forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
147 lines (127 loc) · 4.4 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger
from core import predict
from datasets import CityscapesPanoptic
from models import PanopticDeepLab
def parse_args():
parser = argparse.ArgumentParser(description='Model prediction')
# params of prediction
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for prediction',
type=str,
default=None)
parser.add_argument(
'--image_path',
dest='image_path',
help='The path of image, it can be a file or a directory including images',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the predicted results',
type=str,
default='./output/result')
parser.add_argument(
'--threshold',
dest='threshold',
help='Threshold applied to center heatmap score',
type=float,
default=0.1)
parser.add_argument(
'--nms_kernel',
dest='nms_kernel',
help='NMS max pooling kernel size',
type=int,
default=7)
parser.add_argument(
'--top_k',
dest='top_k',
help='Top k centers to keep',
type=int,
default=200)
return parser.parse_args()
def get_image_list(image_path):
"""Get image list"""
valid_suffix = [
'.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png'
]
image_list = []
image_dir = None
if os.path.isfile(image_path):
if os.path.splitext(image_path)[-1] in valid_suffix:
image_list.append(image_path)
elif os.path.isdir(image_path):
image_dir = image_path
for root, dirs, files in os.walk(image_path):
for f in files:
if '.ipynb_checkpoints' in root:
continue
if os.path.splitext(f)[-1] in valid_suffix:
image_list.append(os.path.join(root, f))
else:
raise FileNotFoundError(
'`--image_path` is not found. it should be an image file or a directory including images'
)
if len(image_list) == 0:
raise RuntimeError('There are not image file in `--image_path`')
return image_list, image_dir
def main(args):
env_info = get_sys_env()
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
if not args.cfg:
raise RuntimeError('No configuration file specified.')
cfg = Config(args.cfg)
cfg.check_sync_info()
val_dataset = cfg.val_dataset
if not val_dataset:
raise RuntimeError(
'The verification dataset is not specified in the configuration file.'
)
msg = '\n---------------Config Information---------------\n'
msg += str(cfg)
msg += '------------------------------------------------'
logger.info(msg)
model = cfg.model
transforms = val_dataset.transforms
image_list, image_dir = get_image_list(args.image_path)
logger.info('Number of predict images = {}'.format(len(image_list)))
predict(
model,
model_path=args.model_path,
transforms=transforms,
thing_list=val_dataset.thing_list,
label_divisor=val_dataset.label_divisor,
stuff_area=val_dataset.stuff_area,
ignore_index=val_dataset.ignore_index,
image_list=image_list,
image_dir=image_dir,
save_dir=args.save_dir,
threshold=args.threshold,
nms_kernel=args.nms_kernel,
top_k=args.top_k)
if __name__ == '__main__':
args = parse_args()
main(args)