forked from kcakdemir/MutationalDistribution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MutLoadCompare.py
408 lines (352 loc) · 15.1 KB
/
MutLoadCompare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import os,sys
from pylab import *
from math import sqrt, isnan, floor, ceil, pi
from numpy import log2, log10, array, max
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.ticker import MultipleLocator
from matplotlib.patches import Polygon, Rectangle, Circle
from scipy.signal import argrelextrema
from scipy import ndimage
from matplotlib import pyplot as plt
import numpy as np
import argparse
import bisect
import logging
import pybedtools
import glob
from shutil import copyfile
import scipy.stats
from scipy import stats
from matplotlib.ticker import FormatStrFormatter
from scipy.signal import savgol_filter
from scipy.signal import find_peaks
from collections import OrderedDict
from scipy import signal
import scipy.sparse as sps
import pickle
def read_bedGraph(filename,resolution,chromosome): # add stopping after certain chromosome passed
'''
reads bedGraph files for various file type plottings
parameters:
filename: file name. format could be either "chr\tstart\tend" or "chr\tstart\tend\tvalue..."
resolution: bin size for the matrix
returns:
x_scores = location along the given chromosome - start sites
x_scores2 = location along the given chromosome - end sites
y_scores = signal scores for the assay
colors = allow for colors option
'''
try:
fone=open(filename,'r')
except IOError:
print >>sys.stderr, 'cannot open', filename
raise SystemExit
x_scores=[]
x_scores2=[]
y_scores=[]
colors=[]
texts=[]
for line in fone.xreadlines():
tags = line.strip().split("\t")
if tags[0]==chromosome:
x_scores.append(float(tags[1])/resolution)
x_scores2.append(float(tags[2])/resolution)
if len(tags) > 3:
y_scores.append(float(tags[3]))
if len(tags) > 4:
hex = '#%02x%02x%02x' % (int(tags[4].split(',')[0]), int(tags[4].split(',')[1]), int(tags[4].split(',')[2]))
colors.append(hex)
if len(tags) > 5:
texts.append(tags[5])
if len(y_scores) !=0 and len(y_scores)!=len(x_scores):
print >>sys.stderr, 'BedGraph('+filename+') has some missing values'
raise SystemExit
if len(x_scores)==0 or len(x_scores2)==0:
print >>sys.stderr, 'BedGraph('+filename+') has some missing values'
raise SystemExit
# color and text controls
return x_scores,x_scores2,y_scores,colors,texts
def read_genes(filename,resolution,chromosome,start,end):
try:
fone=open(filename,'r')
except IOError:
print >>sys.stderr, 'cannot open', filename
raise SystemExit
start = resolution * start
end = resolution * end
minDist = 8000
genes = {}
row_list = []
row_genes = {}
current_start=0;current_end=0;prev_end=0;
for line in fone.xreadlines():
tags = line.strip().split("\t")
if tags[0]==chromosome:
if int(tags[1]) >= start and int(tags[2]) <= end and tags[1]+'-'+tags[2] not in genes.keys():
if len(row_list)==0:
current_start = int(tags[1])
current_end = int(tags[2])
prev_start = int(tags[1])
genes[tags[1]+'-'+tags[2]]=[]
genes[tags[1]+'-'+tags[2]].append(1)
genes[tags[1]+'-'+tags[2]].append(tags[3])
row_list.append(current_end)
row_genes[1]=[]
row_genes[1].append(current_end)
else:
if prev_start > int(tags[1]):
print prev_end, int(tags[1])
print >>sys.stderr, 'Gene File ('+filename+') is not sorted.'
raise SystemExit
else:
current_end = int(tags[2])
current_start = int(tags[1])
execute=0
genes[tags[1]+'-'+tags[2]]=[]
for item in range(0,len(row_list)):
if current_start > row_list[item]+minDist:
row_list[item]=current_end
execute=1
genes[tags[1]+'-'+tags[2]].append(item+1)
if item+1 not in row_genes.keys(): row_genes[item+1]=[]
row_genes[item+1].append(current_end)
break
if execute == 0:
genes[tags[1]+'-'+tags[2]].append(len(row_list)+1)
row_list.append(current_end)
if len(row_list) not in row_genes.keys(): row_genes[len(row_list)]=[]
row_genes[len(row_list)].append(current_end)
genes[tags[1]+'-'+tags[2]].append(tags[3])
if len(tags)>5:
genes[tags[1]+'-'+tags[2]].append(tags[4])
genes[tags[1]+'-'+tags[2]].append(tags[5])
genes[tags[1]+'-'+tags[2]].append(tags[6])
#if len(tags)>7:
# hex = '#%02x%02x%02x' % (int(tags[7].split(',')[0]), int(tags[7].split(',')[1]), int(tags[7].split(',')[2]))
# genes[tags[1]+'-'+tags[2]].append(hex)
# if len(tags)>8:
# genes[tags[1]+'-'+tags[2]].append(float(tags[8]))
prev_start = current_start
if len(genes.keys()) ==0:
print >>sys.stderr, 'Gene File ('+filename+') has some missing values'
raise SystemExit
return genes,len(row_list)+1,row_genes
def compare(typeA='',typeB='',output=''):
first = {}
fone=open(typeA,'r')
for line in fone.xreadlines():
tags = line.strip().split("\t")
if line[0]!='t':
if tags[0] not in first.keys():
first[tags[0]]=[]
first[tags[0]].append(float(tags[3]))
else:
first[tags[0]].append(float(tags[3]))
second = {}
fone=open(typeB,'r')
for line in fone.xreadlines():
tags = line.strip().split("\t")
if line[0]!='t':
if tags[0] not in second.keys():
second[tags[0]]=[]
second[tags[0]].append(float(tags[3]))
else:
second[tags[0]].append(float(tags[3]))
sigs = {}
sigsO = {}
called = {}
resolution = 25000
firstCalls = []
blacklist = {1:[500,4500,5000,5500],2:[3500],3:[3500],4:[],5:[],6:[2000],7:[2000,2500],8:[1500],9:[1500,2000,2500],10:[1500],11:[2000],12:[1000],13:[0,500],14:[0,500],15:[0,500],16:[1000,1500],17:[500],18:[],19:[1000],20:[1000],21:[0,500]}
upR = []
downR = []
sel = []
log2s = []
rands = []
for chrI in range(1,22):
chromosome = 'chr'+str(chrI)
start = 0
end = 1000
sigs[chrI]=[]
sigsO[chrI]=[]
called[chrI]=[]
while end < len(first[chromosome]):
length = end-start
print chromosome, start,end
if start in blacklist[chrI]:
start = end;
if end+500 > len(first[chromosome]):
end = len(first[chromosome])
else: end += 500
continue
y1 = np.array(first[chromosome][start:end])
y2 = np.array(second[chromosome][start:end])
n = len(y1)
y1 = np.divide(y1*100,np.sum(y1))
y2 = np.divide(y2*100,np.sum(y2))
z = np.subtract(y1,y2)
x = savgol_filter(z, 11, 3)
decreasing = x < 0
increasing = x > 0
changes = np.zeros_like(x)
change_increasing = np.logical_and(increasing[1:] , decreasing[:-1])
change_decreasing = np.logical_and(decreasing[1:] , increasing[:-1])
changes[0] = (1 * increasing[0]) + (-1 * decreasing[0])
changes[1:][change_increasing] = 1
changes[1:][change_decreasing] = -1
regions = []
regions1 = np.where(x[:-1] * x[1:] < 0 )[0] +1
zx = savgol_filter(z, 41, 3,deriv=1)
peaks, _ = find_peaks(zx, height=0.015)
npeaks, _ = find_peaks(np.array(zx)*-1, height=0.015)
peaks = np.append(peaks,npeaks,axis=0)
xpeaks = sorted(np.append(peaks,npeaks,axis=0))
rand = []
for xx in range(0,len(np.array(xpeaks))):
occured = 1
idx = (np.abs(np.array(regions1)-xpeaks[xx])).argmin()
if abs(regions1[idx]-xpeaks[xx]) < 5:
if (abs(np.sum(x[xpeaks[xx]:xpeaks[xx]+5]))) not in upR : upR.append((abs(np.sum(x[xpeaks[xx]:xpeaks[xx]+5]))))
if (abs(np.sum(x[xpeaks[xx]-5:xpeaks[xx]]))) not in downR : downR.append((abs(np.sum(x[xpeaks[xx]-5:xpeaks[xx]]))))
if (abs(np.sum(x[xpeaks[xx]-5:xpeaks[xx]]))) not in rands : rands.append((abs(np.sum(x[xpeaks[xx]-115:xpeaks[xx]-110]))))
if (abs(np.sum(x[xpeaks[xx]:xpeaks[xx]+5]))) > (abs(np.sum(x[xpeaks[xx]-5:xpeaks[xx]]))): sel.append((abs(np.sum(x[xpeaks[xx]:xpeaks[xx]+5]))))
else: sel.append((abs(np.sum(x[xpeaks[xx]-5:xpeaks[xx]]))))
#print abs(np.sum(x[xpeaks[xx]-5:xpeaks[xx]])), abs(np.sum(x[xpeaks[xx]:xpeaks[xx]+5]))
if abs(np.sum(x[xpeaks[xx]-5:xpeaks[xx]])) + abs(np.sum(x[xpeaks[xx]:xpeaks[xx]+5])) > 0.5:
regions.append(xpeaks[xx])
sigs[chrI].append((xpeaks[xx]+start)*25000);rand.append(xpeaks[xx])
firstCalls.append(chromosome+'\t'+str((xpeaks[xx]+start)*25000)+'\t'+str((xpeaks[xx]+start)*25000))
start = end
if end+500 > len(first[chromosome]):
end = len(first[chromosome])
else: end += 500
sigsO[chrI] = list(OrderedDict.fromkeys(sorted(sigs[chrI])))
print sigsO
### Plotting
## if not os.path.exists('Comparisons/'+flabel+'-vs-'+slabel+'/'): os.makedirs('Comparisons/'+flabel+'-vs-'+slabel+'/')
#
# # if len(rand)>0:
# # fmatrix=read_sparseHiCdata('IndvMutChange/'+fhic+'.'+chromosome+'.txt',chromosome,'IndvMutChange/'+chromosome+'-bins.txt',start,end)
# # smatrix=read_sparseHiCdata('IndvMutChange/'+shic+'.'+chromosome+'.txt',chromosome,'IndvMutChange/'+chromosome+'-bins.txt',start,end)
# #
# # for xz in range(0,len(rand)):
# # matrix1 = np.nan_to_num(np.matrix(fmatrix[rand[xz]-6:rand[xz],rand[xz]-6:rand[xz]], dtype=np.float64))
# # matrix2 = np.nan_to_num(np.matrix(smatrix[rand[xz]-6:rand[xz],rand[xz]-6:rand[xz]], dtype=np.float64))
# # with np.errstate(divide='ignore',invalid='ignore'): upmatrix = np.absolute(np.nan_to_num(np.matrix(log2(matrix1/(matrix2*1.0)), dtype=np.float64)))
# # matrix1 = np.nan_to_num(np.matrix(fmatrix[rand[xz]:rand[xz]+6,rand[xz]:rand[xz]+6], dtype=np.float64))
# # matrix2 = np.nan_to_num(np.matrix(smatrix[rand[xz]:rand[xz]+6,rand[xz]:rand[xz]+6], dtype=np.float64))
# # with np.errstate(divide='ignore',invalid='ignore'): downmatrix = np.absolute(np.nan_to_num(np.matrix(log2(matrix1/(matrix2*1.0)), dtype=np.float64)))
# #
# #
# # matrix1 = np.nan_to_num(np.matrix(fmatrix[rand[xz]+120:rand[xz]+126,rand[xz]+120:rand[xz]+126], dtype=np.float64))
# # matrix2 = np.nan_to_num(np.matrix(smatrix[rand[xz]+120:rand[xz]+126,rand[xz]+120:rand[xz]+126], dtype=np.float64))
# # with np.errstate(divide='ignore',invalid='ignore'): random = np.absolute(np.nan_to_num(np.matrix(log2(matrix1/(matrix2*1.0)), dtype=np.float64)))
# #
# # log2s.append(np.nansum(upmatrix)); log2s.append(np.nansum(downmatrix)); rands.append(np.nansum(random))
#
# # if len(rand)>0:
# # fig, (ax_orig, ax_noise, ax_diff, ax_corr, ax_genes) = plt.subplots(5, 1)
# # fig.subplots_adjust(hspace=1,wspace=1)
# #
# # ax_orig.plot(y1,color='gray')
# # ax_orig.set_title(flabel)
# # ax_orig.set_ylim(0,1)
# # ax_orig.spines['right'].set_visible(False)
# # ax_orig.spines['top'].set_visible(False)
# # ax_orig.xaxis.set_ticks_position('bottom')
# # ax_orig.yaxis.set_ticks_position('left')
# #
# # for ritem in range(0,len(cdoms)):
# # if cdoms[ritem][0] >= start and cdoms[ritem][1] <= end:
# # #print cdoms[ritem][0]-start,cdoms[ritem][1]-cdoms[ritem][0],cdoms[ritem][2]
# # rect = Rectangle((cdoms[ritem][0]-start,0.9), (cdoms[ritem][1]-cdoms[ritem][0]), 0.05, color=cdoms[ritem][2])
# # ax_orig.add_patch(rect)
# # ax_orig.set_xlim(0,length)
# #
# # ax_noise.plot(y2,color='black')
# # ax_noise.set_title(slabel)
# # ax_noise.set_ylim(0,1)
# # ax_noise.set_xlim(0,length)
# # ax_noise.spines['right'].set_visible(False)
# # ax_noise.spines['top'].set_visible(False)
# # ax_noise.xaxis.set_ticks_position('bottom')
# # ax_noise.yaxis.set_ticks_position('left')
# #
# # ax_diff.plot(x,color='white')
# # ax_diff.set_title('Diff')
# # ax_diff.axhline(0,color='black')
# # with np.errstate(all='ignore'):ax_diff.fill_between(np.arange(0,length),z, where=z>0, color='gray', interpolate=True)
# # with np.errstate(all='ignore'):ax_diff.fill_between(np.arange(0,length),z, where=z<0, color='black', interpolate=True)
# # ax_diff.set_xlim(0,length)
# # ax_diff.spines['right'].set_visible(False)
# # ax_diff.spines['top'].set_visible(False)
# # ax_diff.xaxis.set_ticks_position('bottom')
# # ax_diff.yaxis.set_ticks_position('left')
# #
# # ax_corr.set_title('Derv')
# # ax_corr.plot(zx,color='black')
# # ax_corr.plot(rand, zx[rand], "x")
# # #ax_corr.plot(sigsO[20], zx[sigsO[20]], "x")
# # ax_corr.axhline(0,color='black')
# # ax_corr.set_xlim(0,length)
# # ax_corr.spines['right'].set_visible(False)
# # ax_corr.spines['top'].set_visible(False)
# # ax_corr.xaxis.set_ticks_position('bottom')
# # ax_corr.yaxis.set_ticks_position('left')
# #
# # for xz in range(0,len(regions)):
# # ax_corr.axvspan(regions[xz], regions[xz]+2, facecolor='g', alpha=0.10, linestyle='dashed')
# #
# # for xz in range(0,len(rand)):
# # ax_orig.axvspan(rand[xz], rand[xz]+2, facecolor='g', alpha=0.10, linestyle='dashed')
# # ax_noise.axvspan(rand[xz], rand[xz]+2, facecolor='g', alpha=0.10, linestyle='dashed')
# # ax_diff.axvspan(rand[xz], rand[xz]+2, facecolor='g', alpha=0.10, linestyle='dashed')
# #
# #
# # if exp==0: ax_genes.set_ylabel('Genes')
# # ax_genes.get_yaxis().set_label_coords(-0.125,0.5)
# # genes,trackCount,nearest = read_genes('genes.sorted.bed',25000,chromosome,start,end)
# # plength = (end-start)*float(resolution)/1000000
# #
# # gcolor = '#3C3C8C';icolor='#0C0C78'
# #
# # for item in genes.keys():
# #
# # gstart = float(item.split('-')[0])/resolution-start
# # gend = float(item.split('-')[1])/resolution-start
# # gtrack = genes[item][0]
# #
# # if len(genes[item])>5: rect = Rectangle((gstart,trackCount-gtrack), (gend-gstart), 0.25, color=genes[item][5])
# # else: rect = Rectangle((gstart,trackCount-gtrack), (gend-gstart), 0.25, color=gcolor)
# # ax_genes.add_patch(rect)
# #
# # ax_genes.set_xlim(0,length)
# # ax_genes.set_ylim(0,trackCount+1)
# # ax_genes.spines['right'].set_visible(False)
# # ax_genes.spines['top'].set_visible(False)
# # ax_genes.xaxis.set_ticks_position('bottom')
# # ax_genes.yaxis.set_ticks_position('left')
# #
# # ticks= ax_orig.get_xticks().tolist()
# # for item in range(0,len(ticks)): ticks[item]=round((ticks[item]+start)*25000/1000000,3)
# # ax_orig.set_xticklabels(ticks)
# # ax_noise.set_xticklabels(ticks)
# # ax_diff.set_xticklabels(ticks)
# # ax_corr.set_xticklabels(ticks)
# # ax_genes.set_xticklabels(ticks)
# #
# # ax_genes.set_xlabel('Chromosome %s (Mb)' % (chromosome.replace("chr","")))
# # plt.savefig('Comparisons/'+flabel+'-vs-'+slabel+'/'+chromosome+'-'+str(start)+'-'+str(end)+'.png',dpi=200)
if __name__=='__main__':
parser = argparse.ArgumentParser(usage='MutLoadCompare.py -a CancerA.bedGraph -b CancerB.bedGraph -o output',add_help=False,formatter_class=argparse.RawDescriptionHelpFormatter)
group = parser.add_argument_group("Required Parameters")
group.add_argument('-a','--typeA',default='', help='',metavar='',required=True)
group.add_argument('-b','--typeB',default='', help='',metavar='',required=True)
group.add_argument('-o', '--output',default='',metavar='',required=True)
group1 = parser.add_argument_group("Optional Parameters")
group1.add_argument('-h', '--help', action="help")
# group1.add_argument('-r', '--region',default='',metavar='',help='')
# group1.add_argument('-d', '--domain',default='',metavar='',help='')
# group1.add_argument('-f', '--folder',default='',metavar='',help='')
args = vars(parser.parse_args())
compare(**args)