We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Notice: In order to resolve issues more efficiently, please raise issue following the template. (注意:为了更加高效率解决您遇到的问题,请按照模板提问,补充细节)
在英文ASR,和中英文混合ASR中,对于英文一般采用什么建模单元?如果是KWS任务呢,英文使用什么建模比较好,比如对于hey siri这种词;背景是KWS recipe中,tokens不包含hey siri两个词汇,这种情况下,怎么处理比较好? 1、建模单元用什么,对hey siri这样的词做唤醒任务比较好? 2、对于fsmn_kws预训练模型,是不是需要按照新的建模方式,重新从头做预训练,然后finetune 唤醒词?另外,如果只改输出层,其它层加载仓库的预训练模型,然后继续去做修改输出层之后的预训练,然后finetune唤醒词,会不会比从头预训练更好一些呢?
pip
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Notice: In order to resolve issues more efficiently, please raise issue following the template.
(注意:为了更加高效率解决您遇到的问题,请按照模板提问,补充细节)
❓ Questions and Help
在英文ASR,和中英文混合ASR中,对于英文一般采用什么建模单元?如果是KWS任务呢,英文使用什么建模比较好,比如对于hey siri这种词;背景是KWS recipe中,tokens不包含hey siri两个词汇,这种情况下,怎么处理比较好?
1、建模单元用什么,对hey siri这样的词做唤醒任务比较好?
2、对于fsmn_kws预训练模型,是不是需要按照新的建模方式,重新从头做预训练,然后finetune 唤醒词?另外,如果只改输出层,其它层加载仓库的预训练模型,然后继续去做修改输出层之后的预训练,然后finetune唤醒词,会不会比从头预训练更好一些呢?
Before asking:
What is your question?
Code
What have you tried?
What's your environment?
pip
, source):The text was updated successfully, but these errors were encountered: