-
Notifications
You must be signed in to change notification settings - Fork 41
/
sm4_ref.c
179 lines (153 loc) · 5.55 KB
/
sm4_ref.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// sm4_ref.c
// 2018-04-20 Markku-Juhani O. Saarinen <[email protected]>
// Reference implementation of SM4, the Chinese Encryption Standard.
// Adopted from Internet Draft draft-ribose-cfrg-sm4 with some modifications.
#include "sm4_ref.h"
/* Operations */
/* Rotate Left 32-bit number */
#define ROTL32(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
static const uint32_t sm4_ck[32] = {
0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269,
0x70777E85, 0x8C939AA1, 0xA8AFB6BD, 0xC4CBD2D9,
0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249,
0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9,
0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229,
0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299,
0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209,
0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279
};
static const uint8_t sm4_sbox[256] = {
0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7,
0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05,
0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3,
0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A,
0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62,
0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95,
0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6,
0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA,
0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8,
0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B,
0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35,
0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2,
0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87,
0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52,
0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E,
0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5,
0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1,
0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55,
0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3,
0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60,
0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F,
0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F,
0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51,
0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F,
0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8,
0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD,
0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0,
0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E,
0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84,
0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20,
0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48
};
static const uint32_t sm4_fk[4] = {
0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC
};
static uint32_t load_u32_be(const uint8_t *b, uint32_t n)
{
return ((uint32_t)b[4 * n ] << 24) |
((uint32_t)b[4 * n + 1] << 16) |
((uint32_t)b[4 * n + 2] << 8) |
((uint32_t)b[4 * n + 3]);
}
static void store_u32_be(uint32_t v, uint8_t *b)
{
b[0] = (uint8_t)(v >> 24);
b[1] = (uint8_t)(v >> 16);
b[2] = (uint8_t)(v >> 8);
b[3] = (uint8_t)(v);
}
void sm4_key_schedule(const uint8_t key[], uint32_t rk[])
{
uint32_t t, x, k[36];
int i;
for (i = 0; i < 4; i++)
{
k[i] = load_u32_be(key, i) ^ sm4_fk[i];
}
/* T' */
for (i = 0; i < SM4_KEY_SCHEDULE; ++i)
{
x = k[i + 1] ^ k[i + 2] ^ k[i + 3] ^ sm4_ck[i];
/* Nonlinear operation tau */
t = ((uint32_t)sm4_sbox[(uint8_t)(x >> 24)]) << 24 |
((uint32_t)sm4_sbox[(uint8_t)(x >> 16)]) << 16 |
((uint32_t)sm4_sbox[(uint8_t)(x >> 8)]) << 8 |
((uint32_t)sm4_sbox[(uint8_t)(x)]);
/* Linear operation L' */
k[i+4] = k[i] ^ (t ^ ROTL32(t, 13) ^ ROTL32(t, 23));
rk[i] = k[i + 4];
}
}
#define SM4_ROUNDS(k0, k1, k2, k3, F) \
do { \
x0 ^= F(x1 ^ x2 ^ x3 ^ rk[k0]); \
x1 ^= F(x0 ^ x2 ^ x3 ^ rk[k1]); \
x2 ^= F(x0 ^ x1 ^ x3 ^ rk[k2]); \
x3 ^= F(x0 ^ x1 ^ x2 ^ rk[k3]); \
} while(0)
static uint32_t sm4_t(uint32_t x)
{
uint32_t t = 0;
t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 24)]) << 24;
t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 16)]) << 16;
t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 8)]) << 8;
t |= sm4_sbox[(uint8_t)x];
/*
* L linear transform
*/
return t ^ ROTL32(t, 2) ^ ROTL32(t, 10) ^
ROTL32(t, 18) ^ ROTL32(t, 24);
}
void sm4_encrypt(const uint32_t rk[SM4_KEY_SCHEDULE],
const uint8_t *plaintext, uint8_t *ciphertext)
{
uint32_t x0, x1, x2, x3;
x0 = load_u32_be(plaintext, 0);
x1 = load_u32_be(plaintext, 1);
x2 = load_u32_be(plaintext, 2);
x3 = load_u32_be(plaintext, 3);
SM4_ROUNDS( 0, 1, 2, 3, sm4_t);
SM4_ROUNDS( 4, 5, 6, 7, sm4_t);
SM4_ROUNDS( 8, 9, 10, 11, sm4_t);
SM4_ROUNDS(12, 13, 14, 15, sm4_t);
SM4_ROUNDS(16, 17, 18, 19, sm4_t);
SM4_ROUNDS(20, 21, 22, 23, sm4_t);
SM4_ROUNDS(24, 25, 26, 27, sm4_t);
SM4_ROUNDS(28, 29, 30, 31, sm4_t);
store_u32_be(x3, ciphertext);
store_u32_be(x2, ciphertext + 4);
store_u32_be(x1, ciphertext + 8);
store_u32_be(x0, ciphertext + 12);
}
void sm4_decrypt(const uint32_t rk[SM4_KEY_SCHEDULE],
const uint8_t *ciphertext, uint8_t *plaintext)
{
uint32_t x0, x1, x2, x3;
x0 = load_u32_be(ciphertext, 0);
x1 = load_u32_be(ciphertext, 1);
x2 = load_u32_be(ciphertext, 2);
x3 = load_u32_be(ciphertext, 3);
SM4_ROUNDS(31, 30, 29, 28, sm4_t);
SM4_ROUNDS(27, 26, 25, 24, sm4_t);
SM4_ROUNDS(23, 22, 21, 20, sm4_t);
SM4_ROUNDS(19, 18, 17, 16, sm4_t);
SM4_ROUNDS(15, 14, 13, 12, sm4_t);
SM4_ROUNDS(11, 10, 9, 8, sm4_t);
SM4_ROUNDS( 7, 6, 5, 4, sm4_t);
SM4_ROUNDS( 3, 2, 1, 0, sm4_t);
store_u32_be(x3, plaintext);
store_u32_be(x2, plaintext + 4);
store_u32_be(x1, plaintext + 8);
store_u32_be(x0, plaintext + 12);
}