_list', ref_list)
noise_list = (aishell.list_files['all'] + ',0.6',
dns.list_files['noise'] + ',0.2',
musan.list_files['all'] + ',0.2')
merge_conf(cfg, 'single_noise1_list', noise_list)
merge_conf(cfg, 'multi_noise1_list', noise_list)
def merge_conf(cfg, name, data):
if name in cfg:
cfg[name].extend(data)
else:
cfg[name] = data
def validate(cfg, work_dir, model_dir):
# 把top模型转换为txt格式,写入dump_dir
dump_dir = model_dir + '_txt'
model2txt(model_dir, dump_dir)
# 对排序top 的模型测试roc
logger.info('=' * 80)
logger.info('Start batch computing ROC...')
roc_dir = model_dir + '_roc'
os.makedirs(roc_dir, exist_ok=True)
batch_roc(work_dir, dump_dir, cfg, roc_dir)
top_model = pick_top_model(cfg, roc_dir)
model_txt_name = top_model[0]
model_txt_path = os.path.join(dump_dir, model_txt_name)
model_pth_name = model_txt_name[7:].replace('.txt', '.pth')
model_pth_path = os.path.join(model_dir, model_pth_name)
logger.info(f'model txt path: {model_txt_path}')
logger.info(f'model kw frr and level: {top_model[1]}')
logger.info(f'model path: {model_pth_path}')
return model_pth_path
def compute_num_syn(cfg):
num_syn = 0
for kw_conf in cfg['keywords']:
class_list = kw_conf.split(',')[1:]
for c in class_list:
c_number = int(c.strip())
if c_number > num_syn:
num_syn = c_number
num_syn += 1
return num_syn
def train(cfg, train_dir, single_rate=BASETRAIN_RATIO_FIRST, max_epochs=None, model_bin=None):
train_pos_list = '\n'.join(cfg['train_pos_list'])
train_neg_list = '\n'.join(cfg['train_neg_list'])
single_noise1_list = '\n'.join(cfg['single_noise1_list'])
multi_noise1_list = '\n'.join(cfg['multi_noise1_list'])
train_interf_list = '\n'.join(cfg['train_interf_list'])
train_ref_list = '\n'.join(cfg['train_ref_list'])
if 'train_noise2_list' in cfg:
train_noise2_type = '1'
train_noise1_ratio = '0.2'
train_noise2_list = '\n'.join(cfg['train_noise2_list'])
else:
train_noise2_type = '0'
train_noise1_ratio = '1.0'
train_noise2_list = ''
base_dict = dict(
train_pos_list=train_pos_list,
train_neg_list=train_neg_list,
train_noise1_list=single_noise1_list)
fintune_dict = dict(
train_pos_list=train_pos_list,
train_neg_list=train_neg_list,
train_noise1_list=multi_noise1_list,
train_noise1_ratio=train_noise1_ratio,
train_noise2_type=train_noise2_type,
train_noise2_list=train_noise2_list,
train_interf_list=train_interf_list,
train_ref_list=train_ref_list)
custom_conf = dict(
basetrain_easy=base_dict,
basetrain_normal=base_dict,
basetrain_hard=base_dict,
finetune_easy=fintune_dict,
finetune_normal=fintune_dict,
finetune_hard=fintune_dict)
workers = cfg['workers']
# 组装训练需要的配置项
kwargs = dict(
model=MODEL_ID,
work_dir=train_dir,
model_revision=REVISION,
workers=workers,
single_rate=single_rate,
custom_conf=custom_conf)
num_syn = compute_num_syn(cfg)
# 默认训练一个4字唤醒词时,模型输出维度为5,即模型4个字 + 其他
if num_syn != 5:
kwargs['num_syn'] = num_syn
if max_epochs:
kwargs['max_epochs'] = max_epochs
if 'val_iters_per_epoch' in cfg:
kwargs['val_iters_per_epoch'] = cfg['val_iters_per_epoch']
if 'train_iters_per_epoch' in cfg:
kwargs['train_iters_per_epoch'] = cfg['train_iters_per_epoch']
if model_bin:
kwargs['model_bin'] = model_bin
logger.info('=' * 80)
logger.info('Start training...')
trainer = build_trainer('speech_dfsmn_kws_char_farfield', default_args=kwargs)
trainer.train()
logger.info('Training finished.')
def model2txt(model_dir, txt_dir):
# 用扩展名过滤出模型文件,按loss排序
model_files = [i for i in os.listdir(model_dir) if i.endswith('.pth')]
top_n = math.ceil(len(model_files) / 10.0)
# the length of the file name is fixed, so use absolute offset to get the loss of validation
# checkpoint_0011_loss_train_0.5757_loss_val_0.5313.pth
# model_files = sorted(model_files, key=lambda i: float(i[43:49]))
f = 'loss_val_'
model_files = sorted(model_files,
key=lambda a: float(a[a.find(f) + len(f):a.find(f) + len(f)+6]))
if not os.path.exists(txt_dir):
os.makedirs(txt_dir)
for i in range(min(len(model_files), top_n)):
full_path = os.path.join(model_dir, model_files[i])
logger.info(full_path)
# 因为排序后不会取很多,两位数就够表示了
dump_path = os.path.join(txt_dir, f'top_{i + 1:02}_{model_files[i][:-4]}.txt')
cmd = f'python print_model.py {full_path} > {dump_path}'
os.system(cmd)
def pick_top_model(cfg, roc_dir):
roc_sort_dir = roc_dir + '_sort'
os.makedirs(roc_sort_dir, exist_ok=True)
kw_conf_list = cfg['keywords']
main_kw = None
if 'main_keyword' in cfg:
main_kw = cfg['main_keyword']
max_far = FAR_TH
if 'max_far' in cfg:
max_far = float(cfg['max_far'])
sorted_models = roc_sort(roc_dir,
roc_sort_dir,
far_th=max_far,
frr_th=FRR_TH,
kw=main_kw)
# sort by min_frr, sorted_models:[(model_name, {kw: (min_frr, thres)}),...]
if main_kw:
sorted_models = sorted(sorted_models, key=lambda t: float(t[1][main_kw][0]))
top_model = sorted_models[0]
else:
top_model = sorted_models[0]
min_sum = 1000
for model_result in sorted_models:
sum_min_frr = 0.0
for min_frr, thres in model_result[1].values():
sum_min_frr += float(min_frr)
if sum_min_frr < min_sum:
min_sum = sum_min_frr
top_model = model_result
return top_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='KWS training script')
parser.add_argument('config')
parser.add_argument('--remote_dataset', help='download remote dataset for training')
parser.add_argument('-1', '--base_only', help='only run base training',
action='store_true')
parser.add_argument('-d', '--debug', help='print debug log',
action='store_true')
args = parser.parse_args()
if args.debug:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
conf_file = args.config
if not os.path.exists(conf_file):
logger.error('Config file "%s" is not exist!', conf_file)
sys.exit(-1)
logger.info('Loading config from %s', conf_file)
with open(conf_file, encoding='utf-8') as f:
conf = yaml.safe_load(f)
main(conf, args.remote_dataset, args.base_only)