-
Notifications
You must be signed in to change notification settings - Fork 2
/
superpoint.py
825 lines (734 loc) · 32.4 KB
/
superpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
import os
import cv2
import time
import copy
import glob
import torch
import random
import argparse
import numpy as np
from ultralytics import YOLO
YOLO_MODEL = "models/yolov8n-seg.pt"
CAPTURE_FOLDER = "cap_data"
NO_CAPS = 8
# Stub to warn about opencv version.
if int(cv2.__version__[0]) < 3: # pragma: no cover
print('Warning: OpenCV 3 is not installed')
# Jet colormap for visualization.
myjet = np.array([[0. , 0. , 0.5 ],
[0. , 0. , 0.99910873],
[0. , 0.37843137, 1. ],
[0. , 0.83333333, 1. ],
[0.30044276, 1. , 0.66729918],
[0.66729918, 1. , 0.30044276],
[1. , 0.90123457, 0. ],
[1. , 0.48002905, 0. ],
[0.99910873, 0.07334786, 0. ],
[0.5 , 0. , 0. ]])
class SuperPointNet(torch.nn.Module):
""" Pytorch definition of SuperPoint Network. """
def __init__(self):
super(SuperPointNet, self).__init__()
self.relu = torch.nn.ReLU(inplace=True)
self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)
c1, c2, c3, c4, c5, d1 = 64, 64, 128, 128, 256, 256
# Shared Encoder.
self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)
# Detector Head.
self.convPa = torch.nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convPb = torch.nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)
# Descriptor Head.
self.convDa = torch.nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convDb = torch.nn.Conv2d(c5, d1, kernel_size=1, stride=1, padding=0)
def forward(self, x):
""" Forward pass that jointly computes unprocessed point and descriptor
tensors.
Input
x: Image pytorch tensor shaped N x 1 x H x W.
Output
semi: Output point pytorch tensor shaped N x 65 x H/8 x W/8.
desc: Output descriptor pytorch tensor shaped N x 256 x H/8 x W/8.
"""
# Shared Encoder.
x = self.relu(self.conv1a(x))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
# Detector Head.
cPa = self.relu(self.convPa(x))
semi = self.convPb(cPa)
# Descriptor Head.
cDa = self.relu(self.convDa(x))
desc = self.convDb(cDa)
dn = torch.norm(desc, p=2, dim=1) # Compute the norm.
desc = desc.div(torch.unsqueeze(dn, 1)) # Divide by norm to normalize.
return semi, desc
class SuperPointFrontend(object):
""" Wrapper around pytorch net to help with pre and post image processing. """
def __init__(self, weights_path, nms_dist, conf_thresh, nn_thresh, cuda=False):
self.name = 'SuperPoint'
self.cuda = cuda
self.nms_dist = nms_dist
self.conf_thresh = conf_thresh
self.nn_thresh = nn_thresh # L2 descriptor distance for good match.
self.cell = 8 # Size of each output cell. Keep this fixed.
self.border_remove = 4 # Remove points this close to the border.
# Load the network in inference mode.
self.net = SuperPointNet()
if cuda:
# Train on GPU, deploy on GPU.
self.net.load_state_dict(torch.load(weights_path))
self.net = self.net.cuda()
else:
# Train on GPU, deploy on CPU.
self.net.load_state_dict(torch.load(weights_path,
map_location=lambda storage, loc: storage))
self.net.eval()
def nms_fast(self, in_corners, H, W, dist_thresh):
"""
Run a faster approximate Non-Max-Suppression on numpy corners shaped:
3xN [x_i,y_i,conf_i]^T
Algo summary: Create a grid sized HxW. Assign each corner location a 1, rest
are zeros. Iterate through all the 1's and convert them either to -1 or 0.
Suppress points by setting nearby values to 0.
Grid Value Legend:
-1 : Kept.
0 : Empty or suppressed.
1 : To be processed (converted to either kept or supressed).
NOTE: The NMS first rounds points to integers, so NMS distance might not
be exactly dist_thresh. It also assumes points are within image boundaries.
Inputs
in_corners - 3xN numpy array with corners [x_i, y_i, confidence_i]^T.
H - Image height.
W - Image width.
dist_thresh - Distance to suppress, measured as an infinty norm distance.
Returns
nmsed_corners - 3xN numpy matrix with surviving corners.
nmsed_inds - N length numpy vector with surviving corner indices.
"""
grid = np.zeros((H, W)).astype(int) # Track NMS data.
inds = np.zeros((H, W)).astype(int) # Store indices of points.
# Sort by confidence and round to nearest int.
inds1 = np.argsort(-in_corners[2,:])
corners = in_corners[:,inds1]
rcorners = corners[:2,:].round().astype(int) # Rounded corners.
# Check for edge case of 0 or 1 corners.
if rcorners.shape[1] == 0:
return np.zeros((3,0)).astype(int), np.zeros(0).astype(int)
if rcorners.shape[1] == 1:
out = np.vstack((rcorners, in_corners[2])).reshape(3,1)
return out, np.zeros((1)).astype(int)
# Initialize the grid.
for i, rc in enumerate(rcorners.T):
grid[rcorners[1,i], rcorners[0,i]] = 1
inds[rcorners[1,i], rcorners[0,i]] = i
# Pad the border of the grid, so that we can NMS points near the border.
pad = dist_thresh
grid = np.pad(grid, ((pad,pad), (pad,pad)), mode='constant')
# Iterate through points, highest to lowest conf, suppress neighborhood.
count = 0
for i, rc in enumerate(rcorners.T):
# Account for top and left padding.
pt = (rc[0]+pad, rc[1]+pad)
if grid[pt[1], pt[0]] == 1: # If not yet suppressed.
grid[pt[1]-pad:pt[1]+pad+1, pt[0]-pad:pt[0]+pad+1] = 0
grid[pt[1], pt[0]] = -1
count += 1
# Get all surviving -1's and return sorted array of remaining corners.
keepy, keepx = np.where(grid==-1)
keepy, keepx = keepy - pad, keepx - pad
inds_keep = inds[keepy, keepx]
out = corners[:, inds_keep]
values = out[-1, :]
inds2 = np.argsort(-values)
out = out[:, inds2]
out_inds = inds1[inds_keep[inds2]]
return out, out_inds
def run(self, img):
""" Process a numpy image to extract points and descriptors.
Input
img - HxW numpy float32 input image in range [0,1].
Output
corners - 3xN numpy array with corners [x_i, y_i, confidence_i]^T.
desc - 256xN numpy array of corresponding unit normalized descriptors.
heatmap - HxW numpy heatmap in range [0,1] of point confidences.
"""
assert img.ndim == 2, 'Image must be grayscale.'
assert img.dtype == np.float32, 'Image must be float32.'
H, W = img.shape[0], img.shape[1]
inp = img.copy()
inp = (inp.reshape(1, H, W))
inp = torch.from_numpy(inp)
inp = torch.autograd.Variable(inp).view(1, 1, H, W)
if self.cuda:
inp = inp.cuda()
# Forward pass of network.
outs = self.net.forward(inp)
semi, coarse_desc = outs[0], outs[1]
# Convert pytorch -> numpy.
semi = semi.data.cpu().numpy().squeeze()
# --- Process points.
dense = np.exp(semi) # Softmax.
dense = dense / (np.sum(dense, axis=0)+.00001) # Should sum to 1.
# Remove dustbin.
nodust = dense[:-1, :, :]
# Reshape to get full resolution heatmap.
Hc = int(H / self.cell)
Wc = int(W / self.cell)
nodust = nodust.transpose(1, 2, 0)
heatmap = np.reshape(nodust, [Hc, Wc, self.cell, self.cell])
heatmap = np.transpose(heatmap, [0, 2, 1, 3])
heatmap = np.reshape(heatmap, [Hc*self.cell, Wc*self.cell])
xs, ys = np.where(heatmap >= self.conf_thresh) # Confidence threshold.
if len(xs) == 0:
return np.zeros((3, 0)), None, None
pts = np.zeros((3, len(xs))) # Populate point data sized 3xN.
pts[0, :] = ys
pts[1, :] = xs
pts[2, :] = heatmap[xs, ys]
pts, _ = self.nms_fast(pts, H, W, dist_thresh=self.nms_dist) # Apply NMS.
inds = np.argsort(pts[2,:])
pts = pts[:,inds[::-1]] # Sort by confidence.
# Remove points along border.
bord = self.border_remove
toremoveW = np.logical_or(pts[0, :] < bord, pts[0, :] >= (W-bord))
toremoveH = np.logical_or(pts[1, :] < bord, pts[1, :] >= (H-bord))
toremove = np.logical_or(toremoveW, toremoveH)
pts = pts[:, ~toremove]
# print("pts = ", pts) # xs, ys,
# --- Process descriptor.
D = coarse_desc.shape[1]
if pts.shape[1] == 0:
desc = np.zeros((D, 0))
else:
# Interpolate into descriptor map using 2D point locations.
samp_pts = torch.from_numpy(pts[:2, :].copy())
samp_pts[0, :] = (samp_pts[0, :] / (float(W)/2.)) - 1.
samp_pts[1, :] = (samp_pts[1, :] / (float(H)/2.)) - 1.
samp_pts = samp_pts.transpose(0, 1).contiguous()
samp_pts = samp_pts.view(1, 1, -1, 2)
samp_pts = samp_pts.float()
if self.cuda:
samp_pts = samp_pts.cuda()
desc = torch.nn.functional.grid_sample(coarse_desc, samp_pts)
desc = desc.data.cpu().numpy().reshape(D, -1)
desc /= np.linalg.norm(desc, axis=0)[np.newaxis, :]
return pts, desc, heatmap
class PointTracker(object):
""" Class to manage a fixed memory of points and descriptors that enables
sparse optical flow point tracking.
Internally, the tracker stores a 'tracks' matrix sized M x (2+L), of M
tracks with maximum length L, where each row corresponds to:
row_m = [track_id_m, avg_desc_score_m, point_id_0_m, ..., point_id_L-1_m].
"""
def __init__(self, max_length, nn_thresh):
if max_length < 2:
raise ValueError('max_length must be greater than or equal to 2.')
self.maxl = max_length
self.nn_thresh = nn_thresh
self.all_pts = []
for n in range(self.maxl):
self.all_pts.append(np.zeros((2, 0)))
self.last_desc = None
self.tracks = np.zeros((0, self.maxl+2))
self.track_count = 0
self.max_score = 9999
def nn_match_two_way(self, desc1, desc2, nn_thresh):
"""
Performs two-way nearest neighbor matching of two sets of descriptors, such
that the NN match from descriptor A->B must equal the NN match from B->A.
Inputs:
desc1 - NxM numpy matrix of N corresponding M-dimensional descriptors.
desc2 - NxM numpy matrix of N corresponding M-dimensional descriptors.
nn_thresh - Optional descriptor distance below which is a good match.
Returns:
matches - 3xL numpy array, of L matches, where L <= N and each column i is
a match of two descriptors, d_i in image 1 and d_j' in image 2:
[d_i index, d_j' index, match_score]^T
"""
assert desc1.shape[0] == desc2.shape[0]
if desc1.shape[1] == 0 or desc2.shape[1] == 0:
return np.zeros((3, 0))
if nn_thresh < 0.0:
raise ValueError('\'nn_thresh\' should be non-negative')
# Compute L2 distance. Easy since vectors are unit normalized.
dmat = np.dot(desc1.T, desc2)
dmat = np.sqrt(2-2*np.clip(dmat, -1, 1))
# Get NN indices and scores.
idx = np.argmin(dmat, axis=1)
scores = dmat[np.arange(dmat.shape[0]), idx]
# Threshold the NN matches.
keep = scores < nn_thresh
# Check if nearest neighbor goes both directions and keep those.
idx2 = np.argmin(dmat, axis=0)
keep_bi = np.arange(len(idx)) == idx2[idx]
keep = np.logical_and(keep, keep_bi)
idx = idx[keep]
scores = scores[keep]
# Get the surviving point indices.
m_idx1 = np.arange(desc1.shape[1])[keep]
m_idx2 = idx
# Populate the final 3xN match data structure.
matches = np.zeros((3, int(keep.sum())))
matches[0, :] = m_idx1
matches[1, :] = m_idx2
matches[2, :] = scores
return matches
def get_offsets(self):
""" Iterate through list of points and accumulate an offset value. Used to
index the global point IDs into the list of points.
Returns
offsets - N length array with integer offset locations.
"""
# Compute id offsets.
offsets = []
offsets.append(0)
for i in range(len(self.all_pts)-1): # Skip last camera size, not needed.
offsets.append(self.all_pts[i].shape[1])
offsets = np.array(offsets)
offsets = np.cumsum(offsets)
return offsets
def update(self, pts, desc):
""" Add a new set of point and descriptor observations to the tracker.
Inputs
pts - 3xN numpy array of 2D point observations.
desc - DxN numpy array of corresponding D dimensional descriptors.
"""
if pts is None or desc is None:
print('PointTracker: Warning, no points were added to tracker.')
return
assert pts.shape[1] == desc.shape[1]
# Initialize last_desc.
if self.last_desc is None:
self.last_desc = np.zeros((desc.shape[0], 0))
# Remove oldest points, store its size to update ids later.
remove_size = self.all_pts[0].shape[1]
self.all_pts.pop(0)
self.all_pts.append(pts)
# Remove oldest point in track.
self.tracks = np.delete(self.tracks, 2, axis=1)
# Update track offsets.
for i in range(2, self.tracks.shape[1]):
self.tracks[:, i] -= remove_size
self.tracks[:, 2:][self.tracks[:, 2:] < -1] = -1
offsets = self.get_offsets()
# Add a new -1 column.
self.tracks = np.hstack((self.tracks, -1*np.ones((self.tracks.shape[0], 1))))
# Try to append to existing tracks.
matched = np.zeros((pts.shape[1])).astype(bool)
matches = self.nn_match_two_way(self.last_desc, desc, self.nn_thresh)
# print("len(matched.T) = ", len(matched.T))
# print("len(matches.T) = ", len(matches.T))
for match in matches.T:
# print("match = ", match)
# Add a new point to it's matched track.
id1 = int(match[0]) + offsets[-2]
id2 = int(match[1]) + offsets[-1]
found = np.argwhere(self.tracks[:, -2] == id1)
if found.shape[0] > 0:
matched[int(match[1])] = True
row = int(found)
self.tracks[row, -1] = id2
if self.tracks[row, 1] == self.max_score:
# Initialize track score.
self.tracks[row, 1] = match[2]
else:
# Update track score with running average.
# NOTE(dd): this running average can contain scores from old matches
# not contained in last max_length track points.
track_len = (self.tracks[row, 2:] != -1).sum() - 1.
frac = 1. / float(track_len)
self.tracks[row, 1] = (1.-frac)*self.tracks[row, 1] + frac*match[2]
# Add unmatched tracks.
new_ids = np.arange(pts.shape[1]) + offsets[-1]
new_ids = new_ids[~matched]
new_tracks = -1*np.ones((new_ids.shape[0], self.maxl + 2))
new_tracks[:, -1] = new_ids
new_num = new_ids.shape[0]
new_trackids = self.track_count + np.arange(new_num)
new_tracks[:, 0] = new_trackids
new_tracks[:, 1] = self.max_score*np.ones(new_ids.shape[0])
self.tracks = np.vstack((self.tracks, new_tracks))
self.track_count += new_num # Update the track count.
# Remove empty tracks.
keep_rows = np.any(self.tracks[:, 2:] >= 0, axis=1)
self.tracks = self.tracks[keep_rows, :]
# Store the last descriptors.
self.last_desc = desc.copy()
return matches.T
def get_tracks(self, min_length):
""" Retrieve point tracks of a given minimum length.
Input
min_length - integer >= 1 with minimum track length
Output
returned_tracks - M x (2+L) sized matrix storing track indices, where
M is the number of tracks and L is the maximum track length.
"""
if min_length < 1:
raise ValueError('\'min_length\' too small.')
valid = np.ones((self.tracks.shape[0])).astype(bool)
good_len = np.sum(self.tracks[:, 2:] != -1, axis=1) >= min_length
# Remove tracks which do not have an observation in most recent frame.
not_headless = (self.tracks[:, -1] != -1)
keepers = np.logical_and.reduce((valid, good_len, not_headless))
returned_tracks = self.tracks[keepers, :].copy()
return returned_tracks
def draw_tracks(self, out, tracks):
""" Visualize tracks all overlayed on a single image.
Inputs
out - numpy uint8 image sized HxWx3 upon which tracks are overlayed.
tracks - M x (2+L) sized matrix storing track info.
"""
# Store the number of points per camera.
pts_mem = self.all_pts
N = len(pts_mem) # Number of cameras/images.
# Get offset ids needed to reference into pts_mem.
offsets = self.get_offsets()
# Width of track and point circles to be drawn.
stroke = 1
# Iterate through each track and draw it.
for track in tracks:
clr = myjet[int(np.clip(np.floor(track[1]*10), 0, 9)), :]*255
for i in range(N-1):
if track[i+2] == -1 or track[i+3] == -1:
continue
offset1 = offsets[i]
offset2 = offsets[i+1]
idx1 = int(track[i+2]-offset1)
idx2 = int(track[i+3]-offset2)
pt1 = pts_mem[i][:2, idx1]
pt2 = pts_mem[i+1][:2, idx2]
p1 = (int(round(pt1[0])), int(round(pt1[1])))
p2 = (int(round(pt2[0])), int(round(pt2[1])))
cv2.line(out, p1, p2, clr, thickness=stroke, lineType=16)
# Draw end points of each track.
if i == N-2:
clr2 = (255, 0, 0)
cv2.circle(out, p2, stroke, clr2, -1, lineType=16)
class VideoStreamer(object):
""" Class to help process image streams. Three types of possible inputs:"
1.) USB Webcam.
2.) A directory of images (files in directory matching 'img_glob').
3.) A video file, such as an .mp4 or .avi file.
"""
def __init__(self, basedir, camid, height, width, skip, img_glob):
self.cap = []
self.camera = False
self.video_file = False
self.listing = []
self.sizer = [height, width]
self.i = 0
self.skip = skip
self.maxlen = 1000000
# If the "basedir" string is the word camera, then use a webcam.
if basedir == "camera/" or basedir == "camera":
print('==> Processing Webcam Input.')
self.cap = cv2.VideoCapture(camid)
self.listing = range(0, self.maxlen)
self.camera = True
else:
# Try to open as a video.
self.cap = cv2.VideoCapture(basedir)
lastbit = basedir[-4:len(basedir)]
if (type(self.cap) == list or not self.cap.isOpened()) and (lastbit == '.mp4'):
raise IOError('Cannot open movie file')
elif type(self.cap) != list and self.cap.isOpened() and (lastbit != '.txt'):
print('==> Processing Video Input.')
num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
self.listing = range(0, num_frames)
self.listing = self.listing[::self.skip]
self.camera = True
self.video_file = True
self.maxlen = len(self.listing)
else:
print('==> Processing Image Directory Input.')
search = os.path.join(basedir, img_glob)
self.listing = glob.glob(search)
self.listing.sort()
self.listing = self.listing[::self.skip]
self.maxlen = len(self.listing)
if self.maxlen == 0:
raise IOError('No images were found (maybe bad \'--img_glob\' parameter?)')
def read_image(self, impath, img_size):
""" Read image as grayscale and resize to img_size.
Inputs
impath: Path to input image.
img_size: (W, H) tuple specifying resize size.
Returns
grayim: float32 numpy array sized H x W with values in range [0, 1].
"""
grayim = cv2.imread(impath, 0)
if grayim is None:
raise Exception('Error reading image %s' % impath)
# Image is resized via opencv.
interp = cv2.INTER_AREA
grayim = cv2.resize(grayim, (img_size[1], img_size[0]), interpolation=interp)
grayim = (grayim.astype('float32') / 255.)
return grayim
def next_frame(self):
""" Return the next frame, and increment internal counter.
Returns
image: Next H x W image.
status: True or False depending whether image was loaded.
"""
if self.i == self.maxlen:
return (None, False)
if self.camera:
ret, input_image = self.cap.read()
if ret is False:
print('VideoStreamer: Cannot get image from camera (maybe bad --camid?)')
return (None, False)
if self.video_file:
self.cap.set(cv2.CAP_PROP_POS_FRAMES, self.listing[self.i])
input_image = cv2.resize(input_image, (self.sizer[1], self.sizer[0]),
interpolation=cv2.INTER_AREA)
# cv2.imwrite(f"captured_imgs/test{self.i:05d}.png", input_image)
input_image_copy = copy.deepcopy(input_image)
if self.i >= NO_CAPS:
model = YOLO(YOLO_MODEL)
results = model.predict(source=input_image, save=False, save_txt=False, save_conf=True, save_crop=False, show_labels=True,
show_conf=True, retina_masks=True, boxes=False, device='cpu', project=CAPTURE_FOLDER, name='exp')
names, boxes, masks = model.model.names, results[0].boxes, results[0].masks.data.numpy().transpose(1, 2, 0)
# target_obj_id = list(names.keys())[list(names.values()).index(TARGET_OBJECT)]
pred_classes = []
for i in range(len(boxes)):
pred_classes.append(int(boxes[i].cls.item()))
pred_names = []
for pred_class in pred_classes:
pred_names.append(names[int(pred_class)])
# print("names = ", names)
# print("pred_classes = ", pred_classes)
print("pred_names = ", pred_names)
target_obj_ids = []
for target_object in pred_names:
target_obj_id = list(names.keys())[list(names.values()).index(target_object)]
target_obj_ids.append(target_obj_id)
# print("target_obj_ids = ", target_obj_ids)
# Manually create the point cloud from RGD and depth images
start_time_process = time.time()
target_masks = []
for target_obj_id in target_obj_ids:
target_mask = masks[:, :, pred_classes.index(target_obj_id)]
# print("target_mask.shape = ", target_mask.shape)
target_masks.append(target_mask)
print("len(target_masks) = ", len(target_masks))
from utils import count_subfolders, aggregate_mask_for_depth_image
exp_id = "" if count_subfolders(CAPTURE_FOLDER) == 1 else count_subfolders(CAPTURE_FOLDER)
mask_images = []
MIN_THRESHOLD, MAX_THRESHOLD = 0, 255
for target_mask_i in range(len(target_masks)):
mask = target_masks[target_mask_i]
rgb_img = cv2.merge((mask, mask, mask))
_, rgb_img = cv2.threshold(rgb_img, MIN_THRESHOLD, MAX_THRESHOLD, cv2.THRESH_BINARY)
# rgb_img = create_mask(target_mask_i)
# print("rgb_img.shape = ", rgb_img.shape)
mask_images.append(rgb_img)
masked_rgb_image = aggregate_mask_for_depth_image(input_image_copy, mask_images)
# cv2.imwrite(f"./masked_imgs/test_{self.i:05d}.png", masked_rgb_image)
input_image = cv2.cvtColor(masked_rgb_image, cv2.COLOR_RGB2GRAY)
input_image = input_image.astype('float')/255.0
else: # frame_no < NO_CAPS
input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
input_image = input_image.astype('float')/255.0
else:
image_file = self.listing[self.i]
input_image = self.read_image(image_file, self.sizer)
# Increment internal counter.
self.i = self.i + 1
input_image = input_image.astype('float32')
return (input_image, True)
if __name__ == '__main__':
# Parse command line arguments.
parser = argparse.ArgumentParser(description='PyTorch SuperPoint Demo.')
parser.add_argument('input', type=str, default='',
help='Image directory or movie file or "camera" (for webcam).')
parser.add_argument('--weights_path', type=str, default='superpoint_v1.pth',
help='Path to pretrained weights file (default: superpoint_v1.pth).')
parser.add_argument('--img_glob', type=str, default='*.png',
help='Glob match if directory of images is specified (default: \'*.png\').')
parser.add_argument('--skip', type=int, default=1,
help='Images to skip if input is movie or directory (default: 1).')
parser.add_argument('--show_extra', action='store_true',
help='Show extra debug outputs (default: False).')
parser.add_argument('--H', type=int, default=240,
help='Input image height (default: 120).')
parser.add_argument('--W', type=int, default=320,
help='Input image width (default:160).')
parser.add_argument('--display_scale', type=int, default=2,
help='Factor to scale output visualization (default: 2).')
parser.add_argument('--min_length', type=int, default=2,
help='Minimum length of point tracks (default: 2).')
parser.add_argument('--max_length', type=int, default=5,
help='Maximum length of point tracks (default: 5).')
parser.add_argument('--nms_dist', type=int, default=4,
help='Non Maximum Suppression (NMS) distance (default: 4).')
parser.add_argument('--conf_thresh', type=float, default=0.015,
help='Detector confidence threshold (default: 0.015).')
parser.add_argument('--nn_thresh', type=float, default=0.7,
help='Descriptor matching threshold (default: 0.7).')
parser.add_argument('--camid', type=int, default=4,
help='OpenCV webcam video capture ID, usually 0 or 1 (default: 0).')
parser.add_argument('--waitkey', type=int, default=1,
help='OpenCV waitkey time in ms (default: 1).')
parser.add_argument('--cuda', action='store_true',
help='Use cuda GPU to speed up network processing speed (default: False)')
parser.add_argument('--no_display', action='store_true',
help='Do not display images to screen. Useful if running remotely (default: False).')
parser.add_argument('--write', action='store_true',
help='Save output frames to a directory (default: False)')
parser.add_argument('--write_dir', type=str, default='tracker_outputs/',
help='Directory where to write output frames (default: tracker_outputs/).')
opt = parser.parse_args()
print(opt)
# This class helps load input images from different sources.
vs = VideoStreamer(opt.input, opt.camid, opt.H, opt.W, opt.skip, opt.img_glob)
print('==> Loading pre-trained network.')
# This class runs the SuperPoint network and processes its outputs.
fe = SuperPointFrontend(weights_path=opt.weights_path,
nms_dist=opt.nms_dist,
conf_thresh=opt.conf_thresh,
nn_thresh=opt.nn_thresh,
cuda=opt.cuda)
print('==> Successfully loaded pre-trained network.')
# This class helps merge consecutive point matches into tracks.
tracker = PointTracker(opt.max_length, nn_thresh=fe.nn_thresh)
# Create a window to display the demo.
if not opt.no_display:
cv2.namedWindow('SuperPoint Tracker')
else:
print('Skipping visualization, will not show a GUI.')
# Font parameters for visualizaton.
font = cv2.FONT_HERSHEY_DUPLEX
font_clr = (255, 255, 255)
font_pt = (4, 12)
font_sc = 0.4
# Create output directory if desired.
if opt.write:
print('==> Will write outputs to %s' % opt.write_dir)
if not os.path.exists(opt.write_dir):
os.makedirs(opt.write_dir)
print('==> Running Demo.')
point_list, input_image_list = [], []
while True:
start = time.time()
# Get a new image.
img, status = vs.next_frame()
if status is False:
break
# Get points and descriptors.
start1 = time.time()
pts, desc, heatmap = fe.run(img)
# print("pts = ", pts.T)
point_list.append(pts.T)
# print("len(pts) = ", len(pts.T))
# print("desc = ", desc)
end1 = time.time()
# Add points and descriptors to the tracker.
matches = tracker.update(pts, desc)
# print("len(matches) = ", len(matches))
prev_frame_correspondace_ids, curr_frame_correspondace_ids = [], []
if vs.i > 1:
# print("matches[0] = ", matches[0])
for match_i in range(len(matches)):
# first_correspondace_id, second_correspondace_id = int(matches[0][0]), int(matches[0][1])
prev_frame_correspondace_ids.append(int(matches[match_i][0]))
curr_frame_correspondace_ids.append(int(matches[match_i][1]))
# print("first_correspondace_id = ", first_correspondace_id)
# print("second_correspondace_id = ", second_correspondace_id)
# print("len(prev_frame_correspondace_ids) = ", len(prev_frame_correspondace_ids))
# Get tracks for points which were match successfully across all frames.
tracks = tracker.get_tracks(opt.min_length)
# Primary output - Show point tracks overlayed on top of input image.
out1 = (np.dstack((img, img, img)) * 255.).astype('uint8')
tracks[:, 1] /= float(fe.nn_thresh) # Normalize track scores to [0,1].
tracker.draw_tracks(out1, tracks)
if opt.show_extra:
cv2.putText(out1, 'Point Tracks', font_pt, font, font_sc, font_clr, lineType=16)
# Extra output -- Show current point detections.
out2 = (np.dstack((img, img, img)) * 255.).astype('uint8')
input_image_list.append(out2)
# for pt in pts.T:
# # print(">> no_points = ", len(pts.T))
# pt1 = (int(round(pt[0])), int(round(pt[1])))
# cv2.circle(out2, pt1, 1, (0, 255, 0), -1, lineType=16)
# cv2.putText(out2, 'Raw Point Detections', font_pt, font, font_sc, font_clr, lineType=16)
if int(vs.i) > 1:
prev_frame_pts, curr_frame_pts = [], []
prev_pts, curr_pts = point_list[0], point_list[1]
# matches = matches[0:20]
for match_j in range(len(matches)):
prev_frame_pts.append(prev_pts[prev_frame_correspondace_ids[match_j]])
curr_frame_pts.append(curr_pts[curr_frame_correspondace_ids[match_j]])
list_kp1, list_kp2 = [], []
previous_img, current_img = input_image_list[0], input_image_list[1]
for match_k in range(len(matches)):
prev_frame_pt = prev_frame_pts[match_k]
curr_frame_pt = curr_frame_pts[match_k]
pt1 = (int(round(prev_frame_pt[0])), int(round(prev_frame_pt[1])))
pt2 = (int(round(curr_frame_pt[0])), int(round(curr_frame_pt[1])))
list_kp1.append(pt1)
list_kp2.append(pt2)
random_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
cv2.circle(previous_img, pt1, 1, random_color, -1, lineType=16)
cv2.circle(current_img, pt2, 1, random_color, -1, lineType=16)
cv2.imwrite("exp_feature/previous_img.png", previous_img)
cv2.imwrite("exp_feature/current_img.png", current_img)
print("type(list_kp1) = ", type(list_kp1))
print("list_kp1 = ", list_kp1)
print("len(list_kp1) = ", len(list_kp1))
print("list_kp2 = ", list_kp2)
print("len(list_kp2) = ", len(list_kp2))
# NOTE: return lists of keypoints here
# Extra output -- Show the point confidence heatmap.
if heatmap is not None:
min_conf = 0.001
heatmap[heatmap < min_conf] = min_conf
heatmap = -np.log(heatmap)
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min() + .00001)
out3 = myjet[np.round(np.clip(heatmap*10, 0, 9)).astype('int'), :]
out3 = (out3*255).astype('uint8')
else:
out3 = np.zeros_like(out2)
cv2.putText(out3, 'Raw Point Confidences', font_pt, font, font_sc, font_clr, lineType=16)
# Resize final output.
if opt.show_extra:
out = np.hstack((out1, out2, out3))
out = cv2.resize(out, (3*opt.display_scale*opt.W, opt.display_scale*opt.H))
else:
out = cv2.resize(out2, (opt.display_scale*opt.W, opt.display_scale*opt.H))
# Display visualization image to screen.
if not opt.no_display:
cv2.imshow('SuperPoint Tracker', out)
key = cv2.waitKey(opt.waitkey) & 0xFF
if key == ord('q'):
print('Quitting, \'q\' pressed.')
break
# Optionally write images to disk.
if opt.write:
if int(vs.i) >= NO_CAPS:
out_file = os.path.join(opt.write_dir, 'frame_%05d.png' % vs.i)
print('Writing image to %s' % out_file)
cv2.imwrite(out_file, out)
end = time.time()
net_t = (1./ float(end1 - start))
total_t = (1./ float(end - start))
if opt.show_extra:
print('Processed image %d (net+post_process: %.2f FPS, total: %.2f FPS).'\
% (vs.i, net_t, total_t))
# Close any remaining windows.
# cv2.destroyAllWindows()
print('==> Finshed Demo.')