From c00f1faecd3ae3bcc07cabafc09036617f112f2f Mon Sep 17 00:00:00 2001 From: Sebastian Echeverria Date: Mon, 30 Sep 2024 16:12:45 -0400 Subject: [PATCH] Demo: removed duplicate old file --- demo/scenarios/1_evidence.ipynb | 841 -------------------------------- 1 file changed, 841 deletions(-) delete mode 100644 demo/scenarios/1_evidence.ipynb diff --git a/demo/scenarios/1_evidence.ipynb b/demo/scenarios/1_evidence.ipynb deleted file mode 100644 index ba9a8384..00000000 --- a/demo/scenarios/1_evidence.ipynb +++ /dev/null @@ -1,841 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Collect Evidence\n", - "\n", - "In the second phase of SDMT, we collect _evidence_ to attest to the fact that the model realized the properties specified in the previous phase.\n", - "\n", - "We define and instantiate `Measurement`s to generate this evidence. Each individual piece of evidence is a `Value`. Once `Value`s are produced, we can persist them to an _artifact store_ to maintain our evidence across sessions. " - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialize MLTE Context\n", - "\n", - "MLTE contains a global context that manages the currently active _session_. Initializing the context tells MLTE how to store all of the artifacts that it produces." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from mlte.session import set_context, set_store\n", - "\n", - "store_path = os.path.join(os.getcwd(), \"store\")\n", - "os.makedirs(\n", - " store_path, exist_ok=True\n", - ") # Ensure we are creating the folder if it is not there.\n", - "\n", - "set_context(\"OxfordFlower\", \"0.0.1\")\n", - "set_store(f\"local://{store_path}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define different folders that will be used as input or output for the data gathering process." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "\n", - "# The path at which datasets are stored\n", - "DATASETS_DIR = Path.cwd() / \"data\"\n", - "\n", - "# Path where the model files are stored.\n", - "MODELS_DIR = Path.cwd() / \"model\"\n", - "\n", - "# The path at which media is stored\n", - "MEDIA_DIR = Path.cwd() / \"media\"\n", - "os.makedirs(MEDIA_DIR, exist_ok=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Download the model that will be used for some of these measurements." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2024-09-26 16:36:36-- https://docs.google.com/uc?export=download&id=15kAII1kOPGIAI46OP01ecNkq4tdf5yXw\n", - "Resolving cloudproxy.sei.cmu.edu (cloudproxy.sei.cmu.edu)... 100.64.1.3\n", - "Connecting to cloudproxy.sei.cmu.edu (cloudproxy.sei.cmu.edu)|100.64.1.3|:80... connected.\n", - "Proxy request sent, awaiting response... 303 See Other\n", - "Location: https://drive.usercontent.google.com/download?id=15kAII1kOPGIAI46OP01ecNkq4tdf5yXw&export=download [following]\n", - "--2024-09-26 16:36:36-- https://drive.usercontent.google.com/download?id=15kAII1kOPGIAI46OP01ecNkq4tdf5yXw&export=download\n", - "Connecting to cloudproxy.sei.cmu.edu (cloudproxy.sei.cmu.edu)|100.64.1.3|:80... connected.\n", - "Proxy request sent, awaiting response... 200 OK\n", - "Length: 103401752 (99M) [application/octet-stream]\n", - "Saving to: ‘./model/model_f_a.h5’\n", - "\n", - "./model/model_f_a.h 100%[===================>] 98.61M 2.67MB/s in 39s \n", - "\n", - "2024-09-26 16:37:21 (2.55 MB/s) - ‘./model/model_f_a.h5’ saved [103401752/103401752]\n", - "\n" - ] - } - ], - "source": [ - "!sh get_model.sh" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next sections, we will define additional functions and gather evidence for the different QA scenarios." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fairnesss QAS Measurements\n", - "\n", - "Evidence collected in this section checks for the Fairness scenario defined in the previous step. Note that some functions will be loaded from exernal Python files." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# General functions.\n", - "\n", - "import garden\n", - "import numpy as np\n", - "\n", - "\n", - "def load_data(data_folder: str):\n", - " \"\"\"Loads all garden data results and taxonomy categories.\"\"\"\n", - " df_results = garden.load_base_results(data_folder)\n", - " df_results.head()\n", - "\n", - " # Load the taxonomic data and merge with results.\n", - " df_info = garden.load_taxonomy(data_folder)\n", - " df_results.rename(columns={\"label\": \"Label\"}, inplace=True)\n", - " df_all = garden.merge_taxonomy_with_results(df_results, df_info)\n", - "\n", - " return df_info, df_all\n", - "\n", - "\n", - "def split_data(df_info, df_all):\n", - " \"\"\"Splits the data into 3 different populations to evaluate them.\"\"\"\n", - " df_gardenpop = df_info.copy()\n", - " df_gardenpop[\"Population1\"] = (\n", - " np.around(\n", - " np.random.dirichlet(np.ones(df_gardenpop.shape[0]), size=1)[0],\n", - " decimals=3,\n", - " )\n", - " * 1000\n", - " ).astype(int)\n", - " df_gardenpop[\"Population2\"] = (\n", - " np.around(\n", - " np.random.dirichlet(np.ones(df_gardenpop.shape[0]), size=1)[0],\n", - " decimals=3,\n", - " )\n", - " * 1000\n", - " ).astype(int)\n", - " df_gardenpop[\"Population3\"] = (\n", - " np.around(\n", - " np.random.dirichlet(np.ones(df_gardenpop.shape[0]), size=1)[0],\n", - " decimals=3,\n", - " )\n", - " * 1000\n", - " ).astype(int)\n", - " df_gardenpop\n", - "\n", - " # build populations from test data set that match the garden compositions\n", - " from random import choices\n", - "\n", - " # build 3 gardens with populations of 1000.\n", - " pop_names = [\"Population1\", \"Population2\", \"Population3\"]\n", - " gardenpops = np.zeros((3, 1000), int)\n", - " gardenmems = np.zeros((3, 1000), int)\n", - "\n", - " for j in range(1000):\n", - " for i in range(len(df_gardenpop)):\n", - " my_flower = df_gardenpop.iloc[i][\"Common Name\"]\n", - "\n", - " for g in range(3):\n", - " n_choices = df_gardenpop.iloc[i][pop_names[g]]\n", - " my_choices = df_all[df_all[\"Common Name\"] == my_flower][\n", - " \"model correct\"\n", - " ].to_list()\n", - " my_selection = choices(my_choices, k=n_choices)\n", - "\n", - " gardenpops[g][j] += sum(my_selection)\n", - " gardenmems[g][j] += len(my_selection)\n", - "\n", - " gardenpops\n", - "\n", - " return gardenpops, gardenmems\n", - "\n", - "\n", - "def calculate_model_performance_acc(gardenpops, gardenmems):\n", - " \"\"\"Get accucray of models across the garden populations\"\"\"\n", - " gardenacc = np.zeros((3, 1000), float)\n", - " for i in range(1000):\n", - " for g in range(3):\n", - " gardenacc[g][i] = gardenpops[g][i] / gardenmems[g][i]\n", - " gardenacc\n", - "\n", - " model_performance_acc = []\n", - " for g in range(3):\n", - " avg = round(np.average(gardenacc[g][:]), 3)\n", - " std = round(np.std(gardenacc[g][:]), 3)\n", - " min = round(np.amin(gardenacc[g][:]), 3)\n", - " max = round(np.amax(gardenacc[g][:]), 3)\n", - " model_performance_acc.append(round(avg, 3))\n", - "\n", - " print(\"%1d %1.3f %1.3f %1.3f %1.3f\" % (g, avg, std, min, max))\n", - "\n", - " return model_performance_acc" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Prepare the data. For this section, instead of executing the model, we will use CSV files containing the results of an already executed run of the model.\n", - "data = load_data(DATASETS_DIR)\n", - "split_data = split_data(data[0], data[1])" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this first example, we simply wrap the output from `accuracy_score` with a custom `Result` type to cope with the output of a third-party library that is not supported by a MLTE builtin." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from values.multiple_accuracy import MultipleAccuracy\n", - "from mlte.measurement.external_measurement import ExternalMeasurement\n", - "\n", - "# Evaluate accuracy, identifier has to be the same one defined in the Spec.\n", - "accuracy_measurement = ExternalMeasurement(\n", - " \"accuracy across gardens\", MultipleAccuracy, calculate_model_performance_acc\n", - ")\n", - "accuracy = accuracy_measurement.evaluate(split_data[0], split_data[1])\n", - "\n", - "# Inspect value\n", - "print(accuracy)\n", - "\n", - "# Save to artifact store\n", - "accuracy.save(force=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Robustness QAS Measurements\n", - "\n", - "Evidence collected in this section checks for the Robustness scenarios." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# General functions.\n", - "import pandas as pd\n", - "\n", - "\n", - "def calculate_base_accuracy(df_results: pd.DataFrame) -> pd.DataFrame:\n", - " # Calculate the base model accuracy result per data label\n", - " df_pos = (\n", - " df_results[df_results[\"model correct\"] == True].groupby(\"label\").count()\n", - " )\n", - " df_pos.drop(columns=[\"prediced_label\"], inplace=True)\n", - " df_neg = (\n", - " df_results[df_results[\"model correct\"] == False]\n", - " .groupby(\"label\")\n", - " .count()\n", - " )\n", - " df_neg.drop(columns=[\"prediced_label\"], inplace=True)\n", - " df_neg.rename(columns={\"model correct\": \"model incorrect\"}, inplace=True)\n", - " df_res = df_pos.merge(\n", - " df_neg, right_on=\"label\", left_on=\"label\", how=\"outer\"\n", - " )\n", - " df_res.fillna(0, inplace=True)\n", - " df_res[\"model acc\"] = df_res[\"model correct\"] / (\n", - " df_res[\"model correct\"] + df_res[\"model incorrect\"]\n", - " )\n", - " df_res[\"count\"] = df_res[\"model correct\"] + df_res[\"model incorrect\"]\n", - " df_res.drop(columns=[\"model correct\", \"model incorrect\"], inplace=True)\n", - " df_res.head()\n", - "\n", - " return df_res\n", - "\n", - "\n", - "def calculate_accuracy_per_set(\n", - " data_folder: str, df_results: pd.DataFrame, df_res: pd.DataFrame\n", - ") -> pd.DataFrame:\n", - " # Calculate the model accuracy per data label for each blurred data set\n", - " base_filename = \"FlowerModelv1_TestSetResults\"\n", - " ext_filename = \".csv\"\n", - " set_filename = [\"_blur2x8\", \"_blur5x8\", \"_blur0x8\", \"_noR\", \"_noG\", \"_noB\"]\n", - "\n", - " col_root = \"model acc\"\n", - "\n", - " for fs in set_filename:\n", - " filename = os.path.join(data_folder, base_filename + fs + ext_filename)\n", - " colname = col_root + fs\n", - "\n", - " df_temp = pd.read_csv(filename)\n", - " df_temp.drop(columns=[\"Unnamed: 0\"], inplace=True)\n", - "\n", - " df_pos = (\n", - " df_temp[df_temp[\"model correct\"] == True].groupby(\"label\").count()\n", - " )\n", - " df_pos.drop(columns=[\"prediced_label\"], inplace=True)\n", - " df_neg = (\n", - " df_results[df_results[\"model correct\"] == False]\n", - " .groupby(\"label\")\n", - " .count()\n", - " )\n", - " df_neg.drop(columns=[\"prediced_label\"], inplace=True)\n", - " df_neg.rename(\n", - " columns={\"model correct\": \"model incorrect\"}, inplace=True\n", - " )\n", - " df_res2 = df_pos.merge(\n", - " df_neg, right_on=\"label\", left_on=\"label\", how=\"outer\"\n", - " )\n", - " df_res2.fillna(0, inplace=True)\n", - "\n", - " df_res2[colname] = df_res2[\"model correct\"] / (\n", - " df_res2[\"model correct\"] + df_res2[\"model incorrect\"]\n", - " )\n", - " df_res2.drop(columns=[\"model correct\", \"model incorrect\"], inplace=True)\n", - "\n", - " df_res = df_res.merge(\n", - " df_res2, right_on=\"label\", left_on=\"label\", how=\"outer\"\n", - " )\n", - "\n", - " df_res.head()\n", - " return df_res\n", - "\n", - "\n", - "def print_model_accuracy(df_res: pd.DataFrame, key: str, name: str):\n", - " model_acc = sum(df_res[key] * df_res[\"count\"]) / sum(df_res[\"count\"])\n", - " print(name, model_acc)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Prepare all data. Same as the case above, we will use CSV files that contain results of a previous execution of the model.\n", - "df_results = garden.load_base_results(DATASETS_DIR)\n", - "df_res = calculate_base_accuracy(df_results)\n", - "df_res = calculate_accuracy_per_set(DATASETS_DIR, df_results, df_res)\n", - "df_info = garden.load_taxonomy(DATASETS_DIR)\n", - "df_all = garden.merge_taxonomy_with_results(df_res, df_info, \"label\", \"Label\")\n", - "\n", - "# fill in missing model accuracy data\n", - "df_all[\"model acc_noR\"].fillna(0, inplace=True)\n", - "df_all[\"model acc_noG\"].fillna(0, inplace=True)\n", - "df_all[\"model acc_noB\"].fillna(0, inplace=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now do the actual measurements. First simply see the model accuracy across blurs." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# view changes in model accuracy\n", - "print_model_accuracy(df_res, \"model acc\", \"base model accuracy\")\n", - "print_model_accuracy(\n", - " df_res, \"model acc_blur2x8\", \"model accuracy with 2x8 blur\"\n", - ")\n", - "print_model_accuracy(\n", - " df_res, \"model acc_blur5x8\", \"model accuracy with 5x8 blur\"\n", - ")\n", - "print_model_accuracy(\n", - " df_res, \"model acc_blur0x8\", \"model accuracy with 0x8 blur\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Measure the ranksums (p-value) for all blur cases, using `scipy.stats.ranksums` and the `ExternalMeasurement` wrapper." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import scipy.stats\n", - "\n", - "from values.ranksums import RankSums\n", - "from mlte.measurement.external_measurement import ExternalMeasurement\n", - "\n", - "my_blur = [\"2x8\", \"5x8\", \"0x8\"]\n", - "for i in range(len(my_blur)):\n", - " # Define measurements.\n", - " ranksum_measurement = ExternalMeasurement(\n", - " f\"ranksums blur{my_blur[i]}\", RankSums, scipy.stats.ranksums\n", - " )\n", - "\n", - " # Evaluate.\n", - " ranksum: RankSums = ranksum_measurement.evaluate(\n", - " df_res[\"model acc\"], df_res[f\"model acc_blur{my_blur[i]}\"]\n", - " )\n", - "\n", - " # Inspect values\n", - " print(ranksum)\n", - "\n", - " # Save to artifact store\n", - " ranksum.save(force=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now to next part of the question- is this equal across the phylogenic groups?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we will check the effect of blur for Clade 2." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "\n", - "from values.multiple_ranksums import MultipleRanksums\n", - "\n", - "# use the initial result, blur columns to anaylze effect of blur\n", - "df_all[\"delta_2x8\"] = df_all[\"model acc\"] - df_all[\"model acc_blur2x8\"]\n", - "df_all[\"delta_5x8\"] = df_all[\"model acc\"] - df_all[\"model acc_blur5x8\"]\n", - "df_all[\"delta_0x8\"] = df_all[\"model acc\"] - df_all[\"model acc_blur0x8\"]\n", - "\n", - "pops = df_all[\"Clade2\"].unique().tolist()\n", - "blurs = [\n", - " \"delta_2x8\",\n", - " \"delta_5x8\",\n", - " \"delta_0x8\",\n", - "]\n", - "\n", - "ranksums: List = []\n", - "for i in range(len(blurs)):\n", - " for pop1 in pops:\n", - " for pop2 in pops:\n", - " ranksum_measurement = ExternalMeasurement(\n", - " f\"ranksums clade2 {pop1}-{pop2} blur{blurs[i]}\",\n", - " RankSums,\n", - " scipy.stats.ranksums,\n", - " )\n", - " ranksum: RankSums = ranksum_measurement.evaluate(\n", - " df_all[df_all[\"Clade2\"] == pop1][blurs[i]],\n", - " df_all[df_all[\"Clade2\"] == pop2][blurs[i]],\n", - " )\n", - " print(f\"blur {blurs[i]}: {ranksum}\")\n", - " ranksums.append({ranksum.identifier: ranksum.array})\n", - "\n", - "multiple_ranksums_meas = ExternalMeasurement(\n", - " f\"multiple ranksums for clade2\", MultipleRanksums, lambda x: x\n", - ")\n", - "multiple_ranksums: MultipleRanksums = multiple_ranksums_meas.evaluate(ranksums)\n", - "multiple_ranksums.num_pops = len(pops)\n", - "multiple_ranksums.save(force=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we check between clade 2 and clade 3." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_now = (\n", - " df_all[[\"Clade2\", \"Clade 3\"]]\n", - " .copy()\n", - " .groupby([\"Clade2\", \"Clade 3\"])\n", - " .count()\n", - " .reset_index()\n", - ")\n", - "ps1 = df_now[\"Clade2\"].to_list()\n", - "ps2 = df_now[\"Clade 3\"].to_list()\n", - "print(df_now)\n", - "\n", - "ranksums: List = []\n", - "for k in range(len(blurs)):\n", - " print(\"\\n\", blurs[k])\n", - " for i in range(len(ps1)):\n", - " p1c1 = ps1[i]\n", - " p1c2 = ps2[i]\n", - " for j in range(len(ps1)):\n", - " p2c1 = ps1[j]\n", - " p2c2 = ps2[j]\n", - " if (\n", - " len(\n", - " df_all[\n", - " (df_all[\"Clade2\"] == p1c1) & (df_all[\"Clade 3\"] == p2c2)\n", - " ][blurs[k]]\n", - " )\n", - " > 0\n", - " | len(\n", - " df_all[\n", - " (df_all[\"Clade2\"] == p2c1) & (df_all[\"Clade 3\"] == p2c2)\n", - " ][blurs[k]]\n", - " )\n", - " > 0\n", - " ):\n", - " ranksum_measurement = ExternalMeasurement(\n", - " f\"ranksums {p1c1}-{p2c2} - {p2c1}-{p2c2} blur{blurs[k]}\",\n", - " RankSums,\n", - " scipy.stats.ranksums,\n", - " )\n", - " ranksum: RankSums = ranksum_measurement.evaluate(\n", - " df_all[\n", - " (df_all[\"Clade2\"] == p1c1) & (df_all[\"Clade 3\"] == p2c2)\n", - " ][blurs[k]],\n", - " df_all[\n", - " (df_all[\"Clade2\"] == p2c1) & (df_all[\"Clade 3\"] == p2c2)\n", - " ][blurs[k]],\n", - " )\n", - " ranksums.append({ranksum.identifier: ranksum.array})\n", - "\n", - "multiple_ranksums_meas = ExternalMeasurement(\n", - " f\"multiple ranksums between clade2 and 3\", MultipleRanksums, lambda x: x\n", - ")\n", - "multiple_ranksums: MultipleRanksums = multiple_ranksums_meas.evaluate(ranksums)\n", - "multiple_ranksums.num_pops = len(ps1)\n", - "multiple_ranksums.save(force=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Performance QAS Measurements\n", - "\n", - "Now we collect stored, CPU and memory usage data when predicting with the model, for the Performance scenario. NOTE: the version of tensorflow used in this demo requires running it under Python 3.9 or higher." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# This is the external script that will load and run the model for inference/prediction.\n", - "script = Path.cwd() / \"model_predict.py\"\n", - "args = [\n", - " \"--images\",\n", - " DATASETS_DIR,\n", - " \"--model\",\n", - " MODELS_DIR / \"model_f3_a.json\",\n", - " \"--weights\",\n", - " MODELS_DIR / \"model_f_a.h5\",\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from mlte.measurement.storage import LocalObjectSize\n", - "from mlte.value.types.integer import Integer\n", - "\n", - "store_measurement = LocalObjectSize(\"model size\")\n", - "size: Integer = store_measurement.evaluate(MODELS_DIR)\n", - "print(size)\n", - "size.save(force=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from mlte.measurement.process_measurement import ProcessMeasurement\n", - "from mlte.measurement.cpu import LocalProcessCPUUtilization, CPUStatistics\n", - "\n", - "cpu_measurement = LocalProcessCPUUtilization(\"predicting cpu\")\n", - "cpu_stats: CPUStatistics = cpu_measurement.evaluate(\n", - " ProcessMeasurement.start_script(script, args)\n", - ")\n", - "print(cpu_stats)\n", - "cpu_stats.save(force=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from mlte.measurement.memory import (\n", - " LocalProcessMemoryConsumption,\n", - " MemoryStatistics,\n", - ")\n", - "\n", - "mem_measurement = LocalProcessMemoryConsumption(\"predicting memory\")\n", - "mem_stats: MemoryStatistics = mem_measurement.evaluate(\n", - " ProcessMeasurement.start_script(script, args)\n", - ")\n", - "print(mem_stats)\n", - "mem_stats.save(force=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Interpretability QAS Measurements.\n", - "\n", - "Now we proceed to gather data about the Interpretability of the model, for the corresponding scenario. NOTE: the version of tensorflow used in this demo requires running it under Python 3.9 or higher." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model_filename = (\n", - " MODELS_DIR / \"model_f3_a.json\"\n", - ") # The json file of the model to load\n", - "weights_filename = MODELS_DIR / \"model_f_a.h5\" # The weights file for the model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from model_analysis import *\n", - "\n", - "# Load the model/\n", - "loaded_model = load_model(model_filename, weights_filename)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Load and show the image.\n", - "\n", - "flower_img = \"flower3.jpg\" # Filename of flower image to use, public domain image adapted from: https://commons.wikimedia.org/wiki/File:Beautiful_white_flower_in_garden.jpg\n", - "flower_idx = (\n", - " 42 # Classifier index of associated flower (see OxfordFlower102Labels.csv)\n", - ")\n", - "\n", - "im = read_image(os.path.join(DATASETS_DIR, flower_img))\n", - "\n", - "plt.imshow(im)\n", - "plt.axis(\"off\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "predictions = run_model(im, loaded_model)\n", - "\n", - "baseline, alphas = generate_baseline_and_alphas()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "interpolated_images = interpolate_images(\n", - " baseline=baseline, image=im, alphas=alphas\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plt.figure(figsize=(20, 20))\n", - "\n", - "i = 0\n", - "for alpha, image in zip(alphas[0::10], interpolated_images[0::10]):\n", - " i += 1\n", - " plt.subplot(1, len(alphas[0::10]), i)\n", - " plt.title(f\"alpha: {alpha:.1f}\")\n", - " plt.imshow(image)\n", - " plt.axis(\"off\")\n", - "\n", - "plt.tight_layout()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "path_gradients = compute_gradients(\n", - " loaded_model=loaded_model,\n", - " images=interpolated_images,\n", - " target_class_idx=flower_idx,\n", - ")\n", - "print(path_gradients.shape)\n", - "\n", - "ig = integral_approximation(gradients=path_gradients)\n", - "print(ig.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ig_attributions = integrated_gradients(\n", - " baseline=baseline,\n", - " image=im,\n", - " target_class_idx=flower_idx,\n", - " loaded_model=loaded_model,\n", - " m_steps=240,\n", - ")\n", - "print(ig_attributions.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fig = plot_img_attributions(\n", - " image=im,\n", - " baseline=baseline,\n", - " target_class_idx=flower_idx,\n", - " loaded_model=loaded_model,\n", - " m_steps=240,\n", - " cmap=plt.cm.inferno,\n", - " overlay_alpha=0.4,\n", - ")\n", - "\n", - "plt.savefig(MEDIA_DIR / \"attributions.png\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from mlte.measurement.external_measurement import ExternalMeasurement\n", - "from mlte.value.types.image import Image\n", - "\n", - "# Save to MLTE store.\n", - "img_collector = ExternalMeasurement(\"image attributions\", Image)\n", - "img = img_collector.ingest(MEDIA_DIR / \"attributions.png\")\n", - "img.save(force=True)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.4" - }, - "vscode": { - "interpreter": { - "hash": "82adda432962015d5f71beb9387a99f24d390514e497c776c87ff3434daf7312" - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -}