From b0d844684603d5ef3d37a0650be6ae192a8ced6a Mon Sep 17 00:00:00 2001 From: Gopal Dahale Date: Sat, 1 Jun 2024 00:21:56 +0530 Subject: [PATCH 01/11] Added QCBM algorithm with example --- examples/QCBM/README.md | 8 +++ examples/QCBM/qcbm_gaussian_mixture.py | 61 ++++++++++++++++ test/algorithm/test_qcbm.py | 33 +++++++++ torchquantum/algorithm/__init__.py | 1 + torchquantum/algorithm/qcbm.py | 96 ++++++++++++++++++++++++++ 5 files changed, 199 insertions(+) create mode 100644 examples/QCBM/README.md create mode 100644 examples/QCBM/qcbm_gaussian_mixture.py create mode 100644 test/algorithm/test_qcbm.py create mode 100644 torchquantum/algorithm/qcbm.py diff --git a/examples/QCBM/README.md b/examples/QCBM/README.md new file mode 100644 index 00000000..d72c4100 --- /dev/null +++ b/examples/QCBM/README.md @@ -0,0 +1,8 @@ +# Quantum Circuit Born Machine + +Quantum Circuit Born Machine (QCBM) [1] is a generative modeling algorithm which uses Born rule from quantum mechanics to sample from a quantum state $|\psi \rangle$ learned by training an ansatz $U(\theta)$ [1][2]. In this tutorial we show how `torchquantum` can be used to model a Gaussian mixture with QCBM. + +## References + +1. Liu, Jin-Guo, and Lei Wang. “Differentiable learning of quantum circuit born machines.” Physical Review A 98.6 (2018): 062324. +2. Gili, Kaitlin, et al. "Do quantum circuit born machines generalize?." Quantum Science and Technology 8.3 (2023): 035021. \ No newline at end of file diff --git a/examples/QCBM/qcbm_gaussian_mixture.py b/examples/QCBM/qcbm_gaussian_mixture.py new file mode 100644 index 00000000..3114a1f1 --- /dev/null +++ b/examples/QCBM/qcbm_gaussian_mixture.py @@ -0,0 +1,61 @@ +import matplotlib.pyplot as plt +import numpy as np +import torch +import torch.nn as nn +from torchquantum.algorithm import QCBM, MMDLoss +import torchquantum as tq + + +# Function to create a gaussian mixture +def gaussian_mixture_pdf(x, mus, sigmas): + mus, sigmas = np.array(mus), np.array(sigmas) + vars = sigmas**2 + values = [ + (1 / np.sqrt(2 * np.pi * v)) * np.exp(-((x - m) ** 2) / (2 * v)) + for m, v in zip(mus, vars) + ] + values = np.sum([val / sum(val) for val in values], axis=0) + return values / np.sum(values) + +# Create a gaussian mixture +n_wires = 6 +x_max = 2**n_wires +x_input = np.arange(x_max) +mus = [(2 / 8) * x_max, (5 / 8) * x_max] +sigmas = [x_max / 10] * 2 +data = gaussian_mixture_pdf(x_input, mus, sigmas) + +# This is the target distribution that the QCBM will learn +target_probs = torch.tensor(data, dtype=torch.float32) + +# Ansatz +layers = tq.RXYZCXLayer0({"n_blocks": 6, "n_wires": n_wires, "n_layers_per_block": 1}) + +qcbm = QCBM(n_wires, layers) + +# To train QCBMs, we use MMDLoss with radial basis function kernel. +bandwidth = torch.tensor([0.25, 60]) +space = torch.arange(2**n_wires) +mmd = MMDLoss(bandwidth, space) + +# Optimization +optimizer = torch.optim.Adam(qcbm.parameters(), lr=0.01) +for i in range(100): + optimizer.zero_grad(set_to_none=True) + pred_probs = qcbm() + loss = mmd(pred_probs, target_probs) + loss.backward() + optimizer.step() + print(i, loss.item()) + +# Visualize the results +with torch.no_grad(): + pred_probs = qcbm() + +plt.plot(x_input, target_probs, linestyle="-.", label=r"$\pi(x)$") +plt.bar(x_input, pred_probs, color="green", alpha=0.5, label="samples") +plt.xlabel("Samples") +plt.ylabel("Prob. Distribution") + +plt.legend() +plt.show() diff --git a/test/algorithm/test_qcbm.py b/test/algorithm/test_qcbm.py new file mode 100644 index 00000000..8c946cf4 --- /dev/null +++ b/test/algorithm/test_qcbm.py @@ -0,0 +1,33 @@ +from torchquantum.algorithm.qcbm import QCBM, MMDLoss +import torchquantum as tq +import torch +import pytest + + +def test_qcbm_forward(): + n_wires = 3 + n_layers = 3 + ops = [] + for l in range(n_layers): + for q in range(n_wires): + ops.append({"name": "rx", "wires": q, "params": 0.0, "trainable": True}) + for q in range(n_wires - 1): + ops.append({"name": "cnot", "wires": [q, q + 1]}) + + data = torch.ones(2**n_wires) + qmodule = tq.QuantumModule.from_op_history(ops) + qcbm = QCBM(n_wires, qmodule) + probs = qcbm() + expected = torch.tensor([1.0, 0, 0, 0, 0, 0, 0, 0]) + assert torch.allclose(probs, expected) + + +def test_mmd_loss(): + n_wires = 2 + bandwidth = torch.tensor([0.1, 1.0]) + space = torch.arange(2**n_wires) + + mmd = MMDLoss(bandwidth, space) + loss = mmd(torch.zeros(4), torch.zeros(4)) + print(loss) + assert torch.isclose(loss, torch.tensor(0.0), rtol=1e-5) diff --git a/torchquantum/algorithm/__init__.py b/torchquantum/algorithm/__init__.py index 7dfb672a..5a0d13d5 100644 --- a/torchquantum/algorithm/__init__.py +++ b/torchquantum/algorithm/__init__.py @@ -26,3 +26,4 @@ from .hamiltonian import * from .qft import * from .grover import * +from .qcbm import * diff --git a/torchquantum/algorithm/qcbm.py b/torchquantum/algorithm/qcbm.py new file mode 100644 index 00000000..09798f8d --- /dev/null +++ b/torchquantum/algorithm/qcbm.py @@ -0,0 +1,96 @@ +import torch +import torch.nn as nn + +import torchquantum as tq + +__all__ = ["QCBM", "MMDLoss"] + + +class MMDLoss(nn.Module): + """Squared maximum mean discrepancy with radial basis function kerne""" + + def __init__(self, scales, space): + """ + Initialize MMDLoss object. Calculates and stores the kernel matrix. + + Args: + scales: Bandwidth parameters. + space: Basis input space. + """ + super().__init__() + + gammas = 1 / (2 * (scales**2)) + + # squared Euclidean distance + sq_dists = torch.abs(space[:, None] - space[None, :]) ** 2 + + # Kernel matrix + self.K = sum(torch.exp(-gamma * sq_dists) for gamma in gammas) / len(scales) + self.scales = scales + + def k_expval(self, px, py): + """ + Kernel expectation value + + Args: + px: First probability distribution + py: Second probability distribution + + Returns: + Expectation value of the RBF Kernel. + """ + + return px @ self.K @ py + + def forward(self, px, py): + """ + Squared MMD loss. + + px: First probability distribution + py: Second probability distribution + + Returns: + Squared MMD loss. + """ + pxy = px - py + return self.k_expval(pxy, pxy) + + +class QCBM(nn.Module): + """ + Quantum Circuit Born Machine (QCBM) + + Attributes: + ansatz: An Ansatz object + n_wires: Number of wires in the ansatz used. + + Methods: + __init__: Initialize the QCBM object. + forward: Returns the probability distribution (output from measurement). + + """ + + def __init__(self, n_wires, ansatz): + """ + Initialize QCBM object + + Args: + ansatz (Ansatz): An Ansatz object + n_wires (int): Number of wires in the ansatz used. + """ + super().__init__() + + self.ansatz = ansatz + self.n_wires = n_wires + + def forward(self): + """ + Execute and obtain the probability distribution + + Returns: + Probabilities (torch.Tensor) + """ + qdev = tq.QuantumDevice(n_wires=self.n_wires, bsz=1, device="cpu") + self.ansatz(qdev) + probs = torch.abs(qdev.states.flatten()) ** 2 + return probs From 428be4ac0a19edaca4712120cd7b6283a3ab9ccf Mon Sep 17 00:00:00 2001 From: Gopal Dahale Date: Sat, 1 Jun 2024 00:32:25 +0530 Subject: [PATCH 02/11] Remove unused imports --- examples/QCBM/qcbm_gaussian_mixture.py | 1 - test/algorithm/test_qcbm.py | 2 -- 2 files changed, 3 deletions(-) diff --git a/examples/QCBM/qcbm_gaussian_mixture.py b/examples/QCBM/qcbm_gaussian_mixture.py index 3114a1f1..c0f0f203 100644 --- a/examples/QCBM/qcbm_gaussian_mixture.py +++ b/examples/QCBM/qcbm_gaussian_mixture.py @@ -1,7 +1,6 @@ import matplotlib.pyplot as plt import numpy as np import torch -import torch.nn as nn from torchquantum.algorithm import QCBM, MMDLoss import torchquantum as tq diff --git a/test/algorithm/test_qcbm.py b/test/algorithm/test_qcbm.py index 8c946cf4..333a25bb 100644 --- a/test/algorithm/test_qcbm.py +++ b/test/algorithm/test_qcbm.py @@ -1,7 +1,6 @@ from torchquantum.algorithm.qcbm import QCBM, MMDLoss import torchquantum as tq import torch -import pytest def test_qcbm_forward(): @@ -29,5 +28,4 @@ def test_mmd_loss(): mmd = MMDLoss(bandwidth, space) loss = mmd(torch.zeros(4), torch.zeros(4)) - print(loss) assert torch.isclose(loss, torch.tensor(0.0), rtol=1e-5) From 4bd170c685d7b490290ea356994825b374e19713 Mon Sep 17 00:00:00 2001 From: Gopal Dahale Date: Sat, 1 Jun 2024 00:40:39 +0530 Subject: [PATCH 03/11] Updated init py following best practices --- torchquantum/algorithm/__init__.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/torchquantum/algorithm/__init__.py b/torchquantum/algorithm/__init__.py index 5a0d13d5..c7413a2e 100644 --- a/torchquantum/algorithm/__init__.py +++ b/torchquantum/algorithm/__init__.py @@ -22,8 +22,8 @@ SOFTWARE. """ -from .vqe import * -from .hamiltonian import * -from .qft import * -from .grover import * -from .qcbm import * +from .vqe import VQE +from .hamiltonian import Hamiltonian +from .qft import QFT +from .grover import Grover +from .qcbm import QCBM, MMDLoss From b7c7f3ca27b994b000eddb3411ed4c80334c2277 Mon Sep 17 00:00:00 2001 From: Gopal Dahale Date: Mon, 3 Jun 2024 13:07:08 +0530 Subject: [PATCH 04/11] Updated with argparse --- examples/QCBM/README.md | 34 +++++ examples/QCBM/assets/sample_output.png | Bin 0 -> 33427 bytes examples/QCBM/qcbm_gaussian_mixture.py | 171 +++++++++++++++++-------- 3 files changed, 154 insertions(+), 51 deletions(-) create mode 100644 examples/QCBM/assets/sample_output.png diff --git a/examples/QCBM/README.md b/examples/QCBM/README.md index d72c4100..cf61c65c 100644 --- a/examples/QCBM/README.md +++ b/examples/QCBM/README.md @@ -1,7 +1,41 @@ # Quantum Circuit Born Machine +(Implementation by: [Gopal Ramesh Dahale](https://github.com/Gopal-Dahale)) Quantum Circuit Born Machine (QCBM) [1] is a generative modeling algorithm which uses Born rule from quantum mechanics to sample from a quantum state $|\psi \rangle$ learned by training an ansatz $U(\theta)$ [1][2]. In this tutorial we show how `torchquantum` can be used to model a Gaussian mixture with QCBM. +## Setup + +Below is the usage of `qcbm_gaussian_mixture.py` which can be obtained by running `python qcbm_gaussian_mixture.py -h`. + +``` +usage: qcbm_gaussian_mixture.py [-h] [--n_wires N_WIRES] [--epochs EPOCHS] [--n_blocks N_BLOCKS] [--n_layers_per_block N_LAYERS_PER_BLOCK] [--plot] [--optimizer OPTIMIZER] [--lr LR] + +options: + -h, --help show this help message and exit + --n_wires N_WIRES Number of wires used in the circuit + --epochs EPOCHS Number of training epochs + --n_blocks N_BLOCKS Number of blocks in ansatz + --n_layers_per_block N_LAYERS_PER_BLOCK + Number of layers per block in ansatz + --plot Visualize the predicted probability distribution + --optimizer OPTIMIZER + optimizer class from torch.optim + --lr LR +``` + +For example: + +``` +python qcbm_gaussian_mixture.py --plot --epochs 100 --optimizer RMSprop --lr 0.01 --n_blocks 6 --n_layers_per_block 2 --n_wires 6 +``` + +Using the command above gives an output similar to the plot below. + +

+sample output of QCBM +

+ + ## References 1. Liu, Jin-Guo, and Lei Wang. “Differentiable learning of quantum circuit born machines.” Physical Review A 98.6 (2018): 062324. diff --git a/examples/QCBM/assets/sample_output.png b/examples/QCBM/assets/sample_output.png new file mode 100644 index 0000000000000000000000000000000000000000..c1626a4e7347061fb5b9f357462f1767bd882cbe GIT binary patch literal 33427 zcmeFZbySw&*EM+4-6frZA}!q|B_iG3UD90=($W$VA|MUYARUTyDh<-z4d3&&9~;C`D0iji+Jw1?sJ{9&))kyQOZiPSm!7ZaAgP-t> z&Hn>m1l(R}yQw)@x_O$oT0n11+??&5-0W>kX*?`k-`O}hzGM?%<6xn&c5`!nC&*J2#?SJva!Ovz*R52*NReeZm!s71=;g2qZ5pq3)Hnzu>Ju>HdInH1oUT zw=>SAf5|hd$PoGBlBZENg%*~Ur8;&FrJ1khOvKc_v6e3UrsuP3@O{TRsQ-_l>P5hKEp|-Ymzy`d$_~p0KQoJWmtgl2IW3{2huvAAQD=Vx2Jb%l+PZ3T!R{eai z5Fs-AUqU1fj)9JD2VMeqbaE0gTZzeoa3@HSF*G(dRwMqn1@Avc$o?{Bt*opZbaUfV zT`-C@J2%%oGehFqq`&u!F$xx2Dok7FKIT?dQjAHR;0|1yvRD-vvpbPo?>*Voq%{QMa#QxL3LLMZg{r-{6x zwDcsB{TnWvJI`iOLrOaE@uC|(0T%ne{&OI@8ZH(nDl!rkQr6T&W@l&D|KZo9wkdWt zD&=*#;OWatc#is?J3xfI)?)cM+;`N&!ou8k?w-C*U5@2j6xYzu7(u2l_^(ANuB`0u zrw)t(pRE(|q+I5xHy8WSk9V75BIz+c@H21>I}%aPqa5O6oqS^=i;J)*_;ELfv+XW_ z@Yqdv^!KBnzlU#F^eJ7r3VggZ626!<8~F7rq_UD7GG1);mV5oWd$G-TWpy>g_n--d zoY%f11PQ}u-9Nzv+)J}O%SmLh;l$*6|A2++?7%0X)lY6d)^0v>Pw}5QSn&B7`g+d< z`Uir$dLrz_@i8fh(|VMqc*^!{djiEM@Sf+OX_Kn;s0$-9F3#~hJ%Y*y)v4{Ac+v0l zO_@$D@?a`!cO0dV^U<b4)dcl@FWAj(|;zUoa`OfFnt5;Rk)ty^o1$oNP z5>iuMM;Umb;&#%gIh-`16h2-JkA^hFl-CZsS zEp6?{<>h6zO*+_0(9zYvGri4`etfvcDtGITr;bQVBWZ1GgM+ZJu=X7@Jiro|jpj;t z?bpp54YIczA1!y5A2ig~B8&=$C;Udi5T~Qd&ve_UyJ8cQVY_vwvb-~P%JOEVQjPjD zC2(uldjGYyj^AY!5kwQF5w%!A>(mSt6;*L@vGr-={#?V_eABzpZMSgKx1m_t|D~vCtrLa12NqXo1dPimT81{Ktwl=NlH%f!u&{7*N_0;rETjjzw$FXC zME#pJIz6|?3pID|d;9y>z|#%a>=;aAH~W?R-0ONhjni(LrS;;k-PJ+MVM0#M;!e}$ z!9sKt0n^2=Tbi~1V3`Lh6qJQMRgi@F1$}O3ixwG0XF_@tM|)|kOciO0@|mXwqn_Mqsvyf!kd1pN=FAFujzFeF7jm_boK%1KHe z&J+Xf{|X`YreK@))6&twcfcnU%kmUEI1A392xb#HD(N$%L`EtifTPgcP2LICbp138 z)$4kPH&z7k)@;Ddz7Z55E_>U5fbrDy6$4js@x*c+_3(0%{~uFX+I+(v_=EwuPj2|; z<~Js03Jh_EYVqDjO{))ZI{ybWKzdK$QOrh4Zr+}{1}km6r# ze}7n)CS&K~Z`JuWOX?qQTE?Soetz0MgLnP4gK4zHH&3k=ac#1{_l*C!0~~bt)Sv@n zDW}7qnxZ4>MGD>1r};VHinkcI&+zv|7g2by6lPy=KOynPi@L-#r;Uo zXEtt3jS7FXgHxoUT5!-iX&#GhnX+=gbIWns9cn$f13_FRh^16yadTY(3;jH^LsW6- zIFL?3JA&@rtw$Ch_CMRE*6pb41q^qHxmk0gxByVnD8d#vR zvy!FlT0-K9eWU#_@yAf^_4JOZ3+slT-xDj0Zz@GLT^S)e*dzXKZqGbK`LHjsE+c55 zU7U5()n6jdzB%so_DD}A0hF>3mcJvD)%XtuiaZEJLf11$qhe1|IJ)^xn;`e8ADL>H zt^GJOvKf>TmiwjWARWdWY{rRFW7~SKHkVBs z>DX5gFZ#h|;%gLTH?s?^b$;g2#oNu%FG-!zBCln0!q@Ia19)+Zm>wz&)1kOm&n4lj2oyF z?Q-zd@O>}O`z{Z56W3RqNb?;PM#?+B#*{)q>A_7~(v?mThLO~emakqG`?t{L4`;{>^8zJ;~DDSW0@vb`xPq zTBTLT)`msYGdluu>PrE)tYE_#TUnuadV2Qs_U2VoV9Ul)bY^=lqT%4+fVyBj-{>Ou z_N~*oHptmHVt2TnOa6R&`}>^E%i>?YeqCMdjea5)AWT6)!C^c3OuyOf=TUl3k2EGZ zFD7-s6)ijhf{Bw;JPNfRu7(CByMN)#ZnfXFYgl-A7bx$EiHTPib52;7TI%Y?7kht> z&d$QJvnji}x{kJsK9fC~>cAyEhh{1aq7xEupQR}D^zQ_$nZ9{6qT>|!4l z2hQBjNv0dNwVdx1h$x77BX^v#p6XjlqnLUnpu3Z0=k zi5iGY!$ta}hBL-h3Y2!Ri$pM`!mfi?6y?j_M~aHLfFEE;R|*`GLG_ypDC za1jggT2Ik(-uO*=2eL2hl0>hT5xl&-o;-$t<$MOUKit?cFfbVZsj&bLR@U5{VRday zMPGmZ;2H&+q60vKBapmd=bHHXru)0ig!9hi^KJo9FZyo}+vAg%-kL7`@JB^M>jVW( zMfGGiq_x&+q;GqoC^0!XtX!|bbR7K-nyB$XU3 z=9K005-FM#Xx-hmn~PFE=?%Xn^Pz@oj*o2Qh zuO%elK7INGTUvSs21Ec`uTDQdV#>7MHACLeOfqWMn+B!meR<0w#wv*kO#|j znNBDcId5)NRn;4rI^9@M9|=DDouGkL8Y_BBEqt?806X6icxdpD>$`WHepk*hPdMRe zX=!0mCvrJIVKy`LF{6hef#`*%@x$G9I-e62WW3Pqes$bWef*Q@^KxODq3yeeZyKc> zHscJivI%{9WR_P@=z^`V`|dOxL=|wg!drO^UI4=p=^Q5T!#N_+Ff1~VNdJV>6cI8W z`oxni?9KIX93KdJgi59*u8iu5>nV`YNBg_s;^WYJGjE$Oh4p?S zd;JsF-P}xqdH`aBw6wGciHJ;oetaq?FE8QZ!s#YRxwE^Qn3*}ZBM^>FX?qpu0q9U%Q4wBS`x2sg_6+qu2+!2aEN^Dl<>Aiz>gwvd&jX0^{2xE4JQuyKO4rC@ zk-H;sP$1#+NwsuQf5GvI2~L+)X~j%ltOA)>t}db)(fkI;mYeKLVIeIW+px1Da|#_B z8+J)a$-XEf4^Q3HHH1q|y|i)-jzsN$hNrKuk4s8w)(d+r6$A_O%MUYJ3)ZG56Va*32I+DWc*Rdy`nwpvhMjqYmeutvqNHV9Gf`xGyrsTH91%ClH%UGpR zyJiDu^18hNh)x&sWCQu^(Rlq=%GFjue9XtGzv&TpIUFXmtinVg!sYV>$RLgjZP zK>@Jzo0S9rt3Vw8+GS2r_?<080??_LvVlQt(dPg%9MLP| z%mX9H+10fRT(6e!?OyHZ?)j6KmYCnZeX9z54B!_MG6U5>yV>n|enA1J*O4)3)a)0U zi4ah*xfL|+=zZX}R#xCL6vOlL^ELaUKYaLmj|>M=x)^mELt^Gvw z;mVA~u=R_l!ZS7biYGKBf`apA9#qVJvfVb0aI-hEErBsDd*Z z5YMl6ML6qmzL9_8a1=iz%re(;#5r7~ZqBZ=*P;vH=RjTO!Jf@b3mN!<1T~6Rm$-U( z^yP^7R=KV#sB3A_^YcGB{Bg^6(7ekAcI|Q$Q;xX0Iw2_U#~YbWWaWBwM(qKOj}Nz; z-Y4eCX=!Vq7wHpwydJ?G3A{g_S=ru>S|3cKfAInXRAChr6wr)j$`NfOG)YR~;Eo-P_I9mv$89V}liGwvFbRE;h=ZWe4k?jvu!T=ZSp z-Hjd}S1mJWAqKrwZw%>6i2IQP*4CYFj`TOX@8(X~Ry(gq3Iir23r^8t_SYA$+u*#b zIe)3fH{=;*>tfkb;~A2zoUHH@1qeQO=aT+|c&lpI&jT4Ef5*ua2EDWzmX?=COJy_o z0P+hA;mtKT@hP4S3=O?MM;hmv&g3a(yM z*z{a(YjL_%;Yf;5_}riW6y7?6uTiiaE1oh7idU;_{VE-j`4>Jhvd0V`i3VcPZ>;KO zTUuggL4#ge{^t0;ai0USqp@K1C7c;2L~A1YXfErrmdle515hN*hZ zo|Ac}E_{DAGT<#^it(;d-?Cc(5AvhL|y52HnTJgn^*zg`ut}HsgODJfRi51Cs$`=6XWSIEiiD#ZR>s|y2flf`Q}K2)arP#;-f;4Xn+M2bXal!TRT71VFXnF zS4xuEV<(4abNf46T8uBz!UiTMdH$L%^=?#@-$q>CeI%P9I9Q9xgJa`&DMZhVUtc@s z%*)@Pok(>1imHL7d)4%e^XumbYXQ*Ktg6?udt|@pLlEUv{*@^`IId>SMXJu6VnP7t z>+9vXHvlu_&*9R8emA^>LXuZpHa{4ZUh z0f#T?!joEi{18MUq}PLU(V4n-eYIgtg(2SMX`@AhDsE5hnPgpveam3%(4 zTF-&Q@Rgz7*KqafBL0%0L_K7C3{D$_qmdHH>Y`k`;fVOxJd2Zlk?uQVCcf;70imw8 z+^VU3307H&l9zWPO(GPD&rRXv&VMDNjMaY#E#v>2UQFKkKF<6@t12I*BKZvXWv zzxC{kgp%}e#(S&r*y2)!5Yh+mLCA4Qh0rWJiRHW+&!D@zjM7_SA15}RyhW7g*h@El zW?%W_A`&@fDaDQ@1WGrKRWLtSbP6I!l$+Egz4(mTxh|=denYj2ABD(Np-$J(N+mR+ zvk}rVDGKTZiW6E7pfI`?RA@c2u+iWXa<=20JaJyVY1`glsL`~CV`yeZiI zkHr0qUcELy8Zvh)vG9e&{ZT7FPL4rb{yqH;8PNc%s)_TnG*&vUry%MoR0McUo#klv zh{&o7+`($hLA?M_{oohEKEsrTd;@*Yde!cdR?bI zaT1ex$r!y??T2qoz`_Ltc$Ce$I1a#QP(@-uy1h(Q(~NMMsOT_s3@z%rBoe|t=Md5( z%@0wJ+}~yMAf)4Z2QC33Ocs#9WjOLE4OX;WeJLJ5U-|{x&ciUQG8#XSY^I+f4Uu*& zgMSu<0OeMk<6K9fUB#fXqpM}3Ofx#XcD=D*U4yEf=0Xa(J2Hn*!qA zlsG5|8evYHaEl$+v`j~8J*BYH(XDxTJq1?f17*RW-@GkN%9hGpuC%62_N+_f7Fj*? zacVBG8Z(6EeXT!z*4~t9|8@-sVp#p~$a&G%CDhduCnaJ&7LKXUQqq|{M)Fs&0@t^C zbGN!~tb48;8Oef8PQWPSM^2onEFB$)qb|TmLQo)q?Y&*)U`2t^NkfD$Jj8XvtfE=U zyWJaH;_EuNlc=MQ5rydN$=R;S9T@-34#}94ikg7ggMtnoL%hZ{gvR*tdV@3Yf$FOo zWcb#%cZFsNjbBYUHu>~vIu+&UZCwl`ZdOWe))|Zo%1~ z7T{WHd?*m)H1`2(cT!45o3yjCX8FS|_05yn)@NtKryDPW-wU!||Mduj%Sl;9-ex3; zkl}weHOjs1!cnTY$1jaY9Av((I?U(!=+iRQA!8}}+U{;~e`N@1Ip_50=*}5k5v|!b z4Zam+O#z5zG%WnN+k5GgUEFBGheSzpd~N8Xh8^i6i813sJ7pB6a_53X9GN>ooFVVM ze@w~gg+;1l!32HJ0@W~fELidS)X&w)c4F_O8Q8#S>vksJ@MkT|*O;=cJqpq#DPZ~{ zyc2jbIDT^IE!)WV+Z#>9=+buf7sJ5wQd!=#P+ELSuxPp{wZC%5w(+(st)^LDupTr{ zW6g6J#{B+l$ZovZv_V{(>XNhZYg#5AuhS8l#Zoj!2NyYIOZv!H(O#s}Q1-pCydA~< z3%+^EFO(mE_CGLC;v3Rb-uu_x>ns?``W68=w4PR)L!VjG=F~S(Q|r? z;A}_DH~Z^%d+t*%D;DS{^Phn)UatB^!U7eQvnr8)HMFN90d0^V7qBnL;|a16hT|cV z2PQ14=%SO1Ho^e%2=hwoUYhVDX{h&b|HPs z#x=~Zh?GV#RQYFZdg8_l%vIqQE9#)2E?1_+31uzoPiK6hKjC}AcyZps01+0MBZlnc zoZ?qVzr}-9Qc^Nkof))Ap@4TWy1a`e=c5xArcfw^*#&^Mler>Vt{F{Y?%gsSne}z^x{& z$o2I17c@5B^WrIP2n*EKS!rU{@X#Q6r#~QrwWyLzDEsLFom}7zI+w%gcKK(z4od zK@hO%G|!)xOqnePKKjQ{2;c**1Qi{fi^9{@H6%X%EzS=iE~5AAL#!s#qcT|H8oYTXrgm&u4T#vFoA@`#Nh0J(`USUlY!zIK$9@-#0Ecm{?5#(V5jtt0?1O3fh|c&Ft?NzzfI0+;&M?YqBP`ji zK{)!R7|{aO*PbUXwQ*u>w_f}m-70WzlBoJmzrnVY2I#JRKWUcshT@2#O5h#=#r1nL zJLtB78rwgbCv{vTc8><5Gyva=P^Y_a@QxLbDnR@X*E2LUbZSN73OUO{M-4%Y^RSKn z40or;`o3pn&(+#}nzLn6-=L&eR!K*M0l(8$x8x~)lnL+AiajV}lbPVOBErHnNk5g< zCw<=312zY{f8+Y<3OEc>SJ|1EP(VbK>puP^06XsMS4NmSVc{0=6It2WdJ6->6hC+e z=5_lX>zv=&26fe=os&^2=>zWrwt?(U-Lx3arr>}>S&{apG%lS>q#^Wc-BnsvmR>;M zkF#Rs4ERb~U0n@`P+s18K!heFCr|$8v_Nka^4JS%X}QI!r4aJK1Wh)$$pt??^KaM| z4Q}N+TA)?A`-`6b%h5P#`s8q8+`);}^oE-x$VPz3zL0U}6(c7G|NjfB!tZQM7Wx$3 zjzZ-HZEtVSHoL!Y6U;X8%gxLr|K}>8s;1@wc)0n1+kHTxN!r>n!$?r!lL2~XcXy&q zN#%HuGBMYp%gT{(t=XQrewcS&RwX4~#AEcJu#KQWoegw=kBm;(m;h1ocewz=GUcEgW1UQefDZBl@br>LsA|&%V01=aro{kDs zg3(cB80iPn*H$*)o3;%=ym1SP>=Baj|7j5WG4b)bdCJ&L%roY2B-KGJMMF0t-8hC_vb3e?l}9%HVJ9S9Xe)ub;ijr(Fq z_j9O0+LdU0=xP8=8b6>C)82i&Zc-hC3d;!>D|iy*dXy$^^(n}Y7pa|ygpdtn2ltk? zXtZVr%ACdys!gbhZ6>?=duvGA8M&S^szLbY$td{<&Y-h3ln*%VV#Y0 zULt1|QUc2-8q@@Bv-ZP7LUkS*k87n_xu^U;?CB^7@5cCu0L&1=?_05#;6c9PUx~1< zCWtD^R|@^q$B5Vj+&}LJR;$4w{>u8+IB$MfxY|*Un^los-!%o=s8E=UHK@Wf_Of*mQ;Ci7KFLz|;m^S>_tn_>n6 zuLNif`G1w)9=eccB==IQu-6>CrJ#FpIuqMpy{;{~80f{%i0v3y>98Y$;GccmYeo;M zP`LW9p9-vJKEX4g#SuXDjXpOVM?!^wI$4EuL3`4C!6Tc0E=V zo-SS;V@4k@fhEQCg`@tp;ZD0F56~qYSaK9d8mURrvD@jC7+49;&fOpgEG{j0Vg0E- z=R+MI`7X}p2g=?r-|rH~PhKiYi-fk5{>%rg0UhU4yhqVSa%hxBBpArnE>aok>7qk( zv6Pk=(Z$$CFPu#)h=eCuzK+zva{z~<%3DAb5X<5Q<-0OLK@E1X12&3pUw68sv$Eum zac?K)%+165+EEh+wG$EjL(fnTDNVs@RPA&Lk`{T7M5B|{EF-Wp6^{Z)p zn&exinuxu*PvS&6m6*oqj}Gs3EV;pw4t_SN@m*}g7xrNFbk*IA!sw&7Fbb;_%IXSo04$o zBr|3sT1*YK1b8*oKzHR!9xWO(&mqiLx=N&Eb%MZ0mcL%ZYlRLB8e^S0Hlc8$N?;-6 z4V4tSIo_Ljr!=z0bQ4C##DXhS`Sp#0232+TIk&U2Yu;KM|DRHm%25b^*_0DweQ}bj zdLAtJxh9igb2JiS;JmIxG%>kf?AHCW4>?fr}78N}~cH&?7H`*0t91@&JX zHz1t;PljZQrMH4HvBcf7(^M~<$GYvU5P4709 z3c~1jn8o6mfuW{R(B;00+{NV|)z7v!l_bvpTn7|by3Jk zBa8_Wy_z*(1^R4vW@J_;((%{N7a9Yg=S{Q2+9RA_$$!agx0j%&kAPyuL>$!C0gNk5 zeHU%@R_=4R0vk1T@7_;c-N;eR@2y`AhH+G{;p!wi-lN^jzZ)@``lf-4*a)^vtZyr~D`o;H<7cq{Hi7VfcCx)ygKSuFlA!t_pd?}_yOU+;=1 zkC*q)doEo1gC0zaIC0o6>b)FxaI4L5b-sYteGa%OseXr>C^!61YwhZlQE?U-?w-MO z4~ppZ;wlOAT=asQ=1?IHg2Y)zTiUIUAMvxq0;wPl;||En$F+qDU)IH)UVqQQ$&aos z(KYW0DG362`7nGH${Wg!_>%5BxZDLann_XjBy7O3(YDugI^RcbZMfUv%NZC@Qu*$2 zUftZ7?#))ign!V{z?=^SKXNdRR1bYuS_mTL?vVZo`EzAE2NjK?un$6EPYl2vQ4sPvD?48fkze1}hlN0m zv$2vIp~S#N#mO!HRDq4|^+Y*w2f(h_)PZ-LFi8%mi!g@^@MiS2Kb*7s-R?K^4a>P1 z=oGpa+m1@wym+5U;0d?Q+!RZg^Gz2TDi1REb8-@k&#Qb08Ntyf7W(ifQ7)*Mh6tiz zEs~t)kS6}3hhz*mc3`rcqqsad0h#2y`OL1JFdVsH8s%*XBX!06J*BAXiqNf{aLns_F4E+8pa3Y*H@7jEoHJAASM=+J&2Rhp&`3 zEJ|8hG9u$p+3&?jQ+~4@rK@f9zSAA#r`-`G&!D1W8}fxCNfr8#)mKCD%hB+>(xRTn zJv+1uc|~-nn_&DMb1#;ZIc@X(W^r4a2=Guk{brFiNOdW{1eXgKLJ>b8uvfE`IjR|)AW=6b-AG+*fi(lRh| zI?ot*c1}+d1Ay9e&;)eA!#61OJ27W=W+D0f4~Jj9TQt_p>)Ai>6U{0{FbBA%Z)Qx5M8Y}du#Y;Q@l-@L&B@}%cP zUZfy>Q5m*t24OdRW?E!!CJB{#$coAJJoYdu84qu9nS4&m7WXtepcFwBiGe1 z_WaB#P@8ZOfy`q50vkVV^gQaQp`k>PZ$#?w8NVUB&&|!7B~m02La&w+b|8iW2HNS zo|zdPplkw0MIh8CuMm@xM!^Jj7Z(=;>|@|RqX*p_Y;OX}1Z*ZeYU=pa)eEh25$9#d za_G~0U{0nWB_&Pgbs&S0Ex;KJXTA81O+@9?Z(Iytz5EeksvbVBufK+uz?1nAN;7`&2Az=(saT+_BX4Wml-e zs8}wcu0eyK?v~&;@;d9ut>yJHLLv0TKRc>$jrM=IAaOZ4RLkKkw8E2(z$kRZpPT%sPn3Hxsq2U=ZSrAblvPfrX)e}^2Y za?OTMcd7;k3mFY^BFhR<7~||$^s`0qiT)S>psN6tBEe_}-nUR@@0sOWW}@5#R|`b5 z8=7_e#p`PdDk{=2zJq97*k0P1R-yrh10LNVU>4YN6NH(G1P}K2W5EyW{=?IFjIgt? z*k9iD^~tnetwyKw*bxJA0&8TfrtA#{IXQV_QvD;h$k@Q()uTI5^JUNmGip_s}~wLjl=Q0?&IWh!=`F7h;+9GuZ-FO zv8tVXj3Dgt?{RhcXGVuKU!fk-G6+{)BG{op_+EkNXqlJX_`f=9mejU z`Zz5qDKuNilT7zfH)riKNfFo#l?@FSS9X~R(Vr3CjdCJgd|(W_a%Qc{`7-g^xiFs! zt|AL_TqB}(5C~IY>U5Emy{of>4#w<<7rYnJZf_c7nBD@r8rU*C^Hg5Ta4>_0*Jie- zW8>SS!=L|~gpF_JW^q}Ww65-_mD&H((NcIRZf=7)p+z4`?bR z%bUY4UDD>CVs5M^LGAimZlMlrK^&e3`mm4(ww0b=DKAvCw5-yJgsp}tu5NG5u20sX zAeci1czt0rGMpB_2w|+8Y&=!3EVVykZqt?Taxe;vlLhup!0nOtodfPtf-TK#xg$88 z+Xf$$HJEKtqIAl1rR%-dR$c@@!fcNLtGkR%3Ie?Fx8;K_&LEM_-aI(LHq1?QJ7txk z;L=e2JvqzX-eKZk!}*G`qA%;}#_MqyN6zZYZ5iD#3NJNA6XNCOHa_2(I=Z|(JTbEx z&WZvUkj0>x5P097@Y+AAcUp2x-vZu4jFPjNzF#T@GA8#o=h`*qXodmT7Gdw-o1AV8 zJpp4o&@yn8gr^RGl3wRiZqVXka(8tM1y%mIL5Hy{VQ2(kzj6BCxRn{UHIpCa_)M(B z^O+l-hbb{xz|BhS5xxPOvA9MyCAJZp?A`K3#4Fq=3n$Cxpf{v+R1}w<0kvgxYN~Du zCyNHPxTGW)6nmJp&F#eiU~qu%rpx2-wYFgta?U zd8n#{Z{%WedXtpHeDHTX32bR)4XX$#9Tuo%^}SPk_k?_~Pbcw(Liwx<%Q$YJ6&MOi zp0Y{MGmJO(M1digYyhZVXjRys*QqnVFDha(H8ouZ&b1hQ>3slO^1oGhZ{obw$R4m^ z$!yTW8s79?QTE6Hm`w(NOY(^daoix3{^;yJ*XQ=;PyTJjfbMT#pxhizZW1fM5^oj0nBxNhWiGV%DDO9spvjkA9~WDT5A{$vA=et%(#*_)Ye(6hP#i370v z>AbDGQt^>x1`Yj?rn>s_TD({vs2FfiC^A-8tM}>h#)c&TgzafLbFF95MHqUIKA+lD zqm^+`%+sb)lh?LgXLbGooOx(--|s7ka{&M z4P!riKvxHDau749SXjNl!4{L9IFP&EowN4nBdcirj`rQN%xF^2zRt3ZT{k=GOY$sv zK07bvQ|E$Oq$%ss^x+Kz>5Y7lN5CW&2bk9ZBWz~C2tE7VhM=aV=4ez3$D}g^37~64 zXml5eqGcNCH++@n_wVMEzgGD>$V(h2SKR_m$JsgaSOEVFG>*k#bnb1WtVUJP)zH-f zRD1+H^Il*!3vk4k{lMA+wx{#)>Z^kH^f%>uHG=9q)Qn8&UC^YqIIvuI~p&cE<_JQO7)LnjAvAJBQsapSVo>Od06l5eu9$9=U zD1!D6SdPOV18=sAs;$T9^jp2~zzo|9XnDCaR2xV}i$1%oYefuQm4WNEw+)`XVa@cF zcj(v_DQg#Sh5)zgpj5^twbrpS1)Zg)x&)DWr|9E;DvlO3fUtpS3?Ix~!4JY%{>)S0 zayI#$B{0Fi9T^ZxAl`#VuoFH+s--g3!L}SX`7P6Vhq?dpydE`>1h9wCN>tVqULn9Q z>;Y-toEIF<(#q=696Nvan;PGWp9v4d1~)NxK(!O`T*}{soo{D)g?Jsr4*;AY^Lr~r zH3UL&Q_6pN*-`yh6^MYkt^?t_OB9KXg@%Uua-od5+qnC%G`3L#Cd{N#m=3JIDO1|Q z6~l{}n!DG7H3E~q_y>D9fJ8D0hAD~}DM}9R;ggW%m@aY9#!X0_zWeJUj1Hh=3xt#Kt9TGZ^Y$Qhd0x(du=D%n_Bi_9gKm}M0x}9Wj5k74{ z79N>)Y(i*g*8R}v5Hx_1ESj=^2M}uc&4$5hS`m`WV`lOvrB#V&aulDRd2lD;0ip$T z6xC+h@#T~Un!En8o$_+(M}j(59y2@Ol^JlPQI>YVa+xSqCwU7=>eEu+#^^B$WhA5!xg*` zAc#!2MM43w41u;j>v?f_?KrZ(FeQvlJpl~R!QZ;US%JvEDLHz<0@T!fln8BA7c0*I zc7a(EfS-$|JsFAS{6|l6Pkn#IkWAoO|H~_39+dcawB8q)C)!~$9^Li_xKVi;9zL(m?&AG;V;QN8IcyBsgdP#vO4|CNka1} z9zI2T0dIUTsk%=bEqzuBV_pIu1jxw9{!%zuTXz6a&IL3=x?eWc;jME}C09>f%Yzla z$+qdnMfcX3_Tx&%_ zdac0(l%b^QLU?B|UIYeiJm+0de%u}i0dPxtkTkfCij5uq`Sa&7sgLdoBQ}orC~ zNXv~bYY_D3&mW-mhDdk05Kq1vuOJGdc(l@;&)UfY&NrnAebfc~RS!_)(%VQBAPA6N zQq1d{xg|%g4pb=G`YWg}J{L&4NiEz=-0%IVoox?nU)im*n=u6=D_&PC5h^O3`}qU> zKsJ1ZR10xG#g~7_#{uotjkjrC8j?Tu9~e!nuBf6!NsEIA+APxqY)p!}AjUU82U1N< z4Yfl`Il@t4VTiC^2wW%-u{dnSYm^=v)_6emL4#(K9!b;OIXDBThQuCkxn4^vjo*GF z`_7-Eg$6w#*m&;v#I{%FYXqRdq1?ug(Gmm(ZySh1hQUBYuEY?ALjb^(jhi{XN5Cph z2RcYVQ}M!%Z!v|9i--oSX#CH3O#AbeY;+`6m2ljL7!YjCr($tI0MJj6B~;p@e2d;OMb@R z1h>(zu%#Tn69%pGToli6cN#918@-bzt^~Z`Vf&+~y}kX>e#6o#P@{u@ts7bf%pk0P zjUh`Yi>E<-R_+QN?M4V>3NSZ1aiwy}0sRG!Ww|@zgo=j|MhD13I|2;I2SUQH93_%bgv$h0c;;482 z{Lm-zDf8A*2(1JW)#EdaVNaUchOcUFCIgQu{INYJ^)#}1a9Re3x`C|PY!r)Pu(Sv4 zd*GRicjP$mYs~AH_zT)a7~-&rAVR{9!NI|*r}KwsA;6RZ zpRHsynE=`lm>~|Rcz|cKCPFg4Go}U(S3DtPcU3T?;Ze`UHvMKY4wNt<&jW7z`+B>X z3Mvfgv$RLcWm5|pI!O$Z%E=F4Z<|RrlAtq_m*rp4pVFdsyp8BS?i~?Z+qCMV`#mSW zCnwEVG=XG1$m`tx7)WOZ!0u|q+BM|I@%?S^tjiWMD2b7n>QR&hTIR%49a9q6II{0& zRkn~B@WtWb02K1B1B1FMLd`sA3_vM=yj^;9zCN)4#%<60%DAHW=25b=U zGsFS$S+a7bdvFjVgeLdP7ep8d1e?acJFg7fkIFKC3Wmqi1%FeMrd*rK<|&N>)Hqxz z>0v|p75kI~tUfNHc#)GK&tP|<639cO6-rnv50MoGuXkZJ1_P#CKi)4r=6(N8h=hdn zjD-c});ILoe%g9A{(837>g`*Lr*s6#8miI0OH1)2KSY9&V=a`RB)Om#vys(2A+BZf zk-GKBfjjpSNFNLqJ^)sPj*}A)j8lfMfj#w~>H1l-_!SVt96oY2pzer>&ikW*MmUe8 zM@cGsYGe@afmx_H^K3R#ht4C5sxX<)#ZK~N&5AP{)$LwnZ=eyryKGu>5Dv9y414=s zP515NQG}TBaFzfc<%hC~>wGen$88EQjoBF3I%`w>Qn#;PpapT&wh(7g>46kQp(c@E zRAo}Xj{!BPULLur+@ju5x8`gfeNR{`1_)P;tiRP@Nw@GdYY=!B0x+Vuee?i?dEh`< zv}deQ-4-B%f>tD$+5XvDhP1tagS?+IZ=I)}$7|`X2Vn_C(5`D6RTn6eyh7o-R4+8R zwWrND0&4-bZkRsX;ZXnpdDh&Y9FcVXAK0e!N^kjq6A4V=cP%VX0;CQ|F1u3-m~TLu z&c^+A;`75~`JLOTuIQJ75Pc_S#tbs{8M0^Vy4K%$pOrZi3dO0c6E;b*%fUJ8hcwwd zhvGLiKtYSn3Lp6H=1qLm{&?@iFIfKwXQVdKR^IaCzlS=(kRfb#AGG)|Mi2O)K(v(( z{m;S9Dlj%W?|-=fCLly$tlrs~8zx}9A!RMC2u`!UW!SqC++Cjv`R!kyZm!kM7{2s# zaB^BIzZBd-nf3?w?sv_$y&s6cTLg##<`pH^yXGet$c=m}dX325 zcBYzns#UK0UOtI&<$Cio3e@^=vkRjX|K~`gHB~$+Y#aSJumht_-Te`ILQ&<7U-6pO z&lBW=OeC0zgDjs7ly)gYJLe&ffs%Oz?cC;iULd@$lm;rn5qWe zU}1}|c@oJFY;@4#Egel00b<$4#s-}t7CMzoClk-%g$Y}vr*l8nEe)bvX>B0QeQYe*&&8`P6ynIwFX^QZBu4lVoYyKHaLd@sHUpwOi1zt zR{6#AFWl{zaLt%mS>G!ag*JHZwn?|OwYh*%F%N1rZSC2EYlG~dlcR1N*aTKUKmhDr zDqzE`FdZzD*TMGk4opw2O=%hJkJ~A4e%S=&p2S{YA!52uhLNVD7CjAPq3T|pHatVc z?)9MkhGu^s)9U8L(C6o!i!4;XH3rjH3k22y{=u(UlS1r3L>K220o-l)V|-*}5O|vs zM#c1?*J*5dPD}MKABfovV*pC%p7}3=ZZD-QwPL;U)LIGRw3ApQYSiBfhk5*a}0 zq&XORi-31Ykb;K`HcSE4-SGpaTd*Rtgi0ORwMOibmWwAYU2e2Nhe&64Hv(4%CfKm$ zaU?`U?)Pv0@TL3biy?#XF?%>}J77dk zP&gZ4F7NJL1@jg2$$%JlY5?14KJBmmpFszX*~;tMPYWH=?f7j_^5FXaDD6$axo+2X z|F0=BWym~JDncm{8A5uJgi1mpG{`J6Wy};A>M2P`MPycnLgpx?N#pVXvNGMv)&iQ??U>?Lo8BWxWt2%hUGiE4A zX4TG(DmLbWljEsym*f(JV zyJ_ax(p0r$HL9zeQv|(gnaB-XO0SQ+k#r6cCSv?06t?1MksSYg%i1m?M&b6Eu(gh9 zUR%3a&Vth-`d7FMh=}lT4MRgt^j%&qw+1nAkbj{)qJla>Y>u-_-cJ|2TE%$wccOih+OK*8A9)oUtymD!C~Gw8H`#xdo` z1{1^T)Z8zKQVdh|jE!yHJ=r8V^~CAw^b@Df^IvbK#b0jq&D$7vpuqj}yHz_Hirj)v zfIu7oJ;vL~cwEzpQDccSRKUOfF+QwmuDSotq{!{2UYBwx%v&O8wq_d+3QiV|qQgRQB$tbJ*Y2y3fAO+D<{m6b>PF`T30aZ|z?)X+K zO@I6OVzEvJ|7^F9qwid3nK*s#9LS;l*r&Ix*OOxz((BB| z764cRNp65c`=iZX^LvU8C$&_UC03@@~w$c=1D%RUK# zmuCQV>($Z?x>moEOM@GZu)1c@Ov(8EVjvZ@FlX20&YMA)$HvaCZ)g~dzI{cS$Q#*< z@sFd4Xu{ED)P2LbhuzKvxU_Y@MLuRwh7Hu}YP{Zbo4D%Tko@Ja@U462Gj_-9gpR@# z5Az<|R=<*omko}#!yl8;?XLlMz=$w-(%L@kwAOm-LQ|_+qqKSW<1Y*faESs)g4r#r zQX|ueuiHdo=o|}ALL}y?Hr~q*wRT(t&a=P^!GUiV84?_v+7c>Y#!vz+bV=CS4x&I)W)6bnwWp*$PpO?;e7RL$?`!CfC-ggA z@0Pd5C?3x#wCFoel43FN-RUl=;euZb?p@|0v~8I<}tQr$+@^Wv==qp7EwfEtO)~ z#&&TYTRWrWQ?fX}f4Hx4>d)S>zRv5W>u57~1?T3?n@QjWhHN2d)LUAMN;)n&yHE@d zyrum3*<-Kd&WoWNh~9?dU*dz(acg78Xb8Fu5|m>U4c~D*;p?B@EE%Po9^MJ z!V2p?o>vDCT{yh-q)-F=sA_bOBY%5l4{5cW%&@OY&p1J#n_vu8vcrWDn-1@BiKo0e zm+}^|(d)OQks{jUSA$q+1kZ`F_l|sCe(~iq`+ln%Xw8TNg8^0&PS8Snr%r{veXG4Z z>AO}v(N!`HnGKJU*r~g?1j95HpR!r8YCy*?L)r`bRCFOnowjS|$QyY6^T4Pzp=PAE z-qwmg%7)21n@M>uJaw5yIA8zoB^sRH9o=|{!qrpkFnt}gXIe)r51BL1is!HUh#hVG z{dO8*b2alkX#ZoMd(T5nm3ay$>+GDIkfNe1@dIcXj#H-c+5GxA*GJ8g;oRfsTe|XP zFB<0-J+%fAKPKBIJjkXGfC#J8@zY6x?=9J=$|U-%J~UsrgvTQ2#(zlS^rMKA6HGeI zPaylSwcSnvqR4@}w)KqGI`*Cb~;Q)@mWHjRDBlJ31NdGai1UUYPH z6?i*#fHFb7Ze4$cKb28|&F#EhH)-C~XI;~J5>oVxQn%CL>*({#RFf)a0@h1Pd zcWWf0>yR^_VOmnGSa+Pt#-h0ezl=clrCoH;9w>s&|0 zy_cHOFgXuZp~1dpp*!Ac=4&S_(4#Czzb8Mwoh7{9)-}UZ$@v={&~nodMGJ$u#mvl{ zHPQ3@;w}BEm_euGt-Xc0-3cp)QtJ*~45W(H{`8nD8YV#VD(U}DijDe5`scAYgE5mY+9@FNiSO4)b zm!o32HiUI$PY=J};ZQog4tpaj7Z@TlgI~#0a2N`;Y)`$SNy1!>2E!t%1AFg`l&^9X8K#}D|ctxGt|Y-OeXo# zrzME;#eRlm%oA(S*hWJx&yqG(CoTX`!JcUCUxyPEzn^soUkawhHm(z)N!j`){-lM9 zyExruIpq?ih>T-Y_Cnpyg2dxu)#UA|4mPJBK4D^SFO7=Qc2N;T6r4|?KhfHtrP*w8 zp@*_q@vBBwL9Jx`QJyl%;(W6}_LCAfmL6+rp36Q=V}9%y``>Sy!>!xf+to7$RkWM( zN`HEKKObV#HS6Q%vpFozu|r&xfh|n1<0x0Zb8@_Xl5g9cFU6Bdw2soT4IA{A=1sR& zF3Uuo{gEAx_QRM3rgUdRI&6~J^6Ccpn&=R3 zO4z0jO&w=v_fa$l${wO43rtG~zZW1r5uCx>zhGiPRNVEk^-qpu`e8yGSy8($mG-)F zS0%UVINPS16RKw}X7R2S{n|+MrcYnhf1=mHhs3^Ocync`&Qj#sFjW327EG%x(5o+*|=l4Z1`tbmec zf5pwoqsgVZfsR63_9=@nHZ1V$-EoSMHic87ZXFhpmmf5c|ty{+uyM%C@>+l+GR}c$l|EEv`Xi#pwI2!gC4J( zaC3L~zN6K-g=ch=37>MQ=_P%miHK!cH>z8M@FXgW%Vlf?Qe|L-P~|8(^)P#6=uEI$ zjyBMB!ngJ;ypbE3T^xHo;10WA#AwIz!P@wa#(q^=7Yc$|TP}EBN=+{JA;CRT$AEmls6U{rxg^EkKCuq*Il=R z>;ES2MGQK{_wzmf+T=O@c8z7}y2+Z{d;7hk%rfUUnPyj)9$rf0&pQ~#9wWneKd|%w6RksxR^6JAt0zEM&YHvM>+hp$v+Or(5Rp3gnQ!=L*kSJE$ zj>4?3D`;0#p+DaTA`*%n%eu${k4R{Ywj1RV6B83)7?H;FB>40R>R=D}w9gZa!t+xetg60rvB z<5`r0^&dXeK}ZJ5+d(j_th99=5~g`)X-JKW$IN#Na7Ib&8W?ya%Imq;zhb<&6&!_0 zEt=+m1EdyB{{Bpe>M{iyCLQkM|!jhhWq2#j9!4D#_4M1%u zuI&4#EwBmhp5e(K)V{X`UOTR+ippv@^C@GA-S8;HO2fV(kuhHf$g1yFkQO-t5!MM% zP;I1@GxVfpNqeY4Ton)@867zO-Z?)x9+m57uocdRAarSFr=|cKzO-wpFfEM^jH4ea zum8~wn&n4>?)L552|kJ7vE>1e)b#bM1yrSk-(HvR z6+JydP{z>`+l`;o0a939GWjYT#8Y!P&J;Xnx2pUe7OQr-6B{cgFVBT77oIq!2QLQE z@uG!-)O~rnE+#sfke8Q-qI-Zme4|C>G?rCFc6k_sPTaU#>M4VzUt#LAz#lUcXvlUv zajW&)oHdS>OX|%@k{Un#I86!?H4DzNIk>Ty1k~hOROen@a;w&i>g+WAE2VsoVI;2{ zJyb_^H#Z-i`q>~O2HI7;yu<5gk@5-Fm(~rO8Wih^4a(3U{{aQ+=ui`-5En;lr;t>( zCL1~6@TNcbu0G@H&a-a6VmJ0!?W7W?ucp=fa%V=&v2Vf4vRs<^#3qJ+B6(Oyq~XFV ze5O5h=ic4*hnem2qBpte3tpZ5H1;YLO78Z8OL=ZT+OsuNn8zEoQxFmBv3IU#{q+7) z8&`4hXNq?5Z3}W+!bN{`tK|c~VBS+JOYYpJt3jdfl5UmpLYu@wz3oq%L&FN@=r>zQ z&(d>4rau&l6Xf$IORu`{-LPWWfGg$}3lA5An(TFf^Y>y0dA_y?(DOyEiHSD!4(S7d zWiU$V&%hr|1Aea7bVC89W54+%v_hIzD)~&Weyg=N&)+WojGZoS z3k+l$RHi%jM1-rd#|+Z{%vL)RNLktPnu;w>37_JaIMa0PW06-M$6ly$vYwLO;>Bby z@V6w80FNxVcJKtjEv`g~W0or$gW6~zN<)3vjX)&V&tai{klV@XuhB3*?u&2j& za3+{lSSAVVZyGzK;E|$@8ceh7>|~hAVoSFz?lOlG{ih>++-jqDfPGbvv;&o8Af7>T zx~sO(l3=gfGVikkpIHQbO%5n0jVWfN{l*X6G+&8xD?oYay{%1Ae zsILAQqu_J5btgE*C4M8R?t8b@Mv^ST(>RpB%rxw(q4=n2RRGB;`UaqIY==+A9tFec z`CtAGp+3s%*K}TN#borMSrNQy6K2mg>@R1n^>b$__xr%f7i249_toTcrh z4Ewo>?byxYW+B#7DeI}qL~axCZIOGwn!FeEf3E9Ii1aVJjd}0_5Cj_X;BAPqMM0K; z<0(NLI^RnF*Y^+_VOL|bFnZ7Z^jsn9iWSoEWNB`C8W!kH5FJNd_=V%(mTS7ml>_t+ z0AO%PYHoV9D58Q9OLf~|v4Oq}_6upe6bS|`!Uy-q?IIrJ2+8l?BKq@Wo5k^-@2U~< zDQ7tLGU>OVFwuSS_aw6#r9+F2Lfa+ubTqBlQV-G)#H+*QRR@yaWa3-+*r+Q%u5^4T zhqOXdGu84li;zOSH7Ff*pZIkn#bzq4&4+_Y63S@@TD~}D5f%QmgPOA)*3XvrX+(Q` zWtVa23V0k8b^T6Qnk3mj1n8>LEIBCah8elliKqCQuiyAne0FAN@q(-nUZ7wI6Ip#5 zXomNe28E_Ep%?eZ`X@Zf7D@3~_m*~zF8Q#$23k7%QpX$0jVI;d{tB)CHW;foFoLnP zjddVI_V#dAHYNYoGFcuh=OO%->e{RJr*rHDOn*c%W-z?!r}r$_8~*^oTt2;>NY}W* z%cr>xly&fh9`d2(rM2uw2VtWW9zQ-jR|3v1_7$V5QCfjoAw?TDg&_c-{&CRaabc%r z(ktakUq^gqY9k>nIE4RMPJT#8T)AdkT@@9YCW)sxIa9WDdF9aV3zzX8jIyApV@fa! zNZ?s{V0Y7EzE|Q;`;?6}<`fHc?~5CCPALy5&}YE3`3$D#Kh81;7dWNV(AZ>2;c5W^ z`R4=J!j`NPh4c*Xc(((%Jpy=7>`Y&dQV_!fChPck$`6EwzI>QMbY98ZNOQuJJz9s| zx8#^4e${WccVGDh5*GVjCf1l=>z#}0>h1JjLtKZY@jGi?yDlN1#BwdzYJE z#e4DPkV9uNYhPa8?@So$9jz%h4GVoK0V8Q4^F_kX)ho)fEn5>(xa)k^hp(WPTZX6uo2;L8 z!yOTbQNSQ3Jw@FEo$wq;pumvYL20|F?ke_+Qx9QEqtu~Z1fzdO%RruOasamGtj^kp7Pl5=bO zZq!?0rDrh-3~eVzF#mHH8nQododt%sxkW{F@Hl*)_*Z`esj_wl8-taDBWR(=S4hoe ztOpZb611n2pvZww1AMKwKjI@`S%2}>1(^NHy1F_?7e~k8k)lia`3#+UId`gcllKd$ zx~;LXy2hd_*XO^P@H^I~f&Owig`ME4W;N3KEiSrO|AI6K zwS=u}WOz6Ow8icFhD;pFXfTpu6jI?QTM?g{nyfO5&KXkg-{Jii6TNhRjzs8vaO_K& z7^MS_KRoD^!Va1QR-C5m!(;!+i71)t4(smjR)9pkBx>6q>jC(J)hkkUii)%ZiHJZs zT?vsiiB!cnP#>`qaE3fzdWmY(rl5Ta)x7JL9_vXPhs;C$i-mPQl8`}4T>4=l_9c0( zpxihtG;L}8w(;zojK+74qlJ_=->{Yu8;_~02lTClFyr8E8i{MphPn-&{tGUvKL;D8 zK_r|%S7SEQmw1@)qwwFX*XlgyDJp8o&1Mk#PExR5(yg|(pLceqzx}BdujVA>{GYN_ z1BU#J0gN)IrZ29^h=blame}*NCwt!(0_^Gs7}H>YZNISkKMUA~k_oR}Tu@eHSLa91 z1nn#PWdeB^8@cMVs69?l5-RPtP(nQHVJV~0gE>Y~kryaT(w9T1{e$@Mr?A=y?!#ZY zy03SA*k`G52O#FwRwF{~!iBA{IYgrd#(a_k9EFF9X%|ZoWW3Pl>U4xi4Om+jd6JH6!2N? z%U9fxi6SB=$3f0K1wFp87QcLX-C3X}e>|}gx+o=|H@}cMqN&MQ*HFOxr7p3eUyXBCEmxXjdG5>0gPUw_=t@a((0J6m5}Rf3Pp?|XA8K&8Tv#^3==PEK~8Z#!>t zgW)+RJcYN!yq$_Or$JF*)sNlVmf_&drY|EKM#(~ON}IM?#5!neYsXsxOId*drlL2= zdTTNBVgjeexMblVj*ZY*cfGaQ_WX#!UoSctP*lAzZu7hUSutXCNW^VpzVpMQlp@pj zUyTO>2Uq)@apJ@w&89EtG+B%*l}wGx*FCWBw_zZeSccjxex0HmyiLxn^$NmqWH`wN zgUV|CNN~rt<_ug@VvBuqnc~>w&AM*j{1*N2z)5B-`AjHgsKQlcIhNl$1W8=F{c)u2$6?J)cW&~^z1nw|YJachJ~rAC zzbqY4lO8`>5xGr&m*w{Q+hVakIO`pm13b!Ip62U~BU8=>!ah3|)~9yYajHqWNOW+a zCp0|Arr_MN0mavOnWD;0eG$SBhVT84?(7OkU&te#i^8$#D4X$1<~=LbPjfM-VX(L; zD$Bi+@jm@`vB4)lU#BQ@Hgq(y>e0_pe-c~SQNT+!&rta18_zrQmG1KpUj5m_n0e$y zD5!)G!-olE)D;v7T_x9zw4pqjkJ_ZVI%*5Ous@0G?=}0TsoDS1D@_I_{$%}(I{aL8 zATt>m)FdBp`JMDtpdyBaj40)Y*2Um$iP03@->)2q%FN{G#$I#7xYn5Z>$wcA^rrPQ zHEjVla7vtYZ^hV%h4qsh740YEl)YnrwF50qC?+-AabpG=UZo=Z^cSGlTjTbEy(Jb_~ zHsz*q40}w9CBuUtHe%89cyj4$X0dhO$PyydzPDLrVsYTEo+eGn!>EwJR;T(Z+(!nVLvcv&uDQ>9xi6hojXhQoN%s znOwb|aQz(*zW=g934b|14}l4C>FG=8+Vio6wWcFFYRj*eEy8Y7)&ynacTcgo%R6R0 z4gH&xw-fK*t%j%EU3z1&d&FwWHABmEmIf31+Q={ zcW<_?I!#EQ+TD_TXTrn#1Bc!Jy1=)p2xtcyK_$Njz^-(-&>cKwX*2 zMT=OS{sncfpv~dhU#clTGUDsC69ZR)t+0{tI~H>q)i5on^0Bf~KnEZq{hQL(N)g_H z2gOwoo?3~wQeNo4KQ0%_b2t361Z@PbGtVAb^g%RdB~=%AJ9(~B6fn_GP#sNpZBxZ~ zjrO+rY;;4kb2^u(s7*+biPZ1ku{^J&bMmThzTcw%#GY*@N1SXSac_P040?|Vkh*rW zU)9sU#Xu}}Jg383whfg!mKhqj^<(;8gic+le7JrE1(i4itoV8mMDUe&f*$paJl?@i zB7n={HnS9m@cW;xz;nQP=x2PMhHB#0itCRV2tU|Zw%=n}w|{tbN>sY->?%;7SPJ|S zJL3lKu$`evI3N464T-5MPAP@T>EU;Jm!(U04OFxpJeTsoi*pmuU94qk^cvVll%00 zwjMO}S4v!zWr8Lo)AIs1kbay>5_2p-4j|S}+ajYn*XLL0czo1NZCc!YjRV$nz+mJ_ zEm@9BeI|%}22*`~%c$}riT=qH5>6Vo^zXjou7H+a6s}`H?{@Coso=dh<@%wg*h#Fa zx;h!%4pvrwyN<$wmuC<;1MA_dSFZqq*Dy8Zm)*6?*Xs}tG5auR{Vwd#^Z#Vw!OhG9 zQW)mtqR3zv`jCX^tCR6F8~(w=vp|2fcxj>}&u7JxJgoq&^$)Wn0$eI#c$|ikQf&9` zjifjT4Lc{Kf*?kPsDO!ptfIkBhtKC-y!?iv`=+TO_Ug%)ObQLn)HvEWE5`|P?|z@g zil8%5L5p`Z>^rWtzOrPjqko&=G;EvOHzu`IBv$`k&}KI9*`Ll^?y(CNTUtbmG6e;7 ze|CHGU8VxkFWV@OlEjbyDGZTRQ2l={_=J;$q@k0tW?=p(2$=q9fTPIsm^nux%*kXE zxIak{yLnA0E8$1RFd&TpqUBWzRn>Ac&jmaXsaa7Dd+{1uhL(r--Gvkcib1HI9u%5U z9AS6NE9UgO6kq3{^qhe(&xxoB9EjqJJdgM%r(f%r`MJpctXXBj-lFvQ- zx3p6r64kJ=u_=iQX`JeKreUSo zTgaSujdS^mY{J-k-z_t1S8QJN+?%Ab_wL&FBfO8tj1gu;{}-&`(Z|f9e1+PsjVf-o z;p4b)yyL-s%kWfjB`_eP>v@fp9o(`hdCoTu6tWzwb}AE$);1|m%q!TJb7JzkXy`be z7)qiKDvYd1Rm2@sp~2m8H6kl3E7xb`w_#m#_GwAPO5hwox3nAJO z5wjb_M({- zm1)QzDG1C$$Y_M+9}d16Mn-onc({R=AXf%r2jUC63`57++r(Zj4N#a zVvrMO&Pw<+$nFn>xF!i-K(3@=;H-d_KQb~BBM{H{15Hw&fGzNY2A7vJ4M8`xM^#s> zihGQ68Yau;noWYOpBWpC6&%vhxkmP?7&dH>?{vs&NvZvsadNs|EQ^0Zkp_=4VH6ZINXYhF`JJYfWjgG!Q?^5?v$mq>KbEB-Tgb>?L)gGG`2d;dg$q2Xlb+IcVMJ$^d25pyyk@q=TM+?iOIuSxO|vTjISAsIqd zironeN4fi!SxMFBjx;5Nj=V(Dr@VnZk#5Fjjx~B@va=6g7 zxCV>EWUwVBegW#qEUVBoU60n=hnJ9&u)vfyKzR2VT4<*%Fl7sNf#F$_U;#$5_WCwn z_>ua0)>h?n!iDMJ1y#q3021b=2tIjTBx%G5(>1RsKLf5qL{>JxYbo>BOS%AIl5|l8 z_m^U6Qd0HzFeyKA?LV{D|I!iT*co^6O=F`LIt3YH-~O?_XO!py;6ad6J3`IanD@D{ zUB)GL$iyBz5YBkHM==4eXIrwBfLWf$X@Z=013-4sm5K2AV0G?X6&}i~zh^74CzBil zzZNtmrO1RQOvxxf;vt)BYY?U~F3h;J?#m-~>;Fd*P?sK=1oS93SMTxh)F*?+MoX@r z$L7fJ#2ucq7pfx_un$3%4WdX^W5JzEEPuA-_>ie7h)!M2TBk%6|(VPa7 zVwsp|-)cNll=-Wj3|RwljpSoa!w^DlXhmIaeAw^pTT?N6qA)@16w8^f;CWd`}@z5%}2y2?b)-3gnMDt zVgdsN7vAJY!7t_8+Ci%;O9SXi8m{1&hSHFG_XWKSOET5xa?C$(7!=H(K7B%aZV&&L zu{r#yWow%m`bOvQKl*dVr=MWQLpf02pL0u?&ZyW?guFZBoiEtYUCNq>ii`}-%ECkC zg3K)Ru8fxpE=HN6yERgfKd|Q%R6W76vE7Ll!6|7v~V@`Mbs5!tiH5WzkiJ6$K; zM^a+1b(LIUK(o0D?x|}~=N$qZrwV>CQM!ORv)K7%H_lvPqsamfFchx+{r5%@B_$Km z63fEHwFNnMbXXz+@b|9xd?@8}&7mhF5iFp1rB1;pvwnVlz6vpVLe+blfA6(z#0j$) zwIdx|N&%+QT;$@!zt3H7{I4>5Sc573_7nj)NFVUAl)6$fr&JVoo`F6{9f@oKj<_98 z8VdpQ+3Sfu0QKbVfBE=Pc=^`{Ury80r)dyY(g#a1JNVNz3|)sw+MI}jf)QTHfG1C$ zkeXMG=`D24UZ>kz$*=) zNw%0a(jY><;aJJ=-$n2f83aexeoCOcp2}lYB3Sj$A4yUXfHZ?#0e;Vp1U`Hyih}4- zW~R>g1t-pCAY5*0ZQxej*)^}B#DvJ5k%0D#BcA_UqdkX`DbKEk`n@ejH(Avh)-d-V+o=& z2`Y!p78R>kS1AfTckrK~U;%3+7}K17bohgpju{w`kxL2+3Ti0^7PG^j@J#QVI3OlE z3Z1N|ECV)rQj`R%TC!nAhw?$BnSm;zaP{|Ym9=FT^6exc78x#xzsd8QvmuE&2t+!l ztxb>cD-~#-m^upWs?k>tBXcv6wP}}8w?YE85xI!>Y3lP~88Qi{AJAkhxH_TAXNn78QOS0mxb=t;w!I$*jT!$ejHg=(N@l|*Bl zUOUBrTh8Wh5<1m~Fe-t>a;E{U%C4@isX46D5(JC1S?L9ZdB{@f@fxTfIdY@V$lJSg z3SZ!T1#K^<_>p@}qb~s3+1BaWaymGNg09DRtxT9MUot8EuZF=_z`tn6M(R%P)R3<-C7@M+FxPwyQ!#Lqt=K7Ffcn<$V8gM zsy_T&GG^Cq-MW=L_!)B{)LzAxN7y<$JE!ngkmuxuPL~aaFcZQX9bdK&ofI&YL*HG8 z!~_T9u#;vUG~_Ia41~pI+lQxtJVfur#^a3x8B)1-MSS^kVRvv{M|*prCwlasCw7*Z z_56q^C@6r1>@~ay#$Dt(ikFg`AhSwEF`yvxuUgLd-XJ#wvWxF?MD$@cnRJ3zAgPQj+&ewTvdCP@pEENz<`v6j8p()Igw7Ru*&|jBeFYHnf^g_6c=@8Zn7ffr z#an@N-(g!Zua6eN%%bemPd3)mXglITwYIh{9*9($N?Kc{C7%#Cw>^98J44~w`D0$j z-bO}$fpunOZQTbQcMUeqi22`mkL$=H67wT-Fs)nB@Zgj(Zkl*O66iugXj63)t|OvL z6a~PxZQI--RC5}9%R%yR@Y-TJcmP?2KEDRJP{X(x>9Mi$@F5Oe^jYula41f_q*{o) zE6+tbq>iXq`s0rg~Vot%s!A0j|6VNby5ke_@f|Gs^@5-IcyoZBlPlfL+O zrlzL6D7j53QM1NuV?bmn#$$n)If0U None: + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + # When running on the CuDNN backend, two further options must be set + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + # Set a fixed value for the hash seed + os.environ["PYTHONHASHSEED"] = str(seed) + print(f"Random seed set as {seed}") + + +def _setup_parser(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--n_wires", type=int, default=6, help="Number of wires used in the circuit" + ) + parser.add_argument( + "--epochs", type=int, default=10, help="Number of training epochs" + ) + parser.add_argument( + "--n_blocks", type=int, default=6, help="Number of blocks in ansatz" + ) + parser.add_argument( + "--n_layers_per_block", + type=int, + default=1, + help="Number of layers per block in ansatz", + ) + parser.add_argument( + "--plot", + action="store_true", + help="Visualize the predicted probability distribution", + ) + parser.add_argument( + "--optimizer", type=str, default="Adam", help="optimizer class from torch.optim" + ) + parser.add_argument("--lr", type=float, default=1e-2) + return parser # Function to create a gaussian mixture def gaussian_mixture_pdf(x, mus, sigmas): - mus, sigmas = np.array(mus), np.array(sigmas) - vars = sigmas**2 - values = [ - (1 / np.sqrt(2 * np.pi * v)) * np.exp(-((x - m) ** 2) / (2 * v)) - for m, v in zip(mus, vars) - ] - values = np.sum([val / sum(val) for val in values], axis=0) - return values / np.sum(values) - -# Create a gaussian mixture -n_wires = 6 -x_max = 2**n_wires -x_input = np.arange(x_max) -mus = [(2 / 8) * x_max, (5 / 8) * x_max] -sigmas = [x_max / 10] * 2 -data = gaussian_mixture_pdf(x_input, mus, sigmas) - -# This is the target distribution that the QCBM will learn -target_probs = torch.tensor(data, dtype=torch.float32) - -# Ansatz -layers = tq.RXYZCXLayer0({"n_blocks": 6, "n_wires": n_wires, "n_layers_per_block": 1}) - -qcbm = QCBM(n_wires, layers) - -# To train QCBMs, we use MMDLoss with radial basis function kernel. -bandwidth = torch.tensor([0.25, 60]) -space = torch.arange(2**n_wires) -mmd = MMDLoss(bandwidth, space) - -# Optimization -optimizer = torch.optim.Adam(qcbm.parameters(), lr=0.01) -for i in range(100): - optimizer.zero_grad(set_to_none=True) - pred_probs = qcbm() - loss = mmd(pred_probs, target_probs) - loss.backward() - optimizer.step() - print(i, loss.item()) - -# Visualize the results -with torch.no_grad(): - pred_probs = qcbm() - -plt.plot(x_input, target_probs, linestyle="-.", label=r"$\pi(x)$") -plt.bar(x_input, pred_probs, color="green", alpha=0.5, label="samples") -plt.xlabel("Samples") -plt.ylabel("Prob. Distribution") - -plt.legend() -plt.show() + mus, sigmas = np.array(mus), np.array(sigmas) + vars = sigmas**2 + values = [ + (1 / np.sqrt(2 * np.pi * v)) * np.exp(-((x - m) ** 2) / (2 * v)) + for m, v in zip(mus, vars) + ] + values = np.sum([val / sum(val) for val in values], axis=0) + return values / np.sum(values) + + +def main(): + set_seed() + parser = _setup_parser() + args = parser.parse_args() + + print("Configuration:") + pprint(vars(args)) + + # Create a gaussian mixture + n_wires = args.n_wires + assert n_wires >= 1, "Number of wires must be at least 1" + + x_max = 2**n_wires + x_input = np.arange(x_max) + mus = [(2 / 8) * x_max, (5 / 8) * x_max] + sigmas = [x_max / 10] * 2 + data = gaussian_mixture_pdf(x_input, mus, sigmas) + + # This is the target distribution that the QCBM will learn + target_probs = torch.tensor(data, dtype=torch.float32) + + # Ansatz + layers = tq.RXYZCXLayer0( + { + "n_blocks": args.n_blocks, + "n_wires": n_wires, + "n_layers_per_block": args.n_layers_per_block, + } + ) + + qcbm = QCBM(n_wires, layers) + + # To train QCBMs, we use MMDLoss with radial basis function kernel. + bandwidth = torch.tensor([0.25, 60]) + space = torch.arange(2**n_wires) + mmd = MMDLoss(bandwidth, space) + + # Optimization + optimizer_class = getattr(torch.optim, args.optimizer) + optimizer = optimizer_class(qcbm.parameters(), lr=args.lr) + + for i in range(args.epochs): + optimizer.zero_grad(set_to_none=True) + pred_probs = qcbm() + loss = mmd(pred_probs, target_probs) + loss.backward() + optimizer.step() + print(i, loss.item()) + + # Visualize the results + if args.plot: + with torch.no_grad(): + pred_probs = qcbm() + + plt.plot(x_input, target_probs, linestyle="-.", label=r"$\pi(x)$") + plt.bar(x_input, pred_probs, color="green", alpha=0.5, label="samples") + plt.xlabel("Samples") + plt.ylabel("Prob. Distribution") + + plt.legend() + plt.show() + + +if __name__ == "__main__": + main() From dc41accff5e8ac2a2feea331f4d3ad879c22cff0 Mon Sep 17 00:00:00 2001 From: Gopal Dahale Date: Thu, 6 Jun 2024 14:26:57 +0530 Subject: [PATCH 05/11] Added qcbm gaussian mixture notebook --- examples/QCBM/qcbm_gaussian_mixture.ipynb | 255 ++++++++++++++++++++++ 1 file changed, 255 insertions(+) create mode 100644 examples/QCBM/qcbm_gaussian_mixture.ipynb diff --git a/examples/QCBM/qcbm_gaussian_mixture.ipynb b/examples/QCBM/qcbm_gaussian_mixture.ipynb new file mode 100644 index 00000000..849f7cdc --- /dev/null +++ b/examples/QCBM/qcbm_gaussian_mixture.ipynb @@ -0,0 +1,255 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1cfe7a69-13c6-48ce-bc02-62e2047eef22", + "metadata": {}, + "source": [ + "# Learning Gaussian Mixture with Quantum Circuit Born Machine\n", + "\n", + "A QCBM is a generative model that represents the probability distribution of a classical dataset as a quantum pure state. It is a quantum circuit that generates samples via projective measurements on qubits. Given a target distribution $\\pi(x)$, we can generate samples closer to it using a QCBM.\n", + "\n", + "The Kerneled MMD loss is used to measure the difference between the generated samples and the target distribution.\n", + "\n", + "$$\n", + "\\mathcal{L} = \\underset{x, y \\sim p_\\boldsymbol{\\theta}}{\\mathbb{E}}[{K(x,y)}]-2\\underset{x\\sim p_\\boldsymbol{\\theta},y\\sim \\pi}{\\mathbb{E}}[K(x,y)]+\\underset{x, y \\sim \\pi}{\\mathbb{E}}[K(x, y)]\n", + "$$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4d440b94-63d4-4f6d-882e-45827d54cb4d", + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import torch\n", + "from torchquantum.algorithm import QCBM, MMDLoss\n", + "import torchquantum as tq\n", + "from qcbm_gaussian_mixture import gaussian_mixture_pdf" + ] + }, + { + "cell_type": "markdown", + "id": "2d14c9f7-4e5d-4fe1-98b4-83962d949519", + "metadata": {}, + "source": [ + "We use the function `gaussian_mixture_pdf` to generate a gaussian mixture which will be the target distribution $\\pi(x)$." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5483ab05-1a08-4bdc-8799-0e67433131af", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABjIklEQVR4nO3de1yT1/0H8E8SSMItQe6gKKgoXhAUBFHrlYqta2tnW3V2Oudq29XWlm6tdq3a9WIvPzvX6urc1su2Wq1ba621rIhWa0UR8Ib3G4JiuIgkEEjI5fn9AYmlogICTy6f9+uVV2ty8uSbx5jnm3O+5xyJIAgCiIiIiJycVOwAiIiIiDoCkxoiIiJyCUxqiIiIyCUwqSEiIiKXwKSGiIiIXAKTGiIiInIJTGqIiIjIJTCpISIiIpfgIXYAXcVqtaK0tBR+fn6QSCRih0NEREStIAgCampqEBERAan05n0xbpPUlJaWIjIyUuwwiIiIqB1KSkrQo0ePm7Zxm6TGz88PQONJUalUIkdDREREraHT6RAZGWm/jt+M2yQ1tiEnlUrFpIaIiMjJtKZ0hIXCRERE5BKY1BAREZFLYFJDRERELoFJDREREbkEJjVERETkEpjUEBERkUtgUkNEREQugUkNERERuQQmNUREROQSmNQQERGRS2BSQ0RERC6BSQ0RERG5BCY1RERE5BKY1JDbK68xNPvz378/h//730noDCaRIiIiovZgUkNuq77Bgne+PYnRb+7A9hNlAIDqugas3HYaq3acwc6TFSJHSNSyPWcq8cD7e7Bm51mxQyFyKB5iB0DU1QRBwNYjGrz29TGUaht7ab49WoYJsaFQe3lixUPx2HL4MqbEhdufc75Sj54B3pBJJWKFTYTCS1q8mXkC35+uRDdvT/x9eJL9MUEQIJHw80nujUkNuZUz5bV4aVMhcs5dAQB09/fCi1MGYPLgMACARCJB+qAwpA8Ksz9HbzTjwTU5CPKVY83DiYgK8hEldnJfRZV6/N+3J7Hl8GUAgKdMgnviI2C2CgAaE5p5H+dhYLgKvx3fB95yfrWTe+Inn9yGts6EGWtzUFnbAIWHFI+N7YPHxvaBl1x20+ed0OhgNFtwQlODZzcewsZHUyFljw11gfIaA97LPoNPc4vtCcx9CRF49s7+6BnobW+391wVtp8ox+4zlXgoKRI9A/nVTu6Jn3xyG3/adgqVtQ3oHeSDj3+djMgA71s/CUBirwBkPj0Gk97ZifwLV/FZXglmJPfs5GjJ3ZVW12PKu9/jal1jwfrYfsF4bnJ/DIpQX9d2RO8ArHl4GDRaQ7Nkh8jdsFCY3MKxUh3+mVMEAPjjfYNbndDYdPf3wjN39gMALP/mBCprjR0dIlEzSzcfxdU6E/qG+OLTR0bg418nt5jQAI3DppMHh+NXo6Lt9xVe0uJfTZ95InfBpIZcniAIWLq5EFYBuDsuDKNjgtp1nF+NjMLAcBW09Sa8vvV4B0dJdM3/jmqQdawMHlIJ/jJrGFL7BLbp+WfKa3Hvqt1Y9tUxnNTUdFKURI6HSQ25vC8PlmJ/0VV4ecrw4pSB7T6Oh0yK138eB4kE+LzgEvacrezAKIka1RrNWLb5KADgkTG90S/Ur83H6Bvii0kDw2CxCnjpy0IIgtDRYRI5JCY15NJqDCa81tSrsmBCX0T4e93W8RIi/fFwSi8AwIubCmE0W247RqIf27C/BJe1BkQGeOGpCTHtPs5L9wyE0lOK3PNV2HyotAMjJHJcTGrIpZ0ur4XZYkV0kA9+c0f0rZ/QCr9L749gPwXOVeixdue5Djkmkc3ckVF4/f44vH5/3C1n5t1Md38vLBjfFwDw2tfHUcMVsskNtCupWb16NaKioqBUKpGSkoLc3Nybtt+4cSNiY2OhVCoRFxeHrVu3Nnt82bJliI2NhY+PD7p164a0tDTs27evWZuqqirMmjULKpUK/v7+mDdvHmpra9sTPrmRYT27YcfvxuEvs4ZB4dH+C8SPqb088dLPGoex3ttxBkWV+g45LhEASKUS/CKlJ+6ICb7tYz0ypjeiAr1RXmPEu9mnOyA6IsfW5qRmw4YNyMjIwNKlS1FQUID4+Hikp6ejvLy8xfZ79uzBzJkzMW/ePBw4cABTp07F1KlTUVhYaG/Tr18/rFq1CkeOHMHu3bsRFRWFSZMmoaLi2jL1s2bNwtGjR5GVlYUtW7Zg165dmD9/fjveMrkbf285BoSrOvSY9wwJxx0xQWgwW1mzQB0ir6gKdQ3mDj2mwkOGpfcOAgB8+EMRTpWxaJhcm0Ro47dxSkoKhg8fjlWrVgEArFYrIiMj8eSTT2LRokXXtZ8+fTr0ej22bNliv2/EiBFISEjAmjVrWnwNnU4HtVqNbdu2YeLEiTh+/DgGDhyI/fv3IympcVnwzMxM3H333bh48SIiIiJuGbftmFqtFipVx17gyPFkHy+D0WzFXYPDOm3p+KJKPSat3IUGsxX//HUyxvS7/V/W5J7KdAZMXLETai9PrJ8/os1LDtzKI//MQ9axMozoHYBPHxnB7RTIqbTl+t2mnpqGhgbk5+cjLS3t2gGkUqSlpSEnJ6fF5+Tk5DRrDwDp6ek3bN/Q0IC1a9dCrVYjPj7efgx/f397QgMAaWlpkEql1w1T2RiNRuh0umY3cg96oxl/+KIQv/2kABvzL3ba60QF+WDxXbH40/R43NHOaeJEAKDRGqD28kSwn+K2i9lbsuRnA6HwkGLvuSp81bTVApEralNSU1lZCYvFgtDQ0Gb3h4aGQqPRtPgcjUbTqvZbtmyBr68vlEol/vSnPyErKwtBQUH2Y4SEhDRr7+HhgYCAgBu+7vLly6FWq+23yMjItrxVcmIyqQTTh0eib4gv7o2/dS/e7Zg7Khr3D+3BX750W+Ij/ZGVMQarZw3rlE1TIwO88YS9aPgYao0dO8xF5CgcZvbT+PHjcfDgQezZsweTJ0/GQw89dMM6ndZYvHgxtFqt/VZSUtKB0ZIjU3rK8Myd/ZC58A4oPTumOLg1zBYrzBZrl70euRZvuQe6d0Ivjc38Mb3RK9AbZToj3mPRMLmoNiU1QUFBkMlkKCsra3Z/WVkZwsLCWnxOWFhYq9r7+Pigb9++GDFiBP7xj3/Aw8MD//jHP+zH+GmCYzabUVVVdcPXVSgUUKlUzW7kXjxkXZezf/jDeYx+cwe2Frbcc0jUkm+PavDZ/pIOLxBuidJThqX3NM7a+2hPEa5wqw9yQW361pfL5UhMTER2drb9PqvViuzsbKSmprb4nNTU1GbtASArK+uG7X98XKPRaD9GdXU18vPz7Y9v374dVqsVKSkpbXkL5MIEQcDLXx1F1rEymLq4x6S6zgSNzoAtXOSM2uDd7afx3H8P49PcrulJnhAbiicn9MUXvx2FQF9Fl7wmUVdq8y7dGRkZmDNnDpKSkpCcnIyVK1dCr9dj7ty5AIDZs2eje/fuWL58OQBg4cKFGDt2LFasWIEpU6Zg/fr1yMvLw9q1awEAer0er732Gu69916Eh4ejsrISq1evxqVLl/Dggw8CAAYMGIDJkyfjkUcewZo1a2AymbBgwQLMmDGjVTOfyD0cLdXhwx+K8Mm+Yux/IQ1q767rqZmRHImYUF/cOTD01o2J0LjhZOElHeQyKe4f2r3LXvfZSf277LWIulqbk5rp06ejoqICS5YsgUajQUJCAjIzM+3FwMXFxZBKr11MRo4ciXXr1uHFF1/ECy+8gJiYGGzatAmDBw8GAMhkMpw4cQIff/wxKisrERgYiOHDh+P777/HoEGD7Mf55JNPsGDBAkycOBFSqRTTpk3Du+++e7vvn1zIxrzGX7vpg8Kg9vbs0tcOV3vhZ0M6rx6CXM+G/U2f18FhCPCRixKDIAgscieX0uZ1apwV16lxbUazBSmvZ6O6zoSPf52MsSKuGWO1Nv6TknbCLBZyDfUNFiS/vg01BjM++U0KRvXt2iUBLlzR473tZ6A3mvH+w4ld+tpEbdVp69QQOars4+WorjMhTKXE6C6+QPzYP3OKMO7/vsOOk+2fuUeub+uRy6gxmNEzwBupvQNFieE/+ReReVQDjdYgyusTdYY2Dz8ROaL/NC2y9/Nh3TtlnY/WKr5Sh+KqOqzfX4KJA1hfQy1bv78YADB9eKQoPXq9An3w/ORYDI/qhlAVC4bJdbCnhpxeuc6Anaca9wl7ILGHqLFMH964yOP2E+Uo1/EXMF3vTHkt9hddhUwqEfXz+vi4PkiKCmBNDbkUJjXk9L44cAkWq4DEXt3QO9hX1FhiQv2Q2KsbLFYB/ynovC0ayHltaOqlGd8/BKEqpcjRELkWJjXk1ARBsA89id1LY2Prrdmwv4S7d1MzDWYr/ltwCQAwY7j4W7ecr9TjxU1H8OqWY2KHQtQhmNSQUzt0UYvT5bVQekoxZUi42OEAAKbEhcNX4YELV+qw91yV2OGQA8k6VoYqfQNCVQqM6y/+ru7lOgP+vbcYn+YWd8mqxkSdjUkNObX/5Deu9TF5UBhUyq5dm+ZGfBQeuKdpI03bUAMRcK1A+MHEyC7dxuNGkqMD0CvQG/oGC745wi0+yPmJ/6+KqJ0MJgs2H2zcluCBRPG78n/MNrSwtVADbZ1J5GjIEegMJhwqqQZwbYhSbBKJBA8Maxy23ZjPTX/J+TGpIad1+KIWdQ0WRKiVGNlHnLU+bmRIDzViw/zQYLZi08FLYodDDkCl9MTeFybiw7nDERngLXY4dtMSe0AiAfaeq0LxlTqxwyG6LUxqyGklRwdg3wsT8d4vhjnc6r0SicTeW/NpbjELhgkA4C33wPj+IWKH0UyEv5d9wUrO2CNnx6SGnFqgrwKJvbqJHUaLpg7tDrmHFCc0NThySSt2OCSiGoPJoRNb28zB/+ZftG/zQeSMmNSQU3KGmRr+3nLcNTgMALB+P+sV3FnGZ4eQvnIX9p67InYoLUofFAY/pQcuVdcjx0FjJGoNJjXkdARBwD3v7cZDf83B+Uq92OHc1IOJkegd5IMINRdZc1d6oxl7z17BqbJaBIq0G/etKD1l9hl7tnWfiJwRkxpyOic0NThboceRi1oE+zn2vjWj+gZi++/GYcGEGLFDIZH4KDzww+IJ+MusYYgJ9RM7nBt6sGkI6pvCy9AZOGOPnBOTGnI6A8JV2LNoAv76y0T4Khx7T1buq0NA48ynu+McY3HIG0mI9EffEF8YTFZ8ffiy2OEQtQuTGnJKEf5eGNNP/BVZW8totjhsPQUR0JiAT2tasyazkAvxkXNiUkPUyQwmC5Jfy8aMtXtx4Ypj1wBRx/riwEVMXf0DNuY5R6F42oDG6eY6g4mzoMgpMakhp/LlwUv41Ye52HrEebrHlZ4yDIpQIcRPgZKqerHDoS707dEyHCypRkmVcyxq1zfEF3sXT8QXvx3lcGs/EbWGYxckEP3Et8fK8N3JCgzprnb4GoUfW/WLYfD38uSFwo0YzRbsOlUBAEgbGCpyNK0jkUgQxpl65MTYU0NOw2Sx2i8S42Ida1XWWwnwkTOhcTN7z1VB32BBiJ8CgyPUYofTZvUNFodeMJCoJUxqyGkUXLiKGoMZAT5yxPfwFzucdrFYBW5w6Sa2HSsDAEwcEOpUCa0gCHj0X3mI/+O3OFVWK3Y4RG3CpIacxo6Tjb00Y/sFQ+ZEFwmbrUcuI+X1bXjpy0KxQ6FOJggCth1vTGruHOhcvYoSiQRGsxUNZityzlaKHQ5Rm7CmhpzGdyfLAQDj+jvPVO4fC1UpUFnbgO9OlsNkscJTxt8UrupoqQ6XtQZ4ecowsk+Q2OG02e8m9ccf7h6AviG+YodC1Cb8ViWnUFpdjxOaGkglwJgY50xqEiK7IcBHDp3BjP1FVWKHQ50o+3hjAn5HTBCUnjKRo2m7wd3ViAn14+KR5HSY1JBT2NHUSzO0Zzd0c9D9c25FJpVgQlOBs+2iR67JNvTkLLOeiFwFkxpyCjtONNbTjHfSoScb2+Jm246XcWaJi7qsrceRS1pIJLAnsc7o8MVqPLGuAMs2HxU7FKJWY1JDDs9otuCHM40Fi+Od+CIBAHfEBEMuk+LClTqcreDMEldk64UbGumPIF/H3nD1ZmqNZnx9+DK2HC7l6sLkNJjUkMPLPV+FelPjeh8Dw1Vih3NbfBQeSO0TCADYxiEol+QqQ09JvQLgq/BAZW0DjlzSih0OUaswqSGHd23oKcQlChftQ1BN65iQ6zBbrDhWqgMA3DnAuZMauYcUd8Q0ztzafoIJODkHJjXk8K4NPTl3PY3NhKaLXUHxVVypNYocDXUkD5kUexZNwH8fT3WJ6dDj+zcm4LblFIgcHZMacnhfPDESf5+dhNFOOpX7p7r7e2FguApW4dqCguQ6PGRSJPYKcIlexXFNPyQOXdSiooYJODk+JjXk8LzlHkgbGApfheusFWkbgso+ziEoVyEIgsvNaAvxUyKue+O+VeytIWfApIZIBBObhqB2naqA0WwRORrqCAXFVzHqje14+38nxA6lQ9mWUfiOvYrkBJjUkMOqazDjvtU/4P/+d9LlLvxx3dUIVSkQHeyDMi279V3BtuPlKNUacPFqvdihdCjbMgq7TlXAZLGKHA3RzblOfz65nJyzV3CopBpXao14dlI/scPpUFKpBNnPjnOpITV3t3BiDJJ6dUOgE69N05IhPfwR4CNHlb4B+ReuYkTvQLFDIrohfqOSw0rs1Q3vPBQPs1VwiaLLn2JC41qUnjL7sKIrkUklGNcvGJ8fuIQdJ8qZ1JBD4/ATOSx/bzl+PqwHHkqKFDuUTlXfYIHeaBY7DKIbsg1Bcb0acnRMaohE9OqWY4h/+Vt8XnBR7FDoNizbfBRvfHMCF6/WiR1KpxgTEwyZVIKzFbUo1xnEDofohtj/TQ7p26MaFF3RY0JsqEssYnYjai9PNFisKLykEzsUaieDyYJPc4thNFvx82HdxQ6nU6i9PfGPOUn2+hoiR8WkhhzSZ3kl2Ha8HIIAl05qpg+PxM/iIxAV6C12KNROBcVXYTRbEeynQIwLf1bH9XfuzWTJPTCpIYdjsQrIPV8FAC5flBiiUoodAt0m2zYeo/sGuWRBO5EzYU0NOZzjl3XQGczwVXhgUIRz78pNru+HM1cAACP7uHYCDgD/2H0ev/jbXhRy125yUO1KalavXo2oqCgolUqkpKQgNzf3pu03btyI2NhYKJVKxMXFYevWrfbHTCYTnn/+ecTFxcHHxwcRERGYPXs2SktLmx0jKioKEomk2e2NN95oT/jk4Paea7xIJEV1g4fM9fPuExodHv93PhasKxA7FGojbb0Jhy9WAwBG9Q0SN5gukHO2EnvOXkHO2Stih0LUojZfMTZs2ICMjAwsXboUBQUFiI+PR3p6OsrLW57qt2fPHsycORPz5s3DgQMHMHXqVEydOhWFhYUAgLq6OhQUFOCll15CQUEBPv/8c5w8eRL33nvvdcf64x//iMuXL9tvTz75ZFvDJyewz02GnmykEgm+KdRg2/EyGEyutXKyq9t77gqsAtA72AcR/l5ih9PpfpHSE69OHYzJg8PEDoWoRW2uqXnnnXfwyCOPYO7cuQCANWvW4Ouvv8YHH3yARYsWXdf+z3/+MyZPnozf//73AIBXXnkFWVlZWLVqFdasWQO1Wo2srKxmz1m1ahWSk5NRXFyMnj172u/38/NDWBj/MbkyqxvV09jEhPgi2E+BihojCoqvYmQf1//F7yr2/Kiexh1MiHW9xQXJtbSpp6ahoQH5+flIS0u7dgCpFGlpacjJyWnxOTk5Oc3aA0B6evoN2wOAVquFRCKBv79/s/vfeOMNBAYGYujQoXj77bdhNnPBMldzXKODtt4EH7kMg92knkYikdjrMfacYbe+M9ndlNQwESVyDG3qqamsrITFYkFoaPNsPTQ0FCdOtLwzrUajabG9RqNpsb3BYMDzzz+PmTNnQqW6dlF76qmnMGzYMAQEBGDPnj1YvHgxLl++jHfeeafF4xiNRhiN1zYK1Om4Dogz2HeusZcmKSrALeppbEb1DcKXB0vxw9lK/A79xQ6HWkGjNeBshR5SCZDqJr2KAFBSVYedpyoQ4a9kzw05HIea0m0ymfDQQw9BEAS8//77zR7LyMiw//+QIUMgl8vx6KOPYvny5VAort9Abvny5Xj55Zc7PWbqWLYiYXcZerKxFZkevqiFzmCCSukpckR0K7ap3HE9/KH2dp+/r/8d1eDVr49jYmwIkxpyOG36KRwUFASZTIaysrJm95eVld2w1iUsLKxV7W0JzYULF5CVldWsl6YlKSkpMJvNKCoqavHxxYsXQ6vV2m8lJSW3eHckNqtVQG5RY09NSu8AkaPpWt39vRAV6A2LVbD3VpFju7Y+jXsl4LYfHLnnq2CxCiJHQ9Rcm5IauVyOxMREZGdn2++zWq3Izs5Gampqi89JTU1t1h4AsrKymrW3JTSnT5/Gtm3bEBh46y+JgwcPQiqVIiSk5VUuFQoFVCpVsxs5tpNlNaiuM8FbLkNcd7XY4XQ5W2+N7WJJjksQBHs9zSg3q6cZEK6Cn9IDNUYzjpVyWJ8cS5uHnzIyMjBnzhwkJSUhOTkZK1euhF6vt8+Gmj17Nrp3747ly5cDABYuXIixY8dixYoVmDJlCtavX4+8vDysXbsWQGNC88ADD6CgoABbtmyBxWKx19sEBARALpcjJycH+/btw/jx4+Hn54ecnBw888wzePjhh9GtW7eOOhcksmvr0wTA043qaWxG9Q3CJ/uKsecskxpn8Pc5Sdh9phLDernXd5BMKkFyVACyT5Rj77kriOvhfj9AyHG1OamZPn06KioqsGTJEmg0GiQkJCAzM9NeDFxcXAyp9NoFaeTIkVi3bh1efPFFvPDCC4iJicGmTZswePBgAMClS5ewefNmAEBCQkKz19qxYwfGjRsHhUKB9evXY9myZTAajYiOjsYzzzzTrM6GnF9ir26YP6Y3YsP8xA5FFKm9AyGRAKfKGndC5hYKjksikWBID38M6eEvdiiiGNE70J7UPDKmt9jhENlJBEFwi0FRnU4HtVoNrVbLoShyWD9773sUXtJh5fQETB3qmjs+k/M7clGLe1bthp/CAweXToJMyj2vqPO05frtfn38RA7MVp/BuhrHZbZY8YcvjuDLg5dgsljFDkcUAyNU8FOwroYcD5Macgj5F65i16kK6I3uvaDiyKZi4T3cW8dhHb6kxSf7irHky6OQuumu3DKpBMnRjTMUbbVwRI6ASQ05hH/sPofZH+Tiwx/Oix2KqJKjAvCXWcOw5cnRYodCNxDgLcf8Mb0xIznSrYddbFO7mdSQI3GoxffIfYWrvdDd3wupfdxrzY+f8pLLcHdcuNhh0E1EBfnghbsHiB2G6H66Xo07J3jkOJjUkEN46WcD8dLPBsJN6taJnN5P62o4tZscAYefyKFI3LRG4cf0RjP+vO00fv3Rfli5YqtDOVNei12nKlDfYBE7FNGxroYcEZMaEt3Fq3W8eP+IwkOKv31/DttPlOPYZc4scSQb80ow+4NcLN1cKHYoDuHuuHDMSumJIeylIQfB4ScSlSAIuG/VDzBZrPjv4yMRE+qeC+/9mIdMiifG94XKywPhai7A50h+aFrt2balhbubltgD0xJ7iB0GkR2TGhLVmfJaXNE3QOEhRc9Ab7HDcRiPj+sjdgj0E1X6BhxtWpNlpJvt90TkLJjUkKj2nm/ckTqxVzcoPGQiR0N0Yzlnr0AQgP6hfgj2U4gdjsNoMFtx5FI1pBIJhvZ0r32wyPGwpoZEZSswtE0PpWvOVtTiXzlFOF1WI3YoBA493cg/c4ow7f0crNp+RuxQiJjUkHgEQcA+JjU39E7WKbz05VFkFmrEDoXQ2FMDAKP68rP6YynRgQjwkSPARy52KERMakg8Zyv0qKxtrKeJj+TsiZ8a0TRddl/TEB2JR6M14HylHlIJMLzp74UaDe6uQt4f0vD2g/Fih0LEpIbEYxt6GtaT9TQtsfVe5V2oQoPZPTdOdBT7zjd+Vgd3V0Ol9BQ5GscikUgg5WrC5CCY1JBo9hc19kAk85dvi/qG+CLQRw6DyYrDF6vFDsetsfbr1gRBQHmNQewwyM0xqSHR5BVdBQAMj2JS0xKJRIKU3hyCcgR7zzWe/xG9+VltSUlVHVKXb8fEFTu5kCaJikkNiUKjNeBSdT2kEiChp7/Y4Tgs7oQsvh/X0yQxAW9RuFoJncGEGoMZp8trxQ6H3BiTGhJF/oXGXpoB4Sr4Krhc0o2kRDfV1RRdhcnCuhox2OppBkWwnuZGPGRSJET6A2isASMSC5MaEoXtiy+pFxfrupmYEF8E+MhRb7Lg8EWt2OG4JZWXJ+6ICcL4/sFih+LQbP+W85uGlYnEwJ/IJIoqfQMkEiCR3fk3JZVKkBwVgMyjGuw9dwWJTAK73Pj+IRjfP0TsMBye7d/yfvbUkIjYU0Oi+POMoTi0dBLuHBAqdigObwSLhckJDO3pD4kEKKmqR7mOs6BIHExqSDQqpSe85Fyf5lZG9LHV1VSxrqaLXbxax2nKraRSeiI2TAUAyLvAISgSB5Ma6nKCwCmfbdEvxA/+3p6oa7DgyCXW1XSl1TvOIPm1bKzewX2NWsNWV5PHuhoSCZMa6nKP/isfD7y/B/kce28VqVSCacN64JcjekGlZBlcV7LVfsWG+YkdilNIimoqFua/bRIJvyGpS1mtAnLOXUGNwcytEdrgpZ8NFDsEt/TXXyahuq4BSk9+VlvDVsh+tFSH+gYLh5epyzGpoS4lkQCbF4xGXlEVf/2SU/D35u7TrdXd3wthKiU0OgMOllQjtQ+3laCuxeEn6lISiQTRQT54MCkSHjJ+/NqiwWxFXlEVSqvrxQ7FLXC5/7aTSCRI5BAUiYhXFSIn8fSGA3hgTQ42HyoVOxS3cNefv8dDa3JwroLL/rfF8KYhqKIrdSJHQu6Iw0/UpV7aVIioIB88kNgDai8uOd8Ww3p2w75zVbCwB6HTabQGnCyrgVQCBPoqxA7HqUwd2h13x4UjRKUUOxRyQ0xqqMuU1xjwr70XIJEADyb1EDscp/PL1F6YNzoaEolE7FBc3o/3e2Ly3TasQSIxMamhLlPQtCBX/1A/bgzYDpwt1nVsu6LbVnMmIufAmhrqMrYFubh/0e0RBAE1BpPYYbi0vecai1xH9ObsnfbYe+4KZn+Qi5c2FYodCrkZJjXUZWxLp9sW6KK2236iDCmvZ2Ph+oNih+KyNFoDzlfqIZUASdxwtV0azFbsOlWB706Vix0KuRkOP1GXMJgsOFrauMR/Ui9eKNorxE+J8hoj9p9vLBiWSVlf09FYT3P7hvXqhmX3DGRSSF2OPTXUJQ6VVMNkERDip0CPbl5ih+O0BoSr4Kf0QI3RjGOlOrHDcUmsp7l9vgoP/GpUNAZ3V4sdCrkZJjXUJX489MTZO+0nk0qQ3PTr13bxpY7Fehoi58WkhrpEflNSM6wn62lul+1iy6Sm47GepuNo601Yn1uMldtOiR0KuREmNdTprFbBntTwQnH7UpqGRXKLuBBfR2M9TcepNZqx6PMjWLX9DOoazGKHQ26CSQ11unOVtdDWm6D0lGJQhErscJzewHAV/BQeqDGYcfwy62o6EutpOk53fy+Eq5UwWwUcLKkWOxxyE0xqqNPZ1qeJ7+EPT25ieds8ZFIMj2ZdTWc4UFwNgPU0HcW2JlV+03cAUWfjFYY6Hden6Xi2noScs0xqOtKXC0bhs0dTkcKkpkMkNSU1tu8Aos7GdWqo090bHwGV0hMTYkPEDsVlpPYOAgDkcr2aDqXwkCE5mkNPHcVWQ1dQfBVWqwApP6fUyZjUUKcb0y8YY/oFix2GSxkY0bRejcGMo6VaDOnhL3ZIRNeJDfODt1yGGoMZp8prEBvGmjrqXO0aflq9ejWioqKgVCqRkpKC3Nzcm7bfuHEjYmNjoVQqERcXh61bt9ofM5lMeP755xEXFwcfHx9ERERg9uzZKC0tbXaMqqoqzJo1CyqVCv7+/pg3bx5qa2vbEz6R05NJJUhhXU2HmvNBLpZ8WYiKGqPYobgMD5kUQ3v6A7hWW0fUmdqc1GzYsAEZGRlYunQpCgoKEB8fj/T0dJSXt7zHx549ezBz5kzMmzcPBw4cwNSpUzF16lQUFjZudFZXV4eCggK89NJLKCgowOeff46TJ0/i3nvvbXacWbNm4ejRo8jKysKWLVuwa9cuzJ8/vx1vmbrSD2cqsedMJad0dgJbMev5Sr3IkTi/i1frsPNUBT7ZVwwvOXdD70iJTdui5BVViRwJuQOJIAhtWugiJSUFw4cPx6pVqwAAVqsVkZGRePLJJ7Fo0aLr2k+fPh16vR5btmyx3zdixAgkJCRgzZo1Lb7G/v37kZycjAsXLqBnz544fvw4Bg4ciP379yMpKQkAkJmZibvvvhsXL15ERETELePW6XRQq9XQarVQqdgF2lUeeH8P8i5cxf89GI8HEnuIHY5LuapvQIPFilCVUuxQnF5dgxm7TlXgwpU6PDq2j9jhuJRdpyow+4Nc9Ojmhd3PTxA7HHJCbbl+t6mnpqGhAfn5+UhLS7t2AKkUaWlpyMnJafE5OTk5zdoDQHp6+g3bA4BWq4VEIoG/v7/9GP7+/vaEBgDS0tIglUqxb9++Fo9hNBqh0+ma3ajr9Qz0RoRaaZ/aSR2nm4+cCU0H8ZZ7YPLgcCY0nWBoT39IJcDFq/Uo0xnEDodcXJuSmsrKSlgsFoSGhja7PzQ0FBqNpsXnaDSaNrU3GAx4/vnnMXPmTHtGptFoEBLSfOaMh4cHAgICbnic5cuXQ61W22+RkZGteo/Usd55KAF7Fk9EVKC32KEQkQj8lJ7o31QgXMCp3dTJHGqdGpPJhIceegiCIOD999+/rWMtXrwYWq3WfispKemgKKk9uIll5zh8sRqzP8jFbz/JFzsUp1VaXY+V205hP2s+Ok1iL38A1/aAI+osbZrSHRQUBJlMhrKysmb3l5WVISwsrMXnhIWFtaq9LaG5cOECtm/f3mzcLCws7LpCZLPZjKqqqhu+rkKhgEKhaPV7o45XXmNAsK+CCU0n8pBKsetUBbzlMpgsVq7Y3A7fn67Aym2nsft0Jf7z+Eixw3FJE2JDYLEKGNU3SOxQyMW16RtQLpcjMTER2dnZ9vusViuys7ORmpra4nNSU1ObtQeArKysZu1tCc3p06exbds2BAYGXneM6upq5Odf+zW6fft2WK1WpKSktOUtUBcRBAH3vLcbQ1/JwklNjdjhuKzYMD+8fO8g/PfxkfDgwmbtYluVObUPVxHuLBNiQ7H850MwngtwUidr8+J7GRkZmDNnDpKSkpCcnIyVK1dCr9dj7ty5AIDZs2eje/fuWL58OQBg4cKFGDt2LFasWIEpU6Zg/fr1yMvLw9q1awE0JjQPPPAACgoKsGXLFlgsFnudTEBAAORyOQYMGIDJkyfjkUcewZo1a2AymbBgwQLMmDGjVTOfqOuVag0o0xnhIZWgZwDraTqLVCrBnJFRYofhtARBQE7TOj+p3BqByOm1OamZPn06KioqsGTJEmg0GiQkJCAzM9NeDFxcXAyp9FoH0MiRI7Fu3Tq8+OKLeOGFFxATE4NNmzZh8ODBAIBLly5h8+bNAICEhIRmr7Vjxw6MGzcOAPDJJ59gwYIFmDhxIqRSKaZNm4Z33323Pe+ZuoBt7HxghIrrfpDDOl+pR5nOCLlMimGcodepTBYrjpXqIJVIENdDLXY45KLavE6Ns+I6NV1r2eaj+GhPEX41MgrL7h0kdjguzWSx4ouCS8gtqsLr98dB7sG6mtb6ZN8F/OGLQqREB2DDoy0PoVPHWLvrLF7fegLpg0Lx118m3foJRE06bZ0aotYqKG7sqeGv384nk0jwRuYJ/Cf/Ig5frBY7HKfCepquk9irG9RenvBVeIodCrkwJjXU4eobLDhW2rjYIRfd63xSqQQjenMfqLYSBAF7zzVO42Y9TecbGtkNB166Eyseihc7FHJhTGqowx2+WA2zVUCoSoEINVe87Qq2faBymNS02pnyWlTWGqHwkCKhadNF6jxSqQRSztCjTsakhjpcftPQU2KvblyjpovYehryL1yF0WwRORrnYEsAk6K6QeHBYvaupDdyg1vqHExqqMMVXKgGAAzryaGnrtI3xBdBvnIYTFYcKtGKHY5TsNfTcOipyxwsqcaoN7bjgTU33vuP6HYwqaEOJQgCi4RFIJFIkNJ0cWZdza1ZrYL9PLFIuOuEq5W4VF2PkxodatlbQ52ASQ11qKIrdajSN0DuIcWgCE6d70r2upqzTGpu5WRZDa7WmeAtl2FID3+xw3EboSolenTzglUADpVUix0OuSAmNdShbLvwDumuZp1CF7MNoxQUX4XBxLqam1F7eWLhxBj8ckQv7pfVxWwzIrm5JXUG/mumDlV0RQ+AQ09i6BPsg2A/BYxmKw7yV/BNRfh74Zk7+2Hx3QPEDsXt2GrtmNRQZ2BSQx3q2Un9cXDJnXjkjt5ih+J2JBKJfQiKdTXkqGw9NQXFV2G1usWC9tSFmNRQh/P3liPYTyF2GG7Jtggf62purKSqDpmFGlTXNYgdiluKDfODl6cMNQYzzlTUih0OuRgmNUQuxFZXc6CkmnU1N5BZqMFj/85HxmeHxA7FLXnIpEiI9AfAISjqeExqqMOs3XUWM9fuxdeHL4sdituKDvLB3FFReHNanNihOCxvhQx9Q3wxklO5RcNiYeosHmIHQK5j95kryDl3BXfFhYkdituSSCRYeg93Rb+ZWSm9MCulFwSB9RxisdfVMKmhDsakhjrMkp8NRF5RFUb2CRI7FKJb4hYe4hnatNfWuUo9qvQNCPCRixsQuQwOP1GH6RviixnJPdEz0FvsUNxe4SUt/vLdGVzVsxj2xy5erePeWA7A31uOviG+ANhbQx2LSQ2RC/rdxkN4K/Mkvj9TKXYoDuXJTw8g4eUsfHeyXOxQ3F5i03o1xy/rRI6EXAmHn6hDrNtXDLPVijsHhiJc7SV2OG4vfVAYenTzQiC79e20dSYcKqmGVQD6hfqJHY7bWzChLxamxSDCn98X1HGY1FCH+Pv353CuUo8e3byY1DiAZ+7sJ3YIDueHs5WwCo3DpLyQii8ygMPU1PE4/ES3rUrfgHOVjdsjDI3k9gjkmHadqgAAjIkJFjkSIuosTGroth0obiz06xPsg24c7nAoJVV1OKFhzYIgCNeSmn6cnecoth65jN98vB+f5ZWIHQq5CCY1dNsKmpIa20Z15BjW7SvGHW/twPKtJ8QORXRnK2pRqjVA7iFFSjQX3XMU5ypqse14uT3hJLpdrKmh22ZbFTSRO3M7FNvfx77zV2AwWaD0lIkckXh2nmqcBZYcFQAvufueB0eTNjAUSk+ZfSNWotvFpIZui8lixcGSagDAMCY1DqVfqC9C/BQorzEir+gqRse477DL96c59OSIYsNUiA1TiR0GuRAOP9FtOVaqg8FkhUrpgb7BvmKHQz8ikUhwR1NRrO2i7o4MJgv2nmvctXxMPxYJE7kyJjV0W/Kahp6SogIglXLZeUdj65nYddp9F+HLK7oKg8mKUJUC/bk+jcMprzHgv/kXsflQqdihkAtgUkO3Jf9CFQDW0ziq0X0bk5rjl3UorzGIHI04djX1Ut0RE8z9nhxQ7vkqPLvxEP6686zYoZALYFJD7SYIAvKKmnpqmNQ4pEBfBQZ3b6xZ2O2mvTW2mTV3uHFNkSNL6hUAoDHxrjWaRY6GnB2TGmq3i1frUV5jhKdMgvhIf7HDoRsYY6+rcb+kxmi2wN/bE3IPqb2+iBxLmFqJHt28YBWurXlF1F5Maqjd9hc1Dj0N7q526+nCju7HxcJWqyByNF1L4SHD+vmpOLx0EgK4MKTDGh7V2Ftj6/klai8mNdRufYJ9MSe1F+4ZEiF2KHQTib26wVsuQ2VtA4676erCTLodm60mL6+pRo+ovbhODbVbfKQ/h52cgNxDitTegcg+UY7vT1diUIRa7JC6hNUqoLrexB4aJ2DrqTlQXA2zxQoPGX9vU/vwk0PkBmxFsu60HP3RUh0SX83CzLV7IQjuNezmbGJCfKFSeqCuwYLjl2vEDoecGJMaapeiSj32F1XBYLKIHQq1wph+wYhQK9E3xNdtLvCHL1VDEABfpQencjs4qVTCISjqEBx+onbZmF+C1TvO4sHEHnj7wXixw6FbiA7ywQ+LJrjVxX1WSi/cOSAUNZwm7BSSogKw42QF8oquYu6oaLHDISfFpIbaxUMqRZCvgovuOQl3SmZ+LESlRIjYQVCrJP2op0YQBLf9zNLtYVJD7fLMnf3wdFoMLG42RdjZWawCjl/WYXB39ygWJucRH+kPT5kEZTojLl6tR2SAt9ghkRNiTQ21m0Qi4SwFJ2IwWZD82jb87L3dKK2uFzucTvXqlmN4+O/78MMZ91tw0FkpPWX2ZJt1NdRevCJRm+mNZrcpNnUlSk8ZegZ6w0/pgXMVerHD6VRZx8uw+0wl6hpYyO5M7hochmnDeqBHN/bSUPtw+Ina7NnPDiHvwlW8OnUwJg8OEzscaoM1Dyci0Efu0j1sF67oceFKHTykEqT2CRQ7HGqD+WP6iB0COTkmNdQmgiAg78JVVNYaEejLRc2cTahKKXYIne7bo2UAGhd081XwK47InbjuzzXqFMVVdaisNUIukyKOxaZOSxAE1BhMYofRKb4pvAwAuDuOvYjOyGIVcLRUi5KqOrFDISfEpIbaZH/ThnNxPbiJpbPKPl6G0W/uwAtfFIodSoe7rK1HQXE1JBIgfRCTGmf00peFmPLubqzLLRY7FHJC7UpqVq9ejaioKCiVSqSkpCA3N/em7Tdu3IjY2FgolUrExcVh69atzR7//PPPMWnSJAQGBkIikeDgwYPXHWPcuHGQSCTNbo899lh7wqfbkN80KyGJ69M4rQAfOS5V12P78TKXWxE6s1ADoPHzGeIGQ22uKKGHP3wVHlwugtqlzUnNhg0bkJGRgaVLl6KgoADx8fFIT09HeXl5i+337NmDmTNnYt68eThw4ACmTp2KqVOnorDw2q9EvV6P0aNH480337zpaz/yyCO4fPmy/fbWW2+1NXy6TXlNPTVcdM95xffwR7haCX2DBbtPu9aU52+akprJg8NFjoTa676hETi0dBJeuHuA2KGQE2pzUvPOO+/gkUcewdy5czFw4ECsWbMG3t7e+OCDD1ps/+c//xmTJ0/G73//ewwYMACvvPIKhg0bhlWrVtnb/PKXv8SSJUuQlpZ209f29vZGWFiY/aZSqdoaPt2G6roGnC6vBcCkxplJpRL70IwtCXAF5TUG7C9q7EnkrDznpfCQQSblasLUPm1KahoaGpCfn98s+ZBKpUhLS0NOTk6Lz8nJybkuWUlPT79h+5v55JNPEBQUhMGDB2Px4sWoq7txIZnRaIROp2t2o9uTf6Gxl6Z3sA8CfRUiR0O3466mi/6242UwWawiR9Mx/ne0DIIAJET6o7u/l9jhUAdoMLvGZ5O6TpuSmsrKSlgsFoSGhja7PzQ0FBpNy7/4NBpNm9rfyC9+8Qv8+9//xo4dO7B48WL861//wsMPP3zD9suXL4darbbfIiMj2/R6dL28pqSG9TTOLykqAEG+cmjrTcg5e0XscDpEZtOsp7vYS+P0dpwsx9i3d+C3nxSIHQo5GadZxGH+/Pn2/4+Li0N4eDgmTpyIs2fPok+f6xdsWrx4MTIyMux/1ul0TGxuU36RLakJEDkSul0yqQSTBoVh3b5ifFOowZh+wWKHdFuu1Bqx91zj0NNdrKdxeiqlJy5cqYOu3sTNLalN2tRTExQUBJlMhrKysmb3l5WVISys5V9HYWFhbWrfWikpKQCAM2fOtPi4QqGASqVqdqP2M5otOHixGgCQGMWeGldg69HIOqZx+pkmJzQ1UHhIMShChZ6BXGLf2Q3uroLCQ4qrdSacdfEtPahjtSmpkcvlSExMRHZ2tv0+q9WK7OxspKamtvic1NTUZu0BICsr64btW8s27Ts8nL/KukLhJR0azFYE+MjRO8hH7HCoA4zoHQi1lycqaxvsBbbOalTfIBS8dCdW/WKY2KFQB1B4yBDfwx/AtWUkiFqjzbOfMjIy8Le//Q0ff/wxjh8/jscffxx6vR5z584FAMyePRuLFy+2t1+4cCEyMzOxYsUKnDhxAsuWLUNeXh4WLFhgb1NVVYWDBw/i2LFjAICTJ0/i4MGD9rqbs2fP4pVXXkF+fj6KioqwefNmzJ49G2PGjMGQIUNu6wRQ65zQNBZaJ/bqxq5gF+EpkyJtQGO9W6YLzIJSesoQzYTbZSQ19QjbFvwkao0219RMnz4dFRUVWLJkCTQaDRISEpCZmWkvBi4uLoZUei1XGjlyJNatW4cXX3wRL7zwAmJiYrBp0yYMHjzY3mbz5s32pAgAZsyYAQBYunQpli1bBrlcjm3btmHlypXQ6/WIjIzEtGnT8OKLL7b7jVPbzErphUkDw6A3msUOhTrQXYPD8N+Ci8gs1GDJzwZC6oRTaesazPCWO015ILWSLamxzbokag2JIAjOPZjeSjqdDmq1GlqtlvU1RE0MJgsSX8mCvsGCz387EsN6Ol+91G8+3o8LV+rw8n2DMLJPkNjhUAfR1pkQ/8dvAQD7/5CGYD8uI+Gu2nL95t5PRG5M6SnDhAGh6B3sA129821waTRbsPdcFU6X1yKIaye5FLW3J/qF+gJgXQ21Hvts6ZY25pXgy4OleDCpB+5L6C52ONTB3po2BEpPqVPWSik8ZPhh0QTsOVOJmBBfscOhDpYcHYBTZbXYd76KW19Qq7Cnhm5p56kK7D5TiaLKG6/gTM7LSy5zyoTGRu3libviwp36PVDLRvQOBAD7GkREt8KeGrqlp9P6ITk6ACnRgWKHQp3IYLLgUnU9+gQ7R48HF2VzfbbvnBMaHarrGuDvLRc5InJ07KmhW+ob4ovZqVHoH+YndijUSfYXVSHxlSw8+q98sUNptW8KNbhv1W58tr9E7FCokwT7KdA3xBeCAOw7z94aujUmNUSE/mF+aLBYoTeaUaVvEDucVtl65DIOXdTibEWt2KFQJxrRu3FbliMXtSJHQs6Aw090U//KKYJMKsWdA0M5pdKFqZSeyHx6DKIDfZxirRqDyYIdJ8oBAHfFsYDUlc2/ow8euaM3egZw+wu6NSY1dEOCIGDVjjMo0xkRHeTDpMbFOUstDQB8d7Ic+gYLItRKxPdQix0OdSLu5UVtweEnuqELV+pQpjNCLpNiaE9/scOhLmIwWXBZWy92GDf1773FAIB7EiJYLExEdkxq6Ib2nrsCAEiI9IfSUyZyNNQVtp8oQ+rybLzw+RGxQ7mh02U12H2mElIJ8MsRvcQOh7rAnrOVePRfeVi57ZTYoZCDY1JDN2SbbWAr1CPXFx3ki6t1Jnx3qgJFlXqxw2nRh3uKAACTBoahRzcOTbiDK7UN+N/RMnx7tEzsUMjBMamhFgmCYO+pSenN9WncRXSQD8b1D4YgAP/MuSB2ONfR1pnwecFFAMCvRkWJGwx1mdQ+gXhucn+8dv/gWzcmt8akhlpUXFWHy1oDPGUSp9zkkNrvVyOjADRuj+Fou7JvyCuGwWRFbJgfUqLZg+gugnwV+O24vhjK7yK6BSY11KJ9TcuSx/fwh5ec9TTuZExMMKKDfFBjNNt7RRyBxSrg4z2NvUe/HhXNAmEiug6TGmqRbehpBIee3I5UKsHs1MYC3I9zLkAQBJEjapR1rAyXquvRzdsT9yZEiB0OdTG90YwvD17Cu9mnxQ6FHBiTGrqOIAj2IuEUFgm7pQcSe8BHLsOZ8lr8cOaK2OEAAD7acx4A8IuUnpyN54ZqjWYsXH8Qf9p2Cto6k9jhkINiUkPXuXi1Hpeq6+EhlSCxF8ew3ZGf0hMPJPYAAHzUNNtITBargKE9uyHIV4GHOY3bLYWqlOgd5ANBaNyrjKglTGroOrahpyE91PCWc9FpdzW7qWA4+0QZSqrqRI1FJpXg+cmx2Lt4AsLVXqLGQuKxzcS0fUcR/RSTGrrO3nO2oSfW07izPsG+uCMmqGl6d5HY4QAAPGT8ynJntjWz9p5nUkMt4zcEXefuuDDMTO6JCbEhYodCIpvbtBbMhv0lqGsQZ3r31iOXsfNUBaxWxyhYJvHYJi4cLdVBW8+6Groekxq6zsQBoVj+8zgMj2KRsLsb1y8EvQK9oTOY8eXB0i5/fZPFile2HMOcD3KxtfByl78+OZZmdTXnWVdD12NSQ0Q3JJVKkHFnP7xy3yDcG9/106gNJgsmDw5DVKA37hwY2uWvT47HNiOTdTXUElaBUjM7TpTD39sTg7ur4cn6BQJwX0J30V7bT+mJpfcMwktTBkIq5WJ71DgE9WluCetqqEW8alEzSzYX4v6/7MHuM5Vih0IOqL7BIsrrMqEhm5ToxrqaY6yroRYwqSE7g8mCAWEqBPnKkcT1aegndp6qwPj/+w5Zxzp/p2SrVcBz/zmE/Ausm6DmwtRKRAf5wCoAeVyvhn6CSQ3ZKT1lWDs7Cfv/kAY/pafY4ZCD2XOmEhqdAX/bda7Tt074cE8RPsu7iDkf7OevcbrOCNbV0A2wpoauw40CqSXP3NkPfkoPzBvdu1M/I6fLavBm5gkAwKK7YqH2YoJNzdnras6xp4aaY1JDdhev1qG7vxeTGmqR0lOGBRNiOvU1GsxWPL3hIBrMVozrH4xZKT079fXIOY3oHYh74yMwsg8XCKXmOPxEAIDL2nqMfnMH7nhrBxrMVrHDIQdntQr48IfzKNMZOvS472afxtFSHbp5e+KtaUOYYFOLQlVKvDtzKGYkM+ml5pjUEADg+9ONs50CfRWQe/BjQTf38ldH8fJXx/Dcfw53WH1N/oUq/OW7MwCA1++PQ4hK2SHHJSL3wasXAQB2naoAAIyNCRI5EnIGv0ztBbmHFDtPVWD9/pLbPp7eaEbGZ4dgFYCfD+2Ou+LCOyBKcmWCIOBMeQ0+y7v9zx+5DiY1BItVsK9LM6ZfsMjRkDPoG+KH59L7AwBe3XLstnfxfvXr47hwpQ4RaiWW3TeoI0IkF6erN2PSn3bhuf8cxmVtvdjhkINgUkMovKRFdZ0JfgoPxEf6ix0OOYlfj4pGcnQA9A0WPLvxULs3nNx+ogyf5hYDAP7voXiouJwAtYLa2xPDowIwum8QdPXibLZKjodJDdmHnkb2DeTWCNRqUqkE//dAPLzlMuSer8I/dp9v8zGu1Brx3H+OAADmjY7GyD4c/qTWWz9/BP79mxT0D/MTOxRyELyCEXadbkxqOPREbdUz0BsvThkIAHht63HM+2g/jlzUtvr5j/wzD5W1RsSE+OL3TcNZRK3F2XH0U0xq3FyNwYSC4moAwJgYJjXUdjOTI/GrkVGQSoDsE+W4Z9Vu/ObjPBReuj65qW+wwGy5tmTAPfERCPKV488zhkLpKevKsMmFlOsMqKw1ih0GOQAmNW5uz9krsFgFRAf5IDLAW+xwyAlJJBIsu3cQtmWMxf1Du0MqAbYdL8PP3tuNJz4psNfa/GvvBYx+czu+PnLZ/tyZyT2x67nxGBihEit8cnKvfX0Mya9n4997L4gdCjkAJjVuzlZPM4ZTuek29Q72xZ+mJ+DbZ8bivoQISCSAwlNq32FbW9eAK/oGbDpwyf4cpacM3nIubE7t1yfYF8C17zJyb/w2cWOCILCehjpc3xBf/HnGUCwY3xfeimtfMbNHRiFc7YV7EyJEjI5cje2762BJNbR1Jqi9OXvOnbGnxo1duFKHkqp6eMokGNGbe6hQx4oJ9UN3fy/7n1VKT0xL7MEZdtShIvy90DfEF1YB+OFspdjhkMj47eLGynQG9Ar0RmKvbvBRsNOOiJyTbZIDh6CIVzI3ltI7EDt/Px56IxeuIiLnNaZfED744Tx2naqAIAic6u3G2tVTs3r1akRFRUGpVCIlJQW5ubk3bb9x40bExsZCqVQiLi4OW7dubfb4559/jkmTJiEwMBASiQQHDx687hgGgwFPPPEEAgMD4evri2nTpqGsrKw94dNPsJeGiJxZSnQg5B5SlGoNOFNeK3Y4JKI2JzUbNmxARkYGli5dioKCAsTHxyM9PR3l5eUttt+zZw9mzpyJefPm4cCBA5g6dSqmTp2KwsJCexu9Xo/Ro0fjzTffvOHrPvPMM/jqq6+wceNG7Ny5E6Wlpfj5z3/e1vCpSY3BBNOP1gshInJWXnIZUqIDAAA7OQTl1iSCILRpw5aUlBQMHz4cq1atAgBYrVZERkbiySefxKJFi65rP336dOj1emzZssV+34gRI5CQkIA1a9Y0a1tUVITo6GgcOHAACQkJ9vu1Wi2Cg4Oxbt06PPDAAwCAEydOYMCAAcjJycGIESNuGbdOp4NarYZWq4VKxTUx3so8gX/mXMDTaTH4zR29xQ6HiOi2/G3XOby29TjG9AvGP3+dLHY41IHacv1uU09NQ0MD8vPzkZaWdu0AUinS0tKQk5PT4nNycnKatQeA9PT0G7ZvSX5+PkwmU7PjxMbGomfPnm06Dl1z6GI1ao1mBPjIxQ6FiOi22aZ27zt3BQaTReRoSCxtKqaorKyExWJBaGhos/tDQ0Nx4sSJFp+j0WhabK/RaFr9uhqNBnK5HP7+/q0+jtFohNF4bdlsnU7X6tdzB//6dQqOlurQk6sIE5EL6BfqizCVEhqdAbnnq7j2lpty2Sndy5cvh1qttt8iIyPFDsmhSKUSxPVQc6EqInIJEokEdzStjM6p3e6rTUlNUFAQZDLZdbOOysrKEBYW1uJzwsLC2tT+RsdoaGhAdXV1q4+zePFiaLVa+62kpKTVr0dERM5nTL9gBPnK4SXn5qjuqk1JjVwuR2JiIrKzs+33Wa1WZGdnIzU1tcXnpKamNmsPAFlZWTds35LExER4eno2O87JkydRXFx8w+MoFAqoVKpmN2rcGuGe93bjdxsP4Qp3tSUiF3LX4DDkvpCGZyf1FzsUEkmbFyjJyMjAnDlzkJSUhOTkZKxcuRJ6vR5z584FAMyePRvdu3fH8uXLAQALFy7E2LFjsWLFCkyZMgXr169HXl4e1q5daz9mVVUViouLUVpaCqAxYQEae2jCwsKgVqsxb948ZGRkICAgACqVCk8++SRSU1NbNfOJrjl+uQZHLmlxprwWr90/WOxwiIg6jAe34HB7bU5qpk+fjoqKCixZsgQajQYJCQnIzMy0FwMXFxdDKr32wRo5ciTWrVuHF198ES+88AJiYmKwadMmDB587YK6efNme1IEADNmzAAALF26FMuWLQMA/OlPf4JUKsW0adNgNBqRnp6Ov/zlL+160+7MtoHliN4BUHiwi5aIXI8gCCjVGprtPUbuoc3r1DgrrlPTaNbf9+KHM1ew9J6BmDsqWuxwiIg61IUrejywJgcNZisKXroTMim3THB2nbZODTm3ugYz9p+/CgCc7khELqm7vxcMJgsazFYUXdGLHQ51MW7640b2nruCBosV3f290DvIR+xwiIg6nIdMiv88NhJRQd4cYndDTGrcyLdHG6fWj48N5i62ROSy+of5iR0CiYTDT27CYhXw7bHGpGbyoHCRoyEi6nyCIMDMjXvdCpMaN7G/qApV+gaovTyR0jtA7HCIiDrV+txiTFixE//MuSB2KNSFmNS4if8dbdwjK21AKDy5lgMRubh6kwXnK/XIPNr6fQbJ+fHq5gYEQcD/Chv/YacPCr1FayIi55c+qHELnf1FVaio4erp7oJJjRs4ckmLUq0BXp4yTuUmIrcQ4e+F+B5qCAKw7XjZrZ9ALoFJjRsouNC4Ns342GAoPTnFkYjcQ/rgxt6abwo5BOUuOKXbDfxqVDQmDQpDvckidihERF1m8qAwvJV5EnvOVEJbb4Lay1PskKiTsafGTUT4e6FPsK/YYRARdZnewb7oF+oLs1XA9hMcgnIHTGpcnNXqFlt7ERG1aHJTwXAmh6DcApMaF/fAmj2Y80EuzpTXih0KEVGXs9XV7DxVgboGs8jRUGdjUuPCLmvrUVBcje9PV8Dfm2PJROR+BoarEBngBYPJil2nKsQOhzoZkxoXFq72wraMsXj7gXgE+SrEDoeIqMtJJBIOQbkRJjUurm+IL6Yl9hA7DCIi0UxuGoLKPl6OBjP3gnJlTGqIiMilDY3shmA/BdTenii5Wid2ONSJuE6Ni/riwEVkHSvDjOE9uYowEbk1qVSCrxaMRqhKAYlEInY41InYU+OivjxYiq1HNDhySSt2KEREogtTK5nQuAEmNS5IZzBhz5krALiBJRHRjzWYrdDWmcQOgzoJkxoXtONEORosVvQJ9kHfED+xwyEicgif5hYj6dUs/GnbKbFDoU7CpMYF/e9o47RFW8U/EREBQb4K6AxmFBRfFTsU6iQsFHYxBpMFO040LjCVPohJDRGRzR0xQfjs0VQk9uomdijUSZjUuJjvT1ei3mRBhFqJuO5qscMhInIYSk8ZkqMDxA6DOhGHn1zMpgOXADTud8JKfyKiljWYrRAEbvjrapjUuJCr+gZkHSsDADzAVYSJiFr0p6xTSF2ejX3nq8QOhToYkxoX8uXBS2iwWDEwXIVBERx6IiJqSXmNAVf0Dfgsr0TsUKiDMalxIRvzLwIAHkpiLw0R0Y08mBQJANh65DJqDFyzxpUwqXERR0u1OFqqg1wmxX0J3cUOh4jIYQ2N9EffEF8YTFZsOXxZ7HCoAzGpcRFHL+ngKZPgzoGh6OYjFzscIiKHJZFI7D3aHIJyLZzS7SIeGh6JtIGh0BvNYodCROTw7h/aA29mnsSB4mqcLqtBTChXX3cF7KlxIQE+ckQGeIsdBhGRwwv2U2BCbAiAa/WI5PyY1LiAcp1B7BCIiJzOQ00Fw58XXITJYhU5GuoITGqcnEZrQOob2/Hgmj0wmCxih0NE5DTG9Q9GkK8ClbUN2HGiXOxwqAMwqXFyuUVV9lUxlZ4ykaMhInIenjIppg1rnC36WR6HoFwBC4Wd3L3xEUiOCkCVvkHsUIiInM6DST3w113nsONkOcprDAjxU4odEt0G9tS4gDC1EgMjVGKHQUTkdPqG+GFYT39YrAK+KLgkdjh0m9hT48R0BhNUSk+xwyAicmoPJUWi3mRFmJq9NM6OSY2T0hvNGLl8OxIi/bHqF0Ph780F94iI2uOhpEjMSO4pdhjUATj85KS+PnIZtUYzLlXXQ+3F3hoiovaSSiVih0AdhEmNk/pPU6X+A4k9IJHwHyQR0e2qNZqxYX8x6hq4Mruz4vCTEzpfqUduURWkEmDaMO7ITUTUER5ck4Pjl3XwkEoxLZHfrc6ISY0Tsm3ANqZfMAvbiIg6yJS4MBjNFsg9OIjhrNr1N7d69WpERUVBqVQiJSUFubm5N22/ceNGxMbGQqlUIi4uDlu3bm32uCAIWLJkCcLDw+Hl5YW0tDScPn26WZuoqChIJJJmtzfeeKM94Tu1WqMZ6/YVAwBmDI8UORoiItcxf0wfZGeMxT3xEWKHQu3U5qRmw4YNyMjIwNKlS1FQUID4+Hikp6ejvLzlJab37NmDmTNnYt68eThw4ACmTp2KqVOnorCw0N7mrbfewrvvvos1a9Zg37598PHxQXp6OgyG5nsa/fGPf8Tly5fttyeffLKt4Tu99bnF0Nab0DvIB3cODBM7HCIilyH3kLJG0clJBNsa+62UkpKC4cOHY9WqVQAAq9WKyMhIPPnkk1i0aNF17adPnw69Xo8tW7bY7xsxYgQSEhKwZs0aCIKAiIgIPPvss/jd734HANBqtQgNDcVHH32EGTNmAGjsqXn66afx9NNPt+uN6nQ6qNVqaLVaqFTOuVCd0WzBmLd2oExnxJvT4jB9OKcgEhF1NKPZgs8LLiG1dyCignzEDsftteX63aaemoaGBuTn5yMtLe3aAaRSpKWlIScnp8Xn5OTkNGsPAOnp6fb258+fh0ajadZGrVYjJSXlumO+8cYbCAwMxNChQ/H222/DbL5xhbrRaIROp2t2c3ZfHihFmc6IMJUSU4d2FzscIiKXtPi/R7D48yP4666zYodCbdSmpKayshIWiwWhoaHN7g8NDYVGo2nxORqN5qbtbf+91TGfeuoprF+/Hjt27MCjjz6K119/Hc8999wNY12+fDnUarX9Fhnp3PUnFquANU3/wH5zRzQUHty8koioM/wipbEX/L/5l1CmM9yiNTkSpynxzsjIwLhx4zBkyBA89thjWLFiBd577z0YjcYW2y9evBhardZ+Kykp6eKIO9a3RzU4V6GH2suTK18SEXWipKgAJEcFoMFixd+/Pyd2ONQGbUpqgoKCIJPJUFZW1uz+srIyhIW1XLQaFhZ20/a2/7blmEBjbY/ZbEZRUVGLjysUCqhUqmY3ZyUIAt7f2dhLMye1F3wVnIlPRNSZHh/XBwDwyb5iVNc1iBwNtVabkhq5XI7ExERkZ2fb77NarcjOzkZqamqLz0lNTW3WHgCysrLs7aOjoxEWFtasjU6nw759+254TAA4ePAgpFIpQkJC2vIWnJJEIsHr98fhvoQI/GpUtNjhEBG5vHH9gzEgXIW6Bgv+mXNB7HColdr8kz8jIwNz5sxBUlISkpOTsXLlSuj1esydOxcAMHv2bHTv3h3Lly8HACxcuBBjx47FihUrMGXKFKxfvx55eXlYu3YtgMYL9tNPP41XX30VMTExiI6OxksvvYSIiAhMnToVQGOx8b59+zB+/Hj4+fkhJycHzzzzDB5++GF069atg06FYxvcXY0/zxgqdhhERG5BIpHg8XF98NSnB/DhD+fxmzui4S1nL7mja/Pf0PTp01FRUYElS5ZAo9EgISEBmZmZ9kLf4uJiSKXXOoBGjhyJdevW4cUXX8QLL7yAmJgYbNq0CYMHD7a3ee6556DX6zF//nxUV1dj9OjRyMzMhFLZuFquQqHA+vXrsWzZMhiNRkRHR+OZZ55BRkbG7b5/hycIAtdNICISwd2Dw7Ai0BsXrtRhfW4Jfj2aPeWOrs3r1DgrZ12n5un1B+Ct8MCC8X0R4e8ldjhERG7lk30X8IcvChGuVmLn78dzCwURdNo6NdS1Sqrq8OWhUqzbV4xaI3eNJSLqatOG9UCwnwKXtQZ8efCS2OHQLTCpcWA9unlhw/xUPHtnP/QL9RM7HCIit6P0lOE3TcNOa3aehdXqFoMbTotJjQOTSCRIjg7AkxNjxA6FiMht/SKlJ1RKD5yt0OPbYy0vNEuOgUmNg6oxmMQOgYiIAPgpPTE7NQp+Sg9creN3syNjobADKqrU4573dmPOyCg8nRYDDxlzTyIiMekMJkjQmOBQ12rL9ZuT7h2MIAh4+aujqDGacehiNWRSTucmIhKbismMU2AXgIPZdrwcO05WwFMmwcv3DuIaNUREDmbHiXJ8sPu82GFQC9hT40AMJgv+uOUoAOA3d/RG72BfkSMiIqIfKyi+irkf7YenTIIx/YLRN4Tf046ESY0DWbPzLEqq6hGuVmLB+L5ih0NERD8xNNIfkwaGIirIB2Fqpdjh0E8wqXEQJVV1eP+7xp24/zBlAHy4EzcRkcORSCRY83AipKx3dEisqXEQL391DEazFSP7BGJKXLjY4RAR0Q38OKGxWgU0mK0iRkM/xqTGAew4UY5tx8vgIZXgj/exOJiIyBkcv6zDg3/Nwcptp8QOhZowqRGZ0WzBy181Fgf/enQ0+oZwOwQiImdQUlWH/AtX8bfvz+FsRa3Y4RCY1Ijub7vOoehKHUL8FHiK2yEQETmNOweGYnz/YJgsApZtPgo3WcvWoTGpEdHFq3VYteMMgMbiYF8WBxMROQ2JRIKl9wyCXCbF96crkVnIfaHExqRGRLp6M3oF+CAlOgD3xkeIHQ4REbVRVJAPHhvbGwDwypZj0BvNIkfk3pjUiGhghApfPzUaq34xjMXBRERO6vFxfdGjmxdKtQYs/vwIh6FExKRGBHUN1zJ5D5kUwX4KEaMhIqLb4SWX4Z2HEiCTSrD5UCk+/KFI7JDcFpOaLlZRY0Taip1Ytf00rFZm80REriA5OgAv3D0AAPD61uPIPV8lckTuiUlNF9t8qBSlWgM2HSyFwWwROxwiIuogvx4VhXvjI2C2CnhiXQHKdQaxQ3I7nG7TxeaNjoaf0gPDenaDt5ynn4jIVUgkErwxLQ6nympwQlOD335SgHWPjIDcg/0HXYVnWgQPJUVyZ1ciIhfkLffAmocT4af0QN6Fq/hnTpHYIbkVJjVd4Ex5DR77Vz6q9A1ih0JERJ0sKsgHK6cnYHZqL8xOjRI7HLfC8Y9OVms049F/5eNshR5echn+ND1B7JCIiKiTTRwQiokDQsUOw+2wp6YTWawCfr/xEM5W6BGmUtor44mIyH2YLVas3nEG1XXsre9sTGo6icliRcZnB/FNoQaeMgn+8vAwrkdDROSGFn1+BG//7yR+9eF+LuXRyZjUdAKj2YLfflKALw+WwkMqwZ+mJ2BYz25ih0VERCKYP6Y3wtVKLBjfF1IpV4/vTKyp6WB1DY01NN+froTcQ4o1Dw/DhFiOqxIRuat+oX7Y8btxUHrK7PcJgsDtcToBe2o6kM5gwux/5OL705Xwlsvw0a+GM6EhIqJmCU3xlTrct/oHnCqrETEi18SkpoNU6Rsw62/7kHfhKlRKD/z7NykY2TdI7LCIiMjBvPL1MRy+qMVDf83B4YvVYofjUpjUdIBynQHT/5qDI5e0CPSR49P5I1hDQ0RELXr7gSFIiPRHdZ0Jv/jbPuw7d0XskFwGk5oOsOjzIzhdXoswlRIbHk3FoAi12CEREZGD8veW49+/SUFq70DUGs2Y/UEuthwuFTssl8CkpgO8dv9gjOobiI2PpXL7AyIiuiVfhQc+nDscE2JDYDRbsWDdATz16QGuZXObJIIguMWkeZ1OB7VaDa1WC5VKJXY4REREMFmseC/7NFZ/dxYWq4AQPwXenDYE42NDxA7NYbTl+s2eGiIiIpF4yqTImNQf/318JPoE+6C8xoi5H+3Hov8eRo3BJHZ4TodJDRERkcgSIv3x9VN34DejoyGRAOv3l2Dyyu+x52yl2KE5FSY1REREDkDpKcOLPxuITx8ZgR7dvHCpuh7fn2ZS0xZcUZiIiMiBjOgdiMynx+Dv35/D4+P62O/PK6qCl1zGGbY3wZ4aIiIiB+Or8MDTaf2g8GhciVgQBLy4qRBT3t2NTQcuiRyd42JSQ0RE5OBqjWb0C/WDSumBcf2D7fcXVephMFlEjMyxcPiJiIjIwfkpPfHuzKHQGUxQKT3t9y/4tADnKvSYEBuCuwaHY1z/YPgo3PfS7r7vnIiIyMn8OKGpMZhwVW9CXYMFWw5fxpbDl6HwkGJsv2DcHReO8bEhUHt53uRoroeL7xERETkpQRBw6KIW3xRexjdHNCiuqrM/JpEAfYN9kRDpj4Se/hga2Q39Qn3hIXOuypNOX3xv9erViIqKglKpREpKCnJzc2/afuPGjYiNjYVSqURcXBy2bt3a7HFBELBkyRKEh4fDy8sLaWlpOH36dLM2VVVVmDVrFlQqFfz9/TFv3jzU1ta2J3wiIiKXIJFIkBDpj8V3DcDO34/D10+NxpMT+qJPsA8EAThdXouN+Rfxhy8Kcfe73yNu2bco0xnszz9fqUdJVR0sVtfo32hzUrNhwwZkZGRg6dKlKCgoQHx8PNLT01FeXt5i+z179mDmzJmYN28eDhw4gKlTp2Lq1KkoLCy0t3nrrbfw7rvvYs2aNdi3bx98fHyQnp4Og+HaiZ81axaOHj2KrKwsbNmyBbt27cL8+fPb8ZaJiIhcj0QiwaAINZ6d1B/Zz47D/j+k4e+zk/DE+D4Y1TcQvgoPeMllCPFT2J/z2tfHcMdbO7Aut9h+3+myGqzafhqf5hbj26MaFBRfRfGVOtQ1mMV4W23S5uGnlJQUDB8+HKtWrQIAWK1WREZG4sknn8SiRYuuaz99+nTo9Xps2bLFft+IESOQkJCANWvWQBAERERE4Nlnn8Xvfvc7AIBWq0VoaCg++ugjzJgxA8ePH8fAgQOxf/9+JCUlAQAyMzNx99134+LFi4iIiLhl3Bx+IiIid2a1CtDoDIjw97LfN++j/fj+dCX+8ask3BHTOKvqv/kX8ezGQy0eQ+kphUrpCV+lB3wV127+3p5464H4Tom704afGhoakJ+fj7S0tGsHkEqRlpaGnJycFp+Tk5PTrD0ApKen29ufP38eGo2mWRu1Wo2UlBR7m5ycHPj7+9sTGgBIS0uDVCrFvn37Wnxdo9EInU7X7EZEROSupFJJs4QGAP7xq+E4/spkpPYOtN8XGeCN6UmRmBgbgvhIf3T394LCozFdMJisKK8x4lyFHocvarHn7BV8e6wM/zta1qXv5UbaNPupsrISFosFoaGhze4PDQ3FiRMnWnyORqNpsb1Go7E/brvvZm1CQprvWOrh4YGAgAB7m59avnw5Xn755Va+MyIiIvckk0oASOx/To4OQHJ0QLM2giBA32BBVW0Daowm1BrM0DeYUWMwo9boOMNSLjule/HixcjIyLD/WafTITIyUsSIiIiInJNEIrEPNTmyNg0/BQUFQSaToayseTdTWVkZwsLCWnxOWFjYTdvb/nurNj8tRDabzaiqqrrh6yoUCqhUqmY3IiIicl1tSmrkcjkSExORnZ1tv89qtSI7OxupqaktPic1NbVZewDIysqyt4+OjkZYWFizNjqdDvv27bO3SU1NRXV1NfLz8+1ttm/fDqvVipSUlLa8BSIiInJRbe5HysjIwJw5c5CUlITk5GSsXLkSer0ec+fOBQDMnj0b3bt3x/LlywEACxcuxNixY7FixQpMmTIF69evR15eHtauXQugsUvr6aefxquvvoqYmBhER0fjpZdeQkREBKZOnQoAGDBgACZPnoxHHnkEa9asgclkwoIFCzBjxoxWzXwiIiIi19fmpGb69OmoqKjAkiVLoNFokJCQgMzMTHuhb3FxMaTSax1AI0eOxLp16/Diiy/ihRdeQExMDDZt2oTBgwfb2zz33HPQ6/WYP38+qqurMXr0aGRmZkKpVNrbfPLJJ1iwYAEmTpwIqVSKadOm4d13372d905EREQuhNskEBERkcPq9G0SiIiIiBwNkxoiIiJyCUxqiIiIyCUwqSEiIiKXwKSGiIiIXAKTGiIiInIJTGqIiIjIJTCpISIiIpfg2NttdiDbGoM6nU7kSIiIiKi1bNft1qwV7DZJTU1NDQAgMjJS5EiIiIiorWpqaqBWq2/axm22SbBarSgtLYWfnx8kEkmHHlun0yEyMhIlJSXcguEneG5ujufnxnhubo7n5+Z4fm7M2c6NIAioqalBREREs70lW+I2PTVSqRQ9evTo1NdQqVRO8QERA8/NzfH83BjPzc3x/Nwcz8+NOdO5uVUPjQ0LhYmIiMglMKkhIiIil8CkpgMoFAosXboUCoVC7FAcDs/NzfH83BjPzc3x/Nwcz8+NufK5cZtCYSIiInJt7KkhIiIil8CkhoiIiFwCkxoiIiJyCUxqiIiIyCUwqblNq1evRlRUFJRKJVJSUpCbmyt2SKLYtWsX7rnnHkREREAikWDTpk3NHhcEAUuWLEF4eDi8vLyQlpaG06dPixNsF1u+fDmGDx8OPz8/hISEYOrUqTh58mSzNgaDAU888QQCAwPh6+uLadOmoaysTKSIu9b777+PIUOG2BcCS01NxTfffGN/3J3PzU+98cYbkEgkePrpp+33ufP5WbZsGSQSSbNbbGys/XF3PjcAcOnSJTz88MMIDAyEl5cX4uLikJeXZ3/cFb+XmdTchg0bNiAjIwNLly5FQUEB4uPjkZ6ejvLycrFD63J6vR7x8fFYvXp1i4+/9dZbePfdd7FmzRrs27cPPj4+SE9Ph8Fg6OJIu97OnTvxxBNPYO/evcjKyoLJZMKkSZOg1+vtbZ555hl89dVX2LhxI3bu3InS0lL8/Oc/FzHqrtOjRw+88cYbyM/PR15eHiZMmID77rsPR48eBeDe5+bH9u/fj7/+9a8YMmRIs/vd/fwMGjQIly9ftt92795tf8ydz83Vq1cxatQoeHp64ptvvsGxY8ewYsUKdOvWzd7GJb+XBWq35ORk4YknnrD/2WKxCBEREcLy5ctFjEp8AIQvvvjC/mer1SqEhYUJb7/9tv2+6upqQaFQCJ9++qkIEYqrvLxcACDs3LlTEITGc+Hp6Sls3LjR3ub48eMCACEnJ0esMEXVrVs34e9//zvPTZOamhohJiZGyMrKEsaOHSssXLhQEAR+dpYuXSrEx8e3+Ji7n5vnn39eGD169A0fd9XvZfbUtFNDQwPy8/ORlpZmv08qlSItLQ05OTkiRuZ4zp8/D41G0+xcqdVqpKSkuOW50mq1AICAgAAAQH5+PkwmU7PzExsbi549e7rd+bFYLFi/fj30ej1SU1N5bpo88cQTmDJlSrPzAPCzAwCnT59GREQEevfujVmzZqG4uBgAz83mzZuRlJSEBx98ECEhIRg6dCj+9re/2R931e9lJjXtVFlZCYvFgtDQ0Gb3h4aGQqPRiBSVY7KdD56rxt3in376aYwaNQqDBw8G0Hh+5HI5/P39m7V1p/Nz5MgR+Pr6QqFQ4LHHHsMXX3yBgQMH8twAWL9+PQoKCrB8+fLrHnP385OSkoKPPvoImZmZeP/993H+/HnccccdqKmpcftzc+7cObz//vuIiYnB//73Pzz++ON46qmn8PHHHwNw3e9lt9mlm8gRPPHEEygsLGw27k9A//79cfDgQWi1WvznP//BnDlzsHPnTrHDEl1JSQkWLlyIrKwsKJVKscNxOHfddZf9/4cMGYKUlBT06tULn332Gby8vESMTHxWqxVJSUl4/fXXAQBDhw5FYWEh1qxZgzlz5ogcXedhT007BQUFQSaTXVdJX1ZWhrCwMJGicky28+Hu52rBggXYsmULduzYgR49etjvDwsLQ0NDA6qrq5u1d6fzI5fL0bdvXyQmJmL58uWIj4/Hn//8Z7c/N/n5+SgvL8ewYcPg4eEBDw8P7Ny5E++++y48PDwQGhrq1ufnp/z9/dGvXz+cOXPG7T874eHhGDhwYLP7BgwYYB+ec9XvZSY17SSXy5GYmIjs7Gz7fVarFdnZ2UhNTRUxMscTHR2NsLCwZudKp9Nh3759bnGuBEHAggUL8MUXX2D79u2Ijo5u9nhiYiI8PT2bnZ+TJ0+iuLjYLc5PS6xWK4xGo9ufm4kTJ+LIkSM4ePCg/ZaUlIRZs2bZ/9+dz89P1dbW4uzZswgPD3f7z86oUaOuWzri1KlT6NWrFwAX/l4Wu1LZma1fv15QKBTCRx99JBw7dkyYP3++4O/vL2g0GrFD63I1NTXCgQMHhAMHDggAhHfeeUc4cOCAcOHCBUEQBOGNN94Q/P39hS+//FI4fPiwcN999wnR0dFCfX29yJF3vscff1xQq9XCd999J1y+fNl+q6urs7d57LHHhJ49ewrbt28X8vLyhNTUVCE1NVXEqLvOokWLhJ07dwrnz58XDh8+LCxatEiQSCTCt99+KwiCe5+blvx49pMguPf5efbZZ4XvvvtOOH/+vPDDDz8IaWlpQlBQkFBeXi4Ignufm9zcXMHDw0N47bXXhNOnTwuffPKJ4O3tLfz73/+2t3HF72UmNbfpvffeE3r27CnI5XIhOTlZ2Lt3r9ghiWLHjh0CgOtuc+bMEQShcfrgSy+9JISGhgoKhUKYOHGicPLkSXGD7iItnRcAwocffmhvU19fL/z2t78VunXrJnh7ewv333+/cPnyZfGC7kK//vWvhV69eglyuVwIDg4WJk6caE9oBMG9z01LfprUuPP5mT59uhAeHi7I5XKhe/fuwvTp04UzZ87YH3fncyMIgvDVV18JgwcPFhQKhRAbGyusXbu22eOu+L0sEQRBEKePiIiIiKjjsKaGiIiIXAKTGiIiInIJTGqIiIjIJTCpISIiIpfApIaIiIhcApMaIiIicglMaoiIiMglMKkhIiIil8CkhoiIiFwCkxoiIiJyCUxqiIiIyCUwqSEiIiKX8P/GRD+I1MXD4AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "n_wires = 6\n", + "x_max = 2**n_wires\n", + "x_input = np.arange(x_max)\n", + "mus = [(2 / 8) * x_max, (5 / 8) * x_max]\n", + "sigmas = [x_max / 10] * 2\n", + "data = gaussian_mixture_pdf(x_input, mus, sigmas)\n", + "\n", + "# This is the target distribution that the QCBM will learn\n", + "target_probs = torch.tensor(data, dtype=torch.float32)\n", + "\n", + "plt.plot(x_input, target_probs, linestyle=\"-.\", label=r\"$\\pi(x)$\")" + ] + }, + { + "cell_type": "markdown", + "id": "7b1bb110-e81c-455e-86a6-6b722f3a4433", + "metadata": {}, + "source": [ + "Using `torchquantum`, we can create a parameterized quantum circuit which will be used to generate a probability distribution. The gradient-based learning algorithm is used to update the circuit parameters $\\theta$ iteratively." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8347fa01-d519-40e3-a7ea-67fabca8ed56", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/gopald/Documents/tq-env/lib/python3.10/site-packages/qiskit/visualization/circuit/matplotlib.py:266: FutureWarning: The default matplotlib drawer scheme will be changed to \"iqp\" in a following release. To silence this warning, specify the current default explicitly as style=\"clifford\", or the new default as style=\"iqp\".\n", + " self._style, def_font_ratio = load_style(self._style)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB/wAAANyCAYAAABvwrPRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVf7H8fekFxIg1FBDKNJ7kSKCooKKBcWGBX+urApiQdFd11V3V1YRG2DBta8rIkVWUcQCKKBSpBelBggkQEggJKTP/P64m0gkZWYy7c79vJ6HB5i55Zwzd+75zvnee67N4XA4EBEREREREREREREREREREVMJ8XcBRERERERERERERERERERExHVK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJh/i6AVMzhAHuRv0vhvJBwsNk8tz2z1R882wZWr7+IiIjV+0Kr1x/UBiIiYm3qB9UGVq+/iIhYmxn7wVKe6g/N2AZWjwf9GQsp4R+g7EWwbLq/S+G8oRMhNMJz2zNb/cGzbWD1+ouIiFi9L7R6/UFtICIi1qZ+UG1g9fqLiIi1mbEfLOWp/tCMbWD1eNCfsZCm9BcRERERERERERERERERETEhJfxFRERERERERERERERERERMSAl/ERERERERERERERERERERE1LCX0RERERERERERERERERExITC/F0AEREREfG+U3lw4jQU2yE0BOKjoXY02Gz+LpmIiIiI9xWVQMYpKCg2/h8ZBg3iICzUv+USERER8QWHwxgXOpUPJXYjBqobA7Wi/F0yEfEEJfxFREREglB+EazbBzsOQ2omnMw7e5laUdCsLpyTCH2TITbS9+UUERER8QaHA/YeM+KhA8ch7QTYHeWXCQ2BJnWgRT3okwwt6+liSBEREQkep/Jg9V7YlQ6pWZBbcPYydWKgeQJ0ago9kyBCWUMRU9JXV0RERCSInDgNX281BrdL72CrTE4+/JJm/PliE/RoCRd1ggbxvimriIiIiKfZHbB6D3z/C6SdrHrZEjsczDT+rNplDHaf3x56JSnxLyIiIuaVdsIYG9p00Ih3qnLitPFnSyr8d4NxQ8iwjhAX7ZOiioiHKOEfRDbtWc5Drw8t91pURCzNGrRjWM9buGrgvYSGBvdHbvU2sHr9RUSszPG/we2F6427+11VVAJr9sKG/XBZNxh8DoSEeL6c3qR+UG1g9fqLiFjdsVMw+0fjzn53HMyED36Atfvghn5QN9az5fMF9YVqA6vXX0TEykrs8O02WLK1+kR/RfIK4btfjJtIrult3Bhitosg1Q+qDaxa/+CrkTC0+430bX8pDhxknUrn65/f5/XPHuTA0R08cO0b/i6eT1i9DaxefxERqykohvdXwrZDNd9WUYlx0cDmg3DH+eac5l/9oNrA6vUXEbGidftgzmojlqmpX9PgmUVw8wDo0rzm2/MH9YVqA6vXX0TEak7mwZvLjQsYayq3AN5fBVtT4ab+EBZa8236mvpBtYHV6q+EfxBq27Qnw3rdXPb/kQPu4Y6p7Vm85k1uH/40dWo18GPpfMPqbWD1+ouIWElBEby+FPZleHa7e4/BzK9h/DCoFeXZbXub+kG1gdXrLyJiNT/sgo/XeHabBcXwzgoj6d8zybPb9gX1hWoDq9dfRMRKTpw2xnAycjy73fX7IbcQ/nA+hJss6a9+UG1gtfqbbKJWcUd0RCztW56Lw+Hg8PE9/i6OX1i9DaxefxGRYFVih7e+93yyv1TaSZi1DAqLvbN9X1E/qDawev1FRILZxv0w18PJ/lJ2hzHF/47D3tm+L6kvVBtYvf4iIsHqdCG89q3nk/2lfk2Df68yHiVpZuoH1QbBXn/d4W8Raf87eONjEvxcEv+xehtYvf4iIsFo2Q7Yme7aOg8Oh/hoyM6DF76sfvmDmfD5Jri6l3tlDBTqB9UGVq+/iEgwOnEaPloNrow/uxoL2R3w4Y/w6OXmfNTRmdQXqg2sXn8RkWC08Gc4ku388q7GQmA89vGHXTCwnXtlDBTqB9UGwVx/JfyDUH7RaU7mZuBwGM+l+OzH19l9aAPtm/elWQOTn5GdZPU2sHr9RUSsIO0ELN7s+nrx0VAnxrV1vv8FujWH5Iau788f1A+qDaxefxERK3A4YM5qyC9ybT13YqFT+TB/Ldw6yLX1/El9odrA6vUXEbGC7YdgzV7X1nEnFgL4dAO0bwL1arm+rj+oH1QbWK3+lkj4Z2RkMHXqVBYsWEBqaioNGjRg1KhRTJkyhYkTJ/L2228zY8YMJkyY4O+iesT7Xz3B+189Ue61QZ1Hce/Vr/ipRL5n9Tawev0rciTbmIYxrxAiQqF5PWjbCGw2f5dMRMQ9n/xsTOnvCw5g7lqYfKk5zpvqB9UGVq9/RQqLjbsyMnONJFntaOjaHGJMfreqiFjXtkO+nWp//X4Y0BbaNPLdPmtCfaHawOr1r8iB47D7CBQUQ2SY8X1uUc/fpRIRcY/dDvPW+m5/BcVG0v/283y3z5pQP6g2sFr9gz7hv3HjRkaMGEF6ejqxsbF07NiRw4cPM336dPbs2UNmZiYA3bt3929BPeiyfuMY3HU0xfYi9qVtYc7yZ8k4mUpEeFTZMoXFBdzzUk+G9riJMRc+Vvb61I/GciLnCFP+sNgfRfcYZ9rg6Q9uwO6w8/gtH5e9ln06kzundWLc5dO4sOcYfxTdI5yp/5a9K/jzWyPOWre4pBC7vYQlU0t8WWSv2ZUOX2+reMrrhvEw+Bxj0CbEBAksEZFS6Sddn8q/ptJOwN5j0NoEd/krFlIspFjoN7kF8NVW466PvMLy781fB72S4JIuUDfWL8UTEXHbil99v8+VO82T8Fc8pHhI8dBvNuyHpduNx5X9Xot6cGFH6NbC9+USEamJ7YeNC7p9actB45FK7swQ4GuKhRQLWS0WCuqEf0ZGBiNHjiQ9PZ1JkybxxBNPEBcXB8DUqVN55JFHCAsLw2az0bVrVz+X1nOa1m9Lz3bDAOjbfgSdWw3igVcH8fL8u3js5o8AiAiLZPIN7zPp1cGc2+FyWjfpxqqtC/lpx2e88eAWfxbfI5xpg3tHvcq457uwdMNsLuhxIwAzPhlPp1aDTH0SA+fq3yX5PD57OqfcehknDzN+em+uHBAcs138tNuY4rGy5zkezTaugtx3DG7qD6EhPi2eiIjbftjln/2u3GmOhL9iIcVCioUMJ07Dq98aMU9Fikrgpz3GNJB3XQBN6vq2fCIi7jqaDb/6+OJHMGZKOZlnzJIS6BQPKR5SPGTMavT5JvhmW+XLHDgO76wwLoAcETzDwyJiASt3+n6fdgf8uNsc50vFQoqFrBYLBXV6a+LEiaSmpjJhwgSmTZtWluwHmDx5Mt26daO4uJikpCTi4+P9WFLv6pQ0gGE9b2H5pjlsS/mh7PV2zXpx7fkPMfWjWzl2IpWX5o3j3qtfoX7tJn4srXdU1AbxMQlMGv0WMxdOIOPkYb7fPI/Ne5Zz/6jX/Vxaz6vsGDhTYXEBT70/is5Jg7jpwj/7uISety216mT/mX5OgYXrvV0iERHP2XjAP/vdctB3jxHwJMVCioWsGAsVFMOsZZUn+8+UnW8se/K098slIuIJm/wUC9kdRjxkRoqHFA9ZMR76/teqk/1nWrLFPzOHiIi4I68Qfk3zz7437PfPfmtKsZBioWCPhYI24b9jxw7mzJlD/fr1+ec//1nhMr169QKgW7du5V7ft28fV1xxBXFxcdStW5dbb72V48ePe73M3jRm2OOEhITy3pK//u71vxAaEsbdL/WgW5uhDO1+g59K6H0VtUGf9sM5v+t1PDv7ZmYsuIcHR79JfGxwPryrsmOg1Mvz76KwKJ+Hr3/XtwXzAocDPtvoXLK/1MqdkJlT/XIiIv528jRk5/ln38V2Y2p/M1IspFjISrEQwLp9rn1fT+YZg+IiImZQ0bTcVth3TSkeUjxkpXiooBgWb3ZtncWbobDYO+UREfGk1EzXxr496Vg25Bf5aec1pFhIsVAwx0JBm/CfPXs2drudMWPGUKtWrQqXiY425mA7M+F/6tQphg4dSmpqKrNnz+aNN95gxYoVXH755djtJryl7X+a1m/D0G43sGH3t2zZu6Ls9bDQcDomDeBkbgaX9L7djyX0vsraYNzIaRw6vps+7UfQr8Nlfiyhd1VWf4BPVk5n9Y5FPDV2IVERJngATzX2HjWeb+0Kx/+mIxIRCXT+HmRONekgt2IhxUJWioUcDljlxvSOP+0xpvkXEQl0B/14T4a/Y7GaUDykeMhK8dD6FNcTUqcL/TebmoiIK/wZjziAQ1n+239NKBZSLBTMsVDQJvyXLl0KwNChQytdJjU1FSif8H/jjTc4dOgQCxcu5PLLL2f06NF8+OGH/PTTT3z66afeLbSX3XjhY4TYQnjvq9+uXNmydwVfrXuXKwdO4NVP76OgyE+3DPpIRW0QHRFLYkIyrRp38WPJfKOi+m/cvYw3P3+Ex2+ZS+OEJP8VzoM2uPnjzKzTEYmItRw75d/9H/Xz/mtCsZBiIavEQkdPweETrq+XWwC7/PBMbBERVxSXQJYfH0FyzIlHpQQyxUOKh6wSD210c4xHY0MiYgb+HhsyczykWEixUKDFQg6Hg9zcXHJzc3E43J+7w+aoydoBrHnz5qSmprJhwwa6d+9+1vvFxcUkJiaSkZHBnj17SE5OBn67QGDZsmXllm/dujVDhgzhrbfecrksvXv3Jj3dtZGziLBo3piwy+V9uSKvIIc/vtCNawY/yMj+dzPp9fNp16w3d1/xosvbGjezLYXFnjsJ+qL+Z5r02hDO7XA5o4c85PY2PNkGvqp/emYKE6b34eaLnuCqgRNqtC1PHwM10e+mV2ne7QqX1yvKz+a/T3T0QolERDyn/QUT6XzJ5Arfe3A4xEdXvX58FISEgN1uPLe7Mtl58MKXZ7++a9XbbPq04mmvPMlssRCYMxYoFWixEPimDTwZC0HgxEP1kvow9O5P3Fp3zUf3cWDDfA+XSETEc8Ki4rjqqR2Vvl9dPFTTWAhg3iPNnCyt+3wVC2hs6DeBFg9pbKhmLpz4JXWbdnZ5vcyDG1k683IvlEhExHP6XPcSLXtdW+F7noqFoPJ4aMPCx9jz43sulNh1ZoyFSnmqP7R6LATmGxtyp/52u520tDQAunfvzoYNG9zad5hba5lAbm4uAHl5FTfsnDlzyMjIIC4ujlatWpW9vn37dkaPHn3W8p06dWL79u1ulSU9PZ1Dhw65tE5UuPeni5j12SQaJ7TiigH3YLPZePi6d7nrpe4M7Hw1XZMHu7SttMOHyS/y3CX2vqi/p3myDXxR//zC0zzx7lX073iFRwa4PX0M1ETOKRfn8/+fosICl7+rIiK+lnii8nnT4qOhjpNdSEiI88ueKSf7pE/OlWaLhcB8sYCnmS0e9HQsBIETDxVHNnF73Yxjrv92ERHxpfDI2CrfdzYecjcWspcUB00sBBob8jSzxYPBPDZUkJfr1nr5p3MUC4lIwOuYW/kt/t6OhQCyMo97/VxpxliolKf6Q6vHQmC+saGa1v/IkSNurxu0Cf/GjRuTlZXF+vXr6d+/f7n30tLSePjhhwHo2rUrNput7L2srCzq1Klz1vYSEhL49ddf3S6LqyLCqrk9r4bW/LKY5Zvm8MaDm8vq36R+a+4Y8QzT5tzOrEmbiY6o+kf0mRKbNPH4VTtm48k28EX9V2yZz960TRzK2MnyTXPOev+th7bTsG4Lp7fn6WOgJkpyDru13unje2natKmHSyMi4lnREZW/l+3EadiVu9oqEhFm98m50myxEJgvFvA0s8WDno6FIHDioYjQPOwlRYSEhju9jsPhwGazEV6SpXhIRAKbLQR7cSEhYRUHRdXFQzWNhYrys4MiFgKNDXmD2eLBYB4byj95AOjn8noF2amKhUQk4IXbiit9z1OxUFXbio0K9fq50oyxUClP9YdWj4XAfGND7tT/zDv8GzVq5NK6ZwraKf0nTpzIjBkzaN68Od988w3t2rUDYO3atdxyyy3s3buXoqIixo8fz8yZM8vWi4iIYPLkyfzjH/8ot72xY8fy448/up30d1VJISyb7pNdecTQiRBaRQLCVWarP3i2Daxe/5o6eRqeWgh2F89uNw+A3q2qX05ExJ/2HYOXv3J//SevNq7gPnEannRjxu87BkOX5u7v31lW7wutXn9QG9TUeytdfwZti3rG9I8iIoFu2mJIzXRv3ZrGQu0awz0XurdvV6gfVBtYvf41tfcoTP/a9fUeuARa1vd8eUREPGn1Hpj9k3vr1jQWAnj0cmhc2711nWXGfrCUp/pDM7aB1eNBd+qfm5tLrVq1AMjJySE21vWLTABC3FrLBCZPnky9evU4ePAgnTp1okuXLrRt25a+ffuSnJzMBRdcAEC3bt3KrVe3bl1OnDhx1vYyMzNJSEjwRdFFpIZqx0BXF5NRsZHQzbWb+ERE/KJpXThjciKfa17Pf/sWEecNauebdURE/KG5H4dnmmloSMQUWjWAJnVdW6d5gnEBpIhIoPNnLBQRBg3j/Ld/EalY0Cb8mzVrxooVK7jsssuIiooiJSWFhIQEZs2axeeff87OnTuBsxP+HTp0YPv27Wdtb/v27XTo0MEnZReRmrumNyQ4eSFUiA1uHQjhod4tk4iIJ0SEQTMXB648pU4M1DbfbGIiltS6IVzQ0fnlu7fQTEciYh6tGvhx37rzV8QUbDa4ZQBEOfmEo+hwGDPAvxdXi4g4q1Htqh/56E1J9Y1HAohIYAnqr2WHDh1YtGgRp06d4tSpU6xevZpx48aRm5tLSkoKISEhdO7cudw6l19+OStXriQ1NbXstdWrV7Nnzx5Gjhzp6yqIiJviouHei6qfWigyDO4cAuck+qRYIiIecW4b/+y3fxsNgImYycjucFGn6pfr08p4tFGIvt8iYhLdWjifxPOk+GjoqEd7i5hGYh0YP8z47laldjRMcGIMSUQkUISGQN9k/+z73Nb+2a+IVC2oE/6V2bZtGw6Hg7Zt2xITE1PuvXHjxpGYmMiVV17JokWLmDdvHjfeeCN9+/blyiuv9FOJRcQddWPhoRFw2yDjLrczhdjgih7w16ugQxO/FE9ExG29k4wLlnwpxOa/Cw1ExD02G1zW3Xi+4nntzj5v9GkF918CN/WHMM10JCImEhnmn0Hu/m2MAXYRMY/mCfDYSLiuLzSpU/69pnXh+n7w5yuMf4uImMnAtr7fZ1yU64/SFRHfsOTPlC1btgBnT+cPEB8fz9KlS0lMTOSGG27gD3/4AwMGDGDRokWEaJ4SEdMJC4UeLY27/Z+9zghKAGpFGtPcxkb6t3wiIu6IDPf9s7Z7t9J0/iJm1bg2XNMHpoz+LRaKjzKmrU2qr5k7RMScBp8DYT4cpokMgwF+GFgXkZqLDDe+vw9fasRAYPz90AjjQh5fX0wtIuIJDeN9n3w/v70uFhcJVJYMZ6pK+AO0bt2aRYsW+bJIUgOFRfk8/Z8b2H9kO5Hh0dSp1ZCJo16jaf2zb0P8afsi3lj0ECWOElo17sLD179LbFQ8+9K2MOOT8ZzIOUpoSBjntOjLvVe/QmR48GQ2Xlk4kR+3f8qRrP28dv8G2jTt7u8i+Vxk+G9T1WpgW0TM7pIusCUVjmZ7f1/x0XBVT+/vx1Wpx3bx3JzbOJmbQWxUbR6+/l2SGpefv3x7yo+8vOBuAErsRXROGsQ9V00nIiySTXuW8+c3R9CswTlly0+/90ciw6OrXE/ErEJDFAuJSPCoHweXdoNPN/hmf1f10sWPgcyZMY8Nu5fy1hePkleQg81mo1/7y7jj0mfKbvD5ePlzfL3uPewOO80bnMND179Dreg6vq2IeJXN9lsMdOa/RUTM6po+sPsInC70/r6aJ8DQDt7fj4grnBkbLOVwOJg860J2HVrPwr+fKHu9srwhwNGsA8z4ZDypGTsJsYUysv/dXDXoXl9UzWVK+AepR964mKxT6dhsIcRExTH+yum0adrjrOWq+zLcPCWJ8LBIIsKMX7U3XvAnhnS/3mf1cNal/cbRt/0IbDYbC1fN5IW5f+D5u5eXWyavIIfn597B83d/R4uG7ZnxyQT+883fGXf5c4SHRTHhqpkkN+lKib2Ef354E3OWPcutFz/pl/p4w3ldr+W6IZN54NVB/i6KiIh4QESYMQ33y1+Bw+H8etl55f92xvV9ISYA89wvz/8jl/YbxyV9xvL95nk8N2csr9y3ttwyyU268cp9awkLDcdut/O396/hsx9e5ZrBDwDQrME5zHpw41nbrm49M3D1Yr8v177D8x//H0/e9gkDO19V9nphcQGzPpvEup1LiAiLonViNx696QPvFr6GXLkgtFRl9TdLPCwiYkVD2sPmg5CS4fw67sRC7RPN97xaV/rC6vr61Tu+4N0lf8Fut2O3FzN6yMNc3Ps2X1anWs6MecRF1+WxMR+RWC+ZwqJ8Jr8xjK9/fp9L+ozl551fs2TtO8y4dzUxUXH855t/8Pbix5g46hUf1sKznD0GsnOP8/CsC8v+X1B0mrTMvcx94ijxMQmmjAVFRKyidjSM6g0f/OD8Ou7EQqEhxhiUGR5t5EoCGNwbCzFT3+js2FB1ywXqDaXOjA2Wmv/9iyTWa82uQ+vLXqsqb+hwOHjyvau5fuijnN9tNABZp474pF7usGTCf+nSpf4ugtc9fsvHZVchr9zyCc/NGcusBzedtZwzX4bHxswJmC9vRSLCo+jX4dKy/3docS7zvpt21nJrfllMmyY9aNGwPQBXDLiHR/91MeMuf45mDX6bly80JJRzmvVhX/pW7xfeh7omD/Z3EURExMOS6sPoPvDxGufXeeFL1/ZxaVfo1My1dXwhK+coO1PX8cydXwFwXpdrmPnJBA5l7C43iBkVEVP27+KSQgqK8rA5cSuPu+sFElcu9kvPTGHx6n/RocW5Z7331hePYrPZeHfyTmw2G5nZ6d4orsc5c0FoqarqD4EfD4uIWFVICIw9D6Z/BZm5zq3jaizUuDbcPMCcdwI72xdW1dc7HA6enX0z0+5aTnKTrqRnpvB/z7VnUOdRxETF+bA2VXNmzOPMG2EiwqNo3aQ7R7JSANh7eBOdWw0qq1Pf9pfy0OtDTJ3wB+eOgfjYeuUugJ27fBqb935HfEwCYN5YUETEKnolQWomLP/FueVdjYVswJj+kFjHxYL5iSsJYHfHQszUNzo7NlTdcoF4Q6mzY4MAKenb+GHbQh667h2+3zy37PWq8oYbdn1LeFhkWbIfoG5cIx/UzD0muB5H3HHmlGO5+ScxTsvllX4ZhvW8GTC+DMdOHORQxm4fldI7Pln5Mv07XXnW60dPHKBR3ZZl/29UN4nM7DRKSorLLZdXmMviNW8yoIJtiIiIBJoBbeGa3t7Z9iVd4KLO3tl2TR07cZCE+ERCQ43rV202Gw3rtuDoiQNnLZuemcIfX+jGNU/WJza6NiP731P2XlrmHu5+qSfjX+7Dpz+86vR6ZtA1eTAN6lR/tYbdbueFuX9g/FUzCP/dIwvyCnP5cs1b3D786bILHhLiG3ulvJ5UekFoaZk7tDi3bED/96qqv4iIBL46MTB+GNSr5fltN64Nd18AtaI8v21vc7YvdKqvt9nIyT8BwOn8bOJj6pm+z8zMTmfF5nn063A5AG2b9WL9rm/IzE7H4XDw7Yb/cLrgFNmnM/1cUve5Eg+dafHatxje9w7AvLGgiIiV2GxwZU8YfE71y7oqxAY39oeeSZ7ftje4kvNydyzEbH2js2ND1S3n7HZ8ydmxweKSIl6cdyf3XTOLkJDQcu9VlTfcf3Q7tWMb8PQHN3DXiz148t2rSTu+1/sVc5Ml7/C3imdn38qmPcsAePqOL856v6ovw5lXv0z96FYcOGjfvC93XPoMdWo18E0F3PDht1M4nLGbqX/81q31i4oLefqD6+nV7mIGdbnaw6UTERHxjvPOgdox8PFqyCmo+faiwuHqXtDPZFPXVqZxQhKzHtxEXkEOz8y+mZVbFzC0+w20adqT2Y+lEhtdm2MnUnnsrUupHVuf87tdV+V6wWb+9y/QKWkg7Zr1Ouu9tIw9xMUkMHvpFNbv+obI8GhuuehJera9sIItBa7KLgiFqutfykzxsIiIFdWrBfddDB/9BNsPe2ab3VrAdX0h1tx57TKV9YXV9fU2m42/jJnDU++NIioilpy8LJ64dQHhYRG+roLH5OZn8/g7I7luyGTOaW5cOdu9zVBGn/8Qf3nnckJtoQzsbIwJhYYEz9BpVfFQqW0pP5BzOotz/3chRLDEgiIiwc5mM8ZxGsTBZxugsKTm26wdbST72yfWfFu+4mzOC9wfC1HfaD7//vopBnUeRctGHUjPTHF6vZKSYjbuWcr0CT+R1LgTn/34On//4DpevW+d9wpbA8ETtVrIxBn9OZSxq8L3XntgAw3rNAfgkRvfB+Crde/xry8eYUoFSf/qvHD39zSs24LikiLe+fIvTJ1zm1vb8YW5y6excusCpo77ptw0vKUa1mnB+p1fl/3/SFZKuZN/cUkRT39wPQlxidxz5cs+K7eIiIgndG0OyQ1g3lrYePZN7k5rnwjX94O6sZ4rmzc0qNO87Irb0NAwHA4HR7MO0LBOi0rXiY6sxZDuN7B0/X8Y2v0GYqPiz9heM4b2uJEt+1aUJfwrWy8QOBsPVmdf+lZWbJnPC/d8X+H7JfZijmTtp2XDjvzh0mfYfWgDj7xxEW8+tM2v05i5Uv+qLgitrv5grnhYRMTK4qPhziGwdh8sWAf5Re5tJzbSeGRS95bVL+tPnuoLq+vrS0qK+c+3/+CJ2xbQNXkwvx5cy1/fuYI3Jm2hdmx9r9XPW07nn+LPbw5nQKcrufb8B8u9d8WAe7higDGj0/b9P9GgdrNy8WKg8dQxcKYv17zFRb1uLRsrC9RYUEREzmazGTeEdGgCs3+CPUfd31bfZLiqF8QE2PV91fV9zqrJWEgg9Y2eGhsyK2fHBjfv/Y6jWQf47w8zKbEXc7ogm5unJDFz4toq84YN67agTZMeJDXuBMCwXrcw45N7KC4pIiw03Kd1dYYS/iY0/d4fXVr+4t638fL8u8jOPU58bL2y1535MjSsa/w7LDScUefdz+1T23mmEh4277sXWLZxNs+O+6bc4wzO1Oec4cz8ZDwHjv5Ci4bt+fSHVxnSzRi0Lykp5ukPbiAuJoEHrn3DdM/oFRERAWO62bHnwcFMWLUTfk6BIieu6g4Nge4tYFA7SKpvjmfU1q3VkDZNe/LN+g+4pM9YVmyZT/06zc66YvtQxm4a1W1JWGg4RcWFrNr6Ca0SuwJwPDuNurUaERISwun8U/y0fREj/jd9aVXrBQJX48HKbN27giNZKYx9ti0AmafSeWneODKz0xg54G4a1m1BiC2EC3qOAYxn3zZOaMW+tC1+HeR1tv7VXRBaXf3BPPGwiIgYMUzfZOjcDNbuhVW74Gi2c+sm1jFiod5JEBl443dn8VRfWF1fv/vwRo5nH6Zr8mAAzmneh/q1m7H70AZ6tbvIcxXygbyCHP705nB6nzOcMcP+ctb7x7PTqBefSH7had5b8leuGzLZD6V0nqeOgVJ5BTl8t/ljZk787TnHgRoLiohI5erHwYRhsPsIrNwFWw6C3VH9epFh0CcZBrY14qJAVF3fFx4W6VQCuCZjIa2bdg+YvtFTY0Nm5ezY4Iv3rCj7d3pmCne92J0P/pwCVJ037NN+BP/6fDIZJw9Rv3ZT1uz4ghYNOwRksh+U8A9KOXknyC88Tf3aTQBYtXUh8bH1iItJKLdcdV+GvMJcSkqKyhLoyzbMpk2THj6tizOOnUhl1qJJJCYk89DrQwGICItkxsTVvLvkr9SLb8LI/ncRExXHA6Pf5Ml3r6LEXkxS485Mvv49AJZvmsPKrQtITuzKXS8adeyUNJCJo17xW7087aV5f2T1L5+TeSqdP715CTGRcbz36NnPrhEREfNrngA3nAtX9IS9R40LAA4eh+w8OHzC+KEXFgJDO0CzBGjd0JzPpr3/mlk8N2css5dOISYqnoeveweA5+f+gf4dr2BApyvYuHspC1dOJyQklBJ7MT3aXMjNwx4HYMWW+Sz68TVCQ8IosRczuOtoLulzO0CV6wWTkQPuLktsA0x6bQijzrufgZ2vAqB2bH26t7mQdb8uoV+HS0nL3Ed65j5aNOrgpxI7z5kLQqurv1niYRERKS8mAs5vbzzL9mAm7M8w/k4/CamZRiwUajMGtZsnQMv60LSuOS56dIUzfWF1fX3DOs3JPJXG/iM7aNmoA4cydpN2fA/NG3jhQcE1UNmYx5lx4YKVL/PrwTXkF+aycssCAAZ3G82YCx8D4NF/XYzDYaeopJBhPW/hyoET/Fklj3DmGCi1fNMckhO70aJh+7LXzBwLiohYmc0GbRsbf07mwb7SsaFM40IAuwNCbNCxqRELNU+A5IbGIx7NzNkEcE3GQtQ3BhZnxgarUlXeMDoilvtGvc5jb10GOIiNqs1jYz7ydpXcZnM4HE5c2yO+VlIIy6a7t+6RrP38/d+jKSjKI8QWQu3YBoy7fBptmnYHyh/oB4/+ynNzxpJ9+njZl6FVYhcA0o7v5an3r8FuL8GBg8SEZO658mUaJySdtc+hEyHUg9O71KT+/uLJNrB6/b3piQVGkFM7Gp4a5e/SiIj4nlnOg1bvCz1R/zMHvuNj6pW72K+yHz6//5ELRkz4/Nw7OJmbQYgthJuH/ZXzul5z1v4CKR48diKVm55uTmJCMtGRccBvF4SC8/V3JR4Gc8RDZjkHiIh4i1nOgzWNBVzpC6vr65dumM3spVMIsYVgd9i58YI/cUGPm87aZyDFAv4SSPGgq/HQfTMHMKLfnQz/3wWwpZyNBUGxkIiIGZjlPOhuP1hVzstTYyHV9Y2e6g99OTZU1XLVbedMVo8H3al/bm4utWrVAiAnJ4fYWPees6qEf4CywkFcFbPVHwLrR50/mOFHHZgnoBER8RaznAet3hdavf6gNvAWs5wDRES8xSznQfWDagOr199bzHIOEBHxFrOcB83YD5YKpIS/r1k9HvRnwj/ErbVERERERERERERERERERETEr5TwFxERERERERERERERERERMSEl/EVERERERERERERERERERExICX8RERERERERERERERERERETCvN3AaRiIeEwdKK/S+G8kHDPb89M9QfPtoHV6y8iImL1vtDq9S/dntXbQERErEv9oNrA6vUXERFrM2M/WMpT/aEZ28Dq8aA/YyEl/AOUzQahEf4uhf+o/tauv4iIiNX7QqvXH9QGIiJibeoH1QZWr7+IiFib+kG1AagNXKEp/UVERERERERERERERERERExICX8RERERERERERERERERERETUsJfRERERERERERERERERETEhJTwFxERERERERERERERERERMSEl/EVERERERERERERERERERExICX8RERERERERERERERERERETUsJfRERERERERERERERERETEhJTwFxERERERERERERERERERMSEl/EVERERERERERERERERERExICX8RERERERERERERERERERETUsJfRERERERERERERERERETEhJTwFxERERERERERERERERERMSEl/EVERERERERERERERERERExICX8RERERERERERERERERERETUsJfRERERERERERERERERETEhJTwFxERERERERERERERERERMSEl/EVEREREREREREREREREREwozN8FkIo5HGAv8ncpnBcSDjab57ZntvqD59rAjHUv5enjQKzLjN8DnQc92wZWr7+IiIjV+0Kr1x/UBiIiYm3qB9UGVq+/iIgrlPAPUPYiWDbd36Vw3tCJEBrhue2Zrf7guTYwY91Lefo4EOsy4/dA50HPtoHV6y8iImL1vtDq9Qe1gYiIWJv6QbWB1esvIuIKTekvIiIiIiIiIiIiIiIiIiJiQkr4i4iIiIiIiIiIiIiIiIiImJAS/iIiIiIiIiIiIiIiIiIiIiakhL+IiIiIiIiIiIiIiIiIiIgJKeEvIiIiIiIiIiIiIiIiIiJiQmH+LoCIiLcUFMHuo3AwEw4eh6xcOJVvvJdTAAt/huYJ0LoR1Inxb1lFREREPM3hgENZkJIBqZlw+MQZsVA+fLAKmteDFvWgZX0Isfm1uCIiIiIel5MPe0rHhjJ/i4VO5cPrS41xoWYJ0KYRxEb6t6wiIiIi7lLCX0SCTtoJWLUL1u6FguKKlymxw/JfjH/bbNCxCQxqB+ckarBbREREzK2gCNalwKqdRpK/IiUOY5l1Kcb/69WCgW2hbzLUivJNOUVERES8weEwLnhcuRM2HjDGgH7P7oBf0ow/AGEh0L2lMTbUsp4xViQiIiJiFkr4i0jQyC8y7tr/aY9r6zkcsO2Q8adFPbipPzSu7Z0yioiIiHjTpgMwd61xN5srjufApxvgyy1wRQ8Y0FYXQYqIiIj5nDgNH6+G7YddW6/YDuv2GX86NYXr+kHtaO+UUURERMTTlPAPIpv2LOeh14eWey0qIpZmDdoxrOctXDXwXkJDg/sjt3obWLn+O9Phwx+NH3Y1ceA4TPsCLu0GQzvoim6zsfJ3oJTV28Dq9RcR6zpdCHPXwIb9NdtOYTHMW2tcOHBTf6gb65nyiW+oH1QbWL3+ImJt6/YZcUx+Uc22s+0QPLsIru0DPZM8UjTxIav3hVavP6gNRMSadFYLQkO730jf9pfiwEHWqXS+/vl9Xv/sQQ4c3cED177h7+L5hNXbwGr1/zkF/vODMR2bJxTbjTvcjp2C0X0gJMQz2xXfsdp3oCJWbwOr119ErOVUHry2tPLp+92x6wi8/BXcfSE0ivfcdsU31A+qDaxefxGxnq+3wuebPLe904Xw/irIyoULO3luu+I7Vu8LrV5/UBuIiLUo4R+E2jbtybBeN5f9f+SAe7hjansWr3mT24c/TZ1aDfxYOt+wehtYqf4bD8AHPxjT8nvaj7uNO/xH99Gd/mZjpe9AZazeBlavv4hYR24BvPotpJ30/LZPnIZXv4GJF0O9Wp7fvniP+kG1gdXrLyLW8s02zyb7z/TZRuNGkKEdvLN98R6r94VWrz+oDUTEWnTfqgVER8TSvuW5OBwODh938eHmQcLqbRCs9T9yEj5Y5Z1kf6kfdhmJfzG3YP0OuMLqbWD1+otIcHI4jEcaeSPZX+pkHrz9PZTYvbcP8T71g2oDq9dfRILXL2mwaKN39/Hf9cajJMXcrN4XWr3+oDYQkeCmO/wtIu1/HVh8TIKfS+I/Vm+DYKu/3Q4f/mRMv++KB4dDfDRk58ELXzq3zn/XQ/tESNCdbaYWbN8Bd1i9DaxefxEJPuv2Gc+YdYU7sdChLPh6Gwzv4noZJXCoH1QbWL3+IhJ88grho59cW8edWAiM/TxyGUSGu7Y/CSxW7wutXn9QG4hI8LJEwj8jI4OpU6eyYMECUlNTadCgAaNGjWLKlClMnDiRt99+mxkzZjBhwgR/F9Uj8otOczI3A4fDeDbNZz++zu5DG2jfvC/NGrTzd/F8wuptYIX6f78T9me4vl58NNSJcW2dgmL4eA3cdYHr+wskxSWQU2D8OzYSwkP9Wx5vssJ3oDpWbwOr119Egl9OPiz42fX13ImFAL7aAt1bQOParq8bKBwO43m8BUUQFQ7REcH72Cb1g2oDq9dfRKxh0UbjEUSucDcWysw1Hhswqrfr6waSwmLjkVAhIVArEkKDeP5fq/eFVq8/qA1ExFqCPuG/ceNGRowYQXp6OrGxsXTs2JHDhw8zffp09uzZQ2ZmJgDdu3f3b0E96P2vnuD9r54o99qgzqO49+pX/FQi37N6GwR7/UvssHyHb/f5SxoczoImdX27X084mAmrdsLPKVBUYrwWFgI9kmBQW2hRL/gGu4P9O+AMq7eB1esvIsHvx93GXW2+YnfAd7/A9f18t09POV0Ia/fCql1wNPu315slGLFQzySICLJfxuoH1QZWr7+IBL+cfPjJxzNy/7jbmPEoJtK3+60phwN2H4GVu2DLQSOuA+MCyL7JMLAdNIr3bxm9wep9odXrD2oDEbGWIBvWKC8jI4ORI0eSnp7OpEmTeOKJJ4iLiwNg6tSpPPLII4SFhWGz2ejataufS+s5l/Ubx+Cuoym2F7EvbQtzlj9LxslUIsKjypYpLC7gnpd6MrTHTYy58LGy16d+NJYTOUeY8ofF/ii6xzjTBk9/cAN2h53Hb/m47LXs05ncOa0T4y6fxoU9x/ij6B7hTP237F3Bn98acda6xSWF2O0lLJla4ssiu2TbIdev4PaElbvgur6+36+77HZYuB6+//Xs94rtxsD32r1wbmsY3Te4rurWeVDnwWA/D4qItdnt8MMu3+/3530wsgfERPh+3+7aexTe+t64k+33UjPho9WwZAuMGwqJdXxePK9RLKRYSLGQiAS71XuMG0J8qagE1uyFIR18u9+aKCyG91fB1tSz38svMsaMvv8VLusGwzoF1w0hVo+HrB4LgeIhEbGWIErvnG3ixImkpqYyYcIEpk2bVpbsB5g8eTLdunWjuLiYpKQk4uOD5zLGpvXb0rPdMPq2H8H1Qyfz99s/49fUtbw8/66yZSLCIpl8w/t89O0U9hzeBMCqrQv5acdnPDj6LX8V3WOcaYN7R73KtpRVLN0wu+y1GZ+Mp1OrQaYPZpypf5fk8/js6Zxyf96ZvJP42Prcdsnf/Vj66v202z/7XbfvtzvkA53DAfPXVZzs/72f9hjPonM4vF8uX9F5UOfBYD8Pioi1/ZoOWX64+LGwBNan+H6/7jpwHF5bWnGy/0xZp2HmN3DslG/K5QuKhRQLKRYSkWDn67v7S/3opzEpd5TYjQsfK0r2/97nm+Drrd4vky9ZPR6yeiwEiodExFqCNuG/Y8cO5syZQ/369fnnP/9Z4TK9evUCoFu3bmWvlV4g0LdvXyIjI7EFwWWNnZIGMKznLSzfNIdtKT+Uvd6uWS+uPf8hpn50K8dOpPLSvHHce/Ur1K/dxI+l9Y6K2iA+JoFJo99i5sIJZJw8zPeb57F5z3LuH/W6n0vreZUdA2cqLC7gqfdH0TlpEDdd+Gcfl9B5DgekZPhn34XFxrT+ZrDjsDFtrbPW7oNNB71XHn/TeVDnwWA6D4qI+CsWAkg55r99u8LuMO5mc/ZizdwC4wLIYKVYSLGQYiERCSY5+f67UO9INpyu5mLCQLFyJ/ya5vzyX2yGQyYZ93KH1eMhq8dCoHhIRIJb0Cb8Z8+ejd1uZ8yYMdSqVavCZaKjo4HyCf/du3czf/58GjduTJ8+fXxSVl8YM+xxQkJCeW/JX3/3+l8IDQnj7pd60K3NUIZ2v8FPJfS+itqgT/vhnN/1Op6dfTMzFtzDg6PfJD62nh9L6T2VHQOlXp5/F4VF+Tx8/bu+LZiLMnON57D6y8FM/+3bFSt3ur7OKjfWMROdB3UeDJbzoIjIweN+3LdJYqFf0yDDxUTAnqOQdsIrxQkIioUUCykWEpFg4e94JNUESXG7Q2NDFbF6PGT1WAgUD4lI8ArahP/SpUsBGDp0aKXLpKYa8xmdmfAfPHgwaWlpfPrppwwbNsy7hfShpvXbMLTbDWzY/S1b9q4oez0sNJyOSQM4mZvBJb1v92MJva+yNhg3chqHju+mT/sR9OtwmR9L6F2V1R/gk5XTWb1jEU+NXUhURIyfSugcf19p7O/9OyMr17jD31W7jsDRbM+XJ1DoPKjzYLCcB0VEDp/w376PZpvjEUfuTrf7g4mm6XWVYiHFQoqFRCRY+Htsxt/7d8aeI+7NgrAuBQqKPV6cgGH1eMjqsRAoHhKR4BXm7wJ4y/79+wFo2bJlhe8XFxezatUqoHzCPyTE89dA9O7dm/T0dJfWiQiL5o0JLszH7YQbL3yMZRtn895Xf2XaXcsA2LJ3BV+te5crB07g1U/v4/XWG4kMj3Z5223btaWwOM9jZfVG/aHiNoiOiCUxIZlWjbvUaNueagNv1R0qrv/G3ct48/NHmPKHxTROSKrR9j19HFSkZa/R9LnuxQrfe3A4xFdz+MZH/fb3k1dXvlx2Hrzw5dmvfzz/v0y6ZryTpfWPBskDOP+PH7u17mWjbiPtl289XCLX+fIcoPNg4J0Hwbf199R50BfnQE+49M9riamdSFp6Gs2aBc9sRiJWcuXffiE8suJZzKqLh2oaCzmAczp0ofB0YI90X/Tgt9RudI7L6839bDn3XXWz5wvkBrP9JgTzxgKBGAuB744Bs/0mrCnFQiLm1/mSR2h/wb0VvuepWAgqj4f+OfVFbvn6eSdL6x/J/W6m56hnXF6vsBi69T6PnIx9XiiVazQ25LtYwFOxEJg3HrTS2JBiIZHAYrfby/49aNAgNmzY4NZ2gjbhn5ubC0BeXsUn1zlz5pCRkUFcXBytWrXyalnS09M5dOiQS+tEhbt+BVm31kP4+jlHpe+3bNSBJVN/ux0nryCH5+aM5Y4RzzCy/91Mev183l78Z+6+ouJkalXSDh8mv+i0y+tVxp36g+tt4EmeagN36w6u1z89M4V/fHAdd17+HN1aD3F7v6U8fRxUpE6bym9Bj4+GOk42X0iI88ueKT+/0OXvs6+FJpx0e92sk6cCon6+OgfoPOhZnmwDX9Xfk+dBX5wDPaGkpKTs70D4vouIOyq/SNnZeMjdWAjgyJGjnM4+6t7KPuJwuHchd1GxI2DOjWb7TQjmjAU8KRDiQSv8JqwpxUIi5peUW/l5xhexUE5ObsCfP+rnuH8uzjiexfEAqJ/GhnwTC3iaGeNBq40NKRYSCVxHjhxxe92gTfg3btyYrKws1q9fT//+/cu9l5aWxsMPPwxA165dsdlsXi+LqyLC3LujwhWzPptE44RWXDHgHmw2Gw9f9y53vdSdgZ2vpmvyYJe2ldikicevXjQbT7WBr+qeX3iaJ969iv4dr+CqgRM8sk1PHwcViYuNqvS9bCd2HR9l/Kiz2yE7v/LlKttWRJiNpk2bVr8jP4qLMs5pDofD5fNbrUgCon6++h7oPOhZnmwDX9Tf0+dBX5wDPSE0NLTs70D4vouI6+zF+RBZ8eBXdfFQTWMhgAYNEiiOC3eipP5TnH/CzRVzAubcaLbfhGC+WMDTzBYPmvU3YU0pFhIxv5ioyuMQT8VCVW0rJjoi4M8f0WGuJ3RLx5Fqx4YRFQD109iQ4iGNDXmHYiGRwGK320lLSwOgUaNGbm8naBP+w4YNY8eOHTz77LNcdNFFtGvXDoC1a9dyyy23kJGRAUD37t29XpZ169a5vE5JISyb7oXC/M+aXxazfNMc3nhwc1lCsEn91twx4hmmzbmdWZM2Ex0R6/T2du3cRWiE58rn7fp7g6fawFd1X7FlPnvTNnEoYyfLN8056/23HtpOw7otXNqmp4+Dihw4XvF0alD562d68mrjCu7sfHjyE9f3f/ft1/LJC9e6vqIP2R3wz8/g2CnXkv11YuDn7xcQ6vknm7jMF98DnQc9z5Nt4Iv6e/o86ItzoCc8sQBO5kFi40RSU1P9XRwRccOLS2B/RsXvVRcP1TQWqhUF+3btwMvXTNfYd7/AJz+7vt5fx4+k27MjPV8gN5jtNyGYLxbwNLPFg2b9TVhTioVEzG/dPvjgh4rf83YsBPDc3yfT4/3J7q3sI3mF8MQnxhT9zrLZbLRpBHt+2ei1crlCY0OKhzQ25B2KhUQCS25uLrVqGY9tXLlypdvbCdqE/+TJk/nwww85ePAgnTp1on379uTn57N7925GjBhBUlISS5YsoVu3bv4uql/0bT+ChX8/cdbrVw4cz5UDA/v55N7w/N3L/V0En7uo1y1c1OsWfxfDZU3qQGgIlNirXdQrmiX4Z7+uCLHBgLbw3/WurTegDQGR7PcVnQfL03lQRMQ8midUnvD3xb4DPdkP0CcZPt8IhS7c3FY7Gjo381qRAo5iofIUC4mImEdzP4/N+Hv/zoiOgN5J8MNu19Yb2NYrxQlYiod+Y8VYCBQPiUjwCNrUTrNmzVixYgWXXXYZUVFRpKSkkJCQwKxZs/j888/ZuXMngGUT/iJmFRYKiXX8t//m9fy3b1ec2xoaxju/fL1aMLCd98ojIiIinuPPQWYzDHADxETARZ1dW+ey7ta6+FFERMSsGsRDpJ9uY4uOMMZQzODCThAb6fzySfWhi4UufhQREQkmQXuHP0CHDh1YtGjRWa/n5OSQkpJCSEgInTu7OAokIn7XvQWkZvp+v20aQVyU7/frjugI+ONQeO1byMipetm6McayrvwIFBEREf/p1BTCQqDYDzMe9Wjp+326a1gnyCkwpvevzhU9oG+y98skIiIiNRdig24tYM1e3++7ewtzzHYExoUJ44bAG8sht6DqZZslwB/ON260EREREfMJ6oR/ZbZt24bD4aBdu3bExMSc9f68efMA2L59e7n/JyUl0bt3b98VVEQqdG5rWLzZ99P6DzLZtGb1asH9l8BXW40fwflF5d+PDDOmu72oszGFrYiIiJhDrSjokQRrfTzI3bqhf2dacpXNBlf3ghYJsOyXii8Ybd0QLuhoXEQhIiIi5nFeO/8k/AeZbHbElvWNsaGvt8L6lLMvGK0VBf1bGxdKRob7pYgiIiLiAZZM+G/ZsgWofDr/0aNHV/j/2267jXfffderZROR6tWKgp4tYe0+3+2zdjR0ae67/XlKrSgY1duYonbLQZi7BgqKITocnrgaovRjTkRExJTOa+f7hL/ZBrhL9WoFPZNg/3F4falxEWRUONx3sbkuYBAREZHfNK9nJLP3Z/hun8kNoGld3+3PUxrEwU394cqextjQJz8bY0MxEfDkVbqrX0REJBgo4V8Bh8Phy+K4JfXYLp6bcxsnczOIjarNw9e/S1LjTuWW2Z7yIy8vuBuAEnsRnZMGcc9V04kIi2TD7qW89cWj5BXkYLPZ6Nf+Mu649BlCQkLYl7aFGZ+M50TOUUJDwjinRV/uvfoVIsMD8xbgwqJ8nv7PDew/sp3I8Gjq1GrIxFGv0bR+m0rXmfrRWL7++T0++VsWtaLrlHvvvSVP8ME3f+O1+zfQpml37xZe3HZ5d9h6CPIKfbO/a/qY+5mukWHQuxV8tsH4URcRFlzJfmfPA1Wd3/albeGZ2beULZubf4LT+dks+Jsfnh8hIiJSjRb1jFmPftrjm/21a2xMYWtWNpvxXNrIMCPhHxmmZH+weWXhRH7c/ilHsvZX+lsuPTOF5+aMZffhDTSu24pZD24se6+q38iByplxgVIOh4PJsy5k16H1LPz7CQDW/rqENz9/pGyZE7lHSYhrzGv3rwfg65//zbzvpmG3l1AnrhEPX/cODeua+EQgIkHn2t7w4hKw+2AoN8Rm3FBhZrGRcG4bY9bMgmIID1WyX4KLM/Gg3W7njUUPsfbXLwkNCSM+th4PXPuvsjHEj5c/x9fr3sPusNO8wTk8dP07Z+UPREQCkRL+JvXy/D9yab9xXNJnLN9vnsdzc8byyn1ryy2T3KQbr9y3lrDQcOx2O397/xo+++FVrhn8AHHRdXlszEck1kumsCifyW8M4+uf3+eSPmMJD4tiwlUzSW7SlRJ7Cf/88CbmLHuWWy9+0j+VdcKl/cbRt/0IbDYbC1fN5IW5f+D5u5dXuOyKLQsIC6040/nLgTX8mrqWRnVN9HDS/3F2sGf1ji94d8lfsNvt2O3FjB7yMBf3vo3s3OM8POvCsuUKik6TlrmXuU8cJT4mgbW/fMk7S/5CcXEhkREx3H/NLFo38d93qHaMMUXrhz96f189W0JXE97dbzXOnAeqOr+1SuxSbtB3xicTsJnlwXyVcOaHTnUXS9w8JYnwsEgiwoyLvm684E8M6X69L6vhNmfqD+6fF0VE/O3KnvBLGpw47d39RIbB9f3M87xaMTjbD1bX1xcWFzDrs0ms27mEiLAoWid249GbPvBFFVxyXtdruW7IZB54dVCly8RExXP78H+Qm3+Stxc/Vu69qn4jBypnxgVKzf/+RRLrtWbXofVlr/U55xL6nHNJ2f//8vbldGs9FIADR3/hX4se5rUHNlAvPpFvfv6AlxfczdN3fO7dSomIuKB5PbiwI3y9zfv7uriz8Zx7MQ9XbhJ75I2LyTqVjs0WQkxUHOOvnE6bpj3K3g+0cVFn1XS8+Exfrn2H5z/+P5687RMGdr7KRzVwjTPx4I/bP2VbyipmPbiJsNBw/vPNP3h78Z95/JaP+Xnn1yxZ+w4z7l1NTFTc/957jImjXvFhLURE3GPJhP/SpUv9XYQayco5ys7UdTxz51cAnNflGmZ+MoFDGbvLBSxRETFl/y4uKaSgKK8seXVmwBIRHkXrJt05kpUCQLMGvz2oPDQklHOa9WFf+lZvVqlGIsKj6Nfh0rL/d2hxLvO+m1bhslmnjjB76RSm/XEZi9e8We69/MLTzFw4gb/eOp8HXz3Pq2X2BmcGexwOB8/Ovplpdy0nuUlX0jNT+L/n2jOo8yjiY+uVS3bOXT6NzXu/Iz4mgVOns/jn7DG8cPf3JDXuxJa9K3jmwzH86yH/Hhd9WsGvafBzivPrZOeV/7s6DeKMu/slsDl7HnD2/FZYlM/SDf/huT8u806BfcSZHzpQ/cUSj42ZY8oZT5ypv7vnRRGRQBAdATcPgNeWQom9+uXB9VgIYHRfqFfL9fKJfzkbB0DVff1bXzyKzWbj3ck7sdlsZGane7ikntE1eXC1y8THJNC51SA27Vl+1ntV/UYORM6OCwCkpG/jh20Leei6d/h+89wKt5dx8jAbdn3LpOve/t86W2mV2JV68YkA9O1wKVPn3Ep27nHiY+t5sWYiIq65pAvsPgL7nJza351YqHVD4xn3Yj7O3iT2+C0fl93FvXLLJzw3ZyyzHtwEELDjos6o6XhxTFQcYMyStHj1v+jQ4lx/VMNpzsSDNmwUFhdQWJRPaEgYp/OzaVC7GQB7D2+ic6tBZfXu2/5SHnp9iBL+ImIKgTs3nVTq2ImDJMQnEhpqXK9hs9loWLcFR08cOGvZ9MwU/vhCN655sj6x0bUZ2f+es5bJzE5nxeZ59Otw+Vnv5RXmsnjNmwzodKXnK+Iln6x8mf6VlPeFeXdy52VTyzrtM/3r88lc3v9uGtYx363cpYM9w3reDBiDPcdOHORQxu6zF7bZyMk/AcDp/GziY+oRHhZ51mKL177F8L53AHD4+B7iY+qVXQHaJfk8jp44wK7U9Wet50s2m/EMss7NnF/nhS/hyU+Mv6uTEAv3XGhMeSbmUtV5oFRV57eVWxeQmJBsyiT3mbomD6ZBnaq/IKUXS5ReENahxbkBPbjtCmfqD7h1XhQRCRRtGsHYQc4/esiVWAjgmt7GY4HEfJzuB6uQV5jLl2ve4vbhT5fFCgnxjT1RvIBW1W/kQOHsuEBxSREvzruT+66ZRUhI5fM2f7XuXfq2v5S6tRoCkJzYjd2H1pN6bCcA367/AIfDwZGs/V6qkYiIe8JC4c6h0NzJ67JdjYVa1IM7h2jqezNyZbzjzCnbc/NPAr9NbRWo46LV8dR4sd1u54W5f2D8VTMqHCsxm3M7jqRb6yFc/7fGXP+3RDbs/pbbLvkbAG2b9WL9rm/IzE7H4XDw7Yb/cLrgFNmn9bhPEQl8lrzD30oaJyQx68FN5BXk8Mzsm1m5dQFDu99Q9n5ufjaPvzOS64ZM5pzm5R9EVVRcyNMfXE+vdhczqMvVvi66Wz78dgqHM3Yz9Y/fnvXeF6vfpGGdFvRoc8FZ7/2882uOZu3n3qtn+qKYHlfVYM+Zd3fYbDb+MmYOT703iqiIWHLysnji1gWEh0WU2962lB/IOZ3Fuf8b4GpWvy3Zp4+zLeUHOiUN4Idtn3K64BTpWSm0bdbTdxWtQGgI3H4ezF3j2WfYNqsLfxgCdWKqXVQCTFXngVLVnd8Wr7FuYreiiyWmfnQrDhy0b96XOy59hjq1GvipdJ7n7nlRRCSQdGluDES/vxJOF3pmm+Ghxp39fZM9sz0JbJX19WkZe4iLSWD20ims3/UNkeHR3HLRk/Rse2E1WzSvqn4jm9G/v36KQZ1H0bJRB9IzUypcxuFwsGTt29xz5fSy15o1aMt917zOsx/dSom9mH7tL6NWdB1CQzSMJCKBJyYCxg+Dd1YYM0F6SocmcNsgiKr4yaBiMtXdHPLs7FvZtMeY6fHpO74oez2Qx0Wr4qnx4vnfv0CnpIG0a9bLL/XwtJ2p60hJ38rsxw8RExnPW188ysvz7+LRmz6ge5uhjD7/If7yzuWE2kIZ2NkYM1T8IyJmoDOVCTWo05zM7DRKSooJDQ3D4XBwNOsADeu0qHSd6MhaDOl+A0vX/6cs4X86/xR/fnM4AzpdybXnP1hu+eKSIp7+4HoS4hK558qXvVofT5m7fBorty5g6rhvyj3OoNSmPcvYsvd7Vu9YVPbauBe68rex/2Xj7qXsOrSem6ckAXDsZCqPvX0p918zi/4dR/qqCpWaOKM/hzJ2Vfjeaw9scHo7JSXF/Ofbf/DEbQvomjyYXw+u5a/vXMEbk7ZQO7Z+2XJfrnmLi3rdWhYQxkbX5q+3zOOtxX8ivyCHDi3707JRx4AJdkJD4IZzoVNT+HgNnMp3f1shNuO5bBd1dv5OOQkc1Z0HoPrzW1rmPn7Z/xNP3Drf28WtkerOC+7MVlLRxRIv3P09Deu2oLikiHe+/AtT59zGlDN++PqLp+rv7nlRRCTQtE+ERy43LoLcmlqzbbWqDzf0h0bxnimbeJ4n44Cq+voSezFHsvbTsmFH/nDpM+w+tIFH3riINx/aRt24Rh6pSyCp6jdyoHF2XGDz3u84mnWA//4wkxJ7MacLsrl5ShIzJ64tu7Bj897vKCzOp/c5l5Rbd3DXaxnc9VrAmPVgzvJnaVLBc49FRAJBVDjcNRR+2AX/3QCFxe5vKzIMruoF57Y2ZpeUwORKPOTMzSGP3Pg+AF+te49/ffFIWTwUqOOivhgvzjyVzoot83nhnu89VWy/+/rn9+ne5oKyWR0u6n0bj/7r4rL3rxhwD1cMMGZJ3r7/JxrUbkZslH4YiUjg06i1CdWt1ZA2TXvyzfoPuKTPWFZsmU/9Os3Oek7foYzdNKrbkrDQcIqKC1m19RNaJXYFIK8ghz+9OZze5wxnzLC/lFuvpKSYpz+4gbiYBB649o2yaY8C2bzvXmDZxtk8O+6bclMwnelPN/2n3P8vetjGGw9uplZ0Hdo07cEdl/6z7L2bpyTx5G0LA2Y67+n3/ljl++FhkU4N9uw+vJHj2YfLnmd0TvM+1K/djN2HNtCr3UWAcWx8t/ljZk4s/zyn7m2G0r3NUAAKiwu4/m+Nadmoo6eq6BFdmkNyQ/h2O6zeA7kFzq8bGgLdmhvPZGtS13tlFO9x5jzgzPltyZq3Gdj56kq3ESiqOy+4qrKLJRrWNc4jYaHhjDrvfm6f2s6j+3WXp+pfk/OiiEigqR0NdwyGTQfhux3OP8u2VGJtOO8cY3A7RBc+BjRPxgFV9fUN67YgxBbCBT3HAMZz7hsntGJf2pagS/hX9Rs5EDk7LvDiPSvK/p2emcJdL3bngz+nlFtm8Zq3uLj3WEJ/N+X/8ew06sUnUmIv4c0vHuGKAeMrvahWRCQQ2GwwsB20bwLfboN1Ka4l/iPDoFcrGNYREmp5rZjiIc7GQ87cHHKmi3vfxsvz7yI79zjxsfWAwBwX9cV48eGM3RzJSmHss20ByDyVzkvzxpGZncbIAXd7p2JelpiQzJpfvmD0+Q8RHhbBTzsWkdS4c9n7pfFPfuFp3lvyV64bMtmPpRURcZ4S/iZ1/zWzeG7OWGYvnUJMVDwPX/cOAM/P/QP9O17BgE5XsHH3UhaunE5ISCgl9mJ6tLmQm4c9DsCClS/z68E15BfmsnLLAgAGdxvNmAsfY/mmOazcuoDkxK7c9WIPADolDWTiqFf8U9lqHDuRyqxFk0hMSOah143AKyIskhkTV/Pukr9SL74JI/vf5edSepezgz0N6zQn81Qa+4/soGWjDhzK2E3a8T00b3BO2TLLN80hObEbLRq2L7duabAD8J9v/k731hectf1AEBsJV/SAEV1h437YdghSMyEjp+JlmycYz77tlwxx0b4vr3iGs+eB6s5vdrudr9a9y+Qb3vdbXfyhsosl8gpzKSkpKntt2YbZtGnSwz+F9JKanBdFRAKRzQbdWxh/UjNhzV7YfxwOZ0FRSfllQ0MgsQ60SDAGt5Mb6C42q6mur68dW5/ubS5k3a9L6NfhUtIy95GeuY8WjTr4qcSVe2neH1n9y+dknkrnT29eQkxkHO89urvcb+T8wtPcPrUdRcUF5Oaf5MZ/NGNYz1u449J/VvkbOVA5My5Qndy8k6zasoA3Jm05673nP/4/jmTtp6i4gH4dLuP/RkzxeB1ERLyhXi24rh+M7AHr9sGv6XDwOJzMO3vZOjHQLMGYLal3K03fH2ycuTkkJ+8E+YWnqV+7CQCrti4kPrYecTEJZcuYZVz0TJ4YL+7V7qJyif1Jrw1h1Hn3M7DzVT6ujXOciQevGDieA0d38McXuxEWEk7duMbcf83rZdt49F8X43DYKSopZFjPW7hy4AQ/1khExHk2h8Ph8Hch5GwlhbBsevXLBYqhEyE0ovrlnGW2+oPn2sDduh88+ivPzRlL9unjZYM9rRK7AOUHfJZumM3spVMIsYVgd9i58YI/cUGPm8q2c9/MAYzodyfD+9xebvsvzL2TrftWUGIvpkPL/ky4asZZgbKnjwNPOl0AWaeNge6wECPZXyfGeoPaTywwfuDWjoanRvm7NJWz8jmglCfa4MwfOvEx9cp+6MBv54W2TXty09PNSUxIJjoyDvjtYom043t56v1rsNtLcOAgMSGZe658mcYJSRXuz5Nt4Kv61+S8+HuBfA48k1nOAyLiWSV24wLIgiLj/xFhUL8WhIVWvV6wMdM5sKZ9oTP9YKvGnavt69OO7+X5uXdwMjeDEFsINw/7K+d1vabCfQZaLOBrgRgP+poZ4iEznQdExLOy84w/xXZjbKh2tDVv/jDLebCm/eCxE6mVjnfAb/FQ6ybd+Pu/R1NQlEeILYTasQ0Yd/m0cjO/OjMuCoEXC3hqvLiUMwl/xYOKhUTENbm5udSqZUwtlJOTQ2xsrFvbUcI/QJmtMwu0YMYf/J3wDwRmCGisziwBnRm/BzoP6kedWc6BZjkPiIh4g5nOgVbvC61ef1AbeIuZzgMiIt5glvOg+kG1gdXr7y1mOQeIWIWnEv56MqOIiIiIiIiIiIiIiIiIiIgJKeEvIiIiIiIiIiIiIiIiIiJiQkr4i4iIiIiIiIiIiIiIiIiImJAS/iIiIiIiIiIiIiIiIiIiIiYU5u8CSMVCwmHoRH+Xwnkh4Z7fnpnqD55rAzPWvZSnjwOxLjN+D3Qe9GwbWL3+IiIiVu8LrV7/0u1ZvQ1ERMS61A+qDaxefxERVyjhH6BsNgiN8Hcp/MfK9bdy3UVK6XugNrB6/UVERKzeF1q9/qA2EBERa1M/qDawev1FRFyhKf1FRERERERERERERERERERMSAl/ERERERERERERERERERERE1LCX0RERERERERERERERERExISU8BcRERERERERERERERERETEhJfxFRERERERERERERERERERMSAl/ERERERERERERERERERERE1LCX0RERERERERERERERERExISU8BcRERERERERERERERERETEhJfxFRERERERERERERERERERMSAl/ERERERERERERERERERERE1LCX0RERERERERERERERERExISU8BcRERERERERERERERERETEhJfxFRERERERERERERERERERMSAl/ERERERERERERERERERERE1LCX0RERERERERERERERERExISU8BcRERERERERERERERERETEhJfxFRERERERERERERERERERMSAl/EREREREREREREREREREREwrzdwGkPIcD7EX+LoX7QsLBZqv5dszYDp6qO6j+IqLzgNXrLzoGRESsTv2A2sDq9PmLiIiV+wIz1r2U+kP3mPkzr46OCfEFJfwDjL0Ilk33dyncN3QihEbUfDtmbAdP1R1UfxHRecDq9RcdAyIiVqd+QG1gdfr8RUTEyn2BGeteSv2he8z8mVdHx4T4gqb0FxERERERERERERERERERMSEl/EVERERERERERERERERERExICX8RERERERERERERERERERETUsJfRERERERERERERERERETEhML8XQAREfGugiJIzYK0E8a/AQqKYfcRaJYAUeF+LZ6IiIiIV9kdcOwUpB43YiAw/t6434iF6tUCm82/ZRQRERHxptwCSM2Eo9m/jQ0VFkNKBjSpAxHKEoiIiJiaunIRkSCUWwCr98DavZB+Ehy/ez+/CGZ+Y/y7UTz0bgXntoG4KJ8XVURERMTj7A74NQ1W7YJd6b8l+kvlF8G7K41/x0RA+0QY1A5aNVDyX0RERIJDVi78sAvW74fjOWe/n1cELy2BEBs0rQv9WhvjQ7oxRERExHyU8BcRCSK5BbBoo5HoL7Y7t86RbPh8E3y5BXolwRU9oJYS/yIiImJCDgesT4HFmyGjgoHtipwuNAbC1++HxDowsjt0bOrFQoqIiIh4UWYOLFwPW1KN2Kg6dgcczDT+fLYBBrSF4V0hUpkDERER01C3HUQ27VnOQ68PLfdaVEQszRq0Y1jPW7hq4L2Ehgb3R271NrB6/a1uayp8vBqy891bv8QOa/bCtkMwug90b+nZ8on36RygNhAdAyJWlp0HH68xYiJ3pZ2AN5Ybd7hd2dO4+1/Mxer9gNXrLzoGRKzM4YAfdsOn68+e3chZBcWwbAdsOQg39ofWDT1bRvE+9QNqA6vT5y9WpaM6CA3tfiN921+KAwdZp9L5+uf3ef2zBzlwdAcPXPuGv4vnE1ZvA6vX32ocDuMK7KU7PLO93AJjittBR2FUb2NqNzEXnQPUBqJjQMRqDh6H15cZcYwnrN5jPArg7guhQZxntim+ZfV+wOr1Fx0DIlZTXAL//gE2HfDM9jJyYObXxgWQQzp4ZpviW+oH1AZWp89frEYJ/yDUtmlPhvW6uez/Iwfcwx1T27N4zZvcPvxp6tRq4MfS+YbV28Dq9bcShwMW/AwrfvX8tlfuhKISuKGfnmVrNjoHqA1Ex4CIlRw4Dq984/6dbJXJzIUZX8G9Fyvpb0ZW7wesXn/RMSBiJcUl8Pb3sP2wZ7frwHg0QLEdhnXy7LbF+9QPqA2sTp+/WE2Ivwsg3hcdEUv7luficDg4fHyPv4vjF1ZvA6vXP5gt3e6dZH+p1XuMZ+CKuekcoDYQHQMiwSorF2Yt83yyv1R2Prz2LZwu9M72xXes3g9Yvf6iY0AkmM1d6/lk/5kWbYR1+7y3ffEN9QNqA6vT5y/BTnf4W0Ta/05g8TEJfi6J/1i9Daxe/2B0OAu+cDEZ/+BwiI82nnH7wpfOrfP1NujUFFrWd72MEjh0DlAbiI4BkWDjcMBHP7k2jb87sVBmLiz8GW7q7145JXBYvR+wev1Fx4BIMNqaatys4Qp34qF5a6FNI6gT43oZJXCoH1AbWJ0+fwlmSvgHofyi05zMzcDhMJ5N8tmPr7P70AbaN+9Lswbt/F08n7B6G1i9/lZQYocPfzL+dkV8tOs/zhwO+PBHeOhSCA91bV3xD50D1AaiY0DECn7aA7+mu7aOO7EQwJq90K2FcRGkmIPV+wGr1190DIhYQW4BfLza9fXciYfyi2DOahg3RI99NAv1A2oDq9PnL1ZjiYR/RkYGU6dOZcGCBaSmptKgQQNGjRrFlClTmDhxIm+//TYzZsxgwoQJ/i6qR7z/1RO8/9UT5V4b1HkU9179ip9K5HtWbwOr198KNuyH1Ezf7e9ItjHQPbCt7/bpSdl58NNu2H8cCoshOgLOSYTeSRAZ7u/SeZ7OAWoD0TEgEuyKS+DzTb7d52cboGMTcw5y2+2w7ZARQ+YUQIgNGsZD/zaQWMffpfMOq/cDVq+/6BgQsYLvfjEeP+QrOw7D7iPQtrHv9ulJx07Bj7sg/SQUlUBsJHRtbvwJC8IbXNQPqA2sTp+/WE3QJ/w3btzIiBEjSE9PJzY2lo4dO3L48GGmT5/Onj17yMw0Mmbdu3f3b0E96LJ+4xjcdTTF9iL2pW1hzvJnyTiZSkR4VNkyhcUF3PNST4b2uIkxFz5W9vrUj8ZyIucIU/6w2B9F9xhn2uDpD27A7rDz+C0fl72WfTqTO6d1Ytzl07iw5xh/FN0jnKn/lr0r+PNbI85at7ikELu9hCVTS3xZZHHRyp2+3+eqnTCgjbkGufOLYP46WJ9y9mwImw/Cp+vh/PYwvKsx8B0s1A+oHxD1hSLBbtNByPHhADcYg8N7j0LrRr7db02tTzEuVsg6Xf71X9Lg+1+N6Xlv6Af14/xSPK+xejykWEgUC4kEt+IS+HG37/e7apf5Ev4nT8NHq40LFn5v4wGIizLGhcx6k0tlrB4LgeIhq1MsJFYT1An/jIwMRo4cSXp6OpMmTeKJJ54gLs4YxZg6dSqPPPIIYWFh2Gw2unbt6ufSek7T+m3p2W4YAH3bj6Bzq0E88OogXp5/F4/d/BEAEWGRTL7hfSa9OphzO1xO6ybdWLV1IT/t+Iw3Htziz+J7hDNtcO+oVxn3fBeWbpjNBT1uBGDGJ+Pp1GqQ6TtyZ+rfJfk8Pns6p9x6GScPM356b64cEByzXQSr1ExIyfD9fg+fgH3HILmh7/ftjvwieOUbOFjFTAgFxfDVVsg4BTcPDJ6kv/oB9QOivlAk2K3yw8WPACt3mSvh/90v8MnPVS+z+wi8tATGDwuuu/2tHg8pFhLFQiLBbfNBOOXjix9L93syD2pH+37f7sjMgelfw4nTlS9zKh/mrjEuDLi0m+/K5m1Wj4VA8ZDVKRYSqwnxdwG8aeLEiaSmpjJhwgSmTZtWluwHmDx5Mt26daO4uJikpCTi4+P9WFLv6pQ0gGE9b2H5pjlsS/mh7PV2zXpx7fkPMfWjWzl2IpWX5o3j3qtfoX7tJn4srXdU1AbxMQlMGv0WMxdOIOPkYb7fPI/Ne5Zz/6jX/Vxaz6vsGDhTYXEBT70/is5Jg7jpwj/7uITiioquSLbCvl31wQ9VJ/vPtH4/fGX+3zGVUj+gfkDUF4oEk/wi2HvMP/vecRgcDv/s21W/pFWf7C+VUwBvLDMuhgxWVo+HFAuJYiGR4LIjzT/7tTtgp5/27aoSO7yxvOpk/5m+2go/p3izRP5l9VgIFA9ZnWIhCXZBm/DfsWMHc+bMoX79+vzzn/+scJlevXoB0K3bb5fuzZs3j2uuuYaWLVsSExND+/bteeyxx8jJyalwG2YxZtjjhISE8t6Sv/7u9b8QGhLG3S/1oFuboQztfoOfSuh9FbVBn/bDOb/rdTw7+2ZmLLiHB0e/SXxsPT+W0nsqOwZKvTz/LgqL8nn4+nd9WzBxWaqTSWxvcDaB7m9pJ2BrqmvrfPcrFAbxILf6AfUDor5QJFj4MxbKL4IMk/w0/Haba8tnnTam/w9mVo+HFAuJYiGR4JF63H/7NsvY0LZDxiOZXPHtNvNc3OkOq8dCoHjI6hQLSTAL2oT/7NmzsdvtjBkzhlq1alW4THS0MffQmQn/adOmERoaypQpU1i8eDF33303r732GsOHD8dut1e4HTNoWr8NQ7vdwIbd37Jl74qy18NCw+mYNICTuRlc0vt2P5bQ+yprg3Ejp3Ho+G76tB9Bvw6X+bGE3lVZ/QE+WTmd1TsW8dTYhURFxPiphOKsA378YZWaaY4fPqt2ub5OXqFxp3+wUj+gfkDUF4oEC38PMh/04wC7s9JPwq4jrq+3cqc5Yj13WT0eUiwkioVEgkNhMaRn+2///o7FnLXSjUdAlT7OMlhZPRYCxUNWp1hIglnQJvyXLl0KwNChQytdJjXVuP3zzIT/Z599xscff8yYMWM4//zzue+++5g5cyarVq1i5cqV3i20l9144WOE2EJ476vfrl7asncFX617lysHTuDVT++joCjPjyX0voraIDoilsSEZFo17uLHkvlGRfXfuHsZb37+CI/fMpfGCUn+K5w47aSTU5F5Q06BMSVaoPvVzenl3F3PLNQPqB8Q9YUiwcDZaVm95aQJuspd6e6tdygLcgs8W5ZAY/V4SLGQKBYSMb/sPP9eoOfvWMwZdof78dCvbq5nFlaPhUDxkNUpFpJgZXM4gvP6/ebNm5OamsqGDRvo3r37We8XFxeTmJhIRkYGe/bsITk5udJt7dy5k3POOYcPP/yQG2+80eWy9O7dm/R05yKFiLBo3pjgxq2pbsgryOGPL3TjmsEPMrL/3Ux6/XzaNevN3Ve86PY2x81sS2FxzQMCX7YDwKTXhnBuh8sZPeQht7fhqbqD7+qfnpnChOl9uPmiJ7hq4IQabcuT9Zcq2Gxc+8zBSt9+cDjER1e+enwUhISA3Q7Z+ZUvl50HL3xZ8XsLHz+H4sJcJwvsH5c99jPR8Y1cXi9tx7esevc2L5TIdb44D3i6HzDjebBUoPUD3nTpn9cSUzuR0yfT+GJKH38Xp1LqC0WkMj2ueprW/Svurz0VC0Hl8dDWL5/hl2UzXSix77UfOoHOwx91a93Fzw4gN/OAh0vkOl/1A56MhzzdD/gyHvJELATm6AsVC5WnWEjEfOIatuGSScsrfd/bY0N52Uf4/OleTpfXH8IiYrnq77+6te6uFf9i06KnPFwi91h5bMjX40JgnXgoUGMhf3zm4NlYqDKBfkyIf9ntdtLSjDsRu3fvzoYNG9zaTpgnCxVIcnONZFReXsVfojlz5pCRkUFcXBytWrWqclvLli0DoEOHDm6VJT09nUOHDjm1bFS476YKmfXZJBontOKKAfdgs9l4+Lp3ueul7gzsfDVdkwe7tc20w4fJL6r5ZZ6+bAdP8VTdwTf1zy88zRPvXkX/jld4pCPzZP2lavaSYkJCKz59x0dDHScOn5AQ55arSOrBFEqKC91b2UcK8k65lfA/dTLD6fO1t/niPODpfsBs50FPM8t5sKSkpOzvQDneK6K+UEQq0/pkVqXv+SIWysoMnHihMg2OuT5tkcPhwGazcXD/bvKy/T+Xra9iAU/GQ57uBxQPeYdiod8oFhIxp9pFkVW+7+14qKgwP6DPnwA2m/sTG2ced34s39usPDZkxjioVKD3h4EaC/njM/d0LFSZQD8mJHAcOeLGs/n+J2gT/o0bNyYrK4v169fTv3//cu+lpaXx8MMPA9C1a1dsNlul2zl06BCPP/44w4cPr3CmAGfL4qyIsCouv/SgNb8sZvmmObzx4Oay+jep35o7RjzDtDm3M2vSZqIjYl3ebmKTJh67gs9sPFV38E39V2yZz960TRzK2MnyTXPOev+th7bTsG4Lp7fnyfpL1QpyMoiuXfF5Jbuaj8CVq7grUph3ksaNGjhZUv85mbqROo3auLze6WPbadq0qRdK5Dpvnwe80Q+Y7TzoaWY5D4aGhpb9HSjHe0XUF4pIZcIclX/PPBULVbWtyJCigD5/AhSf2A38lsR3hs1m41TGPhLiIyHO//XzRT/g6XjI0/2A4iHvUCz0G8VCIuYUFhle5fveHhsqzssK6PNnqcwDG0ho0cPl9YoydwVM/aw8NmTGOKhUoPeHgRoL+eMz93QsVJlAPybEv868w79RI9dvYiwVtFP6T5w4kRkzZtC8eXO++eYb2rVrB8DatWu55ZZb2Lt3L0VFRYwfP56ZMyuejjEnJ4chQ4aQnp7O2rVrSUxM9Hq5Swph2XSv78Zrhk6E0Iiab8eM7eCpuoPqL1X713LY5ubFl09ebVy9feI0PPmJ6+u3bQTjh7m3b19KyYCXlri2TngoPHU1xFR9obzPWP08YPX6e9MTC4znT9eOhqdG+bs0ldMxICKV+SUNXl/q3ro1jYUAHrkMEuu4t64vPb8YDma6ts6VPWGoexPbeZz6AbWBtygW8h4zfP4iweLpT+HYKffWrWk8NKAtXNfXvX370pq98OGPrq1TrxY8dgWEOHe9pNdZuS8wY91LBXp/GKixkJk/8+oE+jEh/pWbm0utWrUAIy8dG+v6zdgA7s9tE+AmT55MvXr1OHjwIJ06daJLly60bduWvn37kpyczAUXXABAt27dKlw/Ly+PkSNHsm/fPr766iufJPtFRJzRLMGa+3ZFy3qQVN+1dfq1Dpxkv4iIiFSuuR/jkYhQaBTvv/27YoiLifvocOib7J2yiIiIiGf5c3zGn7GYK7q3MBKarji/feAk+0VERFwRtAn/Zs2asWLFCi677DKioqJISUkhISGBWbNm8fnnn7Nz506g4oR/UVER1157LevWrWPx4sV07NjR18UXEalUO+efEhJU+3aFzQZjz4O6Tl4M17qhcUebiIiIBL7YSGhS1z/7btPImALXDHolGYPWzggLhTvON9pWREREAp8/x2fauj/bsE9FhMGdQyCq6icglOnTCs5r59UiiYiIeE2YvwvgTR06dGDRokVnvZ6Tk0NKSgohISF07ty53Ht2u50xY8bw7bff8sUXX9C3rwnmJxIRS0luAI1rQ/pJ3+63Xi04x0STndSJgfsvhvdWwt5jFS9jA3omwfX9jCn9RURExBwGtoW5a/yzXzO5qifUioSvtkJRScXL1KsFtwx0fXYkERER8Z+eSfDf9ZBf5Nv9tk+E+nG+3WdNNEuAiRcZY0NHsiteJjQEhrSHy7obN5CIiIiYUVAn/Cuzbds2HA4H7dq1IyYmptx748ePZ+7cuTz66KPExMTw008/lb3XunVrGjRo4OviioiUY7PBoHYwb61v9zuwrfmmNasdAxMvhoPHYeUuWLsX7A6jHkM7GM+dq1fL36UUERERV/VOgk/XQ0Gx7/aZEAsdmvhuf55gs8FFnY04bs0+2JACBzONeCgsBG4fDB0SzTNrgYiIiBgiw4xH8Xz/q2/3O8iEd8A3qQuPXg67jsCqXbDloBELhdpgRDfjEY9xUf4upYiISM1Y8mf9li1bgIqn81+8eDEAzzzzDP379y/35/PPP/dpOUVEKtMn2beJ6trR0L+N7/bnac3rwY3n/vYDLi4KRvZQsl9ERMSsIsPhwk6+3efwruZNjMdEGneuPTD8t3goNhI6NTVvnURERKxuaAcj8e8rLepBR5Nd/FjKZjMeg3D7eb/FQrWiYFgnJftFRCQ4WPIO/6oS/ikpKT4ujYiI6yLDjAT2zG98s7/r+0F0hG/2Ja4rLMrn6f/cwP4j24kMj6ZOrYZMHPUaTeuffZXGR8ue5et17xEWGkFEeBTjr5xO+xbG42u+/vnfzPtuGnZ7CXXiGvHwde/QsG4LX1dHRETEKRd2hM0HITXT+/vq2MR4rqsEttRju3huzm2czM0gNqo2D1//LkmNK74yxOFwMHnWhew6tJ6Ffz8BwL60Lcz4ZDwnco4SGhLGOS36cu/VrxAZHu3DWrjnlYUT+XH7pxzJ2s9r92+gTdPuZy1jt9v51+eTWffrl5TYi+mUNJCJo14jPCyCtMx9/P39aymxl2C3F9O8UQceuOYN4mLq+r4y4rSaHvMAP21fxBuLHqLEUUKrxl14+Pp3iY2KJ68gh6fev4ZdqT9TYi8ut46IBIa6sXBVL5iz2vv7Cg2Bm/rrQsFA5kwsALB4zVt8tOwZHHY73dtcwMRRrxIWGk56ZgrPzRnL7sMbaFy3FbMe3OjT8ouISM0o4R8knP2Rt/aXL3lnyV8oLi4kMiKG+6+ZResmv7VDYXEBsz6bxLqdS4gIi6J1YjcevemDctv4cu07PP/x//HkbZ8wsPNV3q6aW5wNcB5542KyTqVjs4UQExXH+Cun06Zpj7L3q2uvQOVK8q+6Nli94wveXfIX7HY7dnsxo4c8zMW9b/NldaQSbRrB4HNcm74tO6/83844tzV0bOpa2cT3Lu03jr7tR2Cz2Vi4aiYvzP0Dz9+9vNwyuw9t5LMfXuXNh7YRHVmLb37+gJkLJzBz4hoOHP2Ffy16mNce2EC9+ES++fkDXl5wN0/fYd7ZbTzVFzjTN0rgcbYvzM49zsOzLiz7f0HRadIy9zL3iaPExySYNhYQsYLQEBjTH174svLn0/+eO7FQTARc10/PdDWDl+f/kUv7jeOSPmP5fvM8npszllfuq/g5WPO/f5HEeq3ZdWh92WvhYVFMuGomyU26UmIv4Z8f3sScZc9y68VP+qgG7juv67VcN2QyD7w6qNJlvlz7FrsPrefV+9cTFhrOi/PG8cnKl7luyMPUi2/Ci+NXll3c8Mp/7+P9r59k/JUv+6oK4oaaHvN5BTk8P/cOnr/7O1o0bM+MTybwn2/+zrjLnyM0NJzrhz5CXHQCD70+xEc1EhFXndvauAByx2Hn13EnHrqsGzSu7VrZxLeciQXSMvfx7pLHee2+9dSNa8Rf372Sz396gysHjicmKp7bh/+D3PyTvL34MR+W3LN8kSe5eUoS4WGRRIQZcdONF/yJId2v900F5SzOfubVLVfZMaFxIzELSyb8ly5d6u8ieJwzP/JOnc7in7PH8MLd35PUuBNb9q7gmQ/H8K+HtpYt89YXj2Kz2Xh38k5sNhuZ2enltpGemcLi1f+iQ4tzfVIvdzkT4AA8fsvH1IquA8DKLZ/w3JyxzHpwE+BcewUyZ5J/UHUbOBwOnp19M9PuWk5yk66kZ6bwf8+1Z1DnUcRExfmwNlKZK3tCVi5sSXVu+Re+dG377RPh2j6ul0t8KyI8in4dLi37f4cW5zLvu2lnLWez2Si2F5FfmEt0ZC1y8k9Qv3YzAFLSt9IqsSv14hMB6NvhUqbOuZXs3OPEx9bzTUU8zBN9AVTfN0rgcqYvjI+tV+7OhbnLp7F573fExySYPhYQsYLEOjD2PHjrO+NZrNVxNRaKCINxQ6FOjFvFEx/KyjnKztR1PHPnVwCc1+UaZn4ygUMZu8+62CslfRs/bFvIQ9e9w/eb55a93qxB27J/h4aEck6zPuxLN8c5v2vy4GqX2XN4Ez3aDiM8zJi6q0/7Efz7qye5bsjDRIRFli1XYi8x4sUIPf8qkHnimF/zy2LaNOlBi4btAbhiwD08+q+LGXf5c0SERdKjzQWkZ6b4rE4i4jqbDW4bBK98AwednPXI1XhoQFvj8QES2JyJBVZsnkf/jleQEN8YgMvPvYvZS6dw5cDxxMck0LnVIDbtWe7lknqXr/Ikj42ZU+mNJeJbzl4AWdVyVR0TGjcSs9AkPEGg9EfesJ43A8aPvGMnDnIoY3e55Q4f30N8TL2yq5a6JJ/H0RMH2JVqXN2dV5jLl2ve4vbhT2P73+0rpZ0/GNP/vTD3D4y/agbhZwwGBKKuyYNpUKdZtcuVJngAcvNPAr/dtlNdewWy0uRf6efYocW5HMlKqXDZqtoAAJuNnPwTAJzOzyY+pl7Af/5WEhpi/LDr7oVZ1zs1hf8bDGGhnt+2eNcnK1+mf6crz3q9dZNuXHPeA9zyz1bc+I9mLPj+RSZcNQOA5MRu7D60ntRjOwH4dv0HOBwOjmTt92nZPckTfUF1faMELlf6wjMtXvsWw/veAZg7FhCxkk5N4Y7BEO7hmCU6Au6+AJLqe3a74h3HThwkIT6R0FDjvgabzUbDui04euJAueWKS4p4cd6d3HfNLEJCKj9o8gpzWbzmTQZUEFOZVdtmvfhx+6fk5mdTXFLE95s+Ltc3FhUX8scXunPtk/U5lLGL2y5+yn+FlWp54pg/euIAjeq2LPt/o7pJZGanUVJS7P0KiIjHRIV7L2Y57xzjRhDNdBQcfn/eb5yQdFa/YWa+ypNI4HD2M69uOVfGfzRuJIFKCf8g4OyPvGb125J9+jjbUn4A4Idtn3K64BTp//uBn5axh7iYBGYvncI9L/fmgVfPY/2ub8vWn//9C3RKGki7Zr18UzEfeXb2rdz0j+a8t+RxHr3x32WvV9deZlJZ8q9UZW1gs9n4y5g5PPXeKMY83ZIHXh3E5OvfK7sjRAJDWCjcOgiu7uWZge6wEBjZ3Uj2R1hyHhhz+/DbKRzO2M0dI/551ntpmftYuWUB7z6ym9l/SWXU4Af4xwfGlGPNGrTlvmte59mPbuWel3uTnXucWtF1CA2xxkFQ2Xmwur5RzKO6vhBgW8oP5JzO4twOlwPBFQuIBLtOzeCBS6BZgme217YRPDQCWjXwzPYkcPz766cY1HkULRtVfqtiUXEhT39wPb3aXcygLlf7sHTedUnvsfQ5ZziTXjufSa+dT9MG7crFeuFhEcx6cCMf//UILRq0Z9FPs/xYWvEUZ455ETG/mEgYPwwu6OiZ5Hx0hPHopFG9IETJfjEJX+VJAKZ+dCt3Pt+F5z++gxM5x7xfOamQs595dcs5O/6jcSMJZNYYxTe5iTP6cyhjV4XvvfbABqe3Extdm7/eMo+3Fv+J/IIcOrTsT8tGHct+4JfYizmStZ+WDTvyh0ufYfehDTzyxkW8+dA2TuQeY8WW+bxwz/ceqVNNVNceDes0d2l7j9z4PgBfrXuPf33xCFPu+AKovr38yZU2KE3+Tf1j5QmqytqgpKSY/3z7D564bQFdkwfz68G1/PWdK3hj0hZqx+pWp0ASYoPz20PHJjB3Lex0c8bx1g1hdF89l82s5i6fxsqtC5g67huiIs6ee3jl5vm0SuxC/dpNALikz+28svBeiooLCQ+LYHDXaxnc9VoAMrPTmbP8WZr8bjrQQOGrvqCqvrFuXKOaVUJqxNN9IcCXa97iol63lv0ADORYQETO1qSukfT/dht8ux0K3LhBNTYSRnQ1pq7V4La5NKjTvOzO5NDQMBwOB0ezDtCwTvmpsDbv/Y6jWQf47w8zKbEXc7ogm5unJDFz4lrq1GpAcUkRT39wPQlxidwTZM+vt9ls3Hrxk9x68ZMALNv4ES0reL5peFgEF/e5nRfn3cn1Qyf7uJTiLE8c8w3rtGD9zq/Llj2SlVJuMFxEzCU8FK7oAV2bw9w1cCjL9W3YMNYf1QdqR3u8iOJnDeu04PDxPWX/T89MOavfCGSBkCepG9eIF+7+noZ1W1BcUsQ7X/6FqXNuKxtHEs/y1GdeHWfHfzRuJIFMR50JTL/3xyrfDw+LdOpHHkD3NkPp3mYoAIXFBVz/t8a0bNQRgIZ1WxBiC+GCnmMAaNO0B40TWrEvbQuHMnZxJCuFsc8azzTMPJXOS/PGkZmdxsgBd3uyutWqrj3cdXHv23h5/l3lnlddVXv5k7NtUF3y7/d+3wa7D2/kePbhsmdAndO8D/VrN2P3oQ30andRjeog3tEgHu65ENJOwKqdsHZf9YPdEWHQKwkGtvXcXXHie/O+e4FlG2fz7Lhvyk1Rf6bG9ZJZsu4d8gpyiI6sxerti2jWoF3ZrB3Hs9OoF59Iib2EN794hCsGjHfq3OEPvuoLquoblfD3L0/3hXkFOXy3+WNmTiz/nLdAjQVEpGKhIXBxFxjcHn7eByt3GXFRdVrWg0HtoHtLzz8aQHyjbq2GtGnak2/Wf8AlfcayYst86tdpdtazzF+8Z0XZv9MzU7jrxe588OcUwLjg+ekPbiAuJoEHrn2jbArXYFFYlE9BUR5xMXU5mZvBR0ufYezwvwNwJGs/tWMbEBURg91u5/vNc0lO7OrnEktVPHHM9zlnODM/Gc+Bo7/QomF7Pv3hVYZ0u8GX1RARL0iqb8xUtO8YrNoFGw9Aib3qdWIjoV+ycdFj/TjflFN877wu13D/q4O49aInqRvXiEU/vc6Q7uY57wdCnqRuXCMa1jW2FxYazqjz7uf2qe08WU05g6c+c2culKxu/EfjRhLolPAPAs7+yIPfkjkA//nm73RvfUHZcrVj69O9zYWs+3UJ/TpcSlrmPtIz99GiUQd6thtWLrE/6bUhjDrvfgZ2vsondfSGnLwT5BeeLrvTddXWhcTH1iMu5reMZ1XtFeicSf5V1wYN6zQn81Qa+4/soGWjDhzK2E3a8T00b3COr6ohbkqsA9f2hVG94Ug2HMyE9BNQWAwOjCR/49rQPAEa1TYGx8W8jp1IZdaiSSQmJPPQ60aAGREWyYyJq3l3yV+pF9+Ekf3vYlDnq9l5cC3jX+5NeFgkURGx/OmmD8u28/zH/8eRrP0UFRfQr8Nl/N+IKf6qks9Udx6sqm+UwOdMX1hq+aY5JCd2o0XD9uVeN3MsIGJlUeEwsJ3x51Q+pGYa8dCpfCgpMR6JVDsamteDZnWNaXDF/O6/ZhbPzRnL7KVTiImK5+Hr3gHg+bl/oH/HKxjQ6Yoq11++aQ4rty4gObErd73YA4BOSQOZOOoVr5e9pl6a90dW//I5mafS+dOblxATGcd7j+4uV/fc/JNMen0IIbYQ7A47Vw+6j/4dRwKwN20z7yx+DACHw06bpj0Zf+V0f1ZJnFDTYz4mKo4HRr/Jk+9eRYm9mKTGnZl8/Xtl7497visnc49xuiCbG//RjG6th5Z7/JWIBC6bDZIbGn9uPBfSThrx0JGTUFhizGQUGQZN6xpjQ/XiNLuR2TkTCyTWS+a2i5/i/lcGAtCt9RAuP/ePAOQXnub2qe0oKi4gN/8kN/6jGcN63sIdl579yMhA5Ys8SV5hLiUlRWVjDMs2zKZNkx4+q6OU5+xn7sxy1Y3/aNxIAp3N4XA4/F0I+U1JISxz4zf1waO/8tycsWSfPl72I69VYheg/A+9F+beydZ9KyixF9OhZX8mXDWj3AB42vG9PD/3Dk7mZhBiC+HmYX/lvK7XnLW/yhL+QydCqAce7+5uO5Q6M8CJj6lXFuDAb+3Rukk3/v7v0RQU5RFiC6F2bAPGXT6NNk27l22nuvY6k6fqDjWv/7ETqdz0dHMSE5KJjjQuyy1N/oFrbbB0w2xmL51SNih04wV/4oIeN521T0/WX8RbnlgAJ/OMAf6nRvm7NFWr6XnAHwLpPAie6wuc7RvNch40y/fAV31h6UD4fTMHMKLfnQzvc3u57fgrFhAR8Rar9AP+4Ol+QG3gHfoOeI8ZPn8REbP0A2DtviBQ8yRpx/fy1PvXYLeX4MBBYkIy91z5Mo0TksrWDfT+MFC/A97+zKtaDqof/6nJuFGgHxPiX7m5udSqVQuAnJwcYmNj3dqOEv4Bxoyd+Jn83aH7U6AlunxNnZaYQaAGtBWx+nnA6vX3JrN8D3QMiIh4h/oB71HC3xx9ob4D3mOGz19ExCz9AFi7LzBj3UsFen8YqN8BM3/m1Qn0Y0L8y1MJf03iLCIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImFObvAkh5IeHG8zzMKiTcc9sxWzt4qu6l27Jy/UVE5wGr1190DIiIWJ36AbWB1enzFxERK/cFZqx7KfWH7jHzZ14dHRPiC0r4BxibDUIj/F0K/7N6O1i9/iKi84DV6y86BkRErE79gNrA6vT5i4iIlfsCK9fdqvSZi9SMpvQXERERERERERERERERERExISX8RURERERERERERERERERETEgJfxERERERERERERERERERERNSwl9ERERERERERERERERERMSElPAXERERERERERERERERERExISX8RURERERERERERERERERETEgJfxERERERERERERERERERERNSwl9ERERERERERERERERERMSElPAXERERERERERERERERERExISX8RURERERERERERERERERETEgJfxERERERERERERERERERERNSwl9ERERERERERERERERERMSElPAXERERERERERERERERERExISX8RURERERERERERERERERETEgJfxERERERERERERERERERERNSwl9ERERERERERERERERERMSElPAXERERERERERERERERERExISX8RURERERERERERERERERETCjM3wWQijkcYC/ydymcFxIONpvntme2+oNn28Dq9RcR0XlQrH4MWL3+IiKivsDKzPjZl/LUMaA2EBERM/YF6gM8x4yffykrx0P6DviPEv4Byl4Ey6b7uxTOGzoRQiM8tz2z1R882wZWr7+IiM6DYvVjwOr1FxER9QVWZsbPvpSnjgG1gYiImLEvUB/gOWb8/EtZOR7Sd8B/NKW/iIiIiIiIiIiIiIiIiIiICSnhLyIiIiIiIiIiIiIiIiIiYkJK+IuIiIiIiIiIiIiIiIiIiJiQEv4iIiIiIiIiIiIiIiIiIiImpIS/iIhYgt0ODofxb4fjt3+LiIiIWEVBMdjPiIdERERErKREY0MiIhKkwvxdABEREW8oscPWVNiVDgcz4fAJKCox3svOhz/NheYJ0CwBOjaFNg3BZvNrkUVEREQ8Kv0kbNxvxEIHMyE777f3svPhmUVGPJTUAHq2hOgI/5VVRERExNMKio1YaO8xIxZKP/HbxY/Z+fD4AmhWF1rUg67NjTEiERERM1LCX0REgkpOPqzYCT/uLj+o/Xv5RbDriPFn2Q5oFA+D2kG/1hCh3lFERERMyuGAzQdh5U4jzqlK+knjz9p98N+foVcrOL89NK7tm7KKiIiIeEPGKfj+V1iz1xj/qUxOPvySZvz5aisk1TfGhnq2hBDNjSwiIiailEYQ2bRnOQ+9PrTca1ERsTRr0I5hPW/hqoH3Ehoa3B+51dvA6vUXa3M4YMN+mL8OcgtcX/9ItrHuip1wU3/jR56Yj86DYvVjwOr1F7G6rFyYs9oYtHZVYYlxweSavXBxZxjWCUI10G066gfE6seA1esvYnV2u5Ho/3zTb7M8uiIlw/izahfcdC40iPd8GcX71BeI1Y8Bq9ffqvSJBqGh3W+kb/tLceAg61Q6X//8Pq9/9iAHju7ggWvf8HfxfMLqbWD1+ov1FBTD7B9h44Gab+toNrz8FQzrCCO6QYim+TclnQfF6seA1esvYkUb9hvJ/qruYnNGiR0Wb4YtB+H2wVCvlmfKJ76lfkCsfgxYvf4iVpSdB++uMKbvr6l9x2DqF3B1LxjQtubbE/9QXyBWPwasXn+rUcI/CLVt2pNhvW4u+//IAfdwx9T2LF7zJrcPf5o6tRr4sXS+YfU2sHr9xVryi2DWMuPHmKc4HPD1NuN5btf3U9LfjHQeFKsfA1avv4jVrNoF89aAw4PbTM2C6V/BPcOMRx+JuagfEKsfA1avv4jVZOXCK98aU/l7SlEJfLzGmEXyos6e2674jvoCsfoxYPX6W40m6LOA6IhY2rc8F4fDweHje/xdHL+wehtYvf4SvIpL4M3vPJvsP9PqPfDJOu9sW3xL50Gx+jFg9fqLBLOf98FcDyf7S53Mg9e+NQbRxdzUD4jVjwGr118kmOXkw2tLPZvsP9Pnm4zHBIj5qS8Qqx8DVq9/sFPC3yLS/vfljY9J8HNJ/MfqbWD1+ktwWrIFdh/x7j5W7IRNHnhUgPifzoNi9WPA6vUXCUYZp4xp/L3pxGn48Eewe+OKAvEp9QNi9WPA6vUXCVZz1xqPZ/SmhT9DaqZ39yG+ob5ArH4MWL3+wUxT+geh/KLTnMzNwOEwnsvx2Y+vs/vQBto370uzBu38XTyfsHobWL3+Yg0HjsO3211b58HhEB9tPNfthS+dX2/uWmjdEGpFubY/8R+dB8Xqx4DV6y9iBXYHzP4JCktcW8+deGjXEfhhFwzS6cM01A+I1Y8Bq9dfxCo27nf9Jg13YiG7w7gA8sHhEBbqejnFP9QXiNWPAavX32oskfDPyMhg6tSpLFiwgNTUVBo0aMCoUaOYMmUKEydO5O2332bGjBlMmDDB30X1iPe/eoL3v3qi3GuDOo/i3qtf8VOJfM/qbWD1+kvwcziM56i5eqdZfDTUiXF9fzn5sGgj3HCu6+sGiqISYzaE3AIIC4FGtSGxjr9L5T06D4rVjwGr11/ECtbuhT1HXV/P3Xjo0w3QvYW5L4BMOwFHTkKx3ahHm4bBO2ivfkCsfgxYvf4iVlBYDPPWur6eu7HQ4RPG1P4XdHR93UCRV2jEj/lFEB4KzRKgXi1/l8p71BeI1Y8Bq9ffaoI+4b9x40ZGjBhBeno6sbGxdOzYkcOHDzN9+nT27NlDZqYxF0/37t39W1APuqzfOAZ3HU2xvYh9aVuYs/xZMk6mEhH+28hMYXEB97zUk6E9bmLMhY+VvT71o7GcyDnClD8s9kfRPcaZNnj6gxuwO+w8fsvHZa9ln87kzmmdGHf5NC7sOcYfRfcIZ+q/Ze8K/vzWiLPWLS4pxG4vYclUF28VEvGhfcd8P5Xaun0wsgfERvp2vzV18rTxg/SnPUay/0ytGhh36vVsCTabf8rnLeoLRbGAYgGRYOZw+P5ZsoXFsHoPXNjJt/utKYcD1qcYj2lKySj/XmwknNsaBreH2tF+KZ7XKBYSxUKKhUSC3fr9kFNQ/XKetOJXGNIeQkz2oOQj2fDdDliXYsR0pWxAhyZwfns4J9FfpfMexUOieEjxkJUEdcI/IyODkSNHkp6ezqRJk3jiiSeIi4sDYOrUqTzyyCOEhYVhs9no2rWrn0vrOU3rt6Vnu2EA9G0/gs6tBvHAq4N4ef5dPHbzRwBEhEUy+Yb3mfTqYM7tcDmtm3Rj1daF/LTjM954cIs/i+8RzrTBvaNeZdzzXVi6YTYX9LgRgBmfjKdTq0GmPomDc/Xvknwenz2dU269jJOHGT+9N1cOCI7ZLiR4rdzp+30W241BbjNdyX0oC2YtM6apq8i+Y8afHYfhxnMh1GQ/WKuivlAUCygWEAlmKRlGP+9rP+yGoR3MM8hdYjem3/05peL3cwuMR0St2wd/HApN6vq0eF6lWEgUCykWEglmDod/xoayTsP2w9C5me/37a4dh+GdFeUT/aUcGPXZfhgu6QLDuwTXDSGKh0TxkOIhKzHJz3T3TJw4kdTUVCZMmMC0adPKkv0AkydPplu3bhQXF5OUlER8fLwfS+pdnZIGMKznLSzfNIdtKT+Uvd6uWS+uPf8hpn50K8dOpPLSvHHce/Ur1K/dxI+l9Y6K2iA+JoFJo99i5sIJZJw8zPeb57F5z3LuH/W6n0vreZUdA2cqLC7gqfdH0TlpEDdd+Gcfl1DEeYXFsOmgf/a9LsU/+3XH8Rx4bWnlyf4zrdvn3jR4ZqK+UBQLKBYQCSY/7/PPfo/nwL6M6pcLFHPXVJ7sP9PJPCNuysypflmzUiwkioUUC4kEk6PZvp/5sdQ6P8Vh7kjJgLe+rzjZ/3tLtsDyX7xfJn9SPCSKhxQPBbOgTfjv2LGDOXPmUL9+ff75z39WuEyvXr0A6NatW9lrK1asYNiwYSQmJhIZGUmzZs24/vrr2bFjh0/K7S1jhj1OSEgo7y356+9e/wuhIWHc/VIPurUZytDuN/iphN5XURv0aT+c87tex7Ozb2bGgnt4cPSbxMfW82MpvaeyY6DUy/PvorAon4evf9e3BRNx0eETxt1a/pB+wrkfSYHgyy2Qk+/88j/uhoN++rHsK+oLRbGAYgGRYLH/uP/2fcCP+3bFgePGI42cdSoflmz1XnkCgWIhUSykWEgkWPgzFjLT2MknP0OxC7Nxf77x7MdBBhvFQ6J4SPFQsArahP/s2bOx2+2MGTOGWrVqVbhMdLTxkL4zE/5ZWVl06dKF6dOn89VXX/Hss8+ybds2+vfvT2pqqk/K7g1N67dhaLcb2LD7W7bsXVH2elhoOB2TBnAyN4NLet/uxxJ6X2VtMG7kNA4d302f9iPo1+EyP5bQuyqrP8AnK6ezescinhq7kKiIGD+VUMQ5/rqCG8DuMC44CHS5BbAhxfX1VvlhOjxfUl8oigUUC4gEg+IS/8Yj/ozFXLFql+vr/JwCp4N4kFuxkCgWUiwkEiz8GY8czzFHUvxgJux3cWam0sdZBjPFQ6J4SPFQsArahP/SpUsBGDp0aKXLlCbwz0z4X3HFFbz44ouMHj2a888/nzFjxrBgwQJOnjzJ/PnzvVtoL7vxwscIsYXw3le/XbmzZe8Kvlr3LlcOnMCrn95HQZETcz+bWEVtEB0RS2JCMq0ad/FjyXyjovpv3L2MNz9/hMdvmUvjhCT/FU7ESeknrb1/Z2zcb/xIc9XPKf6bPcFX1BeKYgHFAiJmdzzHv/21GWKhEjusT3F9veIS/z06ylcUC4liIcVCIsHA3/HIERPEQ+4+emCtiR5Z4C7FQ6J4SPFQMLI5HA6Hvwvx/+zdd3RU1drH8d9MeiehBQgtFOlEelNpFlBAUbGi+KpYQCwo6rVfrw29WLBh16siKsq1FwQEFBWkCihNSiABQhJCElJn3j/OTSSSMjOZdma+n7WylDlll8xkP7Ofc/bxhJYtWyo9PV1r1qxRWlracdvLysrUrFkzZWVlafv27UpNTa3xXIcOHVKjRo307LPPasqUKU7XpU+fPsrMzHTqmPDQKL001YVbEpxwtDhf18zqqXNPvkVjBl6n6S+eoo4pfXTd2CedPtfkZzuopMx9g6A32n+s6S8M1YDOZ+n8obe6fA539oG32p+ZvVNTn+mrS0+9T2cPnlqvc7n7PQDUpM/5/1abPhdUu+2WM6T4qJqPjY+UrFbJZpPy6ljuPu+oNOur419f8997tP3H152osfd1Pe1WdR5xk0vHfvJAd5UU5ri3Qi7w1t9Bfx4LPWX0P1YqOqGZCg9n6IuH+/q6OjUiFiAWAFC9Bs27aeSN1QQpqjsWkhyPh2qKhY4c3KGvnzjZiRp7X0RMQ425d51Lx276dpY2LZzl5hq5xmzzApI5xgIzxELejoMk98RCkvveA2aMhSqY4XMAmN3Q6z5WozbV/w33xtzQslcu1v6tS52osff1v/h5tew51unjigty9Ok//SPhydyQZ5ghFpKIhyRzxkNm+Az4G5vNpoyMDElSWlqa1qxZ49J5Qt1ZKX9SUFAgSTp6tPo31rx585SVlaW4uDi1bdv2uO3l5eWy2WzatWuX7rzzTiUnJ2vChAku1SUzM1N79+516pjIMM8vlzHn0+lKTmqrsYOul8Vi0W0T3tC1T6VpcLdz1CPVuQmcjH37VFRa6La6eaP97ubOPvBG+4tKCnXfG2drYJexbvlS6+73AFCTzv/7+16d+CipgQMfH6vVsf2qk5ub4/TfdG9redj1S8337dur4gLfJ/y9NQ7481joKeXl5ZX/9ef3MrEAsQCA6pWENq5xm6OxkOR6PFRaWuLX44ckRcbWMXtfi8OHc/2mfWabF5DMMRaYIRYyYxxUwV3vATPGQhXM8DkAzK6kuOY19b0xN5SVddBvx5AKhYWu/R0qLy/zm7YxN+QZZoiFJOIhyZzxkBk+A/5s//79Lh8bsAn/5ORk5eTkaPXq1Ro4cGCVbRkZGbrtttskST169JDFYjnu+FNOOUU//PCDJKl9+/ZatGiRGjeueWKlrro4Kzy0jtsy6umX37/UknXz9NIt6yvb37xRO1056lE9Me8KzZm+XlHhMQ6fr1nz5m6/w99s3NkH3mj/sg3ztSNjnfZmbdGSdfOO2/7qrZvUJLGVw+dz93sAqEl4SM0L0+TV8RZ09iru6sRGhalFixZ11NK3rOWuJfxLjh5Wo8RY17/xupE3/g76+1joKSEhIZX/9ef3MrEAsQCA6sUmxNa4ra5YSHLuDv/qWGwlfj1+SJLFGqLSojyFRcY7fWxI+WG/aZ/Z5gUkc4wFZoiFzBgHVXDXe8CMsVAFM3wOALOzqqzGbd6YG0qIi/LbMaSCveiQS8cVHd7rN21jbsgzzBALScRDkjnjITN8BvzNsXf4N23a1OXzBOyS/tOmTdPs2bPVsmVLLVy4UB07dpQkrVy5UhMnTtSOHTtUWlqqKVOm6Nlnnz3u+D/++EO5ubn6888/9fjjj+vAgQP64Ycf1KqV84G+K8pLpMXPeKUotxg2TQoJd9/5zNZ+yb19EOztB2qzYps072fXjr3/HCOXnVso3f+xa+eYfobUsqFrx3pLUal030dScc3ff6t18gnS+D6eqZOz+DvoOfd9JB0+KiVESQ+M93Vtahbs74Fgbz+AmpXbpDvel0rLXTu+vvFQ31TpkoF17+dr81dJy/5w7pjIMOmBc6SIMM/UyVmMBZ5hhljIjL/7Cu56D9AHAGrz39XS4s2uHeuOuaFHJxhxgz/bnyc98qnzx53XVxrS0f31cYUZxwIzjAFmiIUkc/7+KwRzPGSGz4C/KSgoUGyscWF/fn6+YmKcu+i6gtWdlfInM2bMUMOGDbVnzx517dpV3bt3V4cOHdSvXz+lpqZq+PDhkqSePXtWe/wJJ5yg/v3768ILL9R3332nI0eOaObMmd5sAgCgGilJvis7xCo1a+C78h0VGSb1Pf5pNXUa7Cdf6AAAQM1CrFJKou/Kb+XDWMwZgzs4f0zfVP9J9gMAgJq19GE80jjO/5P9ktQ0Xuro5MLDEaFSHxfmkwAAvhewCf+UlBQtW7ZMZ555piIjI7Vz504lJSVpzpw5+vzzz7VlyxZJNSf8j9WgQQO1b99e27Zt83S1AQB1aJYghYf4puyURCnUR2U764weUqOaV/w9zmndjC+DAADA/7Vq5LuyW/uwbGckJ0indnV8/0Zx0undPFcfAADgPr6MR8wSC0nGKo5RTlyccF5fc1zMAAA4XsAm/CWpc+fO+uyzz3TkyBEdOXJEP//8syZPnqyCggLt3LlTVqtV3brV/Y3+wIED+uOPP9SuXTsv1BoAUJvQEKlXG9+U3TfVN+W6IjZSum6E1MSBJP6ILtKoHp6vEwAAcI9+PopJkhN8e0eds0b3lIZ3qXu/pvHS9cON+AkAAPi/hrFSuya+KdtXcZgrkhOMuaG6YhyrRZrQz1zzXgCAqkJ9XQFf2Lhxo+x2uzp27Kjo6Ogq2y699FK1b99eaWlpatCggbZu3aonn3xSoaGhuvnmm31UYwDAsQZ3lH7a7t0yzbisWcNY6ZYzpJU7pOVbjOe3HevE1sZz2Xz1JRkAALimRaLUtrH050Hvlju4g2SxeLfM+rBYpLEnSl2bS8u2SOv3SDb7X9uTE4w29U3lbjYAAMxmcAdp+wHvltkkXurQ1Ltl1lerhtLto6UV26Qft0m5hVW3D2pvzA019+EjowAA9ReUCf8NGzZIqn45/wEDBuitt97S008/raKiIrVs2VLDhg3TP/7xD7Vu3drbVQUAVKNlktS+qbRtv/fKHNDenBPBkWHSSScYX94yD0vPfisVlEhxkdLlQ3xdOwAA4Kqhnbyb8I+JMO9dX+2aGj9HiqRHP5MKiqXYCOn2M811AQMAAPhLj5ZSYoyUU+C9Mk/pZM7YIS5KOq27NKKrlJErvfCdMTcUHylN6O/r2gEA3IGE/99MnTpVU6dO9XaVgHp5bsE0rdj0ifbn7NILN61R+xZpx+2zZtsivfrFHTpanC+LxaL+nc7UlaMfldVq1dHifD3w1rnamv6rym1lWvBgrtfbADjr/H7SE19IpeWeLyspRhpt8iXvLRapWQPjkQiSsVxbICkpLdJD71yoXfs3KSIsSg1im2ja+BfUolH74/Z9f8nj+nbVm7LZbWrZ+ATdesHrio1qoKMlBZrx4nCVlBVJkpLimunGc19UclIbL7cGjko/uFWPz7tchwuyFBOZoNsueENtkqs+sHnTzhV6+qPrJEnltlJ1azNE15/9jMJDI5SZvVOPz5ukbfvWKDmxrebcstah4/xFfdu/bvsS/eOVUUppfELl/s/csEIRYVGSpD8zNujZBTcoJ9+4uuqKMx7SSd3He6l1AOrSo6XULUX6Ld075Z3bx5wXPx4rLlIK/d+DDUOs5pywBwAAhtAQ6cL+0guLvFNeamNp4PFTDKYSYpVSkv6aGyIWAoDAQcI/QDmSAJbqnihe+ftXev3ru1VWVqKI8GjddO4ctWvu3/3mTNKnpKxYcz6drlVbvlZ4aKTaNeupOy5++7j9vlr5uv79/v/p/ss/1uBuZ3uhFc45qcd5mjB0hm5+vubbdeOiEnXXJe+pWcNUlZQWacZLI/Xtr2/p9L6TFBISpguG3a64qCTd+uJQ71UcqIem8cZzWf+72vFj8o5W/a+jLhogRZh8gjsYjO4/Wf06jZLFYtGCH57VrA+u0r+vW1Jln1+3fKuvV76u2Tf8rOjIOL2z8F967cu7NG38c4oIjdJjkxcqOjJOkjR/6ZN6/r836p9X/NcHrYEjnp5/jUb3n6zT+07S0vUf6vF5k/TcjSur7JPavKeeu3GlQkPCZLPZ9M+3ztWnPz6vc0++WdGR8brijH+poOiwXvvyLoeP8xf1bb8kpTQ+ocqFDhWKSgp17xvjdPuFb6lb2yEqt5XrSGG2N5oFwEEWi3EB5I4DUmGJ48e5Eg/1aGk8Cgjm4ej34ryCQ7ptzojKfxeXFioje4c+uO+A4qOT9PPmL/TG13fLZrPJZivT+UNv02l9Lvd2c+AERy4IrM/v3dF5FF9xpP2SdPtLpynnSKYsFquiI+M0Zdwzat/ixMrtlz7cRmGhEQoPNS6EvGj4nRqadoEk/+8DIJic0MxIwq/Y5vgxrsRCYSHSRQMD7+aJQOdojqRCTTmAusYM+Bd3xEK1xQFmez848jmoqz+c/SzBN4Iy4b9okZcu+/MhRxLAUu0TxUcKc/TI3Es067qlapPcVRt2LNOj716il2/9zRtNqBdHkj6S9OoXd8hiseiNGVtksViUnZd53D6Z2Tv15c8vq3OrAV6ouWt6pJ5c5z7HDjrhYZFq1zxN+3N2Gv8OjdCJ7YcrM3unh2oIeMYpJ0i7sqS1ux3bf9ZXzpdxZk+pQ7Lzx8G7wsMi1b/z6Mp/d241QB9+/8Rx++3Yt07d2g6pTOr36zRat744VNPGPyer1Vr5ut1uV2FRnixc7u63cvIPaEv6Kj169TeSpJO6n6tnP56qvVnbqiQzIsOjK/+/rLxExaVHK3+v8dFJ6tZ2iNZtX3Lc+Ws7zh+4o/21WbTmXXVuNUDd2hqxZIg1RA1iG7u5FQDqKyFKumyI9PISqdzm2DHOxkPJCdIF/bkDzIwc+V4cH9OwyoVfHyx5Qut3fK/46CTZ7XY9NvdSPXHtEqU276HM7J36v8c7aUi38ZUxE/yPIxcE1uf37sg8ii850n5Jumfi+4qNaiBJWr7hYz0+b5Lm3LKuyj53XTKv2gltf+8DINic3Uval2vMDznC2VjIIuNGkMYMfabjaI5Eqj0H4MiYAf9R31ioQk1xgNneD458DurqD2c+S/Adq68rAM/okXqyGjdIqXWfionikb0ulWRMFB/M3aO9WcYlkfsObVd8dMPKq5+6p56kA7m7tTXdidtpfaAi6VMxmd251YDKxPaxjpYU6KtfXtUVZzxUuW9SfNWsns1m06wPrtKUs2crzI+W8K2v7LxMLVv/ofp3PsvXVQHqxWqVLh0kda/9z53LTusmjTz+ZhCYwMfLn9bAruOOe71DSm+t3rpQ2XmZstvt+m7NOyosPqK8Y+5cnjFnpCb8M1lL13+gG855zpvVhhMO5u5RUnwzhYQY169aLBY1SWylA7nHXwGUmb1T18zqqXPvb6SYqASNGXi9Q2W4epw3uKv9Gdnbdd1TvTTl6b765MfnK1/fvX+TwkIjdPdrZ+maWWl6bO5lys334sPCATisUzNp0hBjiVZ3axovXTdcigmcr0JBw9HvxX/35cpXdUa/K/96wWJRflGuJKmwKE/x0Q0D6rtxoKlrnqcmjv7eHZlH8SVn2l8xUS9JBUWHZaT06ubvfQAEo4gw6ZqhUquG7j+3xWLc2d+rjfvPDc9zJEci1Z0DcHXMgPe5LRaqhdneD45+Do719/5w5RzwvqC8wx+G2iaKWzRqr5RGHZRXeEgbd/6orm0G6ceNn6iw+Igyc3aqQ0ovH9fecTUlfTKytisuOklzFz2s1VsXKiIsShNPvV+9Ovy1dMn8pbPUtc1gdUzp7c0qe1RBUZ7ueX2MJgydoRNa9vF1dYB6Cw2RJp0kfbpG+v53ye6Gc4aFGFeID+7ohpPB69797mHty9qmmdd8d9y2tPbDdP4pt+ru189SiCVEg7udI0kKsf4VEs28ZqFsNpve/e4hvfvdQ5o2/vnjzgNzSU5qozm3rNPR4nw9OvdSLf/tIw1Lu9Bjx/mbmtrRvkUvzb0rXTFRCTqYm667Xh2thJhGOqXnBJXbyrRm60I9c8NPahjfXK99+Q8989F1uveyD33dHADV6N5Suna49M6PUm6he87ZqZlxYWVspHvOB9+q6XvxsTbu/FH5hTka8L8Lwy0Wi+6+ZJ4eeHO8IsNjlH80R/dd9pHCQsO9UWW4oK55nuo483vfs+/3OudRfMnZ9j829zKt275YkvTQlV8ct33me5fJLrs6teynK0c/qgaxjR2aSwLgfdER0vUjpPd+cnwVyLrERhh39nclxxXwHMkB1DVmwD+4IxaqUF0cUCGQ3w819Qf8Hwl/E5o2e6D2Zm2tdtsLN69RkwYt3VJOTFSC7p34oV798k4VFeerc+uBat20S5WkiC840/7akj7ltjLtz9ml1k266KrRj2rb3jW6/aVT9cqtG5UY11R/Zv6mZRvma9b1Sz3WFm8rLDqif7xyhgZ1HafzTrnF19UB3CbEKp3d25jsnvuTlHXE9XOlNjau3mapNnP6YMkTWv7bR5o5eWGVpcyPNXbQ9Ro7yLjDedOun9Q4IUUxkfFV9rFarRrd/2pNmtmBhL+fatygpbLzMlReXqaQkFDZ7XYdyNmtJg1a1XhMVESshqZdqEWr33Eqce/qcZ7kjvYf+75v3CBFw068SBv+XKZTek5Qkwat1LPdMDVKaCFJGtHrUt35yukebxcA13VoKt1+prRgtfTzdtfPExlmxFX9U1nG35+563vxsb765VWd2vuyygnS8vIyvfPdv3Tf5R+pR+rJ+mPPSt37+li9NH2DEmIaua8xcFhdv3dXOPN7r2sexdPc3f7bL3pLkvTNqjf18he36+FjJuxnXbdUTRJbqay8VK9/dbdmzrtcD1/5hc/7AEDNIsOMG0LW7pY++EUqKHb9XGmtpPP6cuGjP3NXjsTRHEBtYwa8xxuxkFRzHFDBX94PnsgVVtcfMAd+Yyb0zA0r3HIeRyaK09oPU1r7YZKkkrJiXfDPZLVu2sUt5bvK0fbXlfRpkthKVotVw3tdIsl4xn1yUlv9mbFBiXFN9duOZdqfs1OTHusgSco+kqmnPpys7LwMjRl0nfsa5CVHi/N15ytnqM8JZ+iSkXf7ujqAR7RrIs0YLf26U1q+Rdqb4/ixJyQbd/R3S5GsTG6b0offz9LitXP12OSFVZbX+rtDeRlqGN9MRSWFevPrezVh6AxJxuNOwkIjFBedKElasm6e2ib38EbV4YLE2CZq36KXFq5+W6f3naRlG+arUYOU467Y3pu1TU0TWys0JEylZSX64beP1bZZ3b9XV4/zFne0/1BehhJjm8pqtaqw6Ih+2vSZRv1vybZTek7QlytfVUFRnmIi4/XL718otVlPr7cTgHOiwo070Qa2N2KhNbukcptjxyZESYM6GMfGR3m2nqg/d30vrnC0OF/fr39fz0776/mm2/at1aG8feqRerIk6YSWfdUoIUXb9q5R746n1q8BcEldv/ew0AinLgh09vfevsWJtc6jeJq721/htD6X6+n51yqv4JDiY4w1wZskGseEhoRp/Ek36YqZHStf92UfAKhbWivjQsift0s/bJUO5Tt2nNUi9WhpzA114OPs99yVI3E2B1DdmAHv8UYsJNUcB/ydr98P7vocVKipP2AOJPyDmCMTxRVJEUl6Z+GDSms3vMalT/yJI0mfhJhGSms/Qqv++Fr9O49WRvafysz+U62adpYkjRl0XZVBffoLQzX+pJs0uNvZXmiBc5768Br9/Pvnyj6SqTtfOV3REXF6845t+vcHV2lgl7Ea1HWsPlr+tP7Y84uKSgq0fMNHkqSTe56vS0bcJUma/O8eOlxwUIXFebroXynq2W6Y7rjoP75sFuCS8FBjonpAO2nXIWnbfmnPISk9RzpSZEx6h1qlxBgpJUlqmSR1bi41ia/73PBfB3PTNeez6WqWlKpbXzQuVAsPjdDsaT/rja/vVcP45hoz8FpJ0h0vnya73abS8hKN7DVR4wZPlSQdyN2tp+ZfI5utXHbZ1bxhO91x8ds+axPqdtO5c/T4vEmau+hhRUfG67YJr0tSlfFv7bZFWrD8GVmtISq3lenE9iN06ch7JElFJYW6YmZHlZYVq6DosC76V4pG9pqoK0c/Uutx/qK+7V+2Yb4+W/GCQqyhKreV6eQe5+v0vldIMr7cXjT8H7rp2UGyWKxqlNBCN533ks/aCsA5bRoZP2f3kn7ba8RCe7KlA3lSabkxoR0VJjVPNGKhto2lE5oZqyYhcDh6MaRkXOiY2qynWjXpVPlakwYtlX0kQ7v2b1brpp21N2ubMg5tV8vGJ3i45nCVoxcEVnD2917XPIqvOdr+/KO5KiopVKOE5pKkH35boPiYhoqLTpIkHS0pUHl5aeXnZvGauWrf/ERJdc8lAfAPMRHS8C7S0M7S1kxpx0EpPdv4OVoilduNxzk2ijNioZQkqVsLKaHma+MQoOrKAdQ1ZsC/uCMWqi0OCPT3Q3X9AfOw2O12dzzuGG5WXiItfsb1449NAMdHN6xMAEtVJ4H3HPhDj8+bpLzCQ5UTxW2bda88z6wPrtZvfy5Tua1MnVsP1NSzZ1c7UTBsmhTixsf41af9B3PTdfFDLdUsKVVREcaa3BVJH6lq+zMO7dC/P7hShwuyZLVYdenIe3VSj3OrPW9dCX939kF9f/++4O73AADPuO8j6fBR4y6+B8b7ujY14++g5/Ae8BxiAXN8BgAEN7OMg5L3vhdL0o3PDtKo/lfrjP9d+FVh0Zq5mrvoYVktVtnsNl00/E4NP/HiGss1w1hghvdAfX73tc3zuOP3Xtc8irveA672gSPtb9e8px78z/kqLj0qq8WqhJjGmnzWE2rfIq2yjQ+8dW7lhcDNklJ1/binlZzUpnK7N/oAADzFDGOh5L0cybH+ngPYn7Or1jHj78wwBgT677++sVBtcYCj7wdfx0PHcuZzUFNsWNs5/s4MnwF/U1BQoNjYWElSfn6+YmJiXDoPCX8/ZbZJXn9K+PsKk/z8IQfMINCDel8yy99B3gOeQyxgjs8AgOBmlnFQYizwFDO8B8z4u6/gTxPcvmKGzwGA4GaGsVAy51hghjGA37/nBXM8ZIbPgL9xV8KfBfsAAAAAAAAAAAAAADAhEv4AAAAAAAAAAAAAAJgQCX8AAAAAAAAAAAAAAEyIhD8AAAAAAAAAAAAAACYU6usKoHrWMGnYNF/XwnHWMPefz0ztl9zbB8HefgDg7yCC/T0Q7O0HADAWBDMz/u4ruOs9QB8AAMw4FjAGuI8Zf/8Vgjke4jPgOyT8/ZTFIoWE+7oWvkP7g7v9AMDfQQT7eyDY2w8AYCwIZvzu6QMAAGNBsOP3Tx/AOSzpDwAAAAAAAAAAAACACZHwBwAAAAAAAAAAAADAhEj4AwAAAAAAAAAAAABgQiT8AQAAAAAAAAAAAAAwIRL+AAAAAAAAAAAAAACYEAl/AAAAAAAAAAAAAABMiIQ/AAAAAAAAAAAAAAAmRMIfAAAAAAAAAAAAAAATIuEPAAAAAAAAAAAAAIAJkfAHAAAAAAAAAAAAAMCESPgDAAAAAAAAAAAAAGBCJPwBAAAAAAAAAAAAADAhEv4AAAAAAAAAAAAAAJgQCX8AAAAAAAAAAAAAAEyIhD8AAAAAAAAAAAAAACZEwh8AAAAAAAAAAAAAABMi4Q8AAAAAAAAAAAAAgAmF+roCqJ7dLtlKfV0Lx1nDJIvFfeczW/sl9/WBGdtewd3vAwBA8DLjeOjOcTDY2y/RBwCA4MY4SB8Ee/sBAMHNjONghWDOFQV7POjLWIiEv5+ylUqLn/F1LRw3bJoUEu6+85mt/ZL7+sCMba/g7vcBACB4mXE8dOc4GOztl+gDAEBwYxykD4K9/QCA4GbGcbBCMOeKgj0e9GUsxJL+AAAAAAAAAAAAAACYEAl/AAAAAAAAAAAAAABMiIQ/AAAAAAAAAAAAAAAmRMIfAAAAAAAAAAAAAAATIuEPAAAAAAAAAAAAAIAJhfq6AgAAwHOy86U92cbPwSNSQbHxemGJtOR3qWWSlJIoRYT5tp4AAACeUFwqpedIew5Je3P/ioUKiqXP1hqxUMskKSnWl7UEAADwDJtdOpj319xQTkHVuaEftkgtG0rNG0ihIT6tKgCgHkj4AwAQYErKpDW7pOVbjC9z1Sktlxb8avx/WIjUq400pKMx4Q0AAGB2uw8ZsdCaXUbc83dlNmnhxr/+3aqhNLiDdGJrKZyZEgAAYHKFxdIvO6Qftho3gFSntFz6YKXx/9HhUr9UaXBHqXGc9+oJAHAPvsYCABAg7HZp5Z/Sf1f/dbW2I0rLpZ+3Gz8dk6UL+ksNucsNAACYUNYR6f1fpC2Zzh23+5Dx88ka6exeUp+2ksXimToCAAB4SrlNWrxZ+npD9Rc91qRiJcglv0u920jj+0gxER6rJgDAzUj4B5B125fo1heHVXktMjxGKY07amSviTp78A0KCQnsX3mw90Gwtx8IZocLpXk/S5v21e88WzKlxz6Xxp5o3OXGRDfMhHGQPgj29gPBzG437uj/dK2x2pGrCoqld1ZIa3dLE/pLCVFuqyLgFYyF9EGwtx8IZpmHpXdXGBcx1sevO435oQn9pO4t3VI1wGsYB+mDYG1/4LUIGpZ2kfp1Gi277Mo5kqlvf31LL356i3Yf2Kybz3vJ19XzimDvg2BvPxBs9udJL3wn5Ra653wlZdKHK6V9OdJ5fSWr1T3nBbyFcZA+CPb2A8HGZjOWo12xzX3n3LhXeuor6boRUpN4950X8BbGQvog2NsPBJtt+6WXl0jF9bjw8VhHiqRXlxo3hAzv4p5zAt7EOEgfBFv7SfgHoA4temlk70sr/z1m0PW6cmYnffnLK7rijIfUILaxD2vnHcHeB8HefiCYZB2RnvtWyity/7l/3CbZZVzRzZ3+MBPGQfog2NsPBBO73VjC/6ft7j93TqH07EJp2qlSI55lC5NhLKQPgr39QDDZcUCas9i5Jfwd9cka478k/WE2jIP0QbC1n3v2gkBUeIw6tR4gu92ufYc8MAtiAsHeB8HefiBQlZRJLy3xTLK/woptxvPbADNjHKQPgr39QCBbvNkzyf4KeUeNeKs+jwkA/AFjIX0Q7O0HAtXhQumV7z2T7K/wyRppY7rnzg94A+MgfRDo7ecO/yCR8b83b3x0ko9r4jvB3gfB3n4gEH2xTjqQ59wxt5whxUcZk9ezvnK8nC4tpKYsZwsTYxykD4K9/UAgyjxsxCnOcCUWOpAnfbVeGtvL+ToC/oSxkD4I9vYDgcZul+b9LBWWOHecK/HQvF+kOxpL0RHO1xPwF4yD9EEgt5+EfwAqKi3U4YIs2e3Gcyk+XfGitu1do04t+ymlcUdfV88rgr0Pgr39QDD486D0vQt33sdHSQ2inTumtFyau0K68TSW9oc5MA7SB8HefiAY2OxGfFJmc+44V2IhSVr8u9SjldSmkfPHAr7AWEgfBHv7gWDw605p0z7nj3MlHso7Kn38q3TJIOfLA3yBcZA+CLb2B3zCPysrSzNnztRHH32k9PR0NW7cWOPHj9fDDz+sadOm6bXXXtPs2bM1depUX1fVbd765j699c19VV4b0m28bjjnOR/VyPuCvQ+Cvf1AMFi4UbJ7sbydWdLW/VLHZC8W6iZFpdKvfxqPJzhwRLLZpNhI6cTW0uAOPJM3EDEO0gfB3n4gGGzJlHYd8l55drsRf111ivfKdBe73bhY9Iet0u8Z0tESKTzUuHhhSEepS3PJygMfAw5jIX0Q7O0HAp3dLn29wbtlrvpTOqOH1DDWu+W6w5Ei6eft0i87pJwC47UG0VLfVGlgOykuyrf1g/sxDtIHwdb+gE74r127VqNGjVJmZqZiYmLUpUsX7du3T88884y2b9+u7OxsSVJaWppvK+pmZ/afrJN7nK8yW6n+zNigeUseU9bhdIWHRVbuU1JWrOuf6qVhJ16sS0bcVfn6zPcmKTd/vx6+6ktfVN1tHOmDh96+UDa7TfdMfL/ytbzCbF39RFdNPusJjeh1iS+q7haOtH/DjmX6x6ujjju2rLxENlu5vp7pwQc/AaiXQ/nSpr3eL3f5FvMl/Nfvkd75USr+23N3cwuNZ/4u3mxMdJ/TWwphojtgEAsRCxELAYHvhy3eL3PjXmOCODHG+2W7Kr9Ien2ZtP1A1deLSo3k/+8ZUuM440KGpgm+qSM8g3iIeIh4CAhsW/dLB494t0y7jJspzkrzbrn19f3v0idrpPK/rQx18IjxeKivN0hn9pSGdWZly0BCLEQsFGyxUMBObWdlZWnMmDHKzMzU9OnTlZGRodWrVyszM1OPPfaYPv/8c61cuVIWi0U9evTwdXXdqkWjDurVcaT6dRqlC4bN0INXfKo/0lfq6fnXVu4THhqhGRe+pfe+e1jb9xkPPfzhtwX6afOnuuX8V31VdbdxpA9uGP+8Nu78QYvWzK18bfbHU9S17RBT/xGTHGt/99ST9OlD+VV+Xp+xRfExjXT56Q/6sPYA6vLzdu/e3V/ht3Tp8FEfFOyitbul15cen+z/u+VbpHdXGFfHIzAQCxELEQsBge1wofSbDy5+tNuln7Z7v1xXFRZLzy48Ptn/dwePSM98Kx3I80694B3EQ8RDxENAYPtxq2/K/Wnb8Ylzf7Zwo/EogtrqXG4zLgjw9ooJ8CxiIWKhYIuFAjbhP23aNKWnp2vq1Kl64oknFBf313q9M2bMUM+ePVVWVqY2bdooPj7ehzX1vK5tBmlkr4lasm6eNu78sfL1jim9dd4pt2rme5fpYG66nvpwsm445zk1Smjuw9p6RnV9EB+dpOnnv6pnF0xV1uF9Wrr+Q63fvkQ3jX/Rx7V1v5reA8cqKSvWA2+NV7c2Q3TxiH94uYYAnLFtv2/KtdmlnQd9U7azcgult39w/MKIX3caV6kjMBELEQsRCwGB5c+DvrtQr67kuT+Zv0rKPOzYvgXFxkoAXAAZuIiHiIeIh4DAYbdL23wUk+QXm+ciwR0HpM/WOr7/VxuMlRMQmIiFiIUCPRYKyIT/5s2bNW/ePDVq1EiPPPJItfv07t1bktSzZ88azzNq1ChZLBbdf//9nqimV10y8h5ZrSF68+t7//b63Qqxhuq6p05Uz/bDNCztQh/V0POq64O+nc7QKT0m6LG5l2r2R9frlvNfUXxMQx/W0nNqeg9UeHr+tSopLdJtF7zh3YoBcIrNJu3N8V35e7J9V7YzVmyTypy84nzpH0xyBzJiIWIhYiEgcPgyHknPNi6C9HeHj0prdjl3TEau7y4shXcQDxEPEQ8BgeHwUeOxPb5ilrmhZS48AmrZH+6vB/wHsRCxUCDHQgGZ8J87d65sNpsuueQSxcbGVrtPVFSUpJoT/u+//77Wrl3rqSp6XYtG7TWs54Vas+07bdixrPL10JAwdWkzSIcLsnR6nyt8WEPPq6kPJo95QnsPbVPfTqPUv/OZPqyhZ9XUfkn6ePkz+nnzZ3pg0gJFhkf7qIYAHHEwv+4l6j0p3QRf6sptrt2tn3nYuPobgYlYiFiIWAgIHL6MR4pKpUNefl6uK37a5tqFCct9tDwwvIN4iHiIeAgIDL6emzFDwv9IkbR+j/PHbUg3Vo1EYCIWIhYK5Fgo1NcV8IRFixZJkoYNG1bjPunp6ZKqT/jn5eXppptu0hNPPKFLL7203vXp06ePMjMznTomPDRKL0117zfti0bcpcVr5+rNb+7VE9culiRt2LFM36x6Q+MGT9Xzn9yoF9utVURYlNPn7tCxg0rK3PdgZ0+0X6q+D6LCY9QsKVVtk7vX69zu6gNPtV2qvv1rty3WK5/froev+lLJSW3qdX53vw8AHK9h6z4adv2CarfdcoYUX8ef8PjIv/57/zk175d3VJr11fGv//jLWv3rsrMcq6yPRMYn66y7Vrl07JU33KttP77m5hr5l9H/WKnohGbKyMxQSkpfX1enRmaLhST3joPBHAtV8NZ7gFgIMJ8R075UYovq/2bVFQ85GgtJNcdDI84Yq+zdqx2srW8MnPiyWnQb5fRxy1f/qXsuOskDNfIfwRwLScwNSeaJh7zZfnfFQ8RCgHe07jNBfc+fVe02b8wNvfPex7rx7BscrK1vNE4dpFOued/p4+x2acRZl2r/liXur5SfIBby7NyQ5P+5IrPEQpL55oZcab/N9tcytUOGDNGaNWtcKjsgE/67dhnr1rVu3bra7WVlZfrhhx8kVZ/wv+uuu9SxY0ddcsklbkn4Z2Zmau/evU4dExnm/NUjPdsN1beP13wJf+umnfX1zPLKfx8tztfj8ybpylGPaszA6zT9xVP02pf/0HVjn3S67Ix9+1RU6r5L31xpv+R8H7iTu/rA1bZLzrc/M3un/vX2BF191uPq2W6oy+VWcPf7AEA14trVuCk+Smrg4J8Qq9XxfY9VbpPTY5q3JZRFunxs/tFiv29ffZWXl1f+15/barZYSHLvOBjMsVAFb7wHiIUAcyovr/lz7mg85GosJEmHsnO0z4/HUEkqdfVPvTXMr+MDdwjkWEhibkgKnHjIW+13ZzxELAR4R4MONS835I25oaKSUr8eQyUprHGBy8cePlLg9+2rD2Ihz84NSb7PFQVKLCSZb26ovu3fv9/1Z6wFZMK/oMD4Y370aPVXUcybN09ZWVmKi4tT27Ztq2xbtWqVXn75Zf36669uq09ycrLTx4SHun71kKPmfDpdyUltNXbQ9bJYLLptwhu69qk0De52jnqknuzUuZo1b+72q3bMxl194K22F5UU6r43ztbALmN19uCpbjmnu98HAI6XlJhQ47Y8Bz5+8ZHGFzqbTcqr5XlvNZ3LarGpRYsWdRfkQ+HRrif8o8Ll9+2rr5CQkMr/+nNbzRYLSe4dB4M5Fqrg6T4gFgLMy2qx1bitrnjI0ViotnMlNYiXxY/HUEmy2opdOs5Wku/X8YE7EAtVxdyQe5ktHnR3PEQsBHhHfFzNCTBvzA1FhFr9egyVpPho11NfcVFhft+++iAWqsrdc0OS+XJF7mS2eNAfYiGbzaaMjAxJUtOmTV0uOyAT/snJycrJydHq1as1cODAKtsyMjJ02223SZJ69Oghi8VSua28vFzXXHONpk6dqq5du7qtPqtWOb+scHmJtPgZt1XhOL/8/qWWrJunl25ZX9kHzRu105WjHtUT867QnOnrFRUe4/D5tm7ZqpBw99XP0+33BHf1gbfavmzDfO3IWKe9WVu0ZN2847a/eusmNUls5dQ53f0+AHC8I0elez6qflt1y6z93f3nGFdv5xVJ93/sfPkjT+ql/9yZ7vyBXvbU19LOLOeOsVikT956TIkxj3mmUn7ivo+kw0elZsnNKh9x5I/MFgtJ7h0HgzkWquDpPiAWAszrjWXS2t3Vb6srHqpvLCRJK5Z8rljXry/0il93Sv/5wfnjzh3RSa9P99/4wB2Ihf7C3JD7mS0edHc8RCwEeMf2A9Lsb6vf5o25ocmTztPHs85z/kAvKiuX/rmg7gs8/y4mQvpl8fsKC/FItfwCsdBfPDE3JJkvV+ROZosH/SEWKigoUGxsrCRp+fLlzh18jIBM+I8cOVKbN2/WY489plNPPVUdO3aUJK1cuVITJ05UVpaRAUhLS6ty3LPPPqv9+/fr/vvv93KNva9fp1Fa8GDuca+PGzxF4wZP8X6FfOzf1y3xdRW87tTeE3Vq74m+rgYAJ8VFSQlRRmDuCy2TfFOus4Z0dD7h362FlOh8DA+TIhaqilgIgJmkJNWc8Pe0xGj5fbJfknq2lD6OlPKdmOS2SBrU3mNVgh8iHqqKeAiAWaQkGuN2zQtWe5YZ5oZCQ6QB7aVvfnPuuP7tFNDJflRFLFQVsZC5WX1dAU+YMWOGGjZsqD179qhr167q3r27OnTooH79+ik1NVXDhw+XJPXs2bPymKysLN1zzz269957VVZWptzcXOXm5kqSioqKlJubK5ut5mUDAQDwlpYNfVi2Cb7USVJaKym55qcfHCfEKo103+I+AADAg1r5MhbyYdnOCA2RTnUytunfTkqK9Ux9AACA+0SESY3jfVd+iknmhgZ3lGIjHN8/JkI6qaPn6gMAnhSQCf+UlBQtW7ZMZ555piIjI7Vz504lJSVpzpw5+vzzz7VlyxZJVRP+6enpOnLkiK655holJiZW/kjSY489psTERO3e7aNbCAAAOEa3FN+UGxMhtWnsm7KdFRoiXTNMaujApLXVIk0cJLVu5Pl6AQCA+mvbWIr20ZLRvorDXHHyCdIpnRzbt3Nz6by+nq0PAABwn+4+iklaJhkrT5pBQpQ0eZgU5UDcGBkmXXUKKz8CMK+AXNJfkjp37qzPPvvsuNfz8/O1c+dOWa1WdevWrfL19u3ba/HixcftP2zYMF1++eWaNGmSkpOTPVpnAAAc0au19N/V0tES75Y7wGTLmiXGSDedJi1YbSz7W17NQj2tG0pnpUkdGOIBADCNsBDjbvTFm71bbnS4sYqQWVgs0tm9pCZx0sJNUk7B8ftEhxuPQjq9u7HiEQAAMIdBHaRFm7y/rP/gjkaMYRatGhpzQ/9dLW3eV31/dWomjeslNWvg7doBgPsEbMK/Jhs3bpTdblfHjh0VHR1d+XpsbKyGDh1a7TFt2rSpcRsAAN4WHir1S5W+/917ZVpkfJk0m7goaeJg6eze0sod0pfrpdJyow9vGGmeZXkBAEBVgztISzZ7d5K7fzsjhjATi8WYmB/Y3pjk3pwh/bzdiIeiwqT7zzFfmwAAgLGiYefm0qZ93iszKty4CcVsmiYYd/pnHZFW/mlcKFFaLkWESreOlhrH+bqGAFB/QXf99oYNGyRVXc4fAACzObWrFBvpvfJO6eTY8vj+Ki5SGt7lr+V/o8JI9gMAYGaN4qSTTvBeeXGR0siu3ivP3axWqWuKsWx/RTwUHkqyHwAAMxvby7sr9JyVZu7YoVGcNKrHX7FQZBjJfgCBw8R/nl3jbMLfbvf2ojhwxXMLpmnFpk+0P2eXXrhpjdq3SKtxX7vdrhlzRmjr3tVa8GBu5evvL3lc3656Uza7TS0bn6BbL3hdsVENPF53AHBFbKR0fl/p9WWeL6txnDSa6+QAv3f7S6cp50imLBaroiPjNGXcM2rf4sTj9vvyl1f13uJHZbfZlNZ+uKaNf16hIWGV22uKlfxZSWmRHnrnQu3av0kRYVFqENtE08a/oBaN2lfZLyP7Tz341nkqt5XLZitTy6addfO5LykuOlGS9N7ix/TtqjcVGhKu8LBITRn3jDq16ueLJgFwwFlp0qa9Ula+58ua0E+KifB8OYCrHB0LJelAzm7N/niK0rO2yGoJ0ZiB1+nsITdIYiwEADNJTjAS2J+t9XxZHZOlQccPKQAAP0HCP0A5mgB3dL+vVr6uf7//f7r/8o81uNvZHqu3q07qcZ4mDJ2hm58fUue+85c+qWYN22nr3tWVr/265Vt9vfJ1zb7hZ0VHxumdhf/Sa1/epWnjn/Nktd0q/eBWPT7vch0uyFJMZIJuu+ANtUk+/haUSx9uo7DQCIWHRkmSLhp+p4amXSCp9gmClb9/pde/vltlZSWKCI/WTefOUbvmgf05Avxdz1bG0v6/7HD8mLyjVf9bl1CrdMkgc1/BjeDjzIT3z5u/0Btf3y2bzSabrUznD71Np/W5XJLjCXR/cc/E9ysvVly+4WM9Pm+S5tyyrso+Gdl/6o2v79ELN65WYlxT3fvGOH3+00saN3hK5T7VxUpmMLr/ZPXrNEoWi0ULfnhWsz64Sv++bkmVfRrGN9eTU5YrIsyIg577741669v7NWXc09q2d60+/fF5vXLrRkVFxGrhr2/r2QVT9ey0X3zQGgCOCA814pTnFkplNseOcTYWkqQB7aTuLZ2vH+BtjoyFdrtd9795ji4YdodO6Xm+JCnnyH5JCrix0JE5r7rixtpiRX/mTDxcoaa5P7P2ARAshnU2Htuz/YDjxzgbD8VGSBf2Nx4VBPg7R/IkdY2TjsQQ/p4zq+BoDrC2/E9ewSHdNmdE5b7FpYXKyN6hD+47oPjoJG80wy3c0Rf+LOim7xctWuTrKniFowlwR/bLzN6pL39+WZ1bDXB3Nd2mR+rJDu23M3Ojfty4QLdOeF1L139Q+fqOfevUre0QRUcaa/j06zRat7441FQJ/6fnX6PR/Sfr9L6TtHT9h3p83iQ9d+PKave965J5Nf4xq26C4P7LP9Yjcy/RrOuWqk1yV23YsUyPvnuJXr71Nw+2CIAjLugvFZZIv6U7tv+srxw/d4hVmnSS1KaRa3UDfMnRCe/H5l6qJ65dotTmPZSZvVP/93gnDek2XtGRcQ4l0P3JsSsTFRQdlnT8bMyy9R9qYJexSopPliSdNeBazV30cGXCv6ZYyd+Fh0Wqf+fRlf/u3GqAPvz+ieP3C/3r9txyW7mKSgoUFW48r8RisajMVmq8FhGr/KJcNUpI8XzlAdRL28ZGvPL6MqncgaS/M7GQJHVPkc7n5maYgKNj4Zqt3yksNKIy2S9JiXFNJQXeWOjo3FhNcWNdsaK/cyQerlDT3J/Z+wAIBiFW6apTpOe+k9KzHTvGmXgoKly6driUZOLHPCK4OJonqW2crCuGMEPOrIIj8dCRwpxa8z/xMQ0155a1lft/sOQJrd/xvamS/ZJ7+sKfefEJL/CmHqknq3GDur+U1bWfzWbTrA+u0pSzZyss1NzrF5aVl+rJD6/WjefOkdUaUmVbh5TeWr11obLzMmW32/XdmndUWHxEeYUORkk+lpN/QFvSV2lkr0slSSd1P1cHc/dob9Y2p85TMUFg+d/lmp1bDdD+nJ3ad2i74qMbVl4J1z31JB3I3a2t6ea68w8IRCFW6YqTpD5t3HveiFDjC2M3887vIYjVNJ5Vy2JRflGuJKmwKE/x0Q0rYx5HEuj+5rG5l+nif7XUm1/fozsu+s9x2w/k7lbTxNaV/05OaqMDubsl1R4rmc3Hy5/WwK7jqt1WWlaia2al6bz7G2lv1lZdftoDkqR2zXvq3JNu1sRH2uqif6Xoo6VPaurZs71ZbQAu6pZixC0Rbr6loW9b42ICbz4bF3CXmsbCXQc2KSGmsR56+0Jd++SJuv+Nc5RxyFgyLNDGQkfmxuqMG2uJFf2ZM/FwnXN/Ju0DIJhEhUtTRkjtmrj3vAlR0g0jpRRz5fQQxBzNk9Q1TtYWQ5gtZ+ZIPORs/ufLla/qjH5Xur2unuaJvvAnQXeHP5wzf+ksdW0zWB1Tevu6KvX2n28f0JBu49W6aWdlZu+ssi2t/TCdf8qtuvv1sxRiCdHgbudIkkKs5viIHMzdo6T4ZgoJMeprsVjUJLGVDuTurna5tpnvXSa77OrUsp+uHP2oGsQ2rva8FRMEKY06KK/wkDbu/FFd2wzSjxs/UWHxEWXm7FSHlF4ebRuAuoX8b9n9Ts2lj1YZd/zXR8dkY6k2rt5GoKhpwttisejuS+bpgTfHKzI8RvlHc3TfZR8pLDS8cp/H5l6mddsXS5IeuvILr9XZVbdf9JYk6ZtVb+rlL27Xw07UubZYyUze/e5h7cvappnXfFft9rDQcM25Za1Ky0r03IIb9NlPc3TBsBnKyP5Tyzd8pDdu36ZGCc214Idn9a+3L9BTU5Z7uQUAXNG5uTTjTOm9n6St++t3ruhw6dy+Uq/WLF0Lc6ptLCwvL9Pa7Yv0zNSf1Ca5qz5d8aIefHuCnr9xFWOhqsaNjsSKZlHbxZC1zf0FUh8Aga4i6b/kd+mLdY4/7qgmfdpK5/SWYvw/nwlUcjZPUqG2cfLvAilnVsGZ/M/GnT8qvzBHAzqf5aPaepaZc2HmyGaiimmzB2pv1tZqt71w8xo1aeCehwv+mfmblm2Yr1nXL3XL+Xxt/Y7vdSBnt/7747Mqt5WpsDhPlz7cRs9OW6kGsY01dtD1GjvoeknSpl0/qXFCimIi431ca0Ndv3NnzLpuqZoktlJZeale/+puzZx3ebXJgGMnCCLDo3XvxA/16pd3qqg4X51bD1Trpl1Mc0EEEAwsFuPLWIdk44vd6p1Sablz52gcJ43oKvVPZXIb/s2ZWKiuCe93vvuX7rv8I/VIPVl/7Fmpe18fq5emb1BCjPEsi/ok0H3ptD6X6+n51yqv4JDiYxpWvt6kQSvtO7S98t+Z2TvVpEErSXXHSmbwwZIntPy3jzRz8kJFhkfXum9YaLhO63uFnvzwal0wbIaWr5+vts26q1FCc0nS6X2v0HMLblBpWQmT2oBJNIyVrh8h/bRdWrRJOnjEuePDQqTebaTRPaX4KI9UEfC4usbCJomt1L75iZV3LY3sPVGzP75eZeWlphoLPTE39ve40ZFY0VfcFQ/XNffnz30A4HhWqzS8i9S1hfT5OuPxjza7c+do1VA6vZvUlRUf4YfcmSepUNdNA8fyt5yZu+KhmKgEh/M/X/3yqk7tfVnlRRX+whd94W/8v4Y4zjM3rPBKOb/tWKb9OTs16bEOkqTsI5l66sPJys7L0JhB13mlDu705PXLKv8/M3unrn0yTW//Y2fla4fyMtQwvpmKSgr15tf3asLQGT6oZfXq+p2HhUYoOy9D5eVlCgkJld1u14Gc3ZUT+Mdqkmi8FhoSpvEn3aQrZnY8bp/qJgjS2g9TWvthkqSSsmJd8M9ktW7apb5NA+BmCVHSRQOksSdKv+yQ1u6W9uXUnPxPiDKefTuwvXFnP4l+mIGjsVBdE97b9q3Vobx96pF6siTphJZ91SghRdv2rlHvjqdW2bemBLq/yD+aq6KSwsoJ+h9+W6D4mIaK+9vz1E7qfq5uen6ILjv1fiXGNdVnP72ooWkXSqo7VvJ3H34/S4vXztVjkxdWeRzDsfbn7FJCTGNFhkfLZrNp6foPlNqshyQpuWGqvl71uo4W5ysqIlY/b/pMKY07+l2CA0DtLBYjrunfTtqaKa3YJv15UDp8tPr9w0KkFolSWiupX6oUzV1sMDFHxsK+nUbp5c9nKOvwXjVKaKFfNn+hVk06KzQkzFRjobvnxqqLG52JFb3NXfFwXXN//twHAGrWNEH6v5Ol3ELpx63Spr3Svtyak/+NYqX2TaVBHYyEP+Cv3JknkZy7aUDyv5yZO+MhR/I/R4vz9f369/XstJVuK9ddvN0X/oiEP2o0ZtB1Vf5ITX9hqMafdJMGdzvbd5WqwVMfXqOff/9c2Ucydecrpys6Ik5v3rFN//7gKg3sMlaDuo6t8xx3vHya7HabSstLNLLXRI0bPNULNXePxNgmat+ilxauflun952kZRvmq1GDlOOWqTlaUqDy8tLKL/6L18xV++YnVtmnpgmCigsiJOmdhQ8qrd3wWpfBAeBbMRHSsM7GT7lN2n/YuMuttFyyWoyl3lISpTjuXkOAcmTCu0mDlso+kqFd+zerddPO2pu1TRmHtqtl4xMcTqD7i4Kiw3rwP+eruPSorBarEmIa68ErPpPFYqkSDzVrmKrLT3tANz03WJLUs91QnTXgGh/Xvv4O5qZrzmfT1SwpVbe+aHwpCw+N0OxpP+uNr+9Vw/jmGjPwWu3IWK/Xv7xLkmS329S+RS9NGfeMJGlIt3O0Zc9KTXm6j8JCIxQZHqM7L37XZ20CUD9Wi3RCM+NHko4cldJzpKMlxmR3eKixulGTeOPxSIDZOToWRoXH6MbxL+quV8+UZFdMZILuuuQ9ScE7FtYUN9YWK5qBI/FwXXN/Zu8DINg1iDZWLhrdUyorN5L+OQXG3FCo1Zg7apFkPM4ICASO5kkkx8bJvzNTzsxZjuR/lqybp9RmPdWqSSdfVNFrzJoLI+EfoGpKgEuqMulb235mctN5c6p9ffr5r1T7enJSGy14MLfKay9P3+DuannVTefO0ePzJmnuoocVHRmv2ya8Xrmt4nfeNrmbHnjrXNls5bLLrmZJqZpx4VuV+9U2QfDm1/fqtz+XqdxWps6tB2r6hFe93kYArgmxSs0TjR8gGNQ2nklVY6Gbzn1J/3p7gqwWq2x2m6ae86yaJLbS/pxdNSbQ/VHTxNZ6dtov1W77ezw0uv/VGt3/6lrPV12s5M8aN0jRt49Xf7vKpNP/Wfn/A7uM0cAuY6rdz2Kx6MrRj+jK0Y94pI4AfCsuSurMhY4IYI6OhZLU54TT1OeE047bL9DGQkfmxjq06FVj3JgY17TGWNHfORMP18bMfQCgqtAQ4+597uBHoHMkT1Lb+C/VHkOYjaO5QkfyP1/98qpG1TGf5M/c2Rf+yGK32518igu8obxEWvyMr2vhuGHTpBA3XglotvZL7usDM7a9grvfBwDgbvd9ZCzpmxAlPTDe17XxDbP0gRnHQ3eOg8Hefok+AABPMUss4ClmaT/jIH0Q7O0HAE8xSyzgKWZpvxnHwQrBnCsK9njQlfYXFBQoNjZWkpSfn6+YmBiXymbhOgAAAAAAAAAAAAAATIiEPwAAAAAAAAAAAAAAJkTCHwAAAAAAAAAAAAAAEwr1dQVQPWuY8awHs7CGuf98Zmq/5L4+MGPbK7j7fQAACF5mHA/dOQ4Ge/srzhfsfQAACF6Mg/RBsLcfABDczDgOVgjmXFGwx4O+jIVI+Pspi0UKCfd1LXwnmNsfzG0HAKBCsI+Hwd5+iT4AAAQ3xkH6INjbDwAIboyD9IFEHziDJf0BAAAAAAAAAAAAADAhEv4AAAAAAAAAAAAAAJgQCX8AAAAAAAAAAAAAAEyIhD8AAAAAAAAAAAAAACZEwh8AAAAAAAAAAAAAABMi4Q8AAAAAAAAAAAAAgAmR8AcAAAAAAAAAAAAAwIRI+AMAAAAAAAAAAAAAYEIk/AEAAAAAAAAAAAAAMCES/gAAAAAAAAAAAAAAmBAJfwAAAAAAAAAAAAAATIiEPwAAAAAAAAAAAAAAJkTCHwAAAAAAAAAAAAAAEyLhDwAAAAAAAAAAAACACZHwBwAAAAAAAAAAAADAhEj4AwAAAAAAAAAAAABgQiT8AQAAAAAAAAAAAAAwIRL+AAAAAAAAAAAAAACYUKivK4Dq2e2SrdTXtXCcNUyyWNxzLrO1/Vju6gcz9oE73wMAAAT7WBjs7ZfoAwBAcGMcpA+Cvf0AAAT7WBjs7ZfM1we+jIVI+PspW6m0+Blf18Jxw6ZJIeHuOZfZ2n4sd/WDGfvAne8BAACCfSwM9vZL9AEAILgxDtIHwd5+AACCfSwM9vZL5usDX8ZCLOkPAAAAAAAAAAAAAIAJkfAHAAAAAAAAAAAAAMCESPgDAAAAAAAAAAAAAGBCJPwBAAAAAAAAAAAAADChUF9XAAAAwNMKiqV9uVJpufHv0nIp64jUMFayWHxaNQAAAI8rt0mZh6Xcwr/ioTKbVFImhTMzBAAAgsDho1JmbtW5ocOFUkK0T6sFAG7B1zoAABBw7HZp237pp+3SzizpUH7V7YUl0r8+kaLDpZQk6cTWUq82UgSREQAACBCHC6UV26VNe6WM3L8mtysUFEt3vC81TZA6NJUGdzD+HwAAIBCU26SNe6Vfdki7D0l5R6tuLyyR7vtYio+UWjWS+rSVuqdIIayLDcCEmNYGAAABw243vsh9t0k6kFf3/oUl0pZM4+e/q6X+7aTTuxsXAgAAAJjR/sPSl+ul9Xskm732fW1242KAjFxp6R9G4v+MHlK7Jt6oKQAAgPuVlUtLfpeW/WHc1V+XvCLpt3TjJz5KOqmjNKyzFBri+boCgLuQ8A8g67Yv0a0vDqvyWmR4jFIad9TIXhN19uAbFBIS2L/yYO+DYG8/gOCWnS+997ORvHdFUan0/e/S2l3SBf2lLi3cWz94HuMgfRDs7QcQ3Gw2Y3L7i3XGcv2u2Lpf2vqtdPIJ0plprH5kRoyF9EGwtx9AcEvPlt79SdqX49rxeUelz9dJq3dKFw2UWjV0a/XgBYyD9EGwtj/wWgQNS7tI/TqNll125RzJ1Le/vqUXP71Fuw9s1s3nveTr6nlFsPdBsLcfQPDZtFd6c7lUXFb/cx0+Kr20RDqlkzSul2S11P+c8C7GQfog2NsPIPgUlkivfi9tP+Ce8y39Q9q8T7pmmNQozj3nhHcxFtIHwd5+AMHnhy3S/FV1r3DkiIzD0lNfG/NCp3Sq//ngfYyD9EGwtZ+EfwDq0KKXRva+tPLfYwZdrytndtKXv7yiK854SA1iG/uwdt4R7H0Q7O0HEFzW75HeWOaeL3TH+v536WiJdOEAkv5mwzhIHwR7+wEEl8Ji6fnvpHQX72SrycEj0jPfSFNPlZrEu/fc8DzGQvog2NsPILgs3mw8qtGdbHbp41+lkjLp1G7uPTc8j3GQPgi29lt9XQF4XlR4jDq1HiC73a59h7b7ujo+Eex9EOztBxC4th8w7ux3d7K/wi87pM/Weubc8B7GQfog2NsPIHCV26SXv3d/sr9CXpH0wnfSkSLPnB/ew1hIHwR7+wEErpU73J/sP9bn66QV2zx3fngH4yB9EOjt5w7/IJHxvzdvfHSSj2viO8HeB8HefgCBp7hUeudHY6LbUbecIcVHGc9km/WVY8cs2iR1aS61b+paPeEfGAfpg2BvP4DAtHCj9OdB545xNh7KKZTmr5QmneRaHeE/GAvpg2BvP4DAk50vfbjSuWNcmRv6eJXUoSmPOjI7xkH6IJDbT8I/ABWVFupwQZbsduO5FJ+ueFHb9q5Rp5b9lNK4o6+r5xXB3gfB3n4AweHTNVJ2gXPHxEdJDaKdL2vuT9KMM6UIIidTYBykD4K9/QCCw74c6ZvfnD/OlXho7W5p7S4prbXz5cE3GAvpg2BvP4DAZ7dL7/0sFZc5d5wrsVBJuTE3NGUkj300C8ZB+iDY2h8U09ZZWVmaOXOmPvroI6Wnp6tx48YaP368Hn74YU2bNk2vvfaaZs+eralTp/q6qm7x1jf36a1v7qvy2pBu43XDOc/5qEbeF+x9EOztBxD4Mg9Ly7d6r7xD+dL3v0unmfSZbTa79Ps+aet+6WiJ8VppubE6QkgAPuCJcZA+CPb2AwgOC1Y7t9JRfX38q9S9pXljh+x86dedf8VCxaXS4UIpwYWLQc2AsZA+CPb2Awh8v6VLWzK9V972A9L63ea9ALKsXFq/569Y6Gip0X8dmkqWALyIgXGQPgi29gd8wn/t2rUaNWqUMjMzFRMToy5dumjfvn165plntH37dmVnZ0uS0tLSfFtRNzqz/2Sd3ON8ldlK9WfGBs1b8piyDqcrPCyycp+SsmJd/1QvDTvxYl0y4q7K12e+N0m5+fv18FVf+qLqbuNIHzz09oWy2W26Z+L7la/lFWbr6ie6avJZT2hEr0t8UXW3cKT9G3Ys0z9eHXXcsWXlJbLZyvX1zHJvVhkAnPLDFu+X+eNWaUQXc01y2+3Sj9uMxxIcyq+6rbBE+ucC6ZRO0tDOgXWFOrEQsRCxEIBAtz/PuxPcknT4qDGx3rOVd8utr/2HpU/XShv3GrFRhaIy6YEFxkUMY0+UGsb6qoaeQTxEPEQ8BCDQefNGkArLtpgv4V9uk77dKC3fIuUX/fV6SZn0/HdSk3jp1K5S31Tf1dETiIWIhYItFgrohH9WVpbGjBmjzMxMTZ8+Xffdd5/i4oyHrMycOVO33367QkNDZbFY1KNHDx/X1n1aNOqgXh1HSpL6dRqlbm2H6Obnh+jp+dfqrkvfkySFh0ZoxoVvafrzJ2tA57PUrnlP/fDbAv20+VO9dMsGX1bfLRzpgxvGP6/J/+6uRWvmaviJF0mSZn88RV3bDjH1HzHJsfZ3Tz1Jnz5UNfuTdXifpjzTR+MGBcZqFwACU3Gp9MsO75ebW2hMFPdo6f2yXWG3Sx/9Ki37o+Z9Dh+VPlkjpWdLlw6SrCa6mKE2xELEQsRCAAKdLy5+lIyJYjMl/HdmSXMWGXewVcdml9btNu7Yu3641DzRu/XzJOIh4iHiIQCB7GCe9EeG98vdfkDKyJWaNfB+2a4oK5deX2bMZ9XkQJ70zgrp4BFpdE/v1c3TiIWIhYItFgqQad3qTZs2Tenp6Zo6daqeeOKJymS/JM2YMUM9e/ZUWVmZ2rRpo/j4eB/W1LO6thmkkb0masm6edq488fK1zum9NZ5p9yqme9dpoO56Xrqw8m64Zzn1CihuQ9r6xnV9UF8dJKmn/+qnl0wVVmH92np+g+1fvsS3TT+RR/X1v1qeg8cq6SsWA+8NV7d2gzRxSP+4eUaAoDjtu53/vls7rJhj2/KdcXizbUn+4+1epdx51ugIhYiFiIWAhBofBWTbN1vrBJkBjkF0stLak72Hyu/SJqzuOpdb4GGeIh4iHgIQCDZkB6cZTtr/qrak/3H+uY3acU2z9bHl4iFiIUCPRYK2IT/5s2bNW/ePDVq1EiPPPJItfv07t1bktSz51+XLS1ZskQWi+W4H7Mv+X/JyHtktYboza/v/dvrdyvEGqrrnjpRPdsP07C0C31UQ8+rrg/6djpDp/SYoMfmXqrZH12vW85/RfExDX1YS8+p6T1Q4en516qktEi3XfCGdysGAE7akx2cZTujpExauNG5Y5b+EdiT3MRCxELEQgACRX6RlFPou/L3miQeWvaHVFDs+P6Hjwb2JLdEPCQRDxEPAQgUvpyfSTdJLHQoX/rJydjm6w3GIwACFbEQsVAgx0IBm/CfO3eubDabLrnkEsXGVv8gtqioKElVE/4VnnvuOa1YsaLy5z//+Y9H6+tpLRq117CeF2rNtu+0YceyytdDQ8LUpc0gHS7I0ul9rvBhDT2vpj6YPOYJ7T20TX07jVL/zmf6sIaeVVP7Jenj5c/o582f6YFJCxQZHu2jGgKAY/Yc8l3Z+/N8t7qAM9bscv7uu3Kb9NN2z9THHxALEQsRCwEIFL6+ANHX5TuipMy1uOaHrZItgCe5iYeIh4iHAAQKXybdfTkv5Ywft0p2J4+peJxloCIWIhYK5FgoYBP+ixYtkiQNGzasxn3S0421V6pL+Hfp0kUDBgyo/OnevbtnKupFF424S1aLVW9+89eVKxt2LNM3q97QuMFT9fwnN6q49KgPa+h51fVBVHiMmiWlqm2y+X/Hdamu/Wu3LdYrn9+ueyZ+oOSkNr6rHAA4KLvAd2Xb7cbysP7O1eXlzLQsnSuIhYiFiIUABIJD+XXv40nZPi7fEX8edO3RA7mFUnqO++vjT4iHiIeIhwAEAl/GQzmF5rhA0OW5IRM9ztIVxELEQoEaC1nsdruzF/mYQsuWLZWenq41a9ZUuxx/WVmZmjVrpqysLG3fvl2pqamSjCX9hw0bpsWLF2vo0KFuqUufPn2UmZnp1DHhoVF6aepWt5Rfk6PF+bpmVk+de/ItGjPwOk1/8RR1TOmj68Y+6fS5Jj/bQSVl7vkj6I22/930F4ZqQOezdP7QW+t1Hnf1g7f6IDN7p6Y+01eXnnqfzh48tV7ncud7AABqc8aM5Ypt2KbabbecIcVH1XxsfKRktRpfzPLqWL4+76g066vjX1/49OnK3efkevleNvTa+WrUtr/Txx05uF1fP3GKB2rkPLPFQpK54yF3xELujgW80QfujIUk4iEA3tF+yJVKG/NAtdvqioUkx+OhmmKhP1e+p18/rN93Z09L6XGWBlzi2nNHl71ysfZvXermGjnPW7GAv84NScRDzA0BQPUs1hCd+8iuGre7a26oplhIkj6+u4PK/TwpfNbdaxQZ19jp4/Zt+lY/vukfd7kzNxTcsZBkvrkhV9pvs9mUkZEhSUpLS9OaNWtcKjvUpaNMoKDAuP3u6NHqO3bevHnKyspSXFyc2rZte9z2Cy64QFlZWWrYsKHGjh2rRx99VI0aNXKpLpmZmdq717l1UCLDPL9cxJxPpys5qa3GDrpeFotFt014Q9c+labB3c5Rj9STnTpXxr59Kip1z0MEvdF2T3FXP3ijD4pKCnXfG2drYJexbpngdud7AABqU1pS88NY46OkBg78CbVaHduvOpkZe3XIyXHd2wryD8uVqKWo8IjTMYunmC0WkoiH3B0LeLoP3B0LScRDALyjYXbN68g6GgtJrsdD+UcO+028UJPwpvtcPjYzY4/2+UH7vBUL+OvckEQ8xNwQALjGG3ND6Xt2yVZe6trBXlJSXKjIOOePyz+S4zexHnNDwR0LSeabG6pv+/fv3+/ysQGb8E9OTlZOTo5Wr16tgQMHVtmWkZGh2267TZLUo0cPWSyWym0JCQm67bbbdPLJJys2NlYrVqzQI488op9++kmrVq1SZGSkS3VxVnhoHZfk19Mvv3+pJevm6aVb1le2v3mjdrpy1KN6Yt4VmjN9vaLCYxw+X7Pmzd161ZJZuasfvNEHyzbM146MddqbtUVL1s07bvurt25Sk8RWDp/Pne8BAKiNreRIjdvy6vgz5Owd/tVpEBepyBYt6qilbxVl73DpuMKsbWrhJ20zWywkEQ+5OxbwdB+4OxaSiIcAeEd0eM3b6oqFJOfuaqtOmKXUb+KFmoSWHJTdZpPF6tyTLG1lJYqwH/aL9nkjFvDnuSGJeIi5IQCoWXFBjiJiEqvd5q65oZrOU1ZcoGbJTRysqe/kH/hD8Y1aO31cSc6ffhELScwNBXssJJlvbsiV9tvtdlUsxt+sWTOnjj1WwC7pP23aNM2ePVstW7bUwoUL1bFjR0nSypUrNXHiRO3YsUOlpaWaMmWKnn322VrP9emnn2rs2LF67bXXdMUV3lnKpLxEWvyMV4pyi2HTpJBaJh2cYba2H8td/WDGPnDnewAAavPBL9IPLq7kdP85xtXbuYXS/R87f3xspPTgeOmYawX90sE86aFPnT/uxtOkts6v9uYRwT4WBnv7JfoAAGqSeVh69DPXj69vPHT5EOlE5+eOvW7OYmmzkzf692otXTbEM/VxFuMgfRDs7QeA2jz/nbTFuacoV6pvLJTaWJp2mmtle9OmvdJLS5w7xmox+qeuR0R5S7CPhcHefsl8feDLWMi5S51NZMaMGWrYsKH27Nmjrl27qnv37urQoYP69eun1NRUDR8+XJLUs2fPOs911llnKSYmRqtWrfJ0tQEAQB1aJvm2bH9P9ktS43ipc3PnjmmZJLVx7elFAADAi5rESeE+XK/Rl7GYM07q6PwxQ1w4BgAAeF+KD+MRX5btjE7NpcZOLumf1sp/kv0AnBOwCf+UlBQtW7ZMZ555piIjI7Vz504lJSVpzpw5+vzzz7VlyxZJjiX8K1jMMMMPAECAS/XhqmmpfnL3uyMuHCAlOrjqWEyEcTcboQ4AAP7PavVdTJIQJTWM9U3ZzurSQhrW2fH9R/fwbZwJAAAc186HY7Yvy3aG1SJdcZIUGebY/k3jpXP7erZOADzHh9eEe17nzp312WfHr3OXn5+vnTt3ymq1qlu3bnWe55NPPlFBQYH69evniWoCAAAnNImX2jeVtu33brlWi9S/nXfLrI+EKGOJ/peXSHtzat6vUZx09VDnr/oGAAC+M7C99HuGb8o10wWCY080VkP45jeppgdaWi3SmBOloZ28WzcAAOC6Ts3+Wpbfm+Ijpa7+8Xh7hzRPlKaOlF75vva+atNIuvIU44YQAOYU0An/mmzcuFF2u10dO3ZUdHR0lW2XXnqpUlNT1atXL8XGxmrFihWaOXOm0tLSdOGFF/qoxgAA4FhDOng/4d/ThMuaNYiWpo+S/siQlm+RtmZKJeVSWIjUtrGxbG3XFlJIwK75BABAYOqWYlzcd/io98q0WoyEv5lYLNKoHlL/VGnFNumXHVLeUUkWI07q304a2E5KiK7zVAAAwI+EWKVBHaQv1nm33AHtpdAQ75ZZXylJ0t1jpfV7jLmh3YekMptxUWTnZtLgjlKHpua6qBPA8YIy4b9hwwZJ1S/n37VrV7377rt66qmndPToUaWkpOjqq6/Wfffdp/DwcG9XFQAAVKN7Syk5Qco87J3yrBZpeBfvlOVuVovUubnxI0k2m7EUMAAAMK8QqzSiq/TRKu+V2d/EifGkWOnMNOPH9r87/a1MagMAYGqD2kvf/y4VFHunvMgw48YJMwoNkXq1MX4k5oaAQETC/2/uvPNO3Xnnnd6uktuUlBbpoXcu1K79mxQRFqUGsU00bfwLatHo+Mvw31v8mL5d9aZCQ8IVHhapKeOeUadWPLYAAOD/QqzSRQOkp76peXlWdxrRRWqZ5PlyvIEvdAhEzsTAB3J2a/bHU5SetUVWS4jGDLxOZw+5QRnZf+rBt85Tua1cNluZWjbtrJvPfUlx0Yk+aBEA1G1IR2ntLmnHQc+X1SDaWB4/EJDoD1y3v3Saco5kymKxKjoyTlPGPaP2LY5/4375y6t6b/GjsttsSms/XNPGP6/QkDDZbDa9/PkMrfrjK5XbytS1zWBNG/+CwkID5wYgR/sIAMwgNlI6t4/01g/eKW98H/Ot/FgT5oYCR/rBrXp83uU6XJClmMgE3XbBG2qT3LXafe12u2bMGaGte1drwYO5la+/v+RxfbvqTdnsNrVsfIJuveB1xUY10NGSAs14cbhKyookSUlxzXTjuS8qOamNF1rmGEfaX1eMV1P7JenbX/+jD79/QjZbuRrENdVtE15Xk8RW3m6mQ0j4B6DR/SerX6dRslgsWvDDs5r1wVX693VLquyzbe9affrj83rl1o2KiojVwl/f1rMLpurZab/4ptJu4MgHu7bJ4LyCQ7ptzojKfYtLC5WRvUMf3HdA8dFJWvn7V3r967tVVlaiiPBo3XTuHLVr7r/voecWTNOKTZ9of84uvXDTGrVvkVbtfpc+3EZhoREKDzWilYuG36mhaRfU2R8A4GutGxmJ+IUbHT8m72jV/zqiWYJ0enfn6gb/4+i4aLbxvibOJMDr6huz9IkjMbDdbtf9b56jC4bdoVN6ni9JyjliPB+kYXxzPTlluSLCjJjouf/eqLe+vV9Txj3t1XYAgKOsFumigdLjnxuP7HGUK/HQBf2lqMDJeQYNR+KfumIGR2Mof3DPxPcrJ2eXb/hYj8+bpDm3VF3rOSP7T73x9T164cbVSoxrqnvfGKfPf3pJ4wZP0VcrX9W2vav1/E2rFRoSpic/nKyPlz+tCUNv80FrPMORPgIAMzmxtbRut7Ruj+PHuBILdWku9W3rXN3ge+6IhSp8tfJ1/fv9/9P9l3+swd3O9k4DHPD0/Gs0uv9knd53kpau/1CPz5uk525cWe2+85c+qWYN22nr3tWVr/265Vt9vfJ1zb7hZ0VHxumdhf/Sa1/epWnjn1NEaJQem7xQ0ZFxlcc//98b9c8r/uuVtjnCkfbXFuPV1v7dB37Xy5/dphduXqOG8c208Ne39fRH1+mhKz/3UWtrF5TX8SxatEh2u11nnnmmr6viduFhkerfebQs/3vgSudWA7Q/Z+dx+1ksFpXZSlVUUiBJyi/KVaOEFG9W1e0qPthv3L5FFwy7XY/Pm1TtfqP7T9brM/7QnFvWaWDXcZr1wVWSpPiYhppzy9rKnzP7T1a/E0YpPjpJRwpz9MjcSzTjgjf10vT1mnzm43r03Uu82DrnndTjPD15/XI1TWxd5753XTKvst1D0y6QVHt/AIC/GNVD6tHS8f1nfSXd/7HxX0ckRElXDTXf89lwPEfGRTOO97WpKeb5u9r6xix94mgMvGbrdwoLjahM9ktSYlxT4xyhEZXJ/nJbuYpKCmQRt4EC8G+N46RJJzl317qz8dDZvf56NBDMxdF5gdpiBmfmFnytIpEtSQVFh6VqxvFl6z/UwC5jlRSfLIvForMGXKvFa+dKkrbvW6cTO4xUWGi4LBaL+nYapYW//sdLtfcOR/oIAMzE8r8LIFs1dPwYZ2OhFonSpYN5xr0ZuSMWkqTM7J368ueX1bnVAE9W12k5+Qe0JX2VRva6VJJ0UvdzdTB3j/ZmbTtu352ZG/XjxgW6cNgdVV7fsW+durUdUpnU79dptL5bbcQ/Vqu18nW73a7CorzKeRd/4Gj7a4vxamv/zszf1LZZDzWMb2Zs6zxaK//4UnkFh7zVRKcEZcI/mHy8/GkN7DruuNfbNe+pc0+6WRMfaauL/pWij5Y+qalnz/ZBDd3D0Q+2o5PBkvTlyld1Rr8rJUn7Dm1XfHTDyhUDuqeepAO5u7U1fXW1x/qDHqknq3ED913EcWx/AIC/CLFKlw2WenpgJaXEGGnqSKlhrPvPDe9zZFw043hfE2dintr6xqx9UlMMvOvAJiXENNZDb1+oa588Ufe/cY4yDu2o3F5aVqJrZqXpvPsbaW/WVl1+2gPerDYAuKRLC+n/TpZCPTDDM66XNLSz+88L73Ak/qkrZnD33IKnPTb3Ml38r5Z68+t7dMdFxyfrD+TurjLpn5zURgdyd0uSOqT01opNn6igKE9l5aVauu79GuMnM6urjwDAbCLDpGuHGStBulvLJOm64VI0Kx2ZkjtiIZvNplkfXKUpZ89WWGiEJ6vrtIO5e5QU30whIcZi7haLRU0SW1XGNhXKykv15IdX68Zz58hqrXpXU4eU3lq9daGy8zJlt9v13Zp3VFh8RHmF2ZX7zJgzUhP+mayl6z/QDec85/mGOcjR9tcW49XW/tRmPbVt72qlH9wiSfpu9duy2+3an7PLq+10FAn/APbudw9rX9Y2XTnqkeO2ZWT/qeUbPtIbt2/T3LvTNf7km/Wvty/wQS3dw9EP9t/VNBm8ceePyi/M0YDOZ0mSUhp1UF7hIW3c+aMk6ceNn6iw+IgyA+SL38z3LtPV/+6uf79/pXLzj38A5N/7AwD8SWiIdPlgaXRP4wIAd+jaQrrpdKlxvHvOB3MI5PG+ppinLmbsk9pi4PLyMq3dvkiXjLxHL968Rr1POF0Pvj2hcntYaLjm3LJW79+7X60ad9JnP83xZtUBwGXdUqRpp0lN3RS7xEUaFxEMI9kfdFyNGfzF7Re9pXfv3qNJZ/xLL39xu1PHnt5nkvqecIamv3CKpr9wilo07qgQa+A9DbU+fQQA/io6Qrp+hDSkg/vOObC9NGWkFBvpvnPC//09Fpq/dJa6thmsjim9fVir+vnPtw9oSLfxat30+OA+rf0wnX/Krbr79bM0bfYANYhpLElVYqCZ1yzUvHsydErPC/Tudw95rd7uUluMV1v7Uxp30I3nvqjH3rtM1z/dR3kFhxQb1cBv40P/rBXq7YMlT2j5bx9p5uSFigyPPm778vXz1bZZdzVKMNblO73vFXpuwQ0qLStRWKj/Xa42bfZA7c3aWu22F25e49I5KyaDZ17z3XHbvvrlVZ3a+7LKCwhiohJ078QP9eqXd6qoOF+dWw9U66ZdfPbBrqs/mjRwfH3rWdctVZPEViorL9XrX92tmfMu18NXflFln7/3BwD4G6tVOq2b1D1FmvuTtNvFlZWiw6Vzekt92rJUm5m4a1z0t/G+Ns60ubaYpy5m6hOp7hi4SWIrtW9+YuWKBSN7T9Tsj69XWXmpQkPCKvcLCw3XaX2v0JMfXq0Lhs3wWv0BoD5aNZRuHS19tV5avFmy2V07T+820vg+Uox/3cCEv3HnvECF+sQM/ua0Ppfr6fnXKq/gkOJj/lrnuUmDVtp3aHvlvzOzd6pJA2O5MIvFostOu1+XnXa/JGnx2vfU+n8xQyCqqY8AwKwiQqXz+hmrQL73s3Qo37XzJMVIF/SXTmjm3vrBvbwRC/2Z+ZuWbZivWdcvrVddPaVxg5bKzstQeXmZQkJCZbfbdSBnd2VsU2H9ju91IGe3/vvjsyq3lamwOE+XPtxGz05bqQaxjTV20PUaO+h6SdKmXT+pcUKKYiKrXklstVo1uv/VmjSzg6aNf95rbayNo+2vK8arrf0n9zhPJ/c4T5KUnZepeUseU/NG7b3QOuf550wd6uXD72dp8dq5emzywirP5jpWcsNUfb3qdR0tzldURKx+3vSZUhp39MtkvyQ9c8OKWreHhUY49MGuUNtk8NHifH2//n09O21lldfT2g9TWvthkqSSsmJd8M9ktW7apR6tcl1d/eGMJolGH4WGhGn8STfpipkdq2yvqT8AwB81ayDdfLq07YC0fIu0YY9jk90pidKQjtKJbYwviDAXd46L/jTe18bRNteVAHeEWfrEkRi4b6dRevnzGco6vFeNElrol81fqFWTzgoNCdP+nF1KiGmsyPBo2Ww2LV3/gVKb9fBuIwCgnsJCpDEnSid3kn7aJv24VTp8tO7jIsOkfqnS4A5S0wTP1xP15874R3JPzOBL+UdzVVRSWHljyw+/LVB8TEPFRSdV2e+k7ufqpueH6LJT71diXFN99tOLGpp2oSSppLRIxaVHFRedqMMFWXpv0aOadMaDXm+LpzjaRwBgdh2SpX+MkTbuNeaGtmQ6eFxTY26oW4r7VpCE53gjFvptxzLtz9mpSY8ZS0dkH8nUUx9OVnZehsYMus6t5bsiMbaJ2rfopYWr39bpfSdp2Yb5atQgRS3+lpB+8vpllf+fmb1T1z6Zprf/sbPytUN5GWoY30xFJYV68+t7NWGoceNDdl6mwkIjFBedKElasm6e2ib7zzyJo+2vK8arqf3Hbiu3leuVL27X2EFT/DZWZko7wBzMTdecz6arWVKqbn3RmJgND43Q7Gk/642v71XD+OYaM/BaDel2jrbsWakpT/dRWGiEIsNjdOfF7/q49q5z9IMt1T0ZvGTdPKU266lWTTpVeb3igy1J7yx8UGnthld7fjM5WlKg8vLSyn5YvGau2jc/sco+NfUHAPgri8X4ktahqVRQbNztvydb2pcjFZUaFwCEhUhN4o1nsbVMkhrFcUc/DIE03juSAHeEGfrE0Rg4KjxGN45/UXe9eqYku2IiE3TXJe9JknZkrNfrX94lSbLbbWrfopemjHvGV00CgHpJiJJO7y6N7Crty5XSs42Y6HChVGYzJrFjI6SU/8VCKUlSODNEQctdMYMvFRQd1oP/OV/FpUdltViVENNYD17xmSwWi/79wVUa2GWsBnUdq2YNU3X5aQ/opucGS5J6thuqswZcU3mO6S8OldVilc1u0zlDbtTALmN82Sy3qq2PACDQhFilHi2Nn9xCac//5oYyD0vFZZLdbtzwkZwgtWxorJTUwD9zePCCmmKhMYOuq5LYn/7CUI0/6SYN7na29ytZg5vOnaPH503S3EUPKzoyXrdNeF2SqsQ/dbnj5dNkt9tUWl6ikb0matzgqZKkA7m79dT8a2Szlcsuu5o3bKc7Ln7bo+1xliPtryvGq6n9kvTv9/9P+3N2qbSsWP07n6n/G/Ww19voKIvdbndxkTd4UnmJtNhE84vDpkkhblocwNW27znwhx6fN0l5hYcqP9htm3WX9NeHu0OLXrr4oZZqlpSqqIg4SX9NBle48dlBGtX/ap3R94oq55/1wdX67c9lKreVqXPrgZp69uzjvgi7qx/c8ft/6sNr9PPvnyv7SKbioxsqOiJOb96xTdJf/dE2uZseeOvcyj/YzZJSdf24p5Wc1KbyPDX1x9+58z0AAIC7YyFHxsVBXcc6NN7XxB/ioQoHc9NrjXmObXNtfSM5FgNJ7o8FzBYPS8RDAAD38da8QF3zJHXFCcciFvCveNAXiIUAAO5U37HQHbHQsRxJ+BMLBHc86MtYiIS/nwrmN7HZ2n4sf0r4extf6gAA7hTsY2Gwt1+iDwAAwY1xkD4I9vYDABDsY2Gwt18yXx/4MhbiSSQAAAAAAAAAAAAAAJgQCX8AAAAAAAAAAAAAAEyIhD8AAAAAAAAAAAAAACZEwh8AAAAAAAAAAAAAABOy2O12u68rgePZ7ZKt1Ne1cJw1TLJY3HMus7X9WO7qBzP2gTvfAwAABPtYGOztl+gDAEBwYxykD4K9/QAABPtYGOztl8zXB76MhUj4AwAAAAAAAAAAAABgQizpDwAAAAAAAAAAAACACZHwBwAAAAAAAAAAAADAhEj4AwAAAAAAAAAAAABgQiT8AQAAAAAAAAAAAAAwIRL+AAAAAAAAAAAAAACYEAl/AAAAAAAAAAAAAABMiIQ/AAAAAAAAAAAAAAAmRMIfAAAAAAAAAAAAAAATIuEPAAAAAAAAAAAAAIAJkfAHAAAAAAAAAAAAAMCESPgDAAAAAAAAAAAAAGBCJPwBAAAAAAAAAAAAADAhEv4AAAAAAAAAAAAAAJgQCX8AAAAAAAAAAAAAAEyIhD8AAAAAAAAAAAAAACZEwh8AAAAAAAAAAAAAABMi4Q8AAAAAAAAAAAAAgAmR8AcAAAAAAAAAAAAAwIRI+AMAAAAAAAAAAAAAYEIk/AEAAAAAAAAAAAAAMCES/gAAAAAAAAAAAAAAmBAJfwAAAAAAAAAAAAAATIiEPwAAAAAAAAAAAAAAJkTCHwAAAAAAAAAAAAAAEyLhDwAAAAAAAAAAAACACZHwBwAAAAAAAAAAAADAhEj4AwAAAAAAAAAAAABgQiT8AQAAAAAAAAAAAAAwIRL+AAAAAAAAAAAAAACYEAl/AAAAAAAAAAAAAABMiIQ/AAAAAAAAAAAAAAAmRMIfAAAAAAAAAAAAAAATIuEPAAAAAAAAAAAAAIAJkfAHAAAAAAAAAAAAAMCESPgDAAAAAAAAAAAAAGBCJPwBAAAAAAAAAAAAADAhEv4AAAAAAAAAAAAAAJgQCX8AAAAAAAAAAAAAAEyIhD8AAAAAAAAAAAAAACZEwh8AAAAAAAAAAAAAABMi4Q8AAAAAAAAAAAAAgAmR8AcAAAAAAAAAAAAAwIRI+AMAAAAAAAAAAAAAYEIk/AEAAAAAAAAAAAAAMCES/gAAAAAAAAAAAAAAmBAJfwAAAAAAAAAAAAAATIiEPwAAAAAAAAAAAAAAJkTCHwAAAAAAAAAAAAAAEyLhDwAAAAAAAAAAAACACZHwBwAAAAAAAAAAAADAhEj4AwAAAAAAAAAAAABgQiT8AQAAAAAAAAAAAAAwIRL+AAAAAAAAAAAAAACYEAl/AAAAAAAAAAAAAABMiIQ/AAAAAAAAAAAAAAAmRMIfAAAAAAAAAAAAAAATIuEPAAAAAAAAAAAAAIAJkfAHAAAAAAAAAAAAAMCESPgDAAAAAAAAAAAAAGBCJPwBAAAAAAAAAAAAADAhEv4AAAAAAAAAAAAAAJgQCX8AAAAAAAAAAAAAAEyIhD8AAAAAAAAAAAAAACZEwh8AAAAAAAAAAAAAABMi4Q8AAAAAAAAAAAAAgAmR8AcAAAAAAAAAAAAAwIRI+AMAAAAAAAAAAAAAYEIk/AEAAAAAAAAAAAAAMCES/gAAAAAAAAAAAAAAmBAJfwAAAAAAAAAAAAAATIiEPwAAAAAAAAAAAAAAJkTCHwAAAAAAAAAAAAAAEyLhDwAAAAAAAAAAAACACZHwBwAAAAAAAAAAAADAhEj4AwAAAAAAAAAAAABgQiT8AQAAAAAAAAAAAAAwIRL+AAAAAAAAAAAAAACYEAl/AAAAAAAAAAAAAABMiIQ/AAAAAAAAAAAAAAAmRMIfAAAAAAAAAAAAAAATIuEPAAAAAAAAAAAAAIAJkfAHAAAAAAAAAAAAAMCEQn1dAQAAUJXdLtlKfV0L11jDJIul/ucxYx+4q+0VzNYH7m4/ACB4mW0MPFYwx0IVgrkPiIcAAAAA+AIJfwAA/IytVFr8jK9r4Zph06SQ8Pqfx4x94K62VzBbH7i7/QCA4GW2MfBYwRwLVQjmPiAeAgAAAOALLOkPAAAAAAAAAAAAAIAJkfAHAAAAAAAAAAAAAMCESPgDAAAAAAAAAAAAAGBCJPwBAAAAAAAAAAAAADChUF9XAAAATyosltJzpPRsKb9IKrNJoSFSYrSUkiS1SJTCGQ0BAECAKrdJ+w9Le7Klg0ek0nLJapEiwqSURCMeSoiSLBZf1xQAAMAzjhw1YqH0HOloiWSzS6FWqVGc1DJJSk4w5ooAADArUhwAgIBTXCat3in9sNVI9NfGapE6NJUGd5S6tpBCWPsGAACYnN0u7TokLd8ird8tlZTXvn9itDSgvfGTEOWdOgIAAHhSfpH0yw5pxTbjosfahFqlrinSkI5S+yZcCAkAMB8S/gCAgFFukxZtkr7bJBWVOnaMzS79kWn8NIiWxqRJvdrw5Q4AAJjTrizpw5XGXWyOyimUvlwvfb1B6tNWGtdLionwXB0BAAA8pbhU+mydtGKrscqjI8ps0rrdxk9ygnRuH6lDsmfrCQCAO5HwBwAEhH050rs/1X1Hf21yC6X//Cit3S2d30+KN9kdbuu2L9GtLw6r8lpkeIxSGnfUyF4TdfbgGxQSEthDf7D3QbC3HwCCWWm59NV6adFm4w5/V9jsxp1wv2dIE/pJ3VLcW0dvCPaxMNjbL9EHABDMtmZKc3+SsgtcP0fmYem576QhHaQxJxqPQQIAwN/xDQcAYHq/pUtvLHP8yu26bEg37o67boTUrIF7zulNw9IuUr9Oo2WXXTlHMvXtr2/pxU9v0e4Dm3XzeS/5unpeEex9EOztB4BgU1gszVlixC/ukHdUeuV76Yzu0undzbnyUbCPhcHefok+AIBgs/QP6aNV7jvf8q3S9gPStSN45BEAwP/xpGIAgKn9li69ttR9yf4KeUXS7G+ljFz3ntcbOrTopZG9L9WpvSdqwtDb9MwNP6lxQoq+/OUV5eYf9HX1vCLY+yDY2w8AweRoifT8d+5L9h/rqw3SF+vcf15vCPaxMNjbL9EHABBMlvzu3mR/hYzD0rPfSkeOuv/cAAC4Ewl/AIBppWcbd/bbXFy2ti6FJdKLi6SCYs+c31uiwmPUqfUA2e127Tu03dfV8Ylg74Ngbz8ABCqb3YiF0nM8V8a3G6Wftnnu/N4S7GNhsLdfog8AIFCt3yMt+NVz5z94RHppiVTu5htNAABwJ5b0BwCYUlm59O4K5+7sv+UMKT7KWKZ21leOHXP4qHGV+MTBrtXTX2T8b1IzPjrJxzXxnWDvg2BvPwAEoh+3Sn9kOneMK/HQx79KHZOlpFjn6+hPgn0sDPb2S/QBAASa/CLp/V+cO8aVWGhPtrRwo/GoIwAA/BEJfwCAKX27UdqX69wx8VFSg2jny/p1p5TWSure0vljfaGotFCHC7JktxvPK/10xYvatneNOrXsp5TGHX1dPa8I9j4I9vYDQDA4lC99ssb541yJh4rLpPd+lq4bLlkszpfpC8E+FgZ7+yX6AACCwfxVRtLfGa7ODX3zm9Q9RWqe6PyxAAB4WlAk/LOysjRz5kx99NFHSk9PV+PGjTV+/Hg9/PDDmjZtml577TXNnj1bU6dO9XVVPSLriHHnx7YDUnGpFBEmtW8iDeogNYrzde0AwHmFJdKiTd4t84t1UrcUc0xyv/XNfXrrm/uqvDak23jdcM5zPqqR9wV7HwR7+/+utFxau0ta9aexaofVYtylOqCd1KW5ZOUhVwBM6LuNUkmZ98rbkiltPyC1b+q9Musj2MfCYG+/RB/8XXq29MNW4y7V0jIpKlzq0kIa2E6Ki/J17QDAeRm50ppd3iuv3CZ9vUG64mTvlQkAgKMCPuG/du1ajRo1SpmZmYqJiVGXLl20b98+PfPMM9q+fbuys7MlSWlpab6tqAcUlUpzf5LW75b+/njr3YekxZulHq2kiwZIkWE+qSIAuGTlDiOB500Zh6UdB6V2TbxbrivO7D9ZJ/c4X2W2Uv2ZsUHzljymrMPpCg+LrNynpKxY1z/VS8NOvFiXjLir8vWZ701Sbv5+PXzVl76outs40gcPvX2hbHab7pn4fuVreYXZuvqJrpp81hMa0esSX1TdLRxp/4Ydy/SPV0cdd2xZeYlstnJ9PdPLHzIPWblDWrBaKiiu+vq+XOm3dCkxxoiFOib7pHoA4JKjJdKqnd4vd/kW8yT8gz0eCvZYSCIeqpBbKP3nB+OCnb/bmWUkrwZ1kM7uJYVwESQAE/lhi/fL3JBu/F11ZYUAAAA8KaBD+aysLI0ZM0aZmZmaPn26MjIytHr1amVmZuqxxx7T559/rpUrV8pisahHjx6+rq5bFZVKzy2U1lWT7K9gl7H9uYXG/gBgBna7cWeKL/jiy6QrWjTqoF4dR6pfp1G6YNgMPXjFp/ojfaWenn9t5T7hoRGaceFbeu+7h7V93zpJ0g+/LdBPmz/VLee/6ququ40jfXDD+Oe1cecPWrRmbuVrsz+eoq5th5h+gtuR9ndPPUmfPpRf5ef1GVsUH9NIl5/+oA9r7z5L/5DeWXF8sv9YOQXSnMXSxnTv1QsA6mvVn969u7/C+j3G827NINjjoWCPhSTiIcmIc576uvpkf4Vym7TsD+n1Zcb/A4AZFJdKK//0frk2u7Rim/fLBQCgLgGd8J82bZrS09M1depUPfHEE4qL+2v9+hkzZqhnz54qKytTmzZtFB8f78Oaut+8n41l2hyxJ9vYHwDMILdQOpDnm7K3ZBoXHJhN1zaDNLLXRC1ZN08bd/5Y+XrHlN4675RbNfO9y3QwN11PfThZN5zznBolNPdhbT2juj6Ij07S9PNf1bMLpirr8D4tXf+h1m9fopvGv+jj2rpfTe+BY5WUFeuBt8arW5shunjEP7xcQ/fbfkD6eJVj+5bbpDeWS9n5nq0TALjLH5m+Kddml7bt903Z9RXs8VCwx0JS8MVDdrv06vfG9ydH/JZuPJ8aAMxg1yGp2AcXP0rG3BAAAP4mYBP+mzdv1rx589SoUSM98sgj1e7Tu3dvSVLPnj2rvP7nn39q7NixiouLU2Jioi677DIdOnTI43V2l+x8ae1u545Zu9u48hsA/J2jFzN5Qn6x4xNm/uaSkffIag3RoH+O2gAAvZpJREFUm1/f+7fX71aINVTXPXWierYfpmFpF/qohp5XXR/07XSGTukxQY/NvVSzP7pet5z/iuJjGvqwlp5T03ugwtPzr1VJaZFuu+AN71bMQ77/veZVjqpTWu671UMAwFnpPoyHfFl2fQV7PBTssZAUXPHQ1v1Seo5zxyz7wzerhwCAs/b4cKp+b7ZkY0UUAICfCdiE/9y5c2Wz2XTJJZcoNja22n2ioqIkVU34HzlyRMOGDVN6errmzp2rl156ScuWLdNZZ50lm5Mjud1uV0FBgQoKCmT34i2hP25z/g5Uu136kUluACbg60lmX15wUB8tGrXXsJ4Xas2277Rhx7LK10NDwtSlzSAdLsjS6X2u8GENPa+mPpg85gntPbRNfTuNUv/OZ/qwhp5VU/sl6ePlz+jnzZ/pgUkLFBlu/ocR5hQYz1Z01k/bjcQ/APizI0W+vQDRrLGQRDwU7LGQFFzxkCuPIysscf4GEgDwBV/GIyXl0oEjvisfAIDqhPq6Ap6yaNEiSdKwYcNq3Cc93ZgJPjbh/9JLL2nv3r1aunSpWrVqJUlKSUnRoEGD9Mknn+jss892uA6FhYWVFxs0a9ZMVqt3rq8Yeu18NWrb3+nj3v30J11z1nkeqBEAuE+v8Y8ptX/1zxS95QwpPqrmY+Mj//rv/efUXk7eUWnWV8e/PvWmO7Tj57cdrK1rwkOj9NJU91+FddGIu7R47Vy9+c29euLaxZKkDTuW6ZtVb2jc4Kl6/pMb9WK7tYoIq6UT69ChYweVlNX/4b7e7IOo8Bg1S0pV2+Tu9Tq3u9pewRN9UF37125brFc+v10PX/WlkpPauHxud7e/PlJ6nKUBlzi/HHFBsZQ24FQdztjsgVoBgHskJHfWqTd/W+22umIhyfF4qKZYaNX6P5QyaYSDtXWNp+IAyfPxUDDHQhXM2AeBGA+ddfcaRcY1dvq4h56eq1/n3+aBGgGA+5xyzYdqnDqg2m3emBsaNWaCDu6o/vEwAAC4Kjk5WatWOfiM0r8J2IT/rl27JEmtW7eudntZWZl++OEHSVUT/p999pmGDBlSmeyXpIEDByo1NVWffvqpUwn/Y2VkZLh0nCtslnCXjrNbw7V371431wYA3KtLcWmN2+KjpAYO3IxjtTq2X3WOFBz1+N/KyDDXKtez3VB9+3jNS7y0btpZX8/86/blo8X5enzeJF056lGNGXidpr94il778h+6buyTLpUvSRn79qmotP63HXqrD9zJXW2v4EofONv+zOyd+tfbE3T1WY+rZ7uhrlSzkrvbXx8J7UpcPjbncKEyiIcA+LHS8OQatzkaC0mux0N2u9VvYyHJ9/FQMMdCFczWB4EaD4W42H8l5RbmhgD4vbLymv/Oe2NuKOdwHn8rAQB+JWAT/gUFxgPpjx6t/srqefPmKSsrS3FxcWrbtm3l65s2bdL5559/3P5du3bVpk2bXK6PN+/wt9iKXTyuRC1atHBzbQDAvSIjwmrcllfHzTTxkcYXOptNyiuqfd+azhUXE+Xxv5Xhoa7fYe+MOZ9OV3JSW40ddL0sFotum/CGrn0qTYO7naMeqSe7dM5mzZu77Y4us3FX2yt4ug+KSgp13xtna2CXsTp78NR6n8/d7a+P2Oia/07UJTE+WlbiIQB+LD6pQY3b6oqFJMfjoZrOZVF5wMRCkvvjoWCOhSqYqQ8COR4qK8lXWGSM08eFhdiYGwLg90JrmWb3xtxQYkK8yvhbCQBws+Tkmi/wr0vAJvyTk5OVk5Oj1atXa+DAgVW2ZWRk6LbbjOXJevToIYvFUrktJydHDRo0OO58SUlJ+uOPP1yuz9atWxUT4/wXLVd8tV76aoPzx008e4DeuceFB94CgBfV9jeuumXWjnX/OcbV23lF0v0fu1b+808/qm4pj7p2sIPKS6TFz3i0CP3y+5dasm6eXrplfeU42LxRO1056lE9Me8KzZm+XlHhzo9bW7dsVYhrC81U4Y0+cDd3tb2Cp/tg2Yb52pGxTnuztmjJunnHbX/11k1qktiqmiOr5+7210feUeMzbqv5po9qxUdK63/5ViHeuUYTAFxSUCzd9WH12+qKhaT6x0P90jrp9XTPfm/0VhzgiXgomGOhCmbqg0COh/7zg/TrTuePu//mi9Xr6YvdXh8AcKe3lkurd1W/zRtzQ1999r6axrt2LAAAnhCwCf+RI0dq8+bNeuyxx3TqqaeqY8eOkqSVK1dq4sSJysrKkiSlpaX5sJaeMbC99M1vzk1yWy3SwHaeqxMAuEtKkm/Lb+nj8t2lX6dRWvBg7nGvjxs8ReMGT/F+hXzs39ct8XUVvO7U3hN1au+Jvq6GR8RHST1bSWtqmACqycAOItkPwO/FREiJMVJOgW/K93Us5k7EQ38JxlhICux4aHAH5xP+sZFSj5YeqQ4AuFXLhjUn/D0tIlRqHOebsgEAqEnATmnOmDFDDRs21J49e9S1a1d1795dHTp0UL9+/ZSamqrhw4dLknr27FnluMTEROXm5h53vuzsbCUlmWNmIyFa6tO27v2O1TfVOA4A/J0vE+7xkfytBMxiaCfjgkZHRYYZF00CgBn4Mh5q2dB3ZQNwXNvGxo8zhnaSQkM8Ux8AcCdfXoCYkuTcd00AALwhYBP+KSkpWrZsmc4880xFRkZq586dSkpK0pw5c/T5559ry5Ytko5P+Hfu3FmbNm067nybNm1S586dvVJ3dzivr9SuiWP7tmsindvHs/UBAHdJiJaaNfBN2Sc09025AJzXupF04QDJkXmYsBDpypONZR0BwAw6+ygmCbFK7R38ngnAtywW6f9Ocvwu1D5tpeFdPFsnAHCX1g2lKB89QqVTM9+UCwBAbQI24S8ZyfvPPvtMR44c0ZEjR/Tzzz9r8uTJKigo0M6dO2W1WtWtW7cqx5x11llavny50o95JuHPP/+s7du3a8yYMd5ugsvCQ6Vrhhl3qtW0NG2I1dh+zTBjfwAwiyEdgqtcAK7plyr938nG0tc1aZYgTR0pdUj2Xr0AoL56tTFWJvG2E1sbS34DMIe4KOnG06RuKTVfBBkRKp3eXbp4IHesAjCP8FDj+563hVilAawMBwDwQ0GZ5t24caPsdrs6duyo6Oiqt3JNnjxZs2fP1rhx4/TAAw+oqKhIM2bMUL9+/TRu3Dgf1dg14aHSBf2l0T2kn7ZL2w5I2/ZL5TbjC93d46Q4JmsAmFDvttIna6TiMu+V2TJJasUStoDpdG8pdW0hbd4nrfxT2pBuxEJhIdJ1w42lbi1MbgMwmYj/TXIv/cO75Q7p6N3yANRfbKR01SlS1hHpx23S978bsVCoVTq7t3Fnvy8uIAKA+hrcwfib5k1prZhPBwD4p4C+w78mGzZskHT8cv6SFB8fr0WLFqlZs2a68MILddVVV2nQoEH67LPPZLWas7vioqRTuxmT2rERxmuRYQQnAMwrMkw6rVvd+7nTWWkkBQGzslqlrinSpJP+ioWiw6XUJnyuAZjXiC7eXcq2W4qxfC4Ac2oUJ4098a9YKCbCuIiHZD8As2oSLw1o573ywkKk07p7rzwAAJwRlHf415bwl6R27drps88+82aVAABOGtpZWrdH2n3I82UNbC+dwDPaYBIlpUV66J0LtWv/JkWERalBbBNNG/+CWjSquu7gyj++1iuf317579yCA0qKS9YLN632dpUBAC5IiJbO6S29u8LzZUWHS+f34yIp+LfnFkzTik2faH/OLr1w0xq1b5FW4752u10z5ozQ1r2rteDBXEnS0eJ8PfDWudqa/qvKbWWVrwMA/Ne4XtLvGVJuoefLGt1Tahrv+XIAAHAFCX8AgCmFWI3nTM76SipxcGn/vKNV/+uIRrHGF0gzSD+4VY/Pu1yHC7IUE5mg2y54Q22Sux6336UPt1FYaITCQ6MkSRcNv1ND0y5waPvtL52mnCOZslisio6M05Rxz6h9ixO90DrnOTrpW1JWrDmfTteqLV8rPDRS7Zr11B0Xv125va7+8kej+09Wv06jZLFYtOCHZzXrg6v07+uWVNmn7wmnq+8Jp1f+++7XzlLPdsO8XFMAQH30bStt2GM8rsRRrsRD5/WVEqKcq5svOBoL1TX213QeRy+q8yVH+6DCVytf17/f/z/df/nHGtzt7MrXa4v5/DU2OqnHeZowdIZufn5InfvOX/qkmjVsp617/7rQMSQkTBcMu11xUUm69cWhHqwpAMBdosKliwZILy6W7HbHjnElFmrXRDrlBOfrBwCAtwRlwn/RokW+rgIAwA2SE4znUb60WCqz1b3/rK+cO398lHTtcPMsc/n0/Gs0uv9knd53kpau/1CPz5uk525cWe2+d10yr9a7nmrafs/E9xUb1UCStHzDx3p83iTNuWWdG2rvfo5O+r76xR2yWCx6Y8YWWSwWZedlHrdPXf3lT8LDItW/8+jKf3duNUAffv9ErcdkHd6nNVu/0/QJr3m6egAAN7JYpImDpRcXSTsOOnaMs/HQ2BOlXm2crppPOBoL1TX213YeRy6q8yVn4sHM7J368ueX1bnVgOO21RXz+WNs1CP1ZIf225m5UT9uXKBbJ7yupes/qHw9PDRCJ7YfrszsnR6qIQDAE05oJl3QX3rvJ8f2dzYWat5AuvJk41FxAAD4K4YpAICpdUyWrhkmRbj5EraGsdK0U41nXZpBTv4BbUlfpZG9LpUkndT9XB3M3aO9WdvcWk7FxK8kFRQdluS/a/v2SD1ZjRuk1LrP0ZICffXLq7rijIdk+d86xUnxyd6ontd8vPxpDew6rtZ9vln1hvp1Gq3E2CZeqhUAwF3CQ41Y6AQPDF/n9JaGd3H/eT3B0ViorrG/tvNUXFRXcVznVgO0P2enF1rnGGfiQZvNplkfXKUpZ89WWGjEcdvNFPM5o6y8VE9+eLVuPHeOrNYQX1cHAOAmA9oZq0Ba3TxctW4oTRkpRR8/VAIA4FeC8g5/AEBg6ZAs3TZaeu9nadv++p+vX6p0dm/jebVmcTB3j5LimykkxBjaLRaLmiS20oHc3dUuMzvzvctkl12dWvbTlaMfVYPYxg5vf2zuZVq3fbEk6aErv/BgqzwvI2u74qKTNHfRw1q9daEiwqI08dT71avDiCr71dVf/urd7x7WvqxtmnnNdzXuY7fb9fXK13T9uGe8WDMAgDtFhEmTh0mLN0tfrpfKHVj5qDYNY6WLB0jtmrqnft7gaCxU19jvTEzlyEV13uRM3ecvnaWubQarY0rvGs9XW8xn1tjoP98+oCHdxqt1087cyQ8AAaZfqrES5LsrpMzD9TuX1SKN6CKd3l0K5fowAIAJkPAH/p+9+46Pqsr/P/6eNFIggdACJJQQeu9SVKKoFLFgF1nx54oNUUFxd13b111UxAY2rOi6iyiia0cRUcAG0hHpAQIJENJ7mfn9cZdAJCEzyczcuTOv5+ORR2Duufd8zs2duZ85595zAfiFZo2k286VftgpfbXFtWexHRcXY0xb272N++Orr2nzhupgxs5ql71093qXtvX0rd+rRZO2Kq8o05tf/l2zF12vWSd14ta2/L5r3pYkfbX2Lb36+X1VlnlLbfujReMEp7ZTYS/X4ax9ateiu/489nHtOrhe971ynl67Z6uaNDJGOWrbH77q/RVztGrLEs2eskzhYZE1ltu05zuVlhdrYJcLvBgdAMDdgoOkUT2knvHSkrXSjlOfUFOrsBBpWJI0po/7Z0+qL3flQs6c+53hzEV17uaufbA3fYtWbv5AT9/2/WnL1ZTzWTU3koy850jWfv33h+dVYS9XYUmurpvVXs9PW2OZixYAADVr21S6Z4z09Vbpu9+l4jLXt9GhmXTpQGNbAABYhY99hQcAoO6CbNKIztLQJGlzqrR6h/E829Pd5dYgROrW2livYwvjWbi+aO4dP552eWhIA2XmpqmiolzBwSFyOBw6krVfLRq3PaVsiybGayHBoZpw5l26YXZnl5Yfd/7A6/XcB7cot+CYoqO8+024tv3hrBZN2irIFqRz+k+UJCW16ae42A7am7a5stPf2f3hSxZ/97S+3bBQT0xZVmVK3up88cvrOn/gZAUzrS0A+IW4GOMiyPQc40LI9fukvOKay9sktWoiDe0oDewgRfjoDEfuyoVqO/c3b5xQ63acvajO3dy1D7bsWanDWSma/EQnSVJmXrqeXTxFmblpGj/s1lO2+8ecz4q50XHP3Lay8t/pmSm65Zm+eudvKeYFBABwu5BgaUxv47FE61KkH3dJBzIlh6PmdSLDpD5tpeGdpPhYr4UKAIDbMOAPAPA7wUFS37bGT3mFlJYjpWZKH/0qlZQbg/xXDJYSYqXm0e5/xpsZmjRsoaQ2/bVs3Tu6YNBkrdz8gZo1jj9l+tai0gJVVJRVDgJ/u36hklr3c2p5flG2iksL1SymtSRp9ZaPFB3VVI0irfttOCaqmfomnau125dqSLexSsvcq/TMvWrbspuk2veXLzqanar5n85Qq9hE3fNysiQpLKSB5k37WQuWPqim0a01fugtkqSCohyt3rxEr8zYbGbIAAAPiIuRJgyULh0g5RRJB45JR3KNmZBKyqXwUOmmkVKbJsa/rc7ZXKi2c39t23Hlojpvc3YfjB92a5WB/RkvjdSEM+/S8J6XSDp9zufLudGzi2/Wz79/psy8dP31tQsU2aCR3vrLLj31/p81tPtFGtbjolq3MeWp3sopOKrCklxd84949emYrL9c8y8vRA8AcLcGIcYNIUOTpNJy6WCW8fPJ+v/lQiHSNUONAf7YKN+9AQQAAGcw4A8A8GshwcbAfkKs9OWmEx3cAzuYHZn73XXZfD25aLIWLp+lyPBo3Xvlm5XLjnd0dojrqUfevkx2e4UccqhVbKJmXv12ZbnsvMM1Li8oztGj/7pCJWVFCrIFKSaquR694VPZfPRbcU2dvpKqdPzeddnLeur9G/Xa5/cpyBakuy6br2YxxnMdTrc/fFXzxvH6+snqb12YfMH/Vfl/VESMPplV4I2wAAAmsdmkxpHGjyR9v/3EBZAdW5gbm7s5kwvVdu4/3XZOd1Gdr3B2H5zO6XI+X86N7rp8frWvz7jitWpfj4ttr48eza7y2iszNrk7LACADwgLkTo0N36+/t/Fjw1Cjbv6AQDwBzaH43ST2aA+CgoK1LBhQ0lSfn6+oqKiTI5IemiJcXdHTIT0yASzowEA77LKZ2BFqfTtXLOjqJvkaVKwG6YCtuI+cFfbj7PaPnB3+z3FKp8DAOApVvgctNo58GSBnAsdF8j7wAr5kBU+AwDAk/gcBAD4oyCzAwAAAAAAAAAAAAAAAK5jwB8AAAAAAAAAAAAAAAtiwB8AAAAAAAAAAAAAAAsKMTsAAABQVVCo8fxPKwoKdd92rLYP3NX2k7dnpX3g7vYDAAKX1c6BJwvkXOi4QN4H5EMAAAAAzMCAPwAAPsZmk4LDzI7CXOwD9gEAIHBxDmQfSOwDAAAAAHAWU/oDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBDPgDAAAAAAAAAAAAAGBBIWYHAOBUDodkLzM7CtcEhUo2m/u2F+j7INDbDwBAoJ8LA739kvX2AbkQAAAAAAAwAwP+gA+yl0nfzjU7CtckT5OCw9y3vUDfB4HefgAAAv1cGOjtl6y3D8iFAAAAAACAGZjSHwAAAAAAAAAAAAAAC2LAHwAAAAAAAAAAAAAAC2LAHwAAAAAAAAAAAAAAC2LAHwAAAAAAAAAAAAAACwoxOwB4R2GplFckVdiN/zsc5sYDAADgTRV2KavgRC5kt0t2hxRkMzcuAAAAb8kvPpELVdil0nIpjJ5BAAAAwPJI6/1Uabm0bp+0PU06cEzKyK+6PLdY+sd/pYSmUpdWUv92fMkDAAD+w+GQ9h+Tfk0xfh/MksoqTizPK5H+9r6UECu1ayYNSpRaRpsWLgAAgNsVlEhr9kq7DkupmVJ24Yll+SXSfe8Z+U9CrNQz3vgJZi5QAAAAwHIY4vUzOYXS8m3SL3ukotLTl83IN37W75P+u04a1EE6t7sUE+mdWAEAANzN7pDW7pVWbpcOZJ6+bHGZtPOw8bNsq9Q5ThrZVerexjuxAgAAeEJ6jrT8N6O/5+QLHv/I4TDKpucYFwbEREhDk6SR3aTwUO/FCwAAAKB+GPD3Ew6H8eXsw19rH+ivTlGp9P12YxuXDjAG/21McWs5G3ev0D0vJ1d5LTwsSvHNO2tU/0m6ZPgdCg7237d9oLdfYh8ACGwZedLCn6TdR+q2/o5046dfO+mygVLDcPfGB8/jPMg+CPT2AwhsFXZjoP/LzSem7ndFTpGx7k+7pavPkLq2cn+MAAAAANyPng4/UFIu/Wu1tCW1/tsqKpX+86O06YA0abjUgCPEkpL7XqPBXcfKIYey8tL19a9v6+VPpmv/kW26+/JXzA7P4wK9/RL7AEDg+TVFWvSTVHqau9ictX6fcdf/DSOkji3rvz14H+dB9kGgtx9A4Mktkl77zniUUX1lF0ovL5fO7CJd2l8KYpp/AAAAwKeRsltccZn08jfuGew/2ZZU48tdcZl7twvv6NSmv0YNuE7nDZikK0feq7l3/KTmMfH64pfXlJ1/1OzwPC7Q2y+xDwAElh92Ghc/umOw/7j8Yunlb6Vth9y3TXgP50H2QaC3H0BgyS6U5n7tnsH+k63cLv3rh7rNFgAAAADAexjwt7AKu/T6d9LeDM9sf+9RY/t8sbO+iLAodW13hhwOhw4d2212OF4X6O2X2AcA/Ne6FOn9Xzyz7bIK6Y3vjZwI1sZ5kH0Q6O0H4L8KS6QXvzEebeQJ6/d5LtcCAAAA4B5M2G5h32w1ppt1xfTRUnSEMdXb01/WXn7nYemb36Tze9YtRviOtP91bEZHxpociTkCvf0S+wCA/8kqkBb9LDlcWMfVXKisQnrnB2nmOB51ZHWcB9kHgd5+AP5pyVrpSK7z5V3NhSTpp91S11ZS33Z1ixEAAACAZ9FtaVGHsqSlW1xfLzpCahzp2jpLN0s920itm7heH8xRXFaonIIMORzGM0s/+fFl7Tq4Xl0TBiu+eWezw/O4QG+/xD4A4P8cDundn6SSctfWq0sudCxf+nS9dNkg19aDeTgPsg8Cvf0AAsOWVGltimvr1CUXkqT310gdW0qNwl1fFwAAAIBnBcSAf0ZGhmbPnq0lS5YoNTVVzZs314QJEzRr1ixNmzZNb7zxhubNm6epU6eaHarTPljrvan2K+xGfXec5536PKG4TNqaKuUWS0E2qVkj4+r0YD99qMXbXz2kt796qMprI3pO0B2XvmBSRN4V6O2X2AcA/N/GA9L2dO/Vt3KHdEaS1MaiF0A6HMajCQ5mGbMWRIZJ3dpIMRFmR+YZnAfZB4HefgD+r8IuLV7jvfoKSqTPN0pXDfFene6WVyT9dshoS2iw1Kqx1LGFZLOZHRkAAABQP34/4L9hwwaNGTNG6enpioqKUvfu3XXo0CHNnTtXu3fvVmZmpiSpb9++5gbqgkNZ0u4j3q1z9xGjXqvd5Z9VIH29Vfp176l3AMZESMM6ScndpDA/eyeMGzJFZ/W+QuX2Mu1N26xFK55QRk6qwkJPXIpfWl6i257tr+R+12riufdXvj773cnKzj+sWX/+wozQ3cKZ9v/znatld9j1wKT3Kl/LLczUTXN6aMqFc3Ru/4lmhO42zuyDzXtW6m+vjzll3fKKUtntFVo6u8KbIQOAS1Zu936dq3ZYr5Pb7pB+2mXsr7ScqsuCbFLvBOncHlKCn81wHui5kEQ+RC4EwN9tTpWyC71b59q90vi+UmQD79ZbX4eypGVbjQtG/3jzTIto6czO0vBOUpCf3hQCAAAA/+fXqWxGRobGjx+v9PR0zZgxQ2lpaVq3bp3S09P1xBNP6LPPPtOaNWtks9nUu3dvs8N12qodJtW705x66yo103ge3Q87q5/uN6dI+mKT9MIy4+puf9KmWSf17zxKg7uO0VXJM/XoDZ9oe+oaPffBLZVlwkIaaObVb+vdb2Zp96GNkqTVWz7ST9s+0fQrXjcrdLdwpv13THhRW1NWa/n6hZWvzfvwdvXoMMLSndvHObMPeiWeqU/+mV/l582ZOxQd1UzXX/CoidEDwOmlZXv/4kfJuICwsNT79dZVhV16Z7X03i+nDvZLxsUAG/ZLzy2VNh3wfnyeFOi5kEQ+RC4EwN+tNqFvqKxC+mWP9+utj98OSs8sldbtq36mzCO5xqyWC1ZJ5VznBQAAAIvy6wH/adOmKTU1VVOnTtWcOXPUqFGjymUzZ85Unz59VF5ervbt2ys6OtrESJ3n+F/HrBk27DPqt4KsAumVb6W84trL7jsmvf6d9x6RYIYe7YdpVP9JWrFxkbam/FD5euf4Abr87Hs0+90/6Wh2qp5dPEV3XPqCmsW0NjFa96uu/dGRsZpxxet6/qOpysg5pO83Ldam3St014SXTY7WM2o6Bk5WWl6iR96eoJ7tR+jac//m5QgBwHnr95lTb2mF0WlsFUvWGp3btSm3S2+tkvaYcBGFtwR6LiSRD5ELAfAnecXSzsPm1O1MbuEr9h+T3lxpXKhQm00HpEW/eD4mAAAAwBP8dsB/27ZtWrRokZo1a6bHHnus2jIDBgyQJPXp06fyteMXCAwePFgNGjSQzcce5HUs37w7ywpLjfqtYPk2KdeJwf7j9hw1psPzZxNHPaCgoGC9tfTBP7z+dwUHhejWZ/upT1KykvtebVKEnlVd+wd1Ha2ze1+pJxZep3lLbtP0K15TdFRTE6P0rJqOgeOe++AWlZYV696rFng3MABw0f5j5tV9INO8ul1xOFda7cLsTBV26bONnovHFwR6LiSRD5ELAfAXB0zMhQ5lWeeGic83OjfYf9yaPdLBLM/FAwAAAHiK3w74L1y4UHa7XRMnTlTDhg2rLRMRESGp6oD/rl279MEHHyguLk6DBg3ySqyuMLuT2ez6nVFSZnxJc5UZ0+F5U5tmSUruc7XW7/pGm/esrHw9JDhU3dsPU05Bhi4YeIOJEXpWTe2fMn6ODh7bpUFdx2hIt3EmRuh5Ne0DSfpw1Vz9vO1TPTL5I4WHRZoUIQDUzuEwHttjFjM72F3xQx0exbT7iPG4BH8V6LmQRD5ELgTAX5jZN1Nul9KreVSQrzmaJ/2e5vp6/t43BAAAAP/ktwP+y5cvlyQlJyfXWCY11bil++QB/7POOktpaWn6+OOPNWrUKM8GWQdHcgO7fmdsS5OKy1xfb+dhKbfI/fH4kmvOvV9BtiC99dWJu5o271mpr9Yu0MXDp+rFj+9USZn/7oTq2h8RFqVWsYnqENfLxMi8p7p9sGHXt3rts/v0wKT3FRfb3rzgAMAJRaVSfol59R/JM69uV6xL8e56VhHouZBEPkQuBMAfmN03Y3b9zqjrI6Cs9MgCAAAA4Dibw2GVp7K7JiEhQampqVq/fr369u17yvLy8nK1atVKGRkZ2r17txITE08p8/DDD+uRRx5RXXdRQUFB5ewCrVq1UlBQ/a+v6HnBfep6zh3VLps+WoqOOP360eFSUJBkt59+yvvcIunpL099/ffl87Rl6RMuROx9HYder36X/LNO6379zHnKSd/m5ohcFxYSoVem1uHWPBcVleTr5qf76LKzpmv80Fs14+Wz1Tl+oG696BmXtzXl+U4qLXdfB7m39oEkzXhppM7odqGuGHlPvbbjzn3grfanZ6Zo6txBuu68h3TJ8Kn12pa7jwFPGPu3NYqMaaXCnDR9Psv3ZnEBULvwRi114d9/rXF5bflQfXOhspJ8/ffBri5EbI7LHtsnW1Cwy+vt+eU/WvfBTA9E5DpvnAvdmQtJ1swFjnNHPmTFfDDQciGJfAjwB2dc94rie42tdpm7ciGp5nxozXt3a9+v77sQsff1Gf+IOo24sU7rLvlbouwVJj1PE4DHkQsBAHxVXFyc1q5dW6d1Q9wci88oKCiQJBUVVd/hsmjRImVkZKhRo0bq0KGDx+NJS6vDPGLVaJtb87xp0RFSYydnnwwKcr7syXJys3Xw4EHXV/SiJseO1nndtEMHlJVmfvvCQ70zjej8T2YoLraDLhp2m2w2m+69coFuebavhve8VL0Tz3JpW2mHDqm4rNBtsXlrH7iTO/eBN9pfXFqohxZcoqHdL6p3B7fk/mPAEyoqKip/+/pnGYDqRUaffhofZ/OhuuZC9vJyS3x+2O0VCq7DgH9eTpbPtM8b50J35kKS9XIBd7NaPhiIuZBEPgT4g6LCghqXeToXkqTMYxk+//mRmJtd53VTD+yTw2F3XzAAfAq5EADAH/ntgH9cXJyysrK0bt06DR06tMqytLQ03XvvvZKk3r17y2azeTwed93hHx5a8zJnpqN35a626kSEBalNmza1V2SikPJsSZLD4XDpb1tRVqzocIcifaB9YSG1TNXgBr/8/oVWbFykV6ZvqtxPrZt11I1jHtecRTdo/oxNigiLcnp7rVq3dvsdXVbjzn3gjfav3PyB9qRt1MGMHVqxcdEpy1+/5ze1aNLW6e25+xjwhODg4Mrfvv5ZBqB6waGn/3ysLR+qby5UUVZgic+P/GN7FdOyi8vrOYqP+Ez7PH0udHcuJFkvF3A3q+WDgZgLSeRDgD8IsZXXuMxdudDpttUwMtT3Pz+K63YzSP6xFLVu3crNwQDwJeRCAABfFRcXV+d1/XZK/2nTpmnevHlKSEjQsmXL1LlzZ0nSmjVrNGnSJO3Zs0dlZWW6/fbb9fzzz1e7DXdO6Z+fn6+oKNc6DKuz7ZA0/9u6r//wpcYV3NmF0sMfur7+zclSt9Z1r98b7A5p1idShovP2B2cKF07tPZy3lBRKn071+woXJM8TQoOc9/2An0fBHr7PeWhJVJOkRQTIT0ywexoANTVPz52/Tx/XH1zoR5tpJtG1q1ub/rud+nDmp98UK2QIOOzMaqBZ2JyVaCfCwO9/ZL19oEVciGJfAjwB3U5zx9X31xIkh64WGrasG7rektRqfTQh1JpzddGVOvCvtKoHh4JCYCPIBcCAPij+t9y7qNmzpyppk2b6sCBA+rRo4d69eqlTp06afDgwUpMTNQ555wjSerTp4/JkbomITaw63dGkE0a3sn19UZ0dn8sAADA/czMR+ItkAtJ0qBEKczFGf37tfOdwX4AAFCztk3NqzsyTIqt//0sHhcRJg1s79o6wUHSkI4eCQcAAADwKL8d8I+Pj9fKlSs1btw4hYeHKyUlRbGxsZo/f74+++wz7dixQ5L1BvwbhkvNGplTd/NGRv1WcGZnqVNL58uf18PcL8wAAMB57ZsFZt2uiAyTrj7D+fJNG0oX9fdcPAAAwH3aNJFCXbywz13aN5O88GRMtxjXV2oR7Xz5q4ZIjSzS7wUAAACczG8H/CWpW7du+vTTT5WXl6e8vDz9/PPPmjJligoKCpSSkqKgoCD17NnT7DBddoZJVxtb6SrnkGDpz2c79/iB83pIY6113QcAAAFtQHtj+nlvaxIpdan7o7S8rn976bphxt1qpxMXI00dRQc3AABWERZizMxjhjOSzKm3LqIaSLefa1wgcTpBNunqIcajHgEAAAArCjE7ADNs3bpVDodDnTt3VmRk5CnLFy9eLEn67bffqvy/ffv2GjhwoPcCrcEZHaUvNkkVdu/VGRxk3oUGddUg1HjG7u+HpNU7pd8OSo6Tlg9NMqb+t8rUvAAAwNAw3OjkXrPXu/UO6yQFWexy2YEdpMTm0o+7jJ/8khPL2jczHmnUp615dwkCAIC6GdFZ+mWPd+tsHCn1aOPdOusrJlK6+wJp0wFp1Q5pz9ETy2ySkrtLw5LMm00TAAAAcIeAHPDfvHmzpJqn87/iiiuq/f/111+vBQsWeDQ2ZzQMN646/nGX9+ockmid6fxPFmSTurcxfgpLpVkfGx3d0eHGVG0AAMCaRnaT1qZIDketRd0iPNRad7SdLLahMaXt6N7Sw0ukvBLjbv67LjA7MgAAUFdtm0pJLaVdh71X59lda585yBeFBBszH/VvL+UXS49/avQNNQqXLupndnQAAABA/THgXw2Ht3qO62F8P+OO9Zwiz9cVEyFd6AdfgCLDTnwxtcrz5gBnlJYV65//vlr7Dv+mBqERatywhaZNeEltmlUdmVqzfale++y+yv9nFxxRbKM4vXTXOu1N26zHF06qXFZQnK3C4lwt+b9Mr7UDAFzRpol0Tjfpm9+8U9+lA6w/5X1w0IkZCoL8PBdy9txYVJKvR96+TDtTf1WFvVwfPZptTsD15Gx7Jem9FU/q67Vvye6wK6F5F91z1ZtqGNFYGTmHNOe9G3Q4K0WhwQ3Uplkn3XnZy2rcsLkJLXJO6tGdenLR9copyFBUeIzuvWqB2sf1qFImPTNFTy6arF2H1iuuSQfNn76hctn6Xcv1+ud/UVFJvmw2m4Z0Hacbxz6uoD9M5TH73cn6+te39OH/ZalhRGMvtAwAnHPVEGn2Z1JZhefrattUOquL5+vxtIbh9A0BAADA/zDgb1GRYcYXu1dWuLZeblHV3864aohRH6zD2U7f05VzpePYF73w0TT9+NvHOpy1Ty/dtV5JbfpWW27N71/qzaV/V3l5qRqERequy+arY+sTnw0/b/tcC5b+XXa7XXZ7ua4Yea/OH3i9l1rhvLFDpmhw1zGy2Wz6aPXzevr9P+upW1dUKTOoywUa1OXE7Zx/f+NC9emYLEnq0KpXlQ7weR9OlY3eDwA+bkxvaetBKT3H+XXqkgt1b80zXa3ImXNjcHCorkq+T40iYnXPyyNNidNdnGnvrzu+1tI1b2reHT8rMryR/r3sH3rji/s1bcILCg4K1nWjHlDPDiMkSa98eq9e+fRezbx6gfcb46TnPrhZY4dM0QWDJuv7TYv15KLJeuHONVXKRIZH64bR/1BBcY7e+OL+KssaRTTR/RPfVaumiSotK9bMV0bp61/f1gWDJleWWbl5iUKCQ73RHABwWfNG0oV9pQ9/dX6duuRCwUHStUOteXc/AAAAEAgCMlVfvny5HA6Hxo0bZ3Yo9dK9jTS2t2vrPP2l9PCHxm9njO1t1APrGTtkit6cuV3zp2/U0B4X6+n3/+xyOWe34YvO7H25nrltlVo2aVdjmbzCLD22cKJmXvWWXpmxSVPGPanH/zOxcrnD4dATC6/TvVcu0PzpG/To//tUz35wswqL87zRBKeFhYZrSLexlQP03dqeocNZKaddJyPnkNbv/EajBkw6ZVlpWbGWr/+3Rg+60RPhAoDbhARL/+8s1x475GouFBdjdHBzDZS1OHtuDAtpoH5J51j+rm1n27vn0Eb17DBCkeHGg4oHdx2rb9b9S5LUpFHLysF+Seradkit+YSZsvKPaEfqWo3qf50k6cxel+lo9gEdzKj63LPoyFj17DBC4WFRp2wjqU0/tWpqXM0TFhqujq37VmlzVt5hLVw+S7eMf9pzDQGAejqzizSog/PlXc2FbJImDjVyIgAAAAC+KSAH/P3JeT2lC3p5ZtsX9DK2D+txupP7NOXqMojsS3onnqXmjeNPW+bQsd2KjmxaOfVrr8QzdSR7v3amrjtRyGZTfnG2JKmwOFfRkU0VGtLAU2G7xYerntPQHheftsxXaxdocNexatKwxSnLVm1ZolaxiTXOigAAvqRFtHTbOZ6Zbj8uRrr1HNcuKIBvcubc6E9qam+n+AFat3OZMnPT5XA49M36f6uwJE+5hVUf4VNhr9B/Vz+vYT68z45mH1BsdCsFBxuT1tlsNrVo0lZHsvfXaXuZuelauWmxhnS7sPK1pxffpJvGza68QAIAfFGQTbr6DGlAe/dv22aTrhkq9ffAtgEAAAC4T0BO6e9PbDZjOtsmUdKHa6WS8vpvs0GIdOlA6YyO9d8WfIOzndynK+ePHeXxzTopt/CYtqb8oB7th+mHrR+rsCRP6Vkp6hTfXzabTX+fuEiPvDVB4WFRyi/K0kN/WqLQEN99xsV/vpmlQxm7NPvmb2os43A4tHTNG7rt4rnVLv/il9c1ejB39wOwjtZNpDvPl975QUrJcM82eycYjzWK8u1rvOAEZ86N/uR07e2blKwrzr5Hf3/zQgXbgjW856WSpOCgE18LHQ6H5i25TY0imujSEXd6LW4zFRTn6oE3x+vKkTPVJWGgJOnzn19Ti8Zt1S/pHJOjA4DaBQdJE4cZU/x/tUWyO+q/zegI6ZozpG6t678tAAAAAJ7FgL+fOKOj1Lml9O7P0o70um+nc5x09RAptqH7YoP7TZs3VAczdla77KW716tF44TK/zvbyX26cr7WUe5K+08nKiJGD05arNe/+KuKS/LVrd1QtWvZvbLTu6KiXP/+5h966Pol6p14lrYfWKMH37xIr8zYrJioZm5rj7u8v2KOVm1ZotlTlik8LLLGcpv2fKfS8mIN7HLBKcvSMvfq930/6aE/feDJUAHA7Zo1kqadJ323Xfp8o1RWUbftRIZJlw2S+rdjGn9/4Oy50V84096Lht2mi4bdJkn6bd9Pah4Tr6jw6MrlL/x3mo7kHNAj13+koCDfnRCueeMEZeamqaKiXMHBIXI4HDqStV8tGrd1aTuFxXn622ujNazHxbr87OmVr2/c/a027/leP2/7tPK1KU/31v9N/q+S2vRzWzsAwF2CbNLo3lLPeOk/P0mHsuq+rUEdpEsHSJFc+AgAAABYAgP+fiS2oTHt7K7D0qqd0uYDzl3VHWSTeiVIwztJnVrSuW0Fc+/40alyznZyn66cL3aUO9t+Z/RNSlbfpGRJUml5ia76vzi1a9ldkrTr0AYdyz2k3olnSZK6JAxSs5h47Tq4XgM6n+e2GNxh8XdP69sNC/XElGW1Pof4i19e1/kDJys4KPiUZUt/eUPDe15q+WcZAwhMQUFScjdjsP7H3dKPO6WcIufWbRFt5EKDEo1Bf1ifK+dGf+Bse4/lpqlpdCsVlxbqraUP6sqRMyuXvfDRNB3K2KWHJ3/k0zMaSVKThi2U1Ka/lq17RxcMmqyVmz9Qs8bxatMsyeltFJXk66+vjdbALqM1cdTfqyz767X/rvL/8+616ZXpmwLiWAJgbfGx0ozR0taD0qodzt8UEhpsPBZgeGcpIdajIQIAAABwMwb8/YzNJnWKM35yCo3B//2ZUmqmlFsklVdIIcHG1GzxsVLbWCmppRTjG+O4cCNnO31PVy4QOsqPd3pL0r+XPaq+Hc+p7Chu0ThBmXlp2nd4m9q17KaDGbuUdmy3Epp3MTPkUxzNTtX8T2eoVWyi7nnZuHghLKSB5k37WQuWPqim0a01fugtkqSCohyt3rxEr8zYfMp27Ha7vlq7QDOvftur8QOAu8VESqN7Sef1kHYfkfYfkw5kSodzpNJyI19qECK1aiwlNJXaNZXaN+OiR3/iyrlxylO9lVNwVIUlubrmH/Hq0zFZf7nmX2aG7zJX2vuXV8+Xw2FXWUWpRvWfpIuHT5Ukbdm7Wh+tnqeEFl11x9whkqRWsR308OQPzWmUE+66bL6eXDRZC5fPUmR4tO698k1J0lPv/1lDu1+kYT0uUnFpoW6Y3Vll5SUqKM7RNf+I16j+k3Tj2Me0ZNVz2n7gFxWXFmjV5iWSpLP6XKGJ595vZrMAoN6Cg4zHE/VOkI7mGflQ6v/yoYJSqeJ/fUOxDY3B/YRY4wYQ7ugHAAAArMnmcDjc8GQvVKegoEANGxpz4+fn5ysqKsrkiPDQEuNOv5gI6ZEJZkdTs4pS6dvqH6/ulKPZqbr2nwlqFZuoiAaNJJ3o9JVOdIJ2atO/xnK1beOPkqdJwW68Eay+++DZxTfr598/U2ZeuqIjmyqyQSO99Zddkqp2Aj/9/k3asnelKuzl6tZuqKZeMq/KxQ3L1y/UwuWzFGQLkt1h1zXn/FXn9Lu22jrduQ/q234zuPsY8ASrfAYAgKdY6XMw0M+Fgd5+yXr7wAq5kGStzwEA8AQ+B4HAxmcAAMAfcYc/4IeaN47X10/WfC3PjCteq/x3TeVq24avu+vy+TUuO7n906949bTbOaffNTqn3zVuiwsAAAAAAAAAAABwlyCzAwAAAAAAAAAAAAAAAK5jwB8AAAAAAAAAAAAAAAtiwB8AAAAAAAAAAAAAAAtiwB8AAAAAAAAAAAAAAAsKMTsAAKcKCpWSp5kdhWuCQt2/vUDeB4HefgAAAv1cGOjtP749K+0DciEAAAAAAGAGBvwBH2SzScFhZkdhrkDfB4HefgAAAv1cGOjtl9gHAAAAAAAAzmBKfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALIgBfwAAAAAAAAAAAAAALCjE7AAAoDoOh2QvMzsK1wSFSjabe7YV6O0HxwAABBIrfuY7qz7nBqvtF86D7mW1v7/EMQAAAAAAMAcD/gB8kr1M+nau2VG4JnmaFBzmnm0FevvBMQAAgcSKn/nOqs+5wWr7hfOge1nt7y9xDAAAAAAAzMGU/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWFCI2QEAnuJwSKmZ0v5M4/fhHCm/2FiWXyJ9+KuUECu1byY1a2RurAAAAJ6QVyTtzZAOHJNSs6rmQv9abeRCCU2ldk2lkGBzYwUAAHC3Cru0L0M6kGn8HMs7kQ8VlEifbvhf31BzKSbC1FABAACAOmPAH36nsFRas0datUM6mld9mQq79N3vJ/7fsYU0orPUO0EKZt4LAABgYQ6HtPOwtHqHtDlVsjtOLVNhl35NMX4kqVG4NDTJ+GkS5c1oAQAA3C+nUPpxl/GTU1R9mXK7tGyr8W+bTerRxugb6hwnBdm8FysAAABQXwz4w284HNIPu6SP10kl5a6tu/uI8dO0oXTNGVJSS8/ECAAA4EmHc6WFP0opGa6tl1csfbXF6PQ+p7s0uhd3/AMAAOspr5C+3ip9vaX6ix5r4nBIW1KNn4RY6dqhUqvGHgsTAAAAcCsG/OEXsgqkhT9JO9Lrt51j+dLzy6QzO0vj+0lhvEMsZePuFbrn5eQqr4WHRSm+eWeN6j9Jlwy/Q8HB/v1HZR8ENv7+QOByOKQVv0ufb5TKKuq+HbvDGPTfkipNHGpM9w9rCfRzQaC3HxwDQCA7lCW986Pxuz4OZEpzvjAugDy3B3f7AwAAwPfxLReWdzhHemm5lF3ovm2u3CEdypZuGimFh7pvu/CO5L7XaHDXsXLIoay8dH3969t6+ZPp2n9km+6+/BWzw/MK9kFg4+8PBBa7XXrvF+mn3e7bZnqONO9r6f+dLXVt5b7twnsC/VwQ6O0HxwAQaHYell5b4fqMjzWpsEufbTT6nK4ZyuMfAQAA4NtIV2FpGXnSC9+4d7D/uN1HpFe+lUrd9GUR3tOpTX+NGnCdzhswSVeOvFdz7/hJzWPi9cUvryk7/6jZ4XkF+yCw8fcHAofD4f7B/uNKK4yO852H3b9teF6gnwsCvf3gGAACyZ7/9d+4a7D/ZGtTjMclufJ4AAAAAMDbGPCHZZVXSK9/J+UWea6OPUelD9Z6bvvwjoiwKHVtd4YcDocOHfPAiIgFsA8CG39/wH99v90zg/3HldulN773zMWV8K5APxcEevvBMQD4q7xi6fXv6/dIo9qsTZG+/c1z2wcAAADqiyn9YVlLN0tpOa6tM320FB1hXCTw9JfOrfPzbqlvW6lba9djhO9I+1+nXnRkrMmRmId9ENj4+wP+52ie9OkG19apSy5UVCq997PxqCMbz7C1tEA/FwR6+8ExAPijxWukghLX1qlLPvTFJqlHvBQX43qMAAAAgKcFxB3+GRkZmjlzppKSkhQeHq6EhATdeeedKigo0I033iibzabnn3/e7DDhgtRM6Zs6XF0dHSE1jjR+u2LRz1JJmev1+RKHw5jerqDEeBadPysuK1ROQYay849qb9pmzV1yu3YdXK+uCYMV37yz2eF5BfsgsPH3B/yfw2HkJ67ezVbXXOi3Q9KvKa6t44sq7EYuVFpu7EN/FujngkBvPzgGgECwcb/x46q65EPldmnhT9bPHxwOqbhMKizhMQUAAAD+xO/v8N+wYYPGjBmj9PR0RUVFqXv37jp06JDmzp2r3bt3KzMzU5LUt29fcwOFS77d5t0vJtmFRif3sE7eq9Nd8ouNWQp+2CUdyzdeC7JJPeOl4Z2kznH+d7fe2189pLe/eqjKayN6TtAdl75gUkTexz4IbPz9Af+375i067B36/xmqzSgvfXyBrtD+v2QtGqHtO2QdDyFbN7IyIUGJ0qRDUwN0SMC/VwQ6O0HxwAQCOpyI0h97MuQdh+Rklp6t153yMw3+oV+2iXl/29GhNBgqV87aURnqW1Tc+MDAABA/fj1gH9GRobGjx+v9PR0zZgxQw899JAaNWokSZo9e7buu+8+hYSEyGazqXfv3iZHC2flF0sb6nAFd32t2ikNTbJWJ/fG/dI7P5x695/dIW06YPx0aindcJYUGWZOjJ4wbsgUndX7CpXby7Q3bbMWrXhCGTmpCgsNryxTWl6i257tr+R+12riufdXvj773cnKzj+sWX/+wozQ3caZffDPd66W3WHXA5Peq3wttzBTN83poSkXztG5/SeaETrcwJm//+Y9K/W318ecsm55Rans9gotne3Bh2ACqLfVO7xfZ1qOtOeo1LGF9+uuq/xi6dXvjA76PzqaJ320zpiid/KZ/vf4pkDPh8iFQD4E+Lf9x4wfb1u1w1oD/g6H9N3v0n/Xnzo7QVmF9Mse42dQB+mqIVJIsDlxAgAAoH78ekr/adOmKTU1VVOnTtWcOXMqB/slaebMmerTp4/Ky8vVvn17RUdHmxgpXLFmrzlT0h/Kkg5ker/eutq4X1qwsvapfncell5ebkz37y/aNOuk/p1HaXDXMboqeaYeveETbU9do+c+uKWyTFhIA828+m29+80s7T60UZK0estH+mnbJ5p+xetmhe42zuyDOya8qK0pq7V8/cLK1+Z9eLt6dBhBB7fFOfP375V4pj75Z36Vnzdn7lB0VDNdf8GjJkYPoDbFZdL6febU/eMuc+qti8JS6YVl1Q/2n6ykXHp1hXH3vz8J9HyIXAjkQ4B/Mysn2XTAuKDQKpb/ZlzgWNujCNbslf61WrL7+SMgAQAA/JXfDvhv27ZNixYtUrNmzfTYY49VW2bAgAGSpD59+lS+tnjxYl122WVq166dIiMj1bVrV91///3Kz8/3Styo3d6j5tW9x8S6XVFQIv37hxNT1tZm/zHpy00eDclUPdoP06j+k7Ri4yJtTfmh8vXO8QN0+dn3aPa7f9LR7FQ9u3iK7rj0BTWL8bNb/FT9PoiOjNWMK17X8x9NVUbOIX2/abE27V6huya8bHK0cLea3gMnKy0v0SNvT1DP9iN07bl/83KEAFyx/5jxHFkzmJmHueqT9casBM6wO4xObn+6APKPAj0fIhcC+RDgX8zKSewOc2YWqIuDWdInG5wvv/GA9NNuj4UDAAAAD/LbAf+FCxfKbrdr4sSJatiwYbVlIiIiJFUd8J8zZ46Cg4M1a9YsffHFF7r11lv10ksvafTo0bJzmatPOGDiF6tUi3yp+2WPVOri7JM/75ZK/biTe+KoBxQUFKy3lj74h9f/ruCgEN36bD/1SUpWct+rTYrQ86rbB4O6jtbZva/UEwuv07wlt2n6Fa8pOoqH9/mjmt4Dxz33wS0qLSvWvVct8G5gAFyWauKMQ8fypcIS8+p3VmGptHav6+usS/FIOD4j0PMhciGQDwH+oaRcOpxrXv1Wmf2xLo+AWrWj9tkAAAAA4Hv8dsB/+fLlkqTk5OQay6SmpkqqOuD/ySef6L333tPEiRN19tln684779Tzzz+v1atXa9WqVZ4NGrUqKJGyCs2rPzXLvLpd8cNO19cpLJU27Hd/LL6iTbMkJfe5Wut3faPNe1ZWvh4SHKru7YcppyBDFwy8wcQIPa+mfTBl/BwdPLZLg7qO0ZBu40yMEJ5U099fkj5cNVc/b/tUj0z+SOFhkSZFCMBZB03OR8yu3xm/7q39sUbVqUsOZSWBng+RC4F8CPAPadnmDkpbIRcqKZPWpri+3qFsaZ9FbnYBAADACSFmB+Ap+/YZDzZt165dtcvLy8u1evVqSVUH/Js3b35K2YEDB0qSDh48WOd4OnXqpKAgv72+wmuiYttqzH3VT78oSdNHS9ERNa8fHX7i98OX1lwut0h6+stTX9+7P13x8QOdjNYctqAQXfZYSp3WfeixF7X5i1nuDaiOwkIi9MpU9/a6X3Pu/fp2w0K99dWDmnPLt5KkzXtW6qu1C3Tx8Kl68eM79XLHDWoQepqD6DQ6de6k0vIit8TqifZL1e+DiLAotYpNVIe4XvXatjvb7ylj/7ZGkTGtlJaepvj4QWaHc1reeg9s2PWtXvvsPs368xeKi21fr+1b4RgA/MHwyW+pVbdzq13mrlxIqjkfmnj9TTq09QsnozVHv0tmqePQP7m83t70IsXHd/JARKfnqfN+dTydD/1Rfc4N3joXBlIuJFknH/JmPuyufMgqxwBgdS07j9SZN75T7bLaciGp/n1Dy75drQevvcrJaM3RqEUnXTDj2zqte92fZyhl7SI3RwT4DqvkQgCAwBMXF6e1a9fWaV2/HfAvKCiQJBUVVf9le9GiRcrIyFCjRo3UoUOH027r22+NBLlbt251jictLa3O6+KExhWnv9MiOkJq7MTNGEFBzpX7I4ds9brwwxtCGtT9bpTC4lKfaV94qOvt6NNxpL5+subL/Nu17Kals0/c7ldUkq8nF03WjWMe1/iht2rGy2frjS/+plsveqZOMacdOqTiMvdMQVGX9kuu7wN3cmf7PaWioqLyt68c6zXxxnsgPTNF/3jnSt104ZPq03FkXcKswgrHAOAPSstqfgaPp3MhScrOyfH5z9BudXxOUVBImCltq+t5vzpm50N/VJ9zgzfOhe5klfOgVfIhb+XD7syHrHIMAFYX1jy7xmXO5kJS3fOhsnLf/vyUpOYhp97Q5Ky8giKfbx9QH1bJhQAAcIXfDvjHxcUpKytL69at09ChQ6ssS0tL07333itJ6t27t2w2W43bOXjwoB544AGNHj1affv2rXM8rVq14g5/N4iIiTnt8txabqaIDje+0NntUm6x69txVJSqTZs2tURpvoqyYgWHhru8XqjNd9oXFuKeu8pOZ/4nMxQX20EXDbtNNptN9165QLc821fDe16q3olnuby9Vq1bu/UOf6txZ/s9JTg4uPK3rxzrNfH0MVBcWqiHFlyiod0v0iXDp7plm1Y4BgB/EBJc80CWu3Kh020rplGkz3+GhjhK6rReaUGmKW0z87zv7nzoj+pzbrBaPmSV86BV8iFv/P3dnQ9Z5RgArK5xdFSNy2rLhaT69w0FB9l9+vNTkiKijC5fh8Nx2n7P6oSHVPh8+4D6sEouBAAIPHFxcXVe128H/EeNGqVt27bpiSee0HnnnafOnTtLktasWaNJkyYpIyNDkk47iJ+fn6+LL75YYWFheuONN+oVz86dOxUVVfMXEjinwi795b2an8la3VRrJ3v4UuPq7dxi6eEPXa+/X/cEvZqa6vqKXvbO6ro9q+2deTMVFzPT7fHURUWp9O1cz23/l9+/0IqNi/TK9E2VX35bN+uoG8c8rjmLbtD8GZsUEebae3bnjp0KDnNPfJ5uvye4s/2e8tASKadIahXXSqk+/l729DGwcvMH2pO2UQczdmjFxlOna3z9nt/Uoklbl7ZphWMA8Acf/Sqt+L36ZZ7OhSTp08UL1PL012Cabl+G9MxS19cb1b+5Xjbh/GDWed8T+dAf1efcYLV8yCrnQavkQ974+7s7H7LKMQBY3bF86dH/Vr+stlxIqn8+dPm4kXr3Ed/9/Dzu6S+l/cdcG+wPC5G++3i+wkM9FBTgA6ySCwEA4Aq/HfCfOXOm/vOf/+jAgQPq0aOHunbtquLiYu3atUtjxoxR+/bttXTpUvXp06fa9YuKijR+/Hjt3btXK1euVKtWrbzcAlQnOEhq00RKyTCn/oRYc+p11Ygurg/4d2opxfl45707De46Rh89mn3K6xcPv10XD7/d+wGZ7KlbV5gdArzsvAGTdN6ASWaHAaAOzMxHGoRIzaPNq99ZbZsa++lApmvrDe/smXh8FfnQCeRCgYl8CLCm2CgpMkwqLDWn/vim5tTrqhGdpf/86No6AzuIwX4AAAAL8ts55uPj47Vy5UqNGzdO4eHhSklJUWxsrObPn6/PPvtMO3bskKRqB/zLysp0+eWXa+3atfriiy/UvXt3b4eP00gw8YuVVQb82zWVesY7Xz44SBrT23PxAAAA9zEzF2rTRApy7UYxU9hs0tg+kiuhDmwvtWrsoYAAAIDb2Gz0DTmjXzsjd3NWRJh0TjfPxQMAAADP8dsBf0nq1q2bPv30U+Xl5SkvL08///yzpkyZooKCAqWkpCgoKEg9e/asso7dbtfEiRP1zTff6L///a8GDx5sUvSoSd8Ec+ptECJ1bW1O3a6y2aRJw6WklrWXDQ6SJg2TElt4Pi4AAFB/zRuZNzDdt5059dZFt9bS1Wc4d4FC9/+VBQAA1tDXtaePuY2ZeZirQoOlKSOllk7MzhQRapRt1sjTUQEAAMAT/HrAvyZbt26Vw+FQp06dFBkZWWXZ7bffrvfff1933323IiMj9dNPP1X+HD161KSIcbLEFuZMPW+1ac0ahEi3JEuje0nR4dWX6dJKuv1ca3XeAwAQ6Gw2aUQn79cbFiwN6uD9eutjSEfplnOMRxdVp3GkNK6PdOPZUkiwd2MDAAB117+9OX00wztbY7aj42IipTvPl87sUv3+CrIZF0/cdYHUobn34wMAAIB7hJgdgBk2b94sqfrp/L/44gtJ0uOPP67HH3+8yrI333xTkydP9nh8OD2bzXgO2eI13q13uAkd6/UVEiyN7i2N6iFtOSgt/FEqKZfCQ6QZY6zxDF4AAHCqAR2kTzZIxWXerTMizHv1uUvnOOMnPUfakip9vcXIhyLDpAcuNmY7AgAA1tIgRBqcKH2/3Xt1hgVLgy128aMkRTaQLhsoXdhH2rBfWrL2f31DodJfx0sxEWZHCAAAgPpiwP8PUlJSvBwN6mJokvTTLik1yzv1jegktXbhuWe+JiTYuGL7w/99qWsQ6l+D/aVlxfrnv6/WvsO/qUFohBo3bKFpE15Sm2ZJVcqlZe7Vo29frgp7hez2ciW07Ka7L3tFjSKbqKgkX4+8fZl2pv6qCnu5Pno025zG1NELH03Tj799rMNZ+/TSXeuV1KbvKWXSM1P05KLJ2nVoveKadND86Rsql/2W8qOeW3KrJKnCXqae7UfotkvmKiykgZdaAABwRXiodFE/6b1fvFNfVANpbG/v1OUpcTHGz8rtRj4UGsxgvz9xJhdyJt9xOByaOf9c7Ty4znL5IAAEmgt6Sev3SXnF3qlvXF9j8NyqGoQasx99vvF/fUMhDPYDAAD4Cwb8YUnBQdK1Q6WnvpQq7J6tKzZKGt/Ps3Wg/sYOmaLBXcfIZrPpo9XP6+n3/6ynbl1RpUzT6NZ65vZVahBqfKN94b936u2vH9btFz+n4OBQXZV8nxpFxOqel0d6vwH1dGbvy3XlyJm6+8URNZaJDI/WDaP/oYLiHL3xxf1VliW27qMX7lyjkOBQ2e12/d/bl+mTH17UZWfd7enQ4QHOXgQjSalHd+rJRdcrpyBDUeExuveqBWof16Ny+Zrfv9SbS/+u8vJSNQiL1F2XzVfH1pw/AV8wNMm4S2tHuufrumyg1IgOYZ9T22e4s+VqGiyv7Xzy87bPtWDp32W322W3l+uKkffq/IHXe6Xtf+RMLuRMvvPB98+oVdOO2nlwnTfChofd98r5yspLl80WpMjwRrr94rlKanPql7va3iOl5SWa/8kMrd2xVGEh4erYqo/+cu073mwKgGpENZCuHCy9/r3n60psbkyLDwAAAPiigLynZfny5XI4HBo3bpzZoaAeWjdxfSA+t0jKLjR+OyMkSLpumHEVNHxXWGi4hnQbK5vNeJBet7Zn6HBWyqnlQhpUDvZX2CtUXFogm2yVy/olnaOGEY29FbZb9U48S80bx5+2THRkrHp2GKHwsKhTloWHRSok2DjQyytKVVJWVLk/YU1jh0zRmzO3a/70jRra42I9/f6fqy333Ac3a+yQKVpw3w5dlXyfnlw0uXJZXmGWHls4UTOvekuvzNikKeOe1OP/meilFgCojc0mXXOGFB3u/Dqu5kKSNChR6tfO9fjgeaf7DHel3Jm9L9czt61Syyan/qFrOp84HA49sfA63XvlAs2fvkGP/r9P9ewHN6uwOM/dzXSKM7lQbflOSvpW/bD1I12d/BePxgrveWDSe3plxibNn75Bl505vc7vkdc//4tsNpsWzNyhV2ds1pQL53g+eABO6ZUgDXPxEYyu5kNRDYybToL4igwAAAAfFZAD/vAfI7tK5/d0vvzTX0oPf2j8rk1wkDT5TCmxRd3jgzk+XPWchva4uNplZeWluvnpvrr84WY6mLFT15//iJej813pmSm6+ek+uuzhZoqKiNH4obeZHRLqyNmLYLLyj2hH6lqN6n+dJOnMXpfpaPYBHczYJUk6dGy3oiObVt7h1ivxTB3J3q+dqdz1CPiKJlHSLecYHdHOcCUXkqRe8dLVQ4yLC+BbavsMd6VcTYPltZ5PbDblF2dLkgqLcxUd2VShPv44oJrynfKKMj2z+Cbdedl8BQUFmxwl3OXki3kLinMknfphVtt7pKi0QF/+8rpuGP3PyvdCbHScx2MH4LzLB7p2caIr+VBkmJFrNWtU9/gAAAAAT2PAH5Y3to/xDFt3dkRHhEk3jZR6nv4mIfig/3wzS4cydunGMY9Vuzw0JEzzp2/Qew8eVtvmXfXpT/O9HKHviottr/nTN+q9B9NVVl6iVVuWmB0S3KSmi2COZh9QbHQrBQcbT/ix2Wxq0aStjmTvlyTFN+uk3MJj2prygyTph60fq7AkT+nVXDwAwDytm0jTzpOaNnTvdod0NC5+5Dn3vqm2z3BXyznj5POJzWbT3ycu0iNvTdDEf7bT3S+O0Myr3lJoSFg9W+ZZNeU7//r6EY3oOUHtWnYzOUK42xML/6Rr/5Ggt5Y+oL9c869Tltf2HknL2K1GkbFauHyWbntuoO5+8Uyt2/mNV9sA4PSCgqRJw6QRLt7pX5smkdLUUVJCrHu3CwAAALhbiNkBAO5wTncpqaX0nx+l9Jz6batHG+MZcDGR7okN3vP+ijlatWWJZk9ZpvCw0/8BQ0PCdP6gG/TM4pt0VfJML0VoDRENGmpk36u1fN2/ldz3arPDQTWmzRuqgxk7q1320t3r1aJxQuX/j18EM/tm1zumoyJi9OCkxXr9i7+quCRf3doNVbuW3RUcRPoA+JqWMdLMsdKnG6SVO+q3rYbhRi7UO6H2svCc2j7rve2P55OKinL9+5t/6KHrl6h34lnafmCNHnzzIr0yY7Niopp5PT5X/THf2bTnOx3J2q///vC8KuzlKizJ1XWz2uv5aWvUuGFzs8NFNZzNh+675m1J0ldr39Krn9+nWTd+7lI9FfZyHc7ap3YtuuvPYx/XroPrdd8r5+m1e7aqSaOW9WsEALcJCpIuHyx1ayO997OU48Lji6ozNEm6uL8UziMeAQAAYAH02MNvtG0qzRgjffe7tGqH8Tw2VyTESsndjGngmLbWehZ/97S+3bBQT0xZVmXqzpMdztqnmKjmCg+LlN1u1/eb3ldiq97eDdRHHczYpZZN2ikkOFRl5aVaveVDdWDf+Ky5d/zoVLnaLoJp3jhBmblpqqgoV3BwiBwOh45k7VeLxm0ry/RNSlbfpGRJUml5ia76vzi1a9ndPQ0B4FYNQqXLBkl920pfb5V+T3Nt/YgwaXCi8bgkZx8RAM+p7bM+NKRBrZ/hknOf9bWp7nyy69AGHcs9pN6JZ0mSuiQMUrOYeO06uF4DOp/nYmu943T5zjO3rawsl56Zolue6at3/pZiUqRwhrP50HHnD7xez31wi3ILjik6qmnl67W9R1o0aasgW5DO6T9RkpTUpp/iYjtob9pmBvwBH9SjjXTfOGnZVumn3VJhqWvrd46TRvUwfgMAAABWwYA//EposPHFLLmb9NtBad0+6cAxKSP/1LJBNimusdS+qXRGknHBAKzpaHaq5n86Q61iE3XPy8bAZFhIA82b9rMWLH1QTaNba/zQW7QnbZPe/OJ+SZLDYVdSm/66/eK5lduZ8lRv5RQcVWFJrq75R7z6dEyudtpPX/Ts4pv18++fKTMvXX997QJFNmikt/6yS0+9/2cN7X6RhvW4SMWlhbphdmeVlZeooDhH1/wjXqP6T9KNYx/Thl3L9dGquQoKClaFvVz9ks7VdaMeMLtZqAdnLoJp0rCFktr017J17+iCQZO1cvMHatY4Xm2aJVWWOZabpqbRrSRJ/172qPp2PKfKcgC+p2NL4+donvTTLmn3EelgllRWcWrZmAgpPlbqlSD1byeF8e3AMpz5DHelXE1qOp+0aJygzLw07Tu8Te1adtPBjF1KO7ZbCc27uLOZTnMmFyLfCSz5RdkqLi1Us5jWkqTVWz5SdFRTNYqsOjd3be+RmKhm6pt0rtZuX6oh3cYqLXOv0jP3qi2PfwB8VmQD6aL+0uje0ob90qYDRt9QdXf9hwZLrRtLiS2MvqGW0V4PFwAAAKg3m8PhcJgdhL8qKChQw4bGw1Tz8/MVFRVlckSBq7BUOpIrlZUbA/0NQo2pb0ODzY7Mux5aYnzBjYmQHplgdjSnV1EqfTu39nK+JHmaFOymx9YGevs9JVDeA0ezU3XtPxPUKjZREQ0aSTpxEYykKoMfB45s15OLJiu38Jgiw6N175VvqkOrXpXbevr9m7Rl70pV2MvVrd1QTb1kXo0XEFjhGAACVYXduACgoMT4d2iw1LShFB1hdmTe54vngrp+5p/uM9yVz/qTB8ujI5tWDpbXdj5Zvn6hFi6fpSBbkOwOu6455686p9+1VWKsz7nBavmQVc6DvvgeqE59//6Hs/bp0X9doZKyIgXZghQT1VxTLpyjpDZ9Jbn2Hkk7tkdPvX+jcgoyFGQL0nWjHtSZvS87pU6rHANAoMorMm4IKauQgoOkyDCpRbTx70BilfMA4Cm8BwAA/oh7eBAQIsOk9r7/KFEAcIvmjeP19ZM1X88344rXKv+d0KLLaafEnX7Fq26NDYA5goOkuBizo4C7ne4z3JXP+rsun1/t67WdT87pd43O6XeNk9EC3tWySTs9P+2XGpe78h5p1TRRc2751q3xAfC+RhHGDwAAAOBvAuwaVgAAAAAAAAAAAAAA/AMD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWFCI2QEAQHWCQqXkaWZH4ZqgUPduK5DbD44BAAgkVvzMd1Z9zg1W2y+cB93Lan9/iWMAAAAAAGAOBvwB+CSbTQoOMzsK8wR6+8ExAACBhM/86rFfAht/fwAAAAAAnMOU/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWBAD/gAAAAAAAAAAAAAAWFCI2QEAAE7lcEj2MrOjcE1QqGSzmR2F/wj0YyDQ2w8AsN65gPOAe1nt7y+5/xhgHwAAAAAAnMGAPwD4IHuZ9O1cs6NwTfI0KTjM7Cj8R6AfA4HefgCA9c4FnAfcy2p/f8n9xwD7AAAAAADgDKb0BwAAAAAAAAAAAADAghjwBwAAAAAAAAAAAADAghjwBwAAAAAAAAAAAADAghjwBwAAAAAAAAAAAADAgkLMDgCAZ9kd0rE8KTVLKik3Xistl3YelhJipfBQc+MDAADwtMISIxc6ln8iHyqrkDLypKYNJZvN3PgAAAA8qcIuHc6R0rKr9g2lZEitG0th9BADAABYGukc4Icq7NLWg9KPu6S9R6XisqrLi8qkF5YZ/27eSOqdIA3rZHR4AwAA+IOjudLqndLmVGOg/48KS6V/fCxFhEkdW0jDkqSuraQg5kADAAB+oLRcWr9P+nm3dCDTuNjxZEVl0rNLpSCbFBcj9W8vndFRahhuSrgAAACoBwb8AT9id0irdkjLf5OyC51b52ie9M1vxjrd20gX9ZdaRns2TgAAAE85lCX9d720Pc258kWl0pZU46dpQ2lUD6Ozm7v+AQCAFZVVSF9vMfqHCktrL293SIeypUMbpC82GQP/4/tK0RGejRMAAADuw4A/4CeO5kkLf5T2HK3b+g4ZswLsSJfG9pHO7sIdbla0cfcK3fNycpXXwsOiFN+8s0b1n6RLht+h4GA++v1ZoB8Dgd5+IJBV2KVlW6Wvthj/rotj+dKin4274a4eIsUy+5HlcB5AoB8Dgd5+INClZEj/+VE6klu39Svs0po90tZU6bJBUv92XAQJAABgBXzLA/zA1oPSgpWnTs9WF2UV0n/XSb8fkv7fWVKD0PpvE96X3PcaDe46Vg45lJWXrq9/fVsvfzJd+49s092Xv2J2ePCCQD8GAr39QKApLJFe/c54lJE77EiXnvhMuvFsqXOce7YJ7+I8gEA/BgK9/UAgWrVD+mCt5HDUf1uFpdK/Vhs50ZWDpWBuCAEAAPBppGuAxW06IL3+nXsG+0+2PV16eblUUu7e7cI7OrXpr1EDrtN5AybpypH3au4dP6l5TLy++OU1Zee7aTQEPi3Qj4FAbz8QSApLpRe/cd9g/3El5dIr3zr/aAD4Fs4DCPRjINDbDwSaFdukxWvcM9h/sp93S+/8INnrOHsSAAAAvIMBf8DCUjKkt1YZz1vzhL0Z0lsr3f+FEd4XERalru3OkMPh0KFju80OByYI9GMg0NsP+Cu73bjwMTXLM9sv/9/2D3po+/AezgMI9GMg0NsP+LN1KdJH6zy3/fX7PLt9AAAA1B9T+gMWVVou/fsH155RO320FB0h5RZJT3/p3Dq/HZJ+2CUN71S3OOE70v7XsRcdGWtyJDBLoB8Dgd5+wB+t+F3afcS1dVzNh0orjGfhTh/NdLZWx3kAgX4MBHr7AX+UUyi9v8a1derSN/T9dqlnPI86AgAA8FUM+AMW9flG6Wiea+tER0iNI12v6+N1UtdWUtOGrq8LcxSXFSqnIEMOh/HMzk9+fFm7Dq5X14TBim/e2ezw4AWBfgwEevuBQJCeY+RDrqpLPnQwS/p6izS6t+v1wRycBxDox0Cgtx8IBA6HtOhnqajUtfXq2je08CfpvnFSeKjr6wIAAMCzAmLAPyMjQ7Nnz9aSJUuUmpqq5s2ba8KECZo1a5amTZumN954Q/PmzdPUqVPNDhVwSlaB9N1279VXUi4t3SxdO9R7dbpTeYW06YD020GpqEwKC5ESYqXBiVLDcLOj84y3v3pIb3/1UJXXRvScoDsufcGkiOBtgX4MBHr7gUDw+UZjyn1v+XqrNKKzdXOHtGzjObyZBcYAQUyENDBRatdUstnMjs79OA8g0I+BQG8/EAh2HTFmZfSWrAJp5XbpvJ7eq9OdSsqktSnS7sNGP1eDECmppTSgg/FvAAAAK/P7dGbDhg0aM2aM0tPTFRUVpe7du+vQoUOaO3eudu/erczMTElS3759zQ0UcMEPO42OWm9av0+6uL8U1cC79daHw2FMO7dsq5RXXHXZ+n3GQMHADtKlA6QGfnaF+rghU3RW7ytUbi/T3rTNWrTiCWXkpCos9MQoRWl5iW57tr+S+12riefeX/n67HcnKzv/sGb9+QszQoebOHMM/POdq2V32PXApPcqX8stzNRNc3poyoVzdG7/iWaE7hbOtH/znpX62+tjTlm3vKJUdnuFls6u8GbIAFyQXShtSfVunRV2Y8D83B7erbe+0rKlxWuqf/TBqp1SfBMjF+rY0uuheRS5EMiFyIUAf7d6h/fr/GGXdG53KchCjzmqsBv9P6t2GAP9J1u3T/p4vXRmZ2MmJx7fBAAArMqv05iMjAyNHz9e6enpmjFjhtLS0rRu3Tqlp6friSee0GeffaY1a9bIZrOpd2/m54Q1lFdIP+72fr1lFUYnt1U4HNKSX6UPfz11sP+4crv0027p+WWuT4Hn69o066T+nUdpcNcxuip5ph694RNtT12j5z64pbJMWEgDzbz6bb37zSztPmTMibx6y0f6adsnmn7F62aFDjdx5hi4Y8KL2pqyWsvXL6x8bd6Ht6tHhxGW7uCWnGt/r8Qz9ck/86v8vDlzh6Kjmun6Cx41MXoAtflxl2T38sWPkrR6p2T34qwC9bUvQ3ruq+oH+49LzZJeXO79Cyg8jVwI5ELkQoA/yykyZjL0tqwC784qUF8Vdun176Rvfjt1sP+44jJjJqc3VxrlAQAArMivB/ynTZum1NRUTZ06VXPmzFGjRo0ql82cOVN9+vRReXm52rdvr+joaBMjBZx3IFPKr2EA29Os9KVu1Q5jqjlnHMiU/rXas/GYrUf7YRrVf5JWbFykrSk/VL7eOX6ALj/7Hs1+9086mp2qZxdP0R2XvqBmMa1NjBaeUN0xEB0ZqxlXvK7nP5qqjJxD+n7TYm3avUJ3TXjZ5Gjdr6b3wMlKy0v0yNsT1LP9CF177t+8HCEAV2w9aE69mQXS4Vxz6nZVXrH06gqjE7s2FXZpwSpjNgB/RS4EciFyIcCf/H7InIsfJeNxiVbx0Trn+7K2pBp3+wMAAFiR3w74b9u2TYsWLVKzZs302GOPVVtmwIABkqQ+ffpUvrZy5UqNGjVKrVq1UoMGDRQfH6+rrrpK27Zt80rcQG0OZJpXd2qmeV8oXVFhN6bxd8Vvh4z2+bOJox5QUFCw3lr64B9e/7uCg0J067P91CcpWcl9rzYpQnhadcfAoK6jdXbvK/XEwus0b8ltmn7Fa4qOampilJ5T03vguOc+uEWlZcW696oF3g0MgEvKK8wdmDYzF3PFjzul/BLny5dXSCt+91w8voBcCORC5EKAvzCz/8IquVBesfFITFes3ikVuJA/AQAA+Aq/HfBfuHCh7Ha7Jk6cqIYNG1ZbJiIiQlLVAf+srCz16tVLc+fO1VdffaUnnnhCW7du1dChQ5Wa6mfzXMKSzPxiVVwmHcszr35nbUk1prdz1WoXvwhaTZtmSUruc7XW7/pGm/esrHw9JDhU3dsPU05Bhi4YeIOJEcLTajoGpoyfo4PHdmlQ1zEa0m2ciRF6Vk3tl6QPV83Vz9s+1SOTP1J4WKRJEQJwRlq2udOtWqGTu8JuPGPXVb+mSIV+3MlNLgRyIXIhwF+YmY8cyjYuFPR1P+1yPWcst9jjLAEAAI7z2wH/5cuXS5KSk5NrLHN8AP/kAf+LLrpIzzzzjK644gqdffbZmjhxopYsWaKcnBx98MEHng0acEJ2gbn1ZxWaW78zttXx0QN1Xc9Krjn3fgXZgvTWVyfu6tm8Z6W+WrtAFw+fqhc/vlMlZXW4WgKWUd0xEBEWpVaxieoQ18vEyLyjuvZv2PWtXvvsPj0w6X3FxbY3LzgATjE7FzE7F3PG4Rwpuw77qbxC2nXE/fH4EnIhkAuRCwH+IMvEfKTC7tosQmb5Pa1u6wVC3xAAAPA/NofDYYEJul2XkJCg1NRUrV+/Xn379j1leXl5uVq1aqWMjAzt3r1biYmJNW7r2LFjatasmZ5//nndfvvtTsdQUFBQObtAq1atFBTkt9dXwItG3vqhmrUfVO2y6aOl6Iia140Ol4KCJLtdyi0+fT25RdLTX576+qo3/qT07ctdiNj7hkx8SQm9x7u8XllJvv77YFcPROS6sJAIvTLV81MOFJXk6+an++iys6Zr/NBbNePls9U5fqBuvegZl7c15flOKi337Q7ysX9bo8iYVirMSdPns6p/H/kKbx0Dx814aaTO6Hahrhh5T5234c5jwFvtT89M0dS5g3TdeQ/pkuFT67UtK7wHAH8Q3+cinXHti9Uuqy0XkpzPh2rKhdK3f6tVb0xyIWLva9Z+sEbeuqRO665ZdJf2rVvs5ojqxhvngkDLhSTr5EOBngtJ3tkH7syFJOu8DwCrG//ARjVoWP3jR9zVN1RTLiRJX8weoYJjKc4HbIJRdy5V49Y9XF4vM3Wjls/z39leYJ1cCAAQeOLi4rR27do6rRvi5lh8RkGBcalrUVH1XzQXLVqkjIwMNWrUSB06dDhleUVFhex2u/bt26e//vWviouL05VXXlnneNLS6nhZKfAHRYX5NS6LjpAaOzH7YlCQc+Wqc+TwIR08eLBuK3tJXvaxOq1XWpTnM20LD/XONJrzP5mhuNgOumjYbbLZbLr3ygW65dm+Gt7zUvVOPMulbaUdOqTiMt+eAqKioqLyt6/8rWvirWPAndx5DHij/cWlhXpowSUa2v0it3RwW+E9APiDiNaHa1zmbC4k1T0fKsjP9flzSFnovjqveyQ91Wfa541zQaDlQpJ18qFAz4Ukz+8Dd+dCknXeB4DVlZWVqEENy7zRN5R2cL/yjvnuOUSSCvNz1Lgu6+Vl+/T5EfVnlVwIAABX+O2Af1xcnLKysrRu3ToNHTq0yrK0tDTde++9kqTevXvLZrOdsv7ZZ5+t1atXS5KSkpK0fPlyNW/evM7xcIc/3MVWXvO8bbm13Ejh6h3+1WkUEaQ2bdrUEqW5io/tqNN6OQc3+UzbwkJquT3RDX75/Qut2LhIr0zfVPk52LpZR9045nHNWXSD5s/YpIiwKKe316p1a5+/myc4OLjyt6/8rWvijWPA3dx5DHij/Ss3f6A9aRt1MGOHVmxcdMry1+/5TS2atHV6e1Z4DwD+IKqm3m3VngtJrt3VVp2gikKfP4cE2/JUVpyn0PBGLq3nsNtlKzroM+3z9LkgEHMhyTr5UKDnQpLn94G7cyHJOu8DwOrKi7KlJq2rXeauvqGatuOw29UkOlzR4b57DpGkgiO/SZ2H1WG9bT59fkT9WSUXAgAEnri4uDqv67dT+k+bNk3z5s1TQkKCli1bps6dO0uS1qxZo0mTJmnPnj0qKyvT7bffrueff/6U9bdv367s7Gzt3btXTz75pI4cOaLVq1erbVvnv+yePKV/fn6+oqKc7ywCarJsq/Tphrqt+/ClxtXb2YXSwx+6vn5IkPT4lVJIcN3q95biMumhJVJJuWvr3Zwsdav++7LXVZRK3841OwrXJE+TgsPMjuL0Hloi5RRJMRHSIxPMjub0Av0YCPT2A6hZcZn01/ekun6JqW8+dPkgaUTnOlbuRR+skVa6eA1k99bSlGTPxFMXVjsXWOU8YJV8yGp/f8n9xwD7AEBN/vOj9Mueuq1b31yoZbT0V9efouh1h3Olxz5xfb2/XyQ1c+2aSViMVXIhAABc4be3nM+cOVNNmzbVgQMH1KNHD/Xq1UudOnXS4MGDlZiYqHPOOUeS1KdPn2rX79Kli4YMGaKrr75a33zzjfLy8jR79mxvNgGoVkKseXW3buL7g/2SFB4qDeno2joto6UurTwTDwAAcJ/wUKl5tHn1x5uYi7lieGcp6NSJzE7rrK6eiQUAALiXmX1DZtbtipbRrt/U0TOewX4AAGBNfjvgHx8fr5UrV2rcuHEKDw9XSkqKYmNjNX/+fH322WfascO43aWmAf+TNW7cWElJSdq1a5enwwZq1a6ZFGrSoHtSS3PqrYvx/aSOLZwrG9VAuvFs1zvFAQCAOczKSSLCpDZNzKnbVXEx0tVnOF9+dG+pKxc/AgBgCZ3qPttrvSWZWLerJg6Vmjs5gN8iWrrGhdwJAADAl4SYHYAndevWTZ9++ukpr+fn5yslJUVBQUHq2bNnrds5cuSItm/friFDhngiTMAl4aHSgPbST7u9W69N0rAk79ZZH6HBxhT9C3+S1u+ruVxcjPT/zjK+2AEAAGsY3kn6Yaf36x2caN6Fl3UxOFEKC5YW/SIVlVZfJjRYGtdXGsnd/QAAWEZcjJTYXNpz1Lv1hodK/dp5t876aBguTTtPWrBK2n2k5nKdWkrXjzBuCAEAALAivx7wr8nWrVvlcDjUuXNnRUZGVll23XXXKSkpSX379lXjxo21c+dOPfPMMwoJCdHdd99tUsRAVcM7e3/Av2tr601rFhZifGEb3dsYFPjtoJSRZzzzNyTIeEZtp5aSjTv7AQCwlDZNpA7Npb1e7uQe0cm79blD33ZS9zbSun3Sz7ullKNGLhRkky7qLw3uIEXSuQ0AgOWM6Oz9Af/BiVIDi/UmN4qQ7jhP2n9MWrVDWrNXcjiMvqDBiUZ+l9DU7CgBAADqx2+n9D+dzZs3S6p+Ov8zzjhDn3/+uW644QaNGTNGTz75pM4880xt2LBBSUkWur0Zfi0h1niumLfYJJ1f+2QYPqtltHTpAOn+i6ToCOO1qAZS5zgG+wEAsKrRvbxb34D2UnOLzggUFiKd0VG68/wTuVCjcOOufgb7AQCwpt4JUqsY79XXIERK7ua9+tytbVPp2qFSdLjx/+hwYwp/BvsBAIA/sNg1me5xugH/qVOnaurUqd4OCXDZFYOM6chqmp7Vnc7uatxFB8C3pB7dqScXXa+cggxFhcfo3qsWqH1cjypl1u9artc//4uKSvJls9k0pOs43Tj2cQUFGdf8Hcnar3kf3q7UjB0KsgVr/NBbdcmIO1RUkq9H3r5MO1N/VYW9XB89mm1CCwGgZl1aGYPY3pj1qFG4NGGg5+sB4B6lZcX657+v1r7Dv6lBaIQaN2yhaRNeUptmp17E/96KJ/X12rdkd9iV0LyL7rnqTTWMaOz9oAHARSHBxgD2M0slu8Pz9V3UX2oS5fl6AAAA4DoG/AGLiomULhsovfOD8+vkFlX97YwW0dJY3iqW4koH532vnK+svHTZbEGKDG+k2y+eq6Q2/SRJuQXHdO/8cyvLlpQVKi1zj95/6IiiI2O91h7U7LkPbtbYIVN0waDJ+n7TYj25aLJeuHNNlTKNIpro/onvqlXTRJWWFWvmK6P09a9v64JBk+VwOPTwW5fqquS/6Ow+V0iSsvIOS5KCg0N1VfJ9ahQRq3teHuntprnFCx9N04+/fazDWfv00l3rldSmb7Xl1vz+pd5c+neVl5eqQVik7rpsvjq27uPydgB43yUDpO3pUlaB8+vUJR+6cjDPdLUaZ/Oh2vKd2s4R8F1jh0zR4K5jZLPZ9NHq5/X0+3/WU7euqFLm1x1fa+maNzXvjp8VGd5I/172D73xxf2aNuEFc4J2I1e+Exz35Zo39dR7/08PX/+hhve8RBLfCQBfl9BUGtVD+mqL8+vUJRfqEicNY+JTAAAAnxWQA/7Lly83OwTALQZ2kI7mSUs3O1f+6S9d235MhHRzsjENLKzFmQ5OSXpg0nuVdzCt2vyhnlw0WfOnb5QkRUc11fzpGyrLvr9ijjbt+Y6OPR+RlX9EO1LX6vGbvpIkndnrMj3/4VQdzNhVpSP3+AUckhQWGq6OrfvqcFaKJGn9zm8UGtKgcrBfkpo0ammUDWmgfknnKD0zxfON8ZAze1+uK0fO1N0vjqixTF5hlh5bOFFP3/q92sf10OY9K/X4fybq1Xu2uLQdAOYIDzVylXlfSwUlzq3jaj50cX+pV4LrscF8zuRDp8t3nDlHwDeFhYZrSLexlf/v1vYMLf5uzinl9hzaqJ4dRigyvJEkaXDXsbrn5ZF+MeAvOf+dQJLSM1P0xc+vqlvbM6q8zncCwPeN7i0dy5d+TXGuvKu5UJsm0vVn8khEAAAAXxZkdgAA6md0L2lMb/dvNzZKmnqe1LSh+7cNzzrewWn737fxbm3PqBzg/aOTpystKM6RVPM3+C/WvK7Rg290Y6Soj6PZBxQb3UrBwcYVOTabTS2atNWR7P01rpOZm66VmxZrSLcLJUn7jvymmKjm+uc7V+uWZ/rp4QWXKu3YHq/E7w29E89S88bxpy1z6NhuRUc2rXwUQq/EM3Uke792pq5zaTsAzBMXI00ddeLZ9O50SX9rP6s2kLmSD53s5HzHmXMErOHDVc9paI+LT3m9U/wArdu5TJm56XI4HPpm/b9VWJKn3MJME6J0L1feA3a7XU+//2fdfsk8hYacfjoTvhMAvifIZkztP6iD+7fdtql027lSZJj7tw0AAAD3YcAfsDibTbqgl/T/zpIahrtnm33aSnePlpo3cs/2YK6aOjiPe2Lhn3TtPxL01tIH9Jdr/lVtma0pPyi/MEtn/G+gGNZTUJyrB94crytHzlSXBONB1BUV5dqwe7kmjnpAL9+9XgO6XKBH37nS5Ei9K75ZJ+UWHtPWFOP5KD9s/ViFJXlKd2JQCIDvaNVYmjFa6t7aPduLiZCmjJRGMtjvN2rLh6RT8x3OEf7hP9/M0qGMXbpxzGOnLOublKwrzr5Hf3/zQk2bd4YaRzWXJAUH+d8UZ6d7D3zw/dPq0X64OscPOO02+E4A+K7gIOmaocajH8OC3bPNs7pIt4/isUYAAABW4H/fYoEA1TtBSmwuffirtC5FctRhG9ER0qUDpH7t3B0d3GnavKE6mLGz2mUv3b1eLRqfmHf4eAfn7Ju/qXF7913ztiTpq7Vv6dXP79OsGz8/pcyXv7yu8wb8qfJucpiveeMEZeamqaKiXMHBIXI4HDqStV8tGrc9pWxhcZ7+9tpoDetxsS4/e3rl6y2atFVS636Vdy6OGjBJ8z68TeUVZQoJDvVaW+rClffB6URFxOjBSYv1+hd/VXFJvrq1G6p2Lbv7ZUc/4O9iIqWbRkpr9kofr5PynZzi/2Q2mzQkUbqoP3ey+Tp350PSqfkO5wjre3/FHK3askSzpyxTeFhktWUuGnabLhp2myTpt30/qXlMvKLCo70ZZp246z2wN32LVm7+QE/f9n2tdfKdAPBtQTbpzC5St9bS+79I29Prtp0W0dJVg6WOLd0bHwAAADyHb2mAH2kYLk0aLo3tI/2wU/ppt3PPs01qKY3oZDyfNph5P3ze3Dt+dKqcMx2cJzt/4PV67oNblFtwTNFRTStfLyrJ13eb3tPz09bUOWa4X5OGLZTUpr+WrXtHFwyarJWbP1CzxvFq0yypSrmiknz99bXRGthltCaO+nuVZYO6jtGrn81URs5BNYtpo1+2fa62Lbr5/GC/5Pz7wBl9k5LVNylZklRaXqKr/i9O7Vp2d9v2AXiPzSYNTpT6t5M27pdW7ZT2Hq19vehw6YwkaVgnqXHtp0z4AHfnQzXlO5wjrGvxd0/r2w0L9cSUZVUeY/VHx3LT1DS6lYpLC/XW0gd15ciZ3guyHtz1HtiyZ6UOZ6Vo8hOdJEmZeel6dvEUZeamafywWyvL8Z0AsI5mjaRbz5UOZRm50Nq9Umn56dex2aSebaQRnaVOccbFAwAAALAOBvwBP9S0oTS+nzSuj3QkTzpwTErNkopKpQq7FBpsfAFMiJXiY5mezR8508GZX5St4tJCNYsx5j9eveUjRUc1VaPI2CrlVmxcpMRWfdS2RVdPhw0X3XXZfD25aLIWLp+lyPBo3Xvlm5Kkp97/s4Z2v0jDelykJaue0/YDv6i4tECrNi+RJJ3V5wpNPPd+RYRF6c4JL+v+18dJcigqPEb3T3y3cvtTnuqtnIKjKizJ1TX/iFefjsk1PvbByo539EvSv5c9qr4dzznlwgkA1hISLA3oYPzkF0sHMqXUTOlYvlRWYVzgGNVAim8ixTc1HmNEx7b/cXbAV6o53+EcYU1Hs1M1/9MZahWbqHteNi7YCAtpoHnTftaCpQ+qaXRrjR96iyTpL6+eL4fDrrKKUo3qP0kXD59qZuhu5cx7YPywW6sM7M94aaQmnHmXhve8pEo5vhMA1tO6iXTlYGnCACktx8iFDmVJxWWSwyGFhkgtY4y+oTZNpHDfv+4bAAAANWDAH/BjQUFSXIzxM8jsYOA1p+vglE4MBnds3UeP/usKlZQVKcgWpJio5nr0hk9ls1Ud8fjyl9c1ZshNXm8HapfQoku1d3fNuOK1yn9PPPd+TTz3/hq3MbDL+RrY5fxql70yY1P9gzTRs4tv1s+/f6bMvHT99bULFNmgkd76yy5JVS+KeGvpg9qyd6Uq7OXq1m6oZlz5utPbAeD7GoYbU9t2a212JPAmZ/OhYT0uklRzvlPbOQK+qXnjeH39ZPUPOZt8wf9V+f+rMzZ7IySvc/U9UBu+EwDWFRJsDOonxNZeFgAAANbEgD8A+JnTdXBKVQeDn5/2S63be27qD26JC/C2uy6fX+Oyk98H0694tc7bAQD4JlfyIanmfKe2cwTgq1x9Dxz31K0rqn2d7wQAAAAA4Lt4WjcAAAAAAAAAAAAAABbEgD8AAAAAAAAAAAAAABbEgD8AAAAAAAAAAAAAABbEgD8AAAAAAAAAAAAAABYUYnYAAIBTBYVKydPMjsI1QaFmR+BfAv0YCPT2AwCsdy7gPOBeVvv7S+4/BtgHAAAAAABnMOAPAD7IZpOCw8yOAmYK9GMg0NsPAOBcEOj4+7MPAAAAAADOYUp/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsiAF/AAAAAAAAAAAAAAAsKMTsAAAAwKkcDsleZnYUrgkKlWw292wr0NsvWW8fuLv9AIDAZrXzoEQuIJEPkg8BAAAAMAMD/gAA+CB7mfTtXLOjcE3yNCk4zD3bCvT2S9bbB+5uPwAgsFntPCiRC0jkg+RDAAAAAMzAlP4AAAAAAAAAAAAAAFgQA/4AAAAAAAAAAAAAAFgQA/4AAAAAAAAAAAAAAFgQA/4AAAAAAAAAAAAAAFgQA/4AAobdLjkcxr+P/wYAAAgUDge5EAAACGzkQgAAwB+FmB0AAHhKaqa09aB0IFM6cEzKKTqxLLdYen6ZlBArJbWQurWWgrgECgAA+JGiUmnjfiklw8iL0nKkCruxLLdYevxTIxdq21Tq21ZqFGFuvAAAAO7kcEi7j0jb0/7XN5QpFZQYy3KLpb8vluJjjXyoa2spsblks5kbMwAAQF0w4A/Ar1TYpfX7pFU7jM7t09l12Pj5dpvUJFIa1sn4iWrgnVgBAAA8IS1b+n679OteqbSi5nLpOcbPmr3SR+uk3gnSWV2kDs29FioAAIDblZRLv+w2+oYO59ZcLr9E+j3N+Pl6qxQXIw3vJA3pKIXRaw4AACyE1AWA30jPkf7zo7T/mOvrZhVKn22UvvtdumKw1Ket++MDPG3j7hW65+XkKq+Fh0Upvnlnjeo/SZcMv0PBwf596g/0fRDo7QcCXXmFtHSz9M1vkt3FaWqPXzS5fp90RkfpkgFSeKhn4gQ8KdDPhYHefol9AAS63Yel//wkHct3fd30HOmDtcaFk9ecISW2cH98AAAAnsA3HAB+4bvfpY/Xn5imtq7yS6Q3V0r920lXn8EV3bCm5L7XaHDXsXLIoay8dH3969t6+ZPp2n9km+6+/BWzw/OKQN8Hgd5+IBAdzpEWrDSm7a+vn3Ybd7r9aTgd3bCuQD8XBnr7JfYBEGjsdqNfaMXv9d/W0Txp3tdScjfpwr48AhIAAPg+hrIAWJrDIX26wbiTzZ3W7ZOyC6UpydzdBuvp1Ka/Rg24rvL/44fdphtnd9UXv7ymG0b/U40b+v9czYG+DwK9/UCgSc2UXlp+4pm07pBdaGzz/50ldWvtvu0C3hLo58JAb7/EPgACSYVd+tdqacN+923TIWn5NiMnmjhMCmbQHwAA+DBSFQCWtnSL+wf7j9tzVHrtO6nsNM++BawgIixKXdudIYfDoUPHdpsdjikCfR8EevsBf3Y41/2D/ceVVUhvfC/tPuL+bQPeFujnwkBvv8Q+APyVwyEt/NG9g/0nW7dPWvSzUQ8AAICvYsAfgGXtSJe+3OTZOnYd9nwdgDek/a9TMzoy1uRIzBPo+yDQ2w/4owq79PYqzwz2H1dWYdRRWOq5OgBvCfRzYaC3X2IfAP7ox13S2hTP1vHLHuMHAADAVzGlPwBLKimT3v3J9fWmj5aiI6TcIunpL51bZ/k2qVeC1L6Z6/UBZiguK1ROQYYcDuN5pZ/8+LJ2HVyvrgmDFd+8s9nheUWg74NAbz8QKL7eKh3Mcm2duuRCOUXSR79K1w51PUbALIF+Lgz09kvsAyAQZOZL/13n2jp1yYUk6cNfpS6tpMaRrtUHAADgDX4/4J+RkaHZs2dryZIlSk1NVfPmzTVhwgTNmjVL06ZN0xtvvKF58+Zp6tSpZocKwAVfbpYyC1xfLzrC9S9nDocxfdvMsZLN5nqdvsDhkNKypawC4zl0jSOlNk2s2x6c3ttfPaS3v3qoymsjek7QHZe+YFJE3hfo+yDQ2w8EgqN50lebXV+vLrmQZNzVNihR6tTS9XV9RUGJlJoplZRL4aFS26bGb/inQD8XBnr7JfYBEAiW/Gqc111R11youEz6cK10w1mur+sr7A5p/zEpv1gKsklNG0kto82OCgAAuINfD/hv2LBBY8aMUXp6uqKiotS9e3cdOnRIc+fO1e7du5WZmSlJ6tu3r7mBAnBJSbkxZZs3pWVLOw9LneO8W299lVdIa/ZKq3caHdwna9VYGtFJGtxRCg02JTx4yLghU3RW7ytUbi/T3rTNWrTiCWXkpCosNLyyTGl5iW57tr+S+12riefeX/n67HcnKzv/sGb9+QszQncbZ/bBP9+5WnaHXQ9Meq/ytdzCTN00p4emXDhH5/afaEbobuFM+zfvWam/vT7mlHXLK0plt1do6ewKb4YMwEWrdxidtt60crs1B/wPZErfb5fWp0jl9hOvNwiRBnWQzuxKZ7c/CvR8KNBzIYl8CPB3GXnS1lTv1rkp1ZhVILahd+utr+Iyox9t9Q4pI7/qssTm0ojOUt92xkUAAADAmvx2wD8jI0Pjx49Xenq6ZsyYoYceekiNGjWSJM2ePVv33XefQkJCZLPZ1Lt3b5OjBeCKdSnGlxVvW73DWgP+RaXSG98bFypUJy1ben+NtHav9OeRUlQDb0YHT2rTrJP6dx4lSRrcdYx6dhihu18coec+uEX3X/euJCkspIFmXv22Zrx4ls7odqE6tu6j1Vs+0k/bPtEr0+twy6iPcWYf3DHhRU15qpeWr1+oc/pdI0ma9+Ht6tFhhOU7uJ1pf6/EM/XJP6v29mTkHNLtcwfq4mHMfAT4stJy6WcTniO7OdWYLahJlPfrrqsfd0nv/1L9xREl5dKqnca+vH6E1DPe+/HBcwI9Hwr0XEgiHwL83eqdxgyG3uRwSD/ski7s6+WK6yGrQJr/rZSeU/3yPUeNn00HpOuGSSHcEAIAgCUFmR2Ap0ybNk2pqamaOnWq5syZUznYL0kzZ85Unz59VF5ervbt2ys6mts5ACtZY0IHt2R0cptxoUFdlFecfrD/ZHszpNdWSGXcvOK3erQfplH9J2nFxkXamvJD5eud4wfo8rPv0ex3/6Sj2al6dvEU3XHpC2oW09rEaD2jun0QHRmrGVe8ruc/mqqMnEP6ftNibdq9QndNeNnkaN2vpmPgZKXlJXrk7Qnq2X6Erj33b16OEIArfjtoXNjnbQ6H9GuK9+utq3UpxmOZapsJoaxCenOltDPdK2HBJIGeDwV6LiSRDwH+xOEwbl4wg1l9UnVRUCK9tLzmwf6Tbdgv/edHY98CAADr8csB/23btmnRokVq1qyZHnvssWrLDBgwQJLUp0+fGrczZswY2Ww2Pfzww54IE0Ad2O2nTk3vtbod5tXtqnX7nBvsP25vhvTzbs/FA/NNHPWAgoKC9dbSB//w+t8VHBSiW5/tpz5JyUrue7VJEXpedftgUNfROrv3lXpi4XWat+Q2Tb/iNUVHNTUxSs+p6Rg47rkPblFpWbHuvWqBdwMD4LJ9x8yr+4CJdbuirEL6YK3z5Svs0uI1dHL7u0DPhwI9F5LIhwB/kV0o5RWbU3dOkZRTaE7drlqxTTqS63x5V/uSAACA7/DLAf+FCxfKbrdr4sSJatiw+ocqRURESKp5wP+9997Thg0bPBUigDo6nCuVmngn+gGLDPiv2uH6Oqt30Mntz9o0S1Jyn6u1ftc32rxnZeXrIcGh6t5+mHIKMnTBwBtMjNDzatoHU8bP0cFjuzSo6xgN6TbOxAg9q6b2S9KHq+bq522f6pHJHyk8LNKkCAE4y8wLEPdbJBfauN+4q80Vh3OlXUc8Ew98Q6DnQ4GeC0nkQ4C/2G/yBYhW6Bsqr5B+rMONHXXpTwIAAObzywH/5cuXS5KSk5NrLJOamiqp+gH/3Nxc3XXXXZozZ45nAgRQZ85MQ+ZJadnm1u+Mwzl1+/KblmOdGQxQN9ece7+CbEF666sTdzRt3rNSX61doIuHT9WLH9+pkrIiEyP0vOr2QURYlFrFJqpDXC8TI/OO6tq/Yde3eu2z+/TApPcVF9vevOAAOC3NxHwoq0AqscAjjn6p43S7dV0P1hHo+VCg50IS+RDgD8zuGzK7fmdsOyTl12EWhC2pUqGLF00CAADz2RwO/7ufMyEhQampqVq/fr369u17yvLy8nK1atVKGRkZ2r17txITE6ssv+OOO7R582atWLFCNptNDz30UJ2m9S8oKKicYaBVq1YKCvLL6ysAr2o/8CoNvOKpapdNHy1FR5x+/ehwKSjIeDRA7mm++OQWSU9/eerrBzZ9op//fasLEXtfi05n6qw/L6zTuj+8daMO/bbUzRH5jrF/W6PImFYqzEnT57MGmR3OaYWFROiVqTs9WkdRSb5ufrqPLjtrusYPvVUzXj5bneMH6taLnqnT9qY830ml5e7pIPdG+08246WROqPbhbpi5D113oY72y95Zx+kZ6Zo6txBuu68h3TJ8Kn12pa72w+gZpc8ukMhNdx9Wls+VN9cSJI+ebSvSvIzXIjY+86fsULRLZJcXu/IrlX6/lX/nM79OKvkQ97KBdyZD1kxFzjOHbmQZM18kHwIsJ6eo/+qrsm3V7vMXbmQVHM+tO2b57T1qyddiNj7Og6drH6X/KNO6y59Kll5R7z3fdzbrJILAQACT1xcnNaudeH5hCcJcXMsPqGgoECSVFRU/ZesRYsWKSMjQ40aNVKHDh2qLFu7dq1effVV/frrr26NKS0tza3bAwJVTMeab0GPjpAaOznzYlCQ82VPVlRYqIMHD7q+ohcFNT5a53WPHcvw+fbVR0VFReVvX29neKjnpxGd/8kMxcV20EXDbpPNZtO9Vy7QLc/21fCel6p34lkuby/t0CEVl7nnYYbeaL+7ubP9kuf3QXFpoR5acImGdr+o3p3bkvvbD6Bmdru9xmXO5kN1zYUkKe3QQRXl+faAf3l5eZ3WKy4u9vkcob6skg95KxdwZz5ktVzAE6yWD5IPAdbULq/mB9N7IxfKzc3x6XOoJDXNzqrzuocPpyvrkG+3rz6skgsBAOAKvxzwj4uLU1ZWltatW6ehQ4dWWZaWlqZ7771XktS7d2/ZbLbKZRUVFbr55ps1depU9ejRw60xcYc/4B4NI8NqXJbrxI0UrtzVVp3QYIfatGlTe0UmigwplSQ5HI4qn3Gnc7xsRHCJz7evPoKDgyt/+3o7w0Jqma6inn75/Qut2LhIr0zfVHmctG7WUTeOeVxzFt2g+TM2KSIsyqVttmrd2q13dFmNO9sveX4frNz8gfakbdTBjB1asXHRKctfv+c3tWjS1untubv9AGpmLyuUwhtWu6y2fKi+uZAkNW/aWBXRDZyI1Dxl+YcldXV5PXvxMZ/PEerLKvmQN3IBd+dDVssFPMFq+SD5EGBNEQ2Ca1zmrlzodNuKDA/16XOoJIWpbhcf2SvKFRNhU6SPt68+rJILAQACT1xcXJ3X9csp/adNm6Z58+YpISFBy5YtU+fOnSVJa9as0aRJk7Rnzx6VlZXp9ttv1/PPP1+53nPPPacnn3xSv//+e+VU/O6a0j8/P19RUa4NnAA4VXqO9PindV//4UuNK7izC6WHP3R9/Yv7S8nd6l6/tzyzVNrn4o13rRtL946VnLxGwJIeWiLlFEkxEdIjE8yO5vQqSqVv55odhWuSp0nBNV+T45JAb79kvX3g7vYDqNkLy6Sdh+u2bn1zodgo6cFL6la3N/26V/rXD66vd8coqWNL98fjS6ySD1ntPCiRC0jkg+RDgHdsOiC98X3d1q1vLiRJN50t9Yiv27reUl4hPfKRlFfLRQ1/1KetdMOZHgnJZ1glFwIAwBV+ecv5zJkz1bRpUx04cEA9evRQr1691KlTJw0ePFiJiYk655xzJEl9+vSpXCcjI0MPPPCAHnzwQZWXlys7O1vZ2dmSjGkds7OzTzt1JgDvaNFICjNxbpKEWPPqdsWITq6vM7yzfw/2AwDgL8zMR6ySC/VpKzV0cRKCuBgpsYVn4gEAAO5jdj4S39Tc+p0REiwNTXJ9vbr0JwEAAPP55YB/fHy8Vq5cqXHjxik8PFwpKSmKjY3V/Pnz9dlnn2nHjh2Sqg74p6amKi8vTzfffLOaNGlS+SNJTzzxhJo0aaL9+/eb0h4AJwQFmffFLsgmxVukk7t/e6lLK+fLd2whDUn0WDgAAMCN2jYzsW4LdHBLRif3FYMlZ69lDA76X3kufgQAwOc1jjSm5jer7hiLPHFlZDfjgkZnDewgJfn5TEcAAPgrE++T9axu3brp009Pnfc7Pz9fKSkpCgoKUs+ePStfT0pK0rfffntK+eTkZF1//fWaPHlyvZ6dAMB9BnWQdh/xfr29E6TwUO/XWxfBQcYUbG9+L21PP33Zji2kG88yOsYBAIDv695aigyTCku9W2+QTRrQwbt11kefttI1Q6V3f5Lsp3mQXViINHmEkRMBAADfZ7NJAxOl5b95v+5BFsqFIsOkW86R5n8rpWWfvuyA9tLVQ7j4EQAAq/LbAf+abN26VQ6HQ507d1ZkZGTl6w0bNtTIkSOrXad9+/Y1LgPgff3bS/9dLxV5uZN7eGfv1ldf4aHSlGTp1xRp9Q5p37Gqy+NjpRGdpYHtGewHAMBKwkKkIR2lb7d5t96e8cZdbVYyOFGKbyJ9v93IicoqTiwLDzWWn9lFat7ItBABAEAdDO8kffubdJpr+tzOZpOGWWzK+8aR0l3nSz/tllbvlI7kVl3eOc7Yl70SjIs7AQCANQXcgP/mzZslVZ3OH4C1hIVIw5Kkb7x4JXfrJlKSBe/6Cg4yOrIHJ0rpOdLcr4y7ARs2kGaM5sptAACsangnYxC7wu69Os/u6r263Kl1E+nqM6SL+kn//FgqKJWiwqQHL5UaBNw3YgAA/EPThsYg9aYD3quzT4LUJMp79blLg1Ajjzuri5SaJb30zYm+odvONTs6AADgDgHXveHqgL/D4c3rRAE46/xe0ob90rF8z9cVZJOu8YNpzeJipND/3ckfHGT99uCE0rJi/fPfV2vf4d/UIDRCjRu20LQJL6lNs6Qq5dIy9+rRty9Xhb1Cdnu5Elp2092XvaJGkU2qlJv97mR9/etb+vD/stQworEXWwJXpB7dqScXXa+cggxFhcfo3qsWqH1cjypl7Ha7Xv1sptZu/1IV9nL1aD9c0ya8pNCQMEnST799qlc+vUcVjgp1iOule69aoKjwaK3ZvlSvfXZf5XayC44otlGcXrprnVfbCKBmzRpJF/SSPt/onfrO6Gj9Ke8jG5yY1SgkmMF+f+DMufDLNW/qw5XPVf4/IydVvRLP0sPXL5EkvfvtE/p67VsKCQ5TWGi4br94rrq2HVxlG28tfUjvLPs/vXTXeiW16evxdqFuXvhomn787WMdztpX49/qt5Qf9dySWyVJFfYy9Ww/QrddMldhIQ20cfcK/e21MYpv3qWy/Nw7flSDUIs8rBsIQJcOkHakS8Vlnq8rIsyoz8psNikhtmrfEAAA8A8B18XBHf6Af2gQIl1zhvT8MtfWyy2q+tsZ53aXEpq6Vg/gbWOHTNHgrmNks9n00ern9fT7f9ZTt66oUqZpdGs9c/uqyk7LF/57p97++mHdfvGJTvCVm5coJDjUm6F7jDOdvs6Uu25We4WGNFBYiLHfrjnnrxrZ9yoPR1+75z64WWOHTNEFgybr+02L9eSiyXrhzjVVyny55nXtOrhOL961TiHBoXpm8RR9uOo5XTnyXhWV5Oup92/UU7d+p7Ytumreh1P172WPasqFT2pQlws0qMsFldv5+xsXqk/HZG83EUAtzu0ubT4gHch0fp265EKNI6WL+7sWG+ANzpwLRw+6QaMH3VD5/5vm9NS5/SZKknYd3KBPfnhRr92zVRENGmrZr+/o+Y+m6vlpv1SW/33/L9qeukYtm7TzTqPcyB25UG7BMd07/8TtnyVlhUrL3KP3Hzqi6MhYD7fANWf2vlxXjpypu18cUWOZxNZ99MKdaxQSHCq73a7/e/syffLDi7rsrLslSfHNu2j+9A1eihhAfTWJki7pL737s/Pr1CUXkozB/hiLPdoIAAAEjoC7jm/58uVyOBwaN26c2aEAqKekltI4F6/defpL6eEPjd/O6Bxn3D0H+LKw0HAN6TZWtv9N29Ct7Rk6nJVyarmQBpWD/RX2ChWXFsimE1M9ZOUd1sLls3TL+Ke9Erenndn7cj1z26paO+idKXf/xEWaP32D5k/f4BOD/Vn5R7Qjda1G9b9OknRmr8t0NPuADmbsqlJu96GN6tdplEJDwmSz2TSo6xgt+/VfkqRffv9CSa37qW0LY47ui4bdpm83LDylroycQ1q/8xuNGjDJw60C4KrgIOlPI6SG4c6v42ouFBYsXT/CuKsN8CXOngtPtm3/z8rOP6KhPS6SJNlsNpXby1RcWiBJyi/OVrOY+MryxaWFev6jqbrrsvkebInnuCMXio5qWpkDzZ++QeOGTNHgLmN8brBfknonnqXmjeNPWyY8LLLy4tbyilKVlBVV5tAArGlIR+Mxhs5yNReSjJmOBnVwPTYAAABvCbg7/AH4l1E9pLIK6ast7t92xxbSjWedmPoVsIoPVz2noT0urnZZWXmpps4drCPZ+9ShVW89OvnjymVPL75JN42brcjwRt4K1aN6J57l1nK+5Gj2AcVGt1JwsJHK2Ww2tWjSVkey91d5lEOn+AH67Kf5unj4VDUIjdD3G9+rvBjkSPb+Kh37LZu0V2Zumioqyiu3K0lfrV2gwV3HqklDi8/lDfip5o2k286RXlwu5Re7d9thwdKNZ0sdmrt3u4A7OHsuPNmXv7yucwdMqhzw7di6jy47825NeqyDGkXGKjS4gZ6+7fvK8q9+NlMXDr1VLRoneL5BHuCJXOiLNa/rxjGP1TUkn5CemaKHFlysQ8d2a0i3cRo/9LbKZWmZu3Xrs/0VZAvWBYNu0EXDbjvNlgD4AptNumqIVF4hrdvn/u0P7CBdOZjHIgIAAN8WcHf4A/AvNps0to902cATzyBzh4EdpJuTpQb+MbM5Ash/vpmlQxm7auyIDQ0J0/zpG/Teg4fVtnlXffqTccfa5z+/phaN26pf0jneDNcyZr/7J930VC899d6Nys4/anY4Trvg/7d331FWVefDx7/3TmUGBhh6EZDepCkIigU71tiNJdGf0ViJimKMseQ1scUYu2JsMUYk1liiWAAFRQUBARtdQerQy8C0+/5x4+gERmbGW+bM/X7WYuHcU/azj7M4z93POXvvdTYDux3ByAcPYOSDB9CmWVfSwlV/3jMSiTBu6mMcMejcOEYp6adq3Rh+c2j071hpnAsXHQLdWsXunFIyFRZtYeLMZxj+g3va8rWLmDz7BZ64ej5jfr+UE/a/nD8+FZ3J55O5b7Fq3dcVlgNIdZ8t/oDNW9cxuMfRyQ7lJ2mZ34HRV3zKv65fQXHJdibPeQGAzm0GMObapTx42XRu/OWLvDrlId799F9JjlZSVaSF4cx9ossdxaouHwrBob3g9CEQdgRdkiTVcr7hL6lO2K8bdG0FY6bA4oKanycvG07ZG3r/+EyQUq307MQ7mDznBW4//22yM398ccGM9EwOG3gOf33uPE4dNopPF0xg9sL3+OiLV8v3Of/OPvy/s/9N5zb94x16tY24dwjfFszb6bYHL58R0zfx7rzwPZo3bkdJaTGPv/F7bh/7S24+9z8xO39NNGu0W4W38SORCKvWfUPzRu0q7BcKhfjFYTfyi8NuBGDCzGdo37IXAM0btWP63LfK9125bnGFNyUBZi18l6KSbezV7fD4d0rST9IsD644HN7+LDrzUVmk5ufatwsc0x+yffBRtVhV74Xfee/TZ2nfohftW/Qs/2zyrOfZvdUeNG3YGoDDB57D/S9dSnFJETPnj2fet9M58+YOAKzesJRrHzuSy04czZCex8S9f7uSyFzoO298/CiH7vmLCrlCkNXLqs+B/U5j/PR/MqzfaeRm55Vva9aoLcP6/5zZiyZxQN9TkhilpKoKh6P5S++28PQUWL2p5udqnhct9HdoGrv4JEmS4qlufEuTJKBFHow4FGZ+A+/PgwWrqn5sk/rRwe3BnSAnK34xSvHy3Lt3MmHmGG47/23q12u0031WrvuahrnNyM7MoaysjPdmPUvHVn0AuOb0f1bY99CrQjx8xaxKz5Vs91w6JWFtNW8cLRykp2Vwwn6Xcc7tXRPWdmUa129O5zYDeHv6Uxw+8GwmzX6epo3a7jCFcVHxNrYXF9IgpzEbthTwzPhbOfuImwAY2O0I7nvxYr5Z9SXtmnfn5Q8e4MC+p1U4/vWPH+Wwvc4mLezaJlIQpKfBEX2gfweY9BVMXQjbS6p2bFoY+reH/btBuyZxDVOKiareC7/zxtRHd5ixpmWTjoyb9jiF2zdTL6s+H33+Km2bdSUjPZNzj7yFc4/8fsakM2/uwI2/fInObfrFs1tVlshcCKBw+2benfUv7hsxNaHtxtq3BfNp0bg96WkZFJcU8f6cF9n9v/nwmo3LaVy/BeFwmK3bNvHh569WmBFCUjDs3gyuOhKmLoL358Ky9VU/tk1jGNo1OutjLGeRlCRJijcL/pLqlHAYBnSI/lm+Hj77FpashaVrYe0WiPz3bbfcLGibD20bQ+cW0elqw67HpoBavX4po18dSav8jlz50DAAMtOzuHfERzwx7nqa5LXmmCEXsHD5LB5//VoAIpEyOrcZwMXH3ZPM0Gu9wqItlJYWlz/4MGHGGDq3rh0zHlx24mj+PPZsxoy/mZzsPK465XEA/vLsrxjS81j26XUsW7ZtYORDBxIOhSmLlHH80N+Uv5WYk92Ay09+hBuf+BmlZSV0aNmbUaf+vfz8Wwo38P7sF3h45Oyk9E9SzbXIg5MGwtH9YNYS+KYgmg8tXw9FpdF90sPQoiHslg+7NYG+u0H97GRGLVVfVe6FAEtWfcWCZTP50/9VnKFnaO/jmbtkKhffvRcZ6VlkZ+ZyzelPJ7wfQTDx07F0bNWXds27JzuUSt313K/56MvXWLtpBdc8cjg5WQ34+2/nV/h9mDl/PC9NvodwOI3SshL6dz6YMw+5DoBJs5/n1SkPkhZOp7SshP37nMzhLukgBVJmevSljn06w6LV8NWK6LjQkrWwqRAiRKf+z6sXHRvaLT86LtShaXQqf0mSpKAJRSKRnzDZo37Mli1bqF+/PgCbN28mNzc3yRFJqS0SiU5vGw6l7he4G16ADYXQsB784YRkR5N4Qep/aRFMCFgtftgISMuMzbli0f8fDvrm5TQpH/SFioWAH9tv+ZqF/OHJEykrKyVChFb5HbnouLtpmd9hh/Zi2X8I3u9ArPsvKT7KyqKD3GkpuhZtkHKBeAnKNQjafRBqXy4Qi1zoO7+5bx+G730eR+yiAF7b8sFEMx+Saj/HhoKTC8RLqvdfklQ3+Ya/pJQRCkFain6Zk1LRZSeNrnTbyJMfqdJ+rZp05KHLZ8Q0LklKpnCKFvqlVBSLXOg7d1/yQUxikqRkc2xIkiTVRQ73SJIkSZIkSZIkSZIUQBb8JUmSJEmSJEmSJEkKIAv+kiRJkiRJkiRJkiQFkAV/SZIkSZIkSZIkSZICKD3ZAUiSpB2FM2DYiGRHUT3hjNieK5X7/935gnQNYt1/SVJqC9p9EMwFwHzQfEiSJElSMljwlySpFgqFIC0z2VEkT6r3H7wGkqTU5n3Qa5Dq/ZckSZKkqnJKf0mSJEmSJEmSJEmSAsiCvyRJkiRJkiRJkiRJAWTBX5IkSZIkSZIkSZKkALLgL0mSJEmSJEmSJElSAFnwlyRJkiRJkiRJkiQpgCz4S5IkSZIkSZIkSZIUQBb8JUmSJEmSJEmSJEkKIAv+kiRJkiRJkiRJkiQFkAV/SZIkSZIkSZIkSZICyIK/JEmSJEmSJEmSJEkBZMFfkiRJkiRJkiRJkqQAsuAvSZIkSZIkSZIkSVIAWfCXJEmSJEmSJEmSJCmALPhLkiRJkiRJkiRJkhRAFvwlSZIkSZIkSZIkSQogC/6SJEmSJEmSJEmSJAWQBX9JkiRJkiRJkiRJkgIoPdkBSJKkHUUiUFac7CiqJ5wBoVBszpXq/YfgXYNY91+SlNqCdh8EcwEwHzQfkiRJkpQMFvwlSaqFyophwj3JjqJ6ho2AtMzYnCvV+w/Buwax7r8kKbUF7T4I5gJgPmg+JEmSJCkZnNJfkiRJkiRJkiRJkqQAsuAvSZIkSZIkSZIkSVIAWfCXJEmSJEmSJEmSJCmALPhLkiRJkiRJkiRJkhRAFvwlSZIkSZIkSZIkSQqg9GQHIEmKn+3F8O06WLIWVmyArUXRz7cWwcQvYLd8aJMP2RnJjVOSJCkeyiJQsCmaCy1dWzEXenUmtM2P5kP5uRAKJTVUSZKkuNi6HZaugyVrYNWm7/OhwiKYPDeaC7VuDBlpyY1TkiTVnAV/SapjIhFYtDr6pe3TJVBatuM+xaXw0vTof4dDsMduMLQLdG7hYLckSQq+Tdvgw/nwwTxYt3XH7cWl8PZn3//cPA/27QIDO0JOZuLilCRJioeyMvhiGUyeB18ug8hO9ikqheemRv87Iw327ABDu0YfiJQkScFiwV+S6pCla2HsR9G32KqqLAKffhP907oRnDYY2jWJW4iSJElxU1QCr8+C977a+UOPlVm1EV78BF6bCYf2hoN6QpoL4EmSpAD6ajn862NYs7nqxxSXwocLon+6tIBT94amDeIXoyRJii0L/pJUB5SWwZtz4K050QJ+TS1bD38dBwf1gOF9IN3p3ALl0wUTufKhYRU+y87MpW2zrhwy4Cx+tu+lpKXV7Vt/ql+DVO+/pNS2aDU8PQVWb6r5OYpK4bVPYdYSOH0ItGoUs/CUIKl+L0z1/oPXQFLq2lYM/54OU+b/tPPMWwm3vwZH9YP9ukVnhpQkSbWb33AkKeCKSuCx9+DL5bE5XyQC73wOX6+BXx0A2RmxOa8SZ1i/nzOo+5FEiLBu0wre+uRJHnrlCr5Z9QWXn/RwssNLiFS/Bqnef0mp55PF8M8PftqDjz+0ZC389Q049wDo1io251Ripfq9MNX7D14DSallUyE8OD76IkcsFJVGZz9ashZ+PtiZjyRJqu28VUtSgJWUwiPvxq7Y/0PzV8LoCdEHChQsXdoM4JA9z+TQPc/ilAOv4p5LP6RZw7a8/vEjrN+8OtnhJUSqX4NU77+k1DJ9MTz1fuyK/d8pKoW/TYS5K2J7XiVGqt8LU73/4DWQlDo2b4P734ldsf+Hpi2KzqAU6zxLkiTFlgV/SQqw56bGdxB60WoY82H8zq/EqJeZS/f2g4lEIixbsyDZ4SRFql+DVO+/pLrrmzXw1AcQrzHokjJ49F0o+AnLBKh2SPV7Yar3H7wGkuqmsgg8PglWbIhfG58shnGz43d+SZL00zmlvyQF1OffwofVHKe64gjIqwcbC+HON6p2zIyvoV876Nuu+jGq9lj+30HNvJz8JEeSPKl+DVK9/5LqnpLS6r9xVpNcaHsJPPMRXHSwa9gGXarfC1O9/+A1kFT3TPoKFqyq3jE1yYfemgN7tIW2/vMpSVKtZMFfkgJoWzGM/aj6x+XVg0Y51T/u2Y+hcwvIzar+sUq8bcVb2bClgEgkul7pK1MeYv63M+i+2yDaNuua7PASItWvQar3X1JqGDe7+m+z1TQXmr8SPpgHQ/0nNDBS/V6Y6v0Hr4Gkuq9gE7w6s/rH1SQfKovAP6fAlcMhzTmDJUmqdVKi4F9QUMDtt9/OCy+8wNKlS2nWrBknnHACN998MyNGjOCxxx7j3nvv5ZJLLkl2qJJUJR8ugA2FiWtv83Z4fx4c1jtxbcZKJBJd9uD9edGn1wE2bos+MDG0K7RpnNz44uHJN2/gyTdvqPDZ0N4ncOnx9ycposRL9WuQ6v2XVPdtLYJ3v0xsm2/NgSGdgznIvX4rTJkfnbnpu3xo8/bourx920FGWnLji4dUvxemev/BayCp7hv/BRSXJq695eth9hLo1z5xbcZKaRnMWVpxbGjTNnh5BuzbBZrUT258kiT9VHW+4D9z5kyGDx/OihUryM3NpWfPnixbtox77rmHBQsWsHbtWgD69euX3EAlqYrKIvD+3MS3+8E8OLhnsAa5CzbBo+9Fv5T+UCQSHfSeMh96toaz9oV6mUkJMS6O2vt89u9zMiVlxSxaPpuxE2+jYMNSMjOyy/cpKtnORXcNYFj/0znj4GvLP7/9mbNZv3klN//q9WSEHjNVuQZ/euo0yiJlXHfWv8o/27h1Lefd0Yvzj76DgweckYzQY6Iq/Z+9cBK/e3T4DseWlBZRVlbKuNsTOHIkSdU0dSEUJfifqQ2F0YHiIC1zVBaJvvk38Ysdlz4oLYOnPoCXPonmQt1aJSXEuEn1fCjVcyEwH5JUt20rjj64l2iT5wWv4L+4AJ6YFH0A8ofKIjD+c5jwOQzuDCcNDNaYlyRJP1Snb2EFBQUcc8wxrFixgpEjR7J8+XKmT5/OihUruO2223jttdeYOnUqoVCIPn36JDtcSaqS+Sth9abEt7t+K3yxLPHt1lTBJrj7zR2L/f/r82XwwDuwvTghYSVEm6ZdGND1EAZ1H86pw0Zx0zmv8NXSqdz9/AXl+2SmZzHqtCd55p2bWbDsUwDen/MSH37xClec/GiyQo+ZqlyDS094gM8Wv8/4GWPKP7v3xYvptfvQwA9wV6X/e3Tcj1f+tLnCn8dHzSUvtym/PPymJEYvSbs2ZX5y2n1/XnLarYlIBP71UXQg+3+L/T+0eTuMngCff5u42BIh1fOhVM+FwHxIUt02bREUlSS+3fkrYeXGxLdbU4tWw/1v71js/6EI0dzyiUlQVpaw0CRJiqk6XfAfMWIES5cu5ZJLLuGOO+6gQYMG5dtGjRpF3759KSkpoUOHDuTl5SUxUkmquvkrk9f2vCS2XR2RCDw+KTo9W1UsWQsvfBLfmJKpV4d9OGTAWUz8dCyfLf6g/POubffkpAOu5PZnfsHq9Uu567nzufT4+2nasHUSo42PnV2DvJx8Rp78KPe9dAkFG5bx3qznmLVgIped8FCSo429yn4HfqioZDt/ePIEencYyukH/y7BEUpS1W3aBis2JKftRaujb8YHwUcLo8tAVUVZBJ6YXPXcKYhSPR9K9VwIzIck1S3JHBtKZtvVsb0EHnm36ssezF4aXSZBkqQgqrMF/y+++IKxY8fStGlTbrnllp3us+eeewLQt2/f8s8mTpxIKBTa4Y9T/kuqLZasTV7bS5PYdnUsWAXfrqveMdMWweY6PMh9xiHXEQ6n8fdx1//P578nLZzOhXf1p2/nYQzrd1qSIoy/nV2Dgd2P4IA+p3DbmDO594WLuOLkR8jLbZLEKOOnst+B79z9/AUUFW/jqlOfSGxgklRNS9Ykr+3iUliZpIcNqiMSgXe/rN4xRSXwYZJmTkiUVM+HUj0XAvMhSXWHY0O7Nn0xbNlevWMmzw3Ow52SJP1QnS34jxkzhrKyMs444wzq16+/033q1asHVCz4f+f+++9nypQp5X/+8Y9/xDVeSaqqZH6xWro2OoBc202eW/1jSsvgoyq+BRdEbZp2Zljf05gx/x1mL5xU/nl6WgY9O+zDhi0FHL7XOUmMMP4quwbnH3MH366Zz8Duw9m7x1FJjDC+Kus/wIuT7+GjL17lD2e/RHZmTpIilKSqWVrNh/piLZkD7FW1aPWulzXamQ/m1e2pbFM9H0r1XAjMhyTVDYVFsGZz8toPQi4ENRsbWr8VPqtjyxxJklJDerIDiJfx48cDMGzYsEr3Wbp0KbDzgn/Pnj0ZPHhwzOLp0qUL4XCdfb5CUgKdeMvXhMJpO912xRGQV6/yY/Oyv//7xuMr329jIdz5xo6fby+B9h06UlZaVI2IE++IUZOp36RDtY974MlX+OU/L4x9QDWQmV6Phy+J7ULBPz/4WibMHMPf37yeOy6YAMDshZN4c9oTHLfvJTzw8m94qNNMsjJ+5JfoR3Tp2oWiksKYxBqP/sPOr0G9zFxa5Xdk95Z7/KRzx7L/kLjfgZnzJ/DIa1dz869ep2V+hxqfO9b9l6TK9D3mRroM/dVOt8UqF4LK86FrrruJue+NrmK0ydF56Ln0O+YP1T5u3Vbo0rMf2zcXxCGq6klkLhCrfCiouUCsciEIbj5oPiQpSHLz2zP86vcr3R7vsaGvFiylbdvYjZvHQyicxom3fF2jY6+64W4+e/PPMY5IkqRda9myJdOmTavRsXW24P/119Ebevv27Xe6vaSkhPffjyZGOyv4x9ry5cvj3oakFBAKVVrsh+gXukZVeBklHK7afjuzYtVqircl8VHyKgilZdXouJKyMN9+Wzse5c7OqP7/oL6dDuStP1c+BUP7Fj0Yd/v3i9cVbt/Mn8eezbnDb+WYIRcy8qEDeOz133HhsX+tUczLly1jW/HWGh37v2rSf6j+NYilWPYfEvM7sGLtYv741Cmcd/Sf6dvpwJqEWS7W/ZekynQprHxu1kTkQpu3FNaafKEyrQuLa3xswdqNbFyd/P4lKheIZT4UxFwg1oKYD5oPSQqaxmU7n832O3HPh0JptT4Xysj+8Wv0Y7YVldX6/kmS9L/qbMF/y5YtABQW7vzJ6rFjx1JQUECDBg3Yfffdd9h+6qmnUlBQQJMmTTj22GO59dZbadq0abViyMnJYfPmzQwdOpRVq1YRCoWq3xFJ+h9lJUWE0zN3um3jLl4mycuOfqErK4ONP7Je/Y+dp0WzJkTKGlYh0uQpLdpSo+PSIkW0adMmxtHUTGZ6zd6yr47Rr4ykZf7uHLvPRYRCIa465QkuuKsf+/Y+nj4d96/2+Vq1bh3TN7qCJpb9h/hfg21FW7nhiZ8xpOex/GzfS37y+WLdf0mqTL3sjEq3xSoX+rFz5eZk1Zp8oTL1Mmv+3TO/YQ4NMpPfv0TlArHMh4KWC8RD0PJB8yFJQZTTuPGPbo/72FBZca3PhQiFKCstIZxW/fJHZnpZ7e+fJKlOatmyZY2PrbMF/5YtW7Ju3TqmT5/OkCFDKmxbvnw5V111FQB9+vSpUIhv2LAhV111Ffvvvz/169dnypQp3HLLLXz44YdMmzaN7OzsKscQCoXIzc1lxowZsemUJAF//DcUVPKC/c6mWvuhG4+PPr29cRvc+GL1287LhiXfLK7+gQn24ifw7pfVP+53Fx/PXnfsYn7fBCktggn3xO/8H3/5OhM/HcvDV8wqvw+2btqJc4ffyh1jz2H0yFnUy8yt1jnnzZ1H2s6fRam2ePc/HmLZf4j/NZg0+3kWLv+UbwvmMvHTsTtsf/TKz2neuF2Vzxfr/ktSZd79Mnqv35l450IAf73tBvq1u6FmBydIwSb448vVP659E1g0b07sA6qBROQCsc6HgpYLxEPQ8kHzIUlBVFwKV4+FskomM4l3PtSnezv+9t+lcmuzhyfA58uqf9yjfxlJuyYjYx+QJElxVGcL/occcghffPEFt912G4ceeihdu3YFYOrUqZx11lkUFETXJOzXr1+F4/r370///v3Lfz7wwAPp3bs3xx57LGPGjOGcc85JWB8kaWfa5lde8E9E20Gwb5fqF/xzs6Bf1cfyAm9Q9+G8dNP6HT4/bt+LOW7fixMfUJL95cKJyQ4h4Q7d8ywO3fOsZIchSdW2W5LzkWS3XxVNG0D3VvBlNVeW27drfOKprcyHvpeKuRCYD0kKpow0aNkIlq1LTvtByIUAhnatfsF/t3xo1yQ+8UiSFE/hZAcQL6NGjaJJkyYsWbKEXr16sccee9ClSxcGDRpEx44dOeiggwDo27fvLs919NFHk5uby7Rp0+IdtiTtUjK/WO0WkC89zfOgf/vqHXNwT0hPi088kiQpdto0hmQtlpaTCfnVmwAnaQ7tBeFqXKhmDaqfP0mSpORI6thQQAr+3VtVP9bDescnFkmS4q3OFvzbtm3LpEmTOOqoo8jOzmbx4sXk5+czevRoXnvtNebOnQtUreD/nR9O/S9JydKrbRLbDtASZj8fDJ2aV23ffTrDsB7xjUeSJMVGVgZ0qfmydj9JzzYQlK+FnVrAqXtX7eGIRjnw62HRNwYlSVLtl6zxmbQwdGuVnLarKxyG8w6MPtRYFccNgD12i2tIkiTFTZ2d0h+gR48evPrqqzt8vnnzZhYvXkw4HKZ3710/tvfyyy+zZcsWBg0aFI8wJalaWjaEzi1g/srEttuuSbCmNctMhwsOgldmwIcLoKhkx30aZMNBPeHA7sEZvJckSdHle+auSHy7QwM25f3enaB+djQfWrFhx+2hEPRuAycOjBb9JUlSMPRqE713r9+a2Hb7tYvmFkGRVw8uOxyenwozv4GyyI77NK0PR/aFAR0SHp4kSTFTpwv+lfnss8+IRCJ07dqVnJyKoxpnnnkmHTt2ZMCAAdSvX58pU6Zw++23069fP0477bQkRSxJFQ3tkviC/75dEtteLGSkwQl7Rb+4TV0IX6+JFv6zM6BHa9ijrdP4S5IURL3bQsN6sKEwcW22zYf2AXr48Tu92kDP1rBwFUz/GjZvh7QQNMuDwZ2gcUCWKJAkSd9LC0dnK/zPrMS2G8Sxodws+MVQ+FkhfLQg+hBkSSnkZEHfdtC1ZfWWQZIkqTZKyYL/7NmzgZ1P59+rVy+efvpp7rrrLgoLC2nbti3nnXceN9xwA5mZmYkOVZJ2qs9usHszWLQ6Me21zYe9dk9MW/GQnQH7dYP9kh2IJEmKibQwHNMfnvogcW0eNyC4MwKFQtEp/ju1SHYkkiQpVvbvDlPmw7oEveXf979jUUGVVw8O3fVkv5IkBZIF//9xzTXXcM011yQ6JEmqlnA4ukb9n/8DxaXxbSstDKcPjv6t2uv+l0Yw5fOXWbnuax68bAad2/TbYZ83pj7Oi5PuLv+5YMNS9ui4Pzf+8gVWrF3ML2/tRIeWe5Rvv+EXz9O6aadEhP+TVaX/M+aP59H//JbC7ZsJhULs3f0ozj3yVsLhMMvXLuKmJ0+itKyUsrISdmvRg8tPfJgGOY0T3xlJUpXs2SE6NeucpfFva2hX6GKxXLVYUfE2/vTP0/h65edkZdSjUf3mjDjhQdo07Vxhv6lfjeOR164u/3n9llXkN2jJg5dNp7BoC6MeOoiikm0A5DdoxW9OfIiW+R0S2ZUaqWr/AZ6ZcBtvTfs76WmZZGZkc/Fx99C93aBA919SasrOgNMGw4Pj499WbhacNCi4Dz9KklTXWfCXpIBqnhd90+y5qVU/ZmNhxb+r4sg+0NqaZ623X5+TOOXAUVz+wNBK9zli4DkcMfCc8p/Pu6M3B/c/o/znelkNGH3FzHiGGTdV6X+Deo259oxnaNWkI0XF2xj18CG89cmTHD7wbJrkteavF08mK6MeAPf/+zc8+daNXHzc3ZWery64+uHDWLdpBaFQmJzsBlx83D10btM/2WFJUpWEQnDKIPhmTdVzm5rkQs3z4Jh+1Q5PtUBVHggEKCrZzuhXRjJt7jgy07Pp1Kovvz39qfLtU798g8fH/Z6SkiKyMnO47MTRdGpd+8YTjtz7fAZ1H04oFOKl9+/jzmd/xV8unFhhn4HdDmdgt8PLf/79Y0fTt9MwALLS63Hb+W+Tk90AgOff+ysP/Ps3/L9z/p2wPvwUVen//G9n8soHD/DIlZ9RL6s+b3/yFPe9dAn3jfg48P2XlJq6tYL9u8F7X1X9mOrmQyHg1L2hQXa1w5MkSQmSkgX/8eMT8NijJCXA0K7RL2hvzqna/ne+Ub3zH9AdDupZ/biUeH067l+t/b/45iPWb17FkF7HximixKpK/39YyM7MyKZT636sXLc4+nN6Vvm20rJSthVtoV5m/ZjHWdtcd9a/qF+vEQCTZ7/In8eezegrPk1uUJJUDXn14MKD4L63Ycv2Xe9f3VwoPxcuOhiyMmoWn5KrKg8EAjz6n98SCoV4YtRcQqEQazeuKN+2aes6bhlzBnde+B4dWvZi9sJJ3Pr0Gfztyiom4AmSmZHN3j2OLP+5R7vBPPfuHT96TMGGZcyY9w4jT3kMgHA4XF7sjkQibN22kVBAXuWsav9DoRAlZcXRXC+rPpu3radpw7ZAsPsvKbX9bABs2gYzvq7a/tXNh04cGF1aUpIk1V4pWfCXpLpkeB/ISIPXYlyjO6x39NyOcdVNb3z8KAfveRbpad9XMLYVbeHiuwdSFilln14/4/SDryUtnJbEKONn7cYVTJr1HDf936vlnxWXFHHJPYNYtf5rdm/Vh5vOfjmJESbGd8V+gC3bNhB9d0OSgqVVI7j0UHhoPKyP4Rq2LRvCBQdBo5zYnVOJVZUHAguLtvDGx4/y9O+Xlhd38/Nalm9ftmYBeTlN6NCyFwB7dNyPVeu/Yd7S6XRpOyA+gcfAi5PvZkiv4350nzenPcGg7kfSuH7zCp+PGn0Ii1bMplFuM245b1w8w4ybyvrfqXVfTtzvcs66ZXca5OSTkZbFnRe9V2GfutB/SaklHIYz94GsdPhwQQzPG4JT9obBwVjpT5KklOaKzJIUcKEQHNobLjkEmsTgheRGOdE35Y7sa7G/rios2sLEmc8wfNC55Z/l57VizHXfcv9vpnLb+W8zZ9Eknnv3L0mMMn62bNvIdY8fwykHjqLbbnuVf56RnsnoK2byr+tX0q5Zd179cHQSo0yc28b8gtP/uBt/H3cdv/35P5IdjiTVSMuGMOpIGNTxp58rBBzYHa44wmJ/KlhesIAGOfmMGX8zF929F5c/sB/T571Tvr1t0y5s3LqGzxZ/AMAHn73M1u2bWPHfWYJqo6ffuZllBfM5d/gtle4TiUQYN/UxjvhBPvid23/9NmOvW84BfU/l6Xf+FM9Q4+LH+r987SImz36BJ66ez5jfL+WE/S/nj0+dWmGfoPdfUmpKC0en3f/FvpCbtev9d6V142guZLFfkqRg8A1/SaojOreAUUfBuNnwwTzYVly947PSYXDn6Fv92U5bW6e99+mztG/Ri/Ytvl+vITM9i8z/vt2Vl5PP4QP/jwkznubUYaOSFWZcbN22id89cgT79DqOkw64Yqf7ZKRnctjAc/jrc+cFuv8j7h3CtwXzdrrtwctn0LxRdE7Gq3/+JABvTvs7f/vP1dx87n8SFqMkxVJOFpw+BPq1g//MgqVrq3+OTs3hqL7Qsfmu91VyVfU+tyulZSWsXPc17Zv35FdH3sr8b2dw9cOH8siVn9G4QQty6zXk+rOe49HXr2Hb9s30aD+E9i16khauncMpz068g8lzXuD2898mO7PyJ1ZmLXyXopJt7NXt8J1uD4fDHLn3eZx9exdGnPBAvMKNuV31f/Ks59m91R40bdgagMMHnsP9L11KcUkRGemZ5fsFtf+SUlsoBAM6QJeW8OpMmL4Yikurd4762XBANxjWA9Lr5oR/kiTVSbXzG6okqUay0uHY/nD4HjBjMXy8EJasrfwLXkYatGkMA3eHPXe30J8q3pj66A5vc63bvIoG9RqTnpZBUcl2Js95gU4/WPO+LijcvplrHjmCvbodwRmH/L7CtpXrvqZhbjOyM3MoKyvjvVnP0rFVnyRFGhv3XDqlWvsfttcvufv5C9i4ZQ15uU3iFJUkxV/PNtCjNXyzBibPg3krfnyq/yb1oXsrGNo1ujyAgqG697nKNG/cjnAozEEDzgCgc5v+tMzfnUXLZ9O4QQsA+nUeRr/OwwAoKtnOqf+vZYUHJ2uL5969kwkzx3Db+W9XWLZnZ17/+FEO2+vsCss3rd24goz0LBrkNAZg4qdj2b1lcPKhqvS/ZZOOjJv2OIXbN1Mvqz4fff4qbZt1JSM9M/D9l6TvNMiGnw+Ojg99vBA+WQzL10Np2c73z0qH9k2jb/P32c1CvyRJQWTBX5LqoO/e1h/cOfqFbtXG6Je7ohKIAJlp0QHtFg2j074p+O567td89OVrrN20gmseOZycrAb8/bfz+cuzv2JIz2PZp9exACxZ9RULls3kT/9X8S3uOYsm8+S46wmH0ygtK6Ff54M4/eBrk9GVGqlK/1+YfDdfLfmYbUVbmDz7BQD273syZxx8LQuXz+Lx16P9jUTK6NxmABcfd08yuxR3mwvXs61oa/kbbu/PeYm83CY0yMlPcmSS9NOFQtGB6/ZNoz9vKow+BLlpWzQ3Sk+DhvWgbX5spr1VcDXMbUq/zgcz7atx7N3jSJavXcSKtYto16JH+T5rNi6nSV4rAP759k3063QQbZp2TlbIO7V6/VJGvzqSVvkdufKh6MMJmelZ3DviI54Ydz1N8lpzzJALANhSuIH3Z7/AwyNnVzjHqvXfcNfzv6asrJQIEVo36cRvT38q4X2piar2f2jv45m7ZCoX370XGelZZGfmcs3pTwPB7r8k7UxuVvRN/WE9oKQUlq2Pjg8Vl0Zzpex0aNUYmjWAsEs6SpIUaKFIJBJJdhCSJKmi0iKYELB687ARkJa56/2qItX7D/G/BivXfc1N/ziZ7cWFhENhGuY24/yj76Bzm341Ol+s+y9JSm2xuA/+8IHAvJwm5Q8EAhUeCly+ZiF/efZcNmwpIBwKc+Yh17NfnxPLz3Pns+cxZ9EkSstK6NF+CJf87N6dvkEetFwgHswHzYckSZIkJZ5v+EuSJKWgFo3bc9+Ij5MdhiRJcXPZSaMr3Tby5EfK/7tVk47cccGESve94uS/xTQuSZIkSZJiyYmcJUmSJEmSJEmSJEkKIAv+kiRJkiRJkiRJkiQFkAV/SZIkSZIkSZIkSZICKBSJRCLJDkKSJFUUiUBZcbKjqJ5wBoRCsTlXqvcfgncNYt1/SVJqC9p9EMwFwHzQfEiSJElSMljwlyRJkiRJkiRJkiQpgJzSX5IkSZIkSZIkSZKkALLgL0mSJEmSJEmSJElSAFnwlyRJkiRJkiRJkiQpgCz4S5IkSZIkSZIkSZIUQBb8JUmSJEmSJEmSJEkKIAv+kiRJkiRJkiRJkiQFkAV/SZIkSZIkSZIkSZICyIK/JEmSJEmSJEmSJEkBZMFfkiRJkiRJkiRJkqQAsuAvSZIkSZIkSZIkSVIAWfCXJEmSJEmSJEmSJCmALPhLkiRJkiRJkiRJkhRAFvwlSZIkSZIkSZIkSQogC/6SJEmSJEmSJEmSJAWQBX9JkiRJkiRJkiRJkgLIgr8kSZIkSZIkSZIkSQFkwV+SJEmSJEmSJEmSpACy4C9JkiRJkiRJkiRJUgBZ8JckSZIkSZIkSZIkKYAs+EuSJEmSJEmSJEmSFEAW/CVJkiRJkiRJkiRJCiAL/pIkSZIkSZIkSZIkBZAFf0mSJEmSJEmSJEmSAsiCvyRJkiRJkiRJkiRJAWTBX5IkSZIkSZIkSZKkAPr/SgHu8HuByPkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Ansatz\n", + "layers = tq.RXYZCXLayer0(\n", + " {\n", + " \"n_blocks\": 6,\n", + " \"n_wires\": n_wires,\n", + " \"n_layers_per_block\": 1,\n", + " }\n", + ")\n", + "\n", + "# We use `tq2qiskit` to visualize the ansatz.\n", + "qdev = tq.QuantumDevice(n_wires=n_wires, bsz=1, device=\"cpu\")\n", + "tq.plugin.qiskit.tq2qiskit(qdev, layers).draw(output=\"mpl\", fold=30)" + ] + }, + { + "cell_type": "markdown", + "id": "a14839c3-d9ff-44dc-adf6-efeebae18bfe", + "metadata": {}, + "source": [ + "We can now simulate the circuit to model the gaussian mixture distribution. The algorithm minimizes the kerneled maximum mean discrepancy (MMD) loss to train the QCBM." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6490b2e9-d18d-42e0-9310-a3f644197c8f", + "metadata": {}, + "outputs": [], + "source": [ + "qcbm = QCBM(n_wires, layers)\n", + "\n", + "# To train QCBMs, we use MMDLoss with radial basis function kernel.\n", + "bandwidth = torch.tensor([0.25, 60])\n", + "space = torch.arange(2**n_wires)\n", + "mmd = MMDLoss(bandwidth, space)\n", + "\n", + "# Optimization\n", + "optimizer = torch.optim.RMSprop(qcbm.parameters(), lr=0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4335ef3e-8dea-47be-a310-8146abc214fc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration: 0, Loss: 0.007511706091463566\n", + "Iteration: 10, Loss: 0.0008048344170674682\n", + "Iteration: 20, Loss: 0.0004957925993949175\n", + "Iteration: 30, Loss: 0.0003518108860589564\n", + "Iteration: 40, Loss: 0.0002739735064096749\n", + "Iteration: 50, Loss: 0.0002034252102021128\n", + "Iteration: 60, Loss: 0.00014893575280439109\n", + "Iteration: 70, Loss: 0.0001268944761250168\n", + "Iteration: 80, Loss: 0.00010558744543232024\n", + "Iteration: 90, Loss: 8.735547453397885e-05\n" + ] + } + ], + "source": [ + "for i in range(100):\n", + " optimizer.zero_grad(set_to_none=True)\n", + " pred_probs = qcbm()\n", + " loss = mmd(pred_probs, target_probs)\n", + " loss.backward()\n", + " optimizer.step()\n", + " if i % 10 == 0:\n", + " print(f\"Iteration: {i}, Loss: {loss.item()}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "246f5d90-47af-4385-8d41-5ff6fadcb9ec", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/KklEQVR4nO3dd1hT1/8H8HfCCnuITBEcKA4EAUFcWEVxVXFrteL4OlppVVqttq5qW+zQOqu1dba1WmddVSkKDsABguJEBUEZIluQldzfH/ySGgElkHAyPq/nydPm5ubmnQuGT8459xwex3EcCCGEEEKIBJ91AEIIIYQQZUMFEiGEEELIa6hAIoQQQgh5DRVIhBBCCCGvoQKJEEIIIeQ1VCARQgghhLyGCiRCCCGEkNdosw6gqkQiEdLT02FsbAwej8c6DiGEEELqgOM4FBUVwc7ODnx+7e1EVCDVU3p6OhwcHFjHIIQQQkg9pKWloVmzZrU+TgVSPRkbGwOoOsEmJiaM0xBCCCGkLgoLC+Hg4CD5O14bKpDqSdytZmJiQgUSIYQQomLeNjyGBmkTQgghhLyGCiRCCCGEkNdQgUQIIYQQ8hoag0QIIYTIQCgUoqKignUMUgsdHR1oaWk1+DhUIBFCCCF1wHEcMjMzkZ+fzzoKeQszMzPY2Ng0aJ5CKpAIIYSQOhAXR1ZWVjAwMKBJgpUQx3EoKSnBs2fPAAC2trb1PhYVSIQQQshbCIVCSXHUpEkT1nHIG+jr6wMAnj17Bisrq3p3t9EgbUIIIeQtxGOODAwMGCchdSH+OTVkrBgVSIQQQkgdUbeaapDHz4kKJEIIIYSQ11CBRAghhBDyGiqQCCGEEEJeQwUSIYQQQshrqEAihBBCCHJycmBlZYWUlJQ67T9u3DisXr1asaEYogKJEEIIIfj6668xbNgwODk51Wn/xYsX4+uvv0ZBQYFigzFCE0USomSWRyyvvq139W2EEOVQXFws83P09PSgrV31J7iyshJlZWXg8/mSSQ7fdFxDQ8P6BX2DkpISbNu2DadPn67zczp27IhWrVrh999/x+zZs+WeiTVqQSKEEEIawMjISObb4cOHJc8/fPgwjIyMMHDgQKnjOjk51fjc+mjXrh14PF6Nt40bN+LkyZPQ09ND165dJc/5888/oa+vj4yMDMm2KVOmoFOnTpJWo3fffRd79+6tVyZlRwUSIYQQouYOHjwIAAgPD0dGRgZSUlLA5/Oxf/9+TJ8+HRcuXICnp6fUc8aNG4c2bdrgm2++AQAsW7YM//77L/755x+YmpoCALy9vXHlyhWUlZU17htqBNTFRkgjq6kLDaBuNEJU1YsXL2R+jp6enuT/hw8fjhcvXoDPl26zqOtg6brIysqCtrY2unfvDj09PcTGxkIkEqFnz57Q09PD48ePYWdnJ/UcHo+Hr7/+GqNGjYKNjQ02bNiACxcuwN7eXrKPnZ0dysvLkZmZCUdHR7nlVQZUIBGiAFQEEaI5GjomSFtbWzIeSZ7HfdXNmzfRpk0bSWGWkJAAKysrWFtbAwBevnwJgUBQ7XlDhgxB+/btsWLFCpw5cwYdOnSQelw8ZqqkpERuWZUFFUiE1BMVQYQQVXHjxg24urpK7ickJEjdt7S0RF5eXrXnnTp1Cnfv3oVQKJQUU6/Kzc0FADRt2lQBqdmiMUiEEEKImrtx4wY6deokuZ+QkCB1v3Pnzrh9+7bUc+Li4jBmzBhs27YNffv2xZIlS6odNzExEc2aNYOlpaXiwjNCBRIhhBCixkQiEW7duiVVED18+FBqvqOAgADcunVL0oqUkpKCwYMH4/PPP8f48eOxYsUKHDx4EHFxcVLHvnDhAvr3798o76OxUYFECCGEqLGHDx+ipKREqkBydXXFsmXLcOnSJcl9Dw8P/PXXX8jNzcWAAQMwbNgwLFy4EADg4+ODgQMH4vPPP5cco7S0FEeOHMH06dMb9w01EhqDRIiCcByHitIK6Orrso5CCNFgzs7O4DhOatvJkyer7bd06VLMnz8f06dPx927d6s9fuLECan7O3bsgLe3t9TcSeqECiRCFCD7cTaOrz4OUytTjFg8QrK9tLSUYSpCCKnd4MGDkZSUhKdPn8LBweGt++vo6GDDhg2NkIwN6mIjRAEqSiuQmpiKu5fuojC7EACQfi8dzZs3x+VDlyGsFDJOSIi03bt34/r166xjEMbmzp1bp+IIAP73v/+hbdu2Ck7EDhVIhMgBx3HIepgluW/X1g5DPx2K2btmw6SpCQDg6pGryM7OxqkNp/DTlJ9w58Kdas3ehDQGjuMQHx8vuf/o0SPMnDkTXl5e+Oijj5Cfn88sGyHKggokQhoo50kOdn+yG1tnbcXz1OeS7Z0HdYaplank/rufvovNmzfD0NwQuU9y8dfSv7Bz7k6UFKjfBGtEeZWWluKdd96Bh4cHbt68CaBqsr/AwECIRCJs3LgRbdu2xa5duyASiRinJYQdKpAIaYDyl+XYNW8XUq5XrWuUkZRR6758LT5mzZqFj37/CD3f7wltPW2k3kjFmc1nGjEx0XQCgQBWVlbQ09OTtCLZ2trizz//RHh4OFxcXPDs2TNMnjwZvXr1QkJCAtvAhDBCg7SJxmvIjNgX/riAoudFMLM1w6TVk2Bua/7W5+gZ6KHP1D5o07UNtgVvQ8LpBHgM9gB6y5abkLrKycmBubm5ZK2v1atXY/Xq1dXGmvTp0wcJCQlYt24dvvzyS1y6dAkeHh5YunQpli1bxiI6IcxQCxIh9ZSXnofov6IBAAEfBtSpOHpVs/bN4DHIAwBwYu0JVFZWyj0jISKRCEOGDEGvXr3w4MEDAICDg0OtA3F1dXUxf/583L17F2PGjIFIJMLy5csRGRnZmLEJYY4KJELqKWxLGIQVQrT0bIm23et3JUff6X2hb6KPZ4+eYdOmTXJOSEjVXDUxMTFISEiQLCxaF82aNcO+ffswc+ZMAMCcOXMgFNLVl0RzUIFESD2cPXsWdy7cAY/PQ8DsAPB4vHodx8DUAH3/1xcAsGTJEmRk1D6GiRBZ5eTk4LPPPgMAfPnll7C3t5f5GF999RXMzMyQkJCAX375Rd4RiYaaPHkyAgMDWcd4IxqDRIiMKisrMWfOHABAl2FdYNXCqkHH8xjsgesnr+Pp3aeYP38+Wv+vtTxiEoJFixYhJycHVi2skNcpT2q8XV3G2AFVq7yvWLECH3/8MRYvXoyxY8fC3Fy27mR1V9s4RoW9Xh1/dqRhqAWJEBn9/PPPSExMhL6JPnpP7t3g4/H4PAyaOwg8Hg979+5F7tPchockGu/y5cv49ddfAQCD5g6ClrZWvY/1wQcfoEOHDhCJRJKpAQhRd0pRIG3atAlOTk4QCATw8fHBlStX3rj//v374eLiAoFAAFdX12pryixfvhwuLi4wNDSEubk5/P39cfnyZal9cnNzMWHCBJiYmMDMzAzTpk3Dixcv5P7eiHrJycnBkiVLAADvTHkH+iZ1H9PxJnZt7bBmzRpcu3YNFvYWcjkm0VxCoRAffvghOI6DW383OHZybNDxtLW1sXfvXty/fx+9evWSU0rSWA4cOABXV1fo6+ujSZMm8Pf3R3FxMa5evYp+/frB0tISpqam8PPzQ1xcnNRzeTwefv75ZwwZMgQGBgZo164doqOj8eDBA/Tu3RuGhobo1q0bHj58KHnO8uXL4e7ujp9//hkODg4wMDDAmDFjUFBQUGtGkUiE0NBQtGjRAvr6+nBzc8OBAwckj+fl5WHChAlo2rQp9PX14ezsjB07dsj/ZL2CeYG0b98+hISEYNmyZYiLi4ObmxsCAgLw7NmzGvePiorC+PHjMW3aNFy/fh2BgYEIDAxEYmKiZJ82bdpg48aNuHnzJi5evAgnJyf0798f2dnZkn0mTJiAW7duISwsDMePH8f58+cxY8YMhb9fotqWLVuGvLw8uLq6wvNdT7kee+7cuXB3d5frMYlm2rJlC+Li4mBqagr/mf5yOWbHjh1haWkpl2ORxpORkYHx48dj6tSpuHPnDiIiIjBixAhwHIeioiIEBQXh4sWLiImJgbOzMwYNGoSioiKpY6xcuRKTJk1CfHw8XFxc8N5772HmzJlYtGgRrl27Bo7jEBwcLPWcBw8e4K+//sKxY8dw6tQpXL9+HR9++GGtOUNDQ7F7925s2bIFt27dwrx58zBx4kTJ1ZNLlizB7du38c8//+DOnTvYvHmzwn8fmY9BWrNmDaZPn44pU6YAqPqHfeLECWzfvh0LFy6stv+6deswYMAAzJ8/H0DVDy4sLAwbN27Eli1bAADvvfdetdfYtm0bbty4gb59++LOnTs4deoUrl69Ci8vLwDAhg0bMGjQIPzwww+ws7NT5FsmKiorK0sySHXdunWI5CnusufslGwIjAQwtjRW2GsQ9ZSVlYUvvvgCAPD1118j2yL7Lc+QDcdxOHbsGAQCAfr37y/XYxP5y8jIQGVlJUaMGAFHx6qWRFdXVwBV8169auvWrTAzM0NkZCSGDBki2T5lyhSMGTMGAPDZZ5/B19cXS5YsQUBAAICqKxzFf8PFSktLsXv3bsmFARs2bMDgwYOxevVq2NjYSO1bVlaGb775Bv/++y98fX0BAC1btsTFixfx888/w8/PD6mpqejcubPkb7aTk5M8Ts8bMW1BKi8vR2xsLPz9//uGw+fz4e/vj+jo6BqfEx0dLbU/AAQEBNS6f3l5ObZu3QpTU1O4ublJjmFmZiY50QDg7+8PPp9frStOrKysDIWFhVI3olmsra0RGxuLr776Cu+8847CXufa0WvY8r8tOP3TaYW9BlFfCxYsQEFBATw8PDBr1iy5H3/nzp0YNmwYZs6ciZcvX8r9+ES+3Nzc0LdvX7i6umL06NH45ZdfkJeXB6CqmJ4+fTqcnZ1hamoKExMTvHjxAqmpqVLH6NSpk+T/ra2tAfxXZIm3lZaWSv1dbN68udRVk76+vhCJRLh37161jA8ePEBJSQn69esHIyMjyW337t2SrrsPPvgAe/fuhbu7OxYsWICoqCg5nJ03Y1ogPX/+HEKhUHLCxaytrZGZmVnjczIzM+u0//Hjx2FkZASBQIAff/wRYWFhkua4zMxMWFlJX3mkra0NCwuLWl83NDQUpqamkltdVzsm6qVjx46Sb+eKYt/OHhzHobK8EsIKmneG1N358+exe/du8Hg8bN68GVpa9R+YXZsxY8agVatWGD9+PC22rAK0tLQQFhaGf/75B+3bt8eGDRvQtm1bJCcnIygoCPHx8Vi3bh2ioqIQHx+PJk2aoLy8XOoYOjo6kv8XT2lS07b6rt0nHv974sQJxMfHS263b9+WjEMaOHAgHj9+jHnz5iE9PR19+/bFp59+Wq/XqyvmXWyK8s477yA+Ph7Pnz/HL7/8gjFjxuDy5cvVCqO6WrRoEUJCQiT3CwsLqUjSECKRCHl5eWjSpEmjvJ6tsy0+2PYBmjo1bZTXI+qhoqJCMsZj+vTp8Pb2VsjrGBoa4vbt29DV1VXI8Yn88Xg8dO/eHd27d8fSpUvh6OiIw4cP49KlS/jpp58waNAgAEBaWhqeP3/+lqPVTWpqKtLT0yVDVmJiYsDn89G2bfVJddu3bw89PT2kpqbCz8+v1mM2bdoUQUFBCAoKQs+ePTF//nz88MMPcslbE6YFkqWlJbS0tJCVlSW1PSsrq1ofpZiNjU2d9jc0NETr1q3RunVrdO3aFc7Ozti2bRsWLVoEGxubaoPAKysrkZubW+vr6unpQU9PT9a3SNTAhQsX0K9fP7z33nvYuXNno7wmFUdEVrm5uejSpQtevHiBb775RqGv9abiqCFrGxL5u3z5MsLDw9G/f39YWVnh8uXLyM7ORrt27eDs7IzffvsNXl5eKCwsxPz582Wabf1NBAIBgoKC8MMPP6CwsBAff/wxxowZU+PfWGNjY3z66aeYN28eRCIRevTogYKCAly6dAkmJiYICgrC0qVL4enpiQ4dOqCsrAzHjx9Hu3bt5JK1NkwLJF1dXXh6eiI8PFwyo6ZIJEJ4eHi1EfFivr6+CA8Px9y5cyXbwsLCJAO7aiMSiVBWViY5Rn5+PmJjY+HpWXUl0tmzZyESieDj49PwN0bUytmzZ1FRUSHVpNxYXuS+QFFOES1kS97K2toaO3bsgEgkkixK2xB1KXSOHj2KnTt3YvXq1WjRokWDX5PIn4mJCc6fP4+1a9eisLAQjo6OWL16NQYOHAgbGxvMmDEDHh4ecHBwwDfffCO3bqvWrVtjxIgRGDRoEHJzczFkyBD89NNPte6/cuVKNG3aFKGhoXj06BHMzMzg4eGBzz//HEBVvbBo0SKkpKRAX18fPXv2xN69e+WStTbMu9hCQkIQFBQELy8veHt7Y+3atSguLpaMiJ80aRLs7e0RGhoKoGq0vJ+fH1avXo3Bgwdj7969uHbtGrZu3QoAKC4uxtdff42hQ4fC1tYWz58/x6ZNm/D06VOMHj0aANCuXTsMGDAA06dPx5YtW1BRUYHg4GCMGzeOrmAj1Xz55ZcYPXo0BAJBo77u3Yt38deyv2DrbAtMr9pW0x8t+mZOXiWP4qiu1q9fj/DwcHTu3FkyP5gmUuZ/g+3atcOpU6dqfKxz5864evWq1LZRo0ZJ3X99nJmTk1O1bb17965xPNoHH3yADz74oMbXfr01nsfjYc6cOZJVCl63ePFiLF68uMbHFIX5PEhjx47FDz/8gKVLl8Ld3R3x8fE4deqUZCB2amqq1PpU3bp1w549e7B161bJRFJHjhxBx44dAVQNSLt79y5GjhyJNm3a4N1330VOTg4uXLiADh06SI7zxx9/wMXFBX379sWgQYPQo0cPSZFFyOs6duyI1q0bdwmQ5q7NwePzkH4vnWYvJm904sQJxMXFNfqg6aCgIADA7t27acA2UTvMW5AAIDg4uNYutYiIiGrbRo8eLWkNep1AIMChQ4fe+poWFhbYs2ePTDmJ5iktLW30liMxA1MDtPVtizsX7mDHjh1Ys2YNkxxEuQmFQnzwwQdIS0vDsWPHpOavUbThw4fD0NAQDx48QHR0NLp169Zor02IojFvQSJEWYmng5gwYUK1y14bi/tAdwDA77//ziwDUW4FBQXo1q0bbG1tq80Rp2hGRkYYOXIkgKpWJEKAqqVG4uPjWcdoMCqQCKnFnj17UFRUhOTkZGaXNLf2bg2jJkbIzs7GiRMnmGQgys3CwgJ79+5FSkoKk9ZOcTfbvn37UFpa2uivT4iiUIFESC3E34gnTZrELANfi49O/apmsVX0woxEtbEq4nv37g0HBwfk5+fj2LFjTDI0JhprpRrk8XOiAomQGmQ+yERCQgJ0dXUlaxCx0nlgZwDAyZMn8SL3BdMsRLlcunQJt2/fZpqBz+dj4sSJANS7m008zUdJSQnjJKQuxD+nhkzPohSDtAlRNjfCbgAA3n33XVhYWDDNYtncEr6+voiOjkbCmQR0H9edaR6iPD7++GPExcXhjz/+qLZId2OaNGkSQkND8c8//6DtlLYwsjBilkVRtLS0YGZmJplk2MDAQLLEBlEeHMehpKQEz549g5mZWYOW26ECiZDXiIQi3Py36rJ6lt1rr5oyZQqio6MRfyoe3cZ2ow9mgvj4eMTFxUFXV1eyqjorLi4u8Pb2xpUrV5B4NhFdR3VlmkdRxLNAv74SA1E+ZmZmta6MUVdUIBHymkexj/Ai9wUsLS0xYMAA1nEAVM0XNmfOHDx//BxP7zxFs/bNWEcijInHpA0bNqzR1gl8k0mTJuHKlStIOJ2gtgUSj8eDra0trKysUFFRwToOqYWOjo5cFmqmAomQ1yScTgAAjB8/Ht9E1bymVWPPnGtiYoJRo0bht99+w/V/rlOBpOHKysrw+++/AwCmTp3KOE2VcePGYd68ech8kImsh1mwbmXNOpLCaGlpyeUPMFFuVCAR8oqy4jLcvXQXQNU34uMvjjNO9J8pU6bgt99+w61ztzBg9gDoCBp/bTiiHI4ePYrc3FzY29ujX79+jf76ta3TNmTIEPx99G+k30tX6wKJaAYqkAh5xe3zt1FZVglLR0t4enrieKTyFEh+fn7wHOqJtr5toaVD31412fbt2wEAkydPVqqWjO+//x6tg1rDwNSAdRRCGowKJEJeceNM1dVrnfp1UrqB0Hw+H0PmNd4yEkQ5paWl4fTp0wCqCiRl0qpVKxikUXFE1APNg0TI/8vPzEdKfArAAzr5d2Idh5AaiReG7dWrV6MvoCyLkgKaL4ioNmpBIuT/lZWUoZVXK3DgYGptyjpOrfIy8hB3PA6m1qbwGurFOg5pRBzHSa5ee3Vwdm1jghr7YgIAeFn0Enu/2Iv0++n49OCn0DPUa/QMhMgDFUiE/D/rltaY+P1EiIQi1lHe6NG1R7i45yKatW9GBZKGuXDhAh4+fAgjIyOMGjWqwcdTRGElMBKgpLAEleWVSL2ZCueuzvU+FiEsUYFEyGv4Wsrd8+zc1Rkd3umANr5tWEchjezQoUMAgJEjR8LQ0JBxmprxeDwMWzAMJk1NYNLUhHUcQuqNCiRCAGSnZENgJICxpTHrKG9l0tQEo5Y2vPWAqBaO43D8eNVVlUOHDmWc5s1oni6iDqhAIgTA6U2n8fDaQwxdMFSyOCwhymbHjh04fvw4k7mP6ovjOKW7IpSQuqACiWg8juNQWVEJ8FTnmy/HcXj++DmSriShontFg1asJqqBx+OhZ8+e6NmzJ+sodZJ2Kw3ntp+DkbkRRiwewToOITKjAoloPB6Ph8lrJ6OkoAT6Jvqs49QJJ+Kwc+5OlBSUIGpsFPz8/FhHIkQKj8dDclwy9Az1IKwUso5DiMyUezQqIY3IwNRAZboC+Fp8tPaumgNHPC6FqK/8/Hx8+OGHOHnyJDiOYx2nTuza2kHfRB9lxWV4cvsJ6ziEyIwKJKLxykrKWEeoF/Hl0ydOnGCchCjamTNnsHnzZnzyySeqVcR3qSriH1x+wDgNIbKjAolotIcPH+K7od9h9ye7wYlU45u5WGvv1uDxebhz5w4ePXrEOg5RIGdnZ8yaNQtTpkxhHUUmrbxbAQAeXKUCiageKpCIRjt16hREQhFEQhF4fNX4Zi4mMBKguWtzANSKpO46d+6MzZs3Y8GCBayjyETcgpSZlInMzEzGaQiRDRVIRKOdOnUKANDaR3nXtHoT6mYjyszQ3BC2bWwBQLLALiGqggokorHKyspw9uxZAP9901U14tm0z507hxcvXjBOQxThzJkzuHTpEoRC1bwSTPzl459//mGchBDZUIFENNbFixdRUlICIwsjWLeyZh2nXiybW6JFixYoLy9HeHg46zhEARYsWIAePXpg3759rKPUi/jLx5kzZ1BZWck4DSF1RwUS0ViS7jXv1ipzZdDreDweBg8eDIC62dRRWloaEhISwOfz0b9/f9Zx6qVZ+2YQGAmQl5eHq1evso5DSJ1RgUQ0lrjJXzyfkKoaMmQIgKoCSVXmyCF1Iy56fX19YWlpyThN/fC1+GjlVXU1G3WzEVVCBRLRSGlpabh16xb4fD5aerZkHadB/Pz8YGBggPT0dMTHx7OOQ+RIPAmouAhWVeLL/alAIqqECiSikcRX1Pj4+KjM8iK1EQgE8Pf3B0CzaquTkpISybgycTeqqhK30t6+fRuFhYWM0xBSN7QWG9FI4vFHAwYMgAgixmkabtKkSWjZsiUCAgJYRyFycu7cOZSWlqJ58+bo2LEj6zgNYtzEGOfPn4eXlxf09VX7CwnRHFQgEY1TUVGBsLAwAMDAgQNxolj1BzePHDkSI0eOZB2DyNGr3WuqehHBq3r27Mk6AiEyoS42onFiYmJQWFgIS0tLeHp6so5DSDUcx0kKJFXvXiNEVVGBRDROcnIyDA0N0b9/f/D56vNPQDwX0q5du1hHIQ1048YNPHnyBPr6+njnnXdYx5GbFStWwNXVlS73JypBff46EFJHkyZNQk5ODn788UfWUeQqLi4O/v7++Pjjj1FRUcE6DmkAceuRv7+/Wo3ZSUhIQGJiIl3NRlQCjUEiGklPTw9WVlasY8jVyeKTsGppBbs2dvji5BcwMDXA8t7LWcci9SCe/0jdutc+/vhjjBkzBv369WMdhZC3ogKJaJSysjLo6emxjqEQfC0+Ptj2AesYpIGys7MRExMDQP0KJD8/P9YRCKkz6mIjGmXKlClwcXGhZTmIUlu+fDkmTpyIZs2asY5CiMaiFiSiMTiOw7lz55CZmQkTExPWcRSGE3HIfJiJJs2asI5C6qFp06ZYunQp6xgK8/jxY/z+++/Q0tLCwoULWcchpFbUgkQ0Bo/Hw927d3Hw4EF07dqVdRyF2Ra8DVtnbMWj2EesoxBSzcOHD7F48WKsXbsWIpHqT9JK1Be1IBGNsDxi+X93LIAbl25UbVfDQcw2zjZ4eucpUuJTWEchMkpPT8fly5fh5+cHCwsLqcekfofF21Tw97d79+4wNDREVlYWbt68CTc3N9aRCKkRtSARomZauLcAACRfT2achMjq2LFjGDFiBEaMGME6isLo6emhR48eAIDz588zTkNI7ahAIhqB4zj8+fmfOLvtLEpflLKOo1BO7k4AgGePniE7O5ttGCITXV1dtGvXDn369GEdRaF69eoFgAokotyoQCIaISctB/ej7yP6r2ho66p3z7KhuSGsWlTN8RQREcE2DJHJlClTcPv2bSxevJh1FIV6tUDiOI5xGkJqphQF0qZNm+Dk5ASBQAAfHx9cuXLljfvv378fLi4uEAgEcHV1xcmTJyWPVVRU4LPPPoOrqysMDQ1hZ2eHSZMmIT09XeoYTk5O4PF4UrdVq1Yp5P0R9h4nPAYANGvfTO0LJABw6uwEoGpFeKJ61GkJnJp06dIFAoEAz549w71791jHIaRGzP8V7tu3DyEhIVi2bBni4uLg5uaGgIAAPHv2rMb9o6KiMH78eEybNg3Xr19HYGAgAgMDkZiYCAAoKSlBXFwclixZgri4OBw6dAj37t3D0KFDqx1rxYoVyMjIkNw++ugjhb5Xws7jG1UFUvNOzRknaRwtOleNQzp79izjJKSuMjMzsSRsCZZHLJe6qSM9PT3JlaTUzUaUFfMCac2aNZg+fTqmTJmC9u3bY8uWLTAwMMD27dtr3H/dunUYMGAA5s+fj3bt2mHlypXw8PDAxo0bAQCmpqYICwvDmDFj0LZtW3Tt2hUbN25EbGwsUlNTpY5lbGwMGxsbyc3Q0FDh75c0Po7jJC1Ijp0cGadpHI5ujgAPuHfvXrXWU6KcZs2ahW+HfovEs4msozQKcTdbZGQk4ySE1IxpX0N5eTliY2OxaNEiyTY+nw9/f39ER0fX+Jzo6GiEhIRIbQsICMCRI0dqfZ2CggLweDyYmZlJbV+1ahVWrlyJ5s2b47333sO8efOgrV3zKSkrK0NZWZnkfmFh4VveHWlstX3bnuw0GYXZheBr8dGsvWbMTKxvrA/b1rbISMrAuXPnMGHCBNaRyBsIhUJERESgorQC5nbmrOM0ilcLJI7jwOPxGCciRBrTFqTnz59DKBTC2tpaaru1tTUyMzNrfE5mZqZM+5eWluKzzz7D+PHjpWZP/vjjj7F3716cO3cOM2fOxDfffIMFCxbUmjU0NBSmpqaSm4ODQ13fJmFM3IRv19YOuvq6jNM0HicPJwA0DkkVXL9+HQUFBdAz1IOtsy3rOI3C19cX2traePr0KVJSUljHIaQa5l1silRRUYExY8aA4zhs3rxZ6rGQkBD07t0bnTp1wqxZs7B69Wps2LBBqpXoVYsWLUJBQYHklpaW1hhvgciBuEDSlPFHYuL5kGgckvIT/4yc3JzA11Lrj2UJAwMDdOnSBQB1sxHlxPRfoqWlJbS0tJCVlSW1PSsrCzY2NjU+x8bGpk77i4ujx48fIyws7K1rb/n4+KCysrLWbzJ6enowMTGRuhHVIC6QNGX8kVjzTs2hpaWF5ORk+oau5CQF0v9ffagpaD4kosyYFki6urrw9PREeHi4ZJtIJEJ4eDh8fX1rfI6vr6/U/gAQFhYmtb+4OEpKSsK///6LJk3evmhnfHw8+Hw+rKys6vluiDIqyilCUlISwAOau2pWC5KegR58fHzg7u5e61WhhL3y8nJcuHABANDCowXjNI0rMDAQixcvxrRp01hHIaQa5hPChISEICgoCF5eXvD29sbatWtRXFyMKVOmAAAmTZoEe3t7hIaGAgDmzJkDPz8/rF69GoMHD8bevXtx7do1bN26FUBVcTRq1CjExcXh+PHjEAqFkvFJFhYW0NXVRXR0NC5fvox33nkHxsbGiI6Oxrx58zBx4kSYm2vGAElNkXqj6spFm1Y2EBgJGKdpfBEREdDR0WEdg7zB1atXUVJSgqZNm8LKSbO+oHXt2lWtF44mqo15gTR27FhkZ2dj6dKlyMzMhLu7O06dOiUZiJ2amio1aVq3bt2wZ88eLF68GJ9//jmcnZ1x5MgRdOzYEQDw9OlTHD16FADg7u4u9Vrnzp1D7969oaenh71792L58uUoKytDixYtMG/evGpXxxHVp2nzH72OiiPlJ+5e6927N3h89b6Sq7YrTVVx0V2i/pgXSAAQHByM4ODgGh+raamE0aNHY/To0TXu7+Tk9Nap6z08PBATEyNzTqJ6xAWSpo0/el1JSQk4jqO5vpSQuEDq06cPMlHz1bjqrPRFKY4ePYqKigqMHDmSdRxCJDTjcgmisQbPHYyvv/66auJEDTVv3jyYm5vj999/Zx2FvObly5eIiooCALVfoLY2KfEpGDZsGJYuXco6CiFSqEAiaq25a3N8/vnnMDTT3JYTMzMzlJeXIy4ujnUU8pqoqCiUl5fD3t4ezs7OrOMw0dy1OVxcXNCzZ08IhULWcQiRUIouNkKI4kyfPh0TJkxAq1atWEchr3m1e01TZ5I2MDXAnTt3WMcgpBoqkIjauvjnRZjbmOOF1wvWUZiys7NjHYHUIi8vDzo6OhrbvUaIMqMuNqKWykrKcPbXsziw4gDy8vJYxyGkRj/99BPy8vIwZswY1lGYq6iowI0bN1jHIESCCiSilirLKtElsAucfZxp3TwAsbGxGDlyJP73v/+xjkJeY2hoCAMDA9YxmMrPz4e5uTnc3d1RUFDAOg4hAKhAImrK0NwQAz8aiPdWvcc6ilKorKzEoUOHcOjQIYhEItZxCKpaTEgVMzMz2NnZgeM4XLx4kXUcQgBQgUSIRvD09ISxsTHy8vKQkJDAOg5B1bJJnp6eiI+PZx1FKdC6bETZUIFE1E5leSVS4lNQUUbf0MW0tbUlf4DOnTvHOA3Jz89HXFwc4uLial2YW9NQgUSUDRVIRO08vfsUu+btwqagTayjKJV33nkHABVIysDMzAxPnz7FkSNHqED6f35+fgCAa9euobi4mHEaQqhAImpIvLxIs3bNGCdRLuI/QBcvXqRxSErA1tYWw4YNYx1DaTg6OqJ58+aorKxEdHQ06ziEUIFE1E9qQioAzV2gtjbu7u4wMjJCfn4+EhMTWcchpBrqZiPKhAokolZEQhFSE6sKJE1ef60m2tra6N69OwD6A8RSXl4eBg4ciFWrVlFL3muoQCLKhAokolYyH2SiorQCAiMBrJysWMdROvQHiL2LFy/i1KlT2LlzJ/h8+gh+lfj3MyYmBmVlZYzTEE1H/zqJWkm7lQYAaNahGXh8zVzb6k169uwJoKpA4jiOcRrNFBkZCeC/MWHkP23atIG1tTXKyspw9epV1nGIhqMCiaiVJ7eeAAAcOtDs2TXp0qUL9PT0kJWVhaSkJNZxNJK49U7cWkL+w+PxJN3AUVFRjNMQTUcFElErkhak9nQFW00EAgF8fHwAUDcbC0VFRYiLiwNABVJtunXrBgB0JRthjgokojaKcopQkFUAHp8H+3b2rOMoLRqHxE5UVBSEQiHMbM2w7eE2LI9YjuURy1nHUiq+vr7Q1tampVgIc9qsAxAiL+LuNSsnK+gZ6DFOo7zee+89eHh4oEePHqyjaBxxUerYia6wrI23tzcKCwuhr6/POgrRcFQgEbWRdvv/u9c6Uvfam7Rr1w7t2rVjHUMjUYH0dtra2tDWpj9NhD3qYiNq40ni/w/Qbk8DtInyefnyJa5cuQKA5uiqK6FQyDoC0WBUphO1wHEcdPV1oa2njWYdqAXpda+Pc8lJy4HlI0uYmppi7ty5TDJpmsuXL6O8vBzGlsYwtzNnHUepJSQkYNq0aeDz+ZKikpDGJnOBJBQKsXPnToSHh+PZs2fVZoI9e/as3MIRUlc8Hg8Tv58IYaUQfC1qGH2b56nPsXH5RrRt25YKpEbyavcaj0dzdL1J06ZNERsbCz6fjxcvXsDIyIh1JKKBZC6Q5syZg507d2Lw4MHo2LEj/UMnSkVLW4t1BJXQvFNzjBs3Dn5+fuA4jv4dNwJxgURrBL6dnZ0dDh06BC8vLyqOCDMyF0h79+7FX3/9hUGDBikiDyH1UlpayjqCStE31seff/7JOobGKC8vl0x86OTmxDaMihg+fDjrCETDyVwg6erqonXr1orIQki9tWnTBqX8UoxdORZNHJqwjkOIFB6Ph8OHDyMmJgYiR1qglhBVIHOB9Mknn2DdunXYuHEjNcsTpZCeno60tDTw+DwYWxqzjqMyRCIR7ty5g2X7lqFjn45Sjy3vvZxNKDWlo6ODgIAABAQE0MSQdfTixQts2LABCQkJ2LNnDy3sSxqdzAXSxYsXce7cOfzzzz/o0KEDdHR0pB4/dOiQ3MIRUhd2dnbIysrC/D/mQ1dfl3UclZGVlYWOHTsCPKC1d2sIjASsIxEioaenh5UrV+Lly5dYvnw5XFxcWEciGkbmktzMzAzDhw+Hn58fLC2rLhN+9UYIC1ZWVmjRuQXrGCrF1tYWzs7OAAek3kxlHUdtCYVCfPHFFzh58iQqKytZx1EZOjo66NKlCwBauJawIXML0o4dOxSRgxDCQK9evZCUlITHNx6jjW8b1nHUUkJCAr755huYmJggNzeXdRylVVPXo7BZ1USR0dHRmDp1aiMnIpqu3hNFZmdn4969ewCAtm3bomnTpnILRUhdvXz5EsOHD4ePjw9EPUTQ0qHL/GXRq1cvbNu2Dak3qAVJUQQCAaZNmwZtbW1oadHvpyzEs+JTCxJhQeYCqbi4GB999BF2794tmSRSS0sLkyZNwoYNG2BgYCD3kITUJjY2FqdPn0Z8fDxm9p7JOo7K6dWrFwAg/V46yl+W0xguBWjfvj1+/fVX1jFUknhW/Nu3byMvLw/m5jQDOWk8Mo9BCgkJQWRkJI4dO4b8/Hzk5+fj77//RmRkJD755BNFZCSkVtHR0QAAX19fuqqyHhwdHWFiZQKRUIQnt5+wjkOIFEMzQ8m0MpcvX2achmgamQukgwcPYtu2bRg4cCBMTExgYmKCQYMG4ZdffsGBAwcUkZGQWr1aIBHZ8Xg8ycryj288ZpxG/Tx79gzXrl2jwdkN0K1bNwDUzUYan8wFUklJCaytrattt7KyQklJiVxCEVIXHMdJCiTxhyiRnbhAonFI8nfw4EF06dIFw4YNYx1FZYm//Ij/rRPSWGQukHx9fbFs2TKppR1evnyJL7/8kr7Fk0aVkpKCzMxMaGtrw9PTk3UcleXoVlUgPbn9BJXl1NIhT+L113x8fBgnUV3iLz8xMTEQCoWM0xBNIvMg7XXr1iEgIADNmjWDm5sbgKrLWAUCAU6fPi33gITURvyNsnPnztDX12ecRnU1cWgCAzMDlOSXION+Bhw6OrCOpBY4jkNkZCQAwM/Pj3Ea1dWhQwcYGxujqKgIt27dQqdOnVhHIhpC5hakjh07IikpCaGhoXB3d4e7uztWrVqFpKQkdOjQQREZCakRjT+SDxqHpBgPHz5ERkYGdHV14e3tzTqOytLS0pK0wNE4JNKY6jUPkoGBAaZPny7vLITIhMYfyY9jJ0fcOX8HjxMeo8d7PVjHUQvi1iNvb29q4Wygbt264d9//0V0dDRmzZrFOg7REHUqkI4ePYqBAwdCR0cHR48efeO+Q4cOlUswQt6kuLgY8fHxAKgFSR4c3RzR1LEprFpasY6iNsQFkniuKVJ/gwcPRkVFBfr168c6CtEgdSqQAgMDkZmZCSsrKwQGBta6H4/Ho0F0pFFcu3YNQqEQdnZ2cHCgMTMNZdPaBh/u/JB1DLUiLpB69+7NNoga8Pb2pm5K0ujqVCCJZ8x+/f8JYYUmiCTKLCUlBampqdDW1qYuYEJUlMyDtHfv3o2ysrJq28vLy7F79265hCLkbcSDNemPj3wJK4TIfpzNOobKE7ceeXl5wdDQkHEa9ZCfn4+TJ0/izJkzrKMQDSFzgTRlyhQUFBRU215UVIQpU6bUK8SmTZvg5OQEgUAAHx8fXLly5Y3779+/Hy4uLhAIBHB1dcXJkyclj1VUVOCzzz6Dq6srDA0NYWdnh0mTJiE9PV3qGLm5uZgwYQJMTExgZmaGadOm4cWLF/XKTxrfggULsGLFCgQEBLCOojaepz7HqiGrsG32NuoqbyC6vF/+Dh06hMGDB+Prr79mHYVoCJkLJI7jauzSePLkCUxNTWUOsG/fPoSEhGDZsmWIi4uDm5sbAgIC8OzZsxr3j4qKwvjx4zFt2jRcv34dgYGBCAwMRGJiIoCqmb7j4uKwZMkSxMXF4dChQ7h37161weMTJkzArVu3EBYWhuPHj+P8+fOYMWOGzPkJGz169MCSJUtoagk5srC3AF+bDy0dLTx5QuuyNURERAQAKpDkqVu3bnB2dkb79u1ZRyEaos6X+Xfu3Bk8Hg88Hg99+/aFtvZ/TxUKhUhOTsaAAQNkDrBmzRpMnz5d0vq0ZcsWnDhxAtu3b8fChQur7b9u3ToMGDAA8+fPBwCsXLkSYWFh2LhxI7Zs2QJTU1OEhYVJPWfjxo3w9vZGamoqmjdvjjt37uDUqVO4evUqvLy8AAAbNmzAoEGD8MMPP8DOzk7m90GIquNr8fHhjg9h0tQEjo6OrOOorLS0NCQnJ0NLSwvdu3dnHUdtuLi44P79+6xjEA1S5wJJfPVafHw8AgICYGRkJHlMV1cXTk5OGDlypEwvXl5ejtjYWCxatEiyjc/nw9/fv9Z1d6KjoxESEiK1LSAgAEeOHKn1dQoKCsDj8WBmZiY5hpmZmaQ4AgB/f3/w+XxcvnwZw4cPr3aMsrIyqbFXhYWFdXmLRAGOHDkCkUgEPz8/NGnShHUctWJqJXsrMJGWnZ2NLl26QFtbGyYmJqzjEELqqc4F0rJlywAATk5OGDt2LAQCQYNf/Pnz5xAKhdUWv7W2tsbdu3drfE5mZmaN+2dmZta4f2lpKT777DOMHz9e8mElnrLgVdra2rCwsKj1OKGhofjyyy/r9L6IYn311VeIjY3Fvn37MGbMGNZx1BLHcQBAVwjWg4eHB65cuYLKSlrXThGEQiEyMjLQrFkz1lGImpN5DFJQUJBciqPGUFFRgTFjxoDjOGzevLlBx1q0aBEKCgokt7S0NDmlJLLgOA6+vr5wc3ND165dWcdRS0d/OAp7e3vcvn2bdRSV9uowBCIfsbGxMDMzo8k3SaOQ+V8wn89/47dKWa5+sbS0hJaWFrKysqS2Z2VlwcbGpsbn2NjY1Gl/cXH0+PFjnD17Vqqp28bGptog8MrKSuTm5tb6unp6etDT06vzeyOKwePxsGHDBtYx1FpBZgEyMjIQGRlJg+Bl9PLlSwiFQqkhCER+nJ2dUVxcjBcvXiArK6tabwIh8iRzgXTo0CGpAqmiogLXr1/Hrl27ZO6C0tXVhaenJ8LDwyVjnEQiEcLDwxEcHFzjc3x9fREeHo65c+dKtoWFhUktNyEujpKSknDu3Llq41R8fX2Rn5+P2NhYeHp6AgDOnj0LkUgkWRSRKKflEctr3t675u1Edo5ujngU+wiRkZH48EOaXVsWR44cwaRJk/D+++9j+/btrOOoHRMTE3To0AGJiYm4fPkyLW1FFErmAqmmpUZGjRqFDh06YN++fZg2bZpMxwsJCUFQUBC8vLzg7e2NtWvXori4WHJV26RJk2Bvb4/Q0FAAwJw5c+Dn54fVq1dj8ODB2Lt3L65du4atW7cCqCqORo0ahbi4OBw/fhxCoVAyrsjCwgK6urpo164dBgwYgOnTp2PLli2oqKhAcHAwxo0bR1ewKbncp7kwaWoCbV3qvlAUR7eqK9giIyNrndaD1CwhIQGVlZWSC0KI/HXt2hWJiYmIjo6mAokolMxjkGrTtWtXhIeHy/y8sWPH4ocffsDSpUvh7u6O+Ph4nDp1StJ0mpqaioyMDMn+3bp1w549e7B161a4ubnhwIEDOHLkCDp27AgAePr0KY4ePYonT57A3d0dtra2kpt49mUA+OOPP+Di4oK+ffti0KBB6NGjh6TIIspr59ydWDVkFTLuZ7x9Z1Iv9i720NPTQ1ZWFl1WLaNVq1YhJSVFqoWbyJd47GFMTAzjJETdyeVr+MuXL7F+/XrY29vX6/nBwcG1dqmJJ1x71ejRozF69Oga93dycpJcgfMmFhYW2LNnj0w5CVtPnjxB0fMi8Pg8NHGgy/sVRVtXG127dkVkZCTOnz+Ptm3bso6kUhwdHau6gh9Jb6duYPkQD6cQXylIg+GJosjcgmRubg4LCwvJzdzcHMbGxti+fTu+//57RWQkBMB/C9Rat7KGrr4u4zTqTTwDtHjJDEKUhYuLC0xMTFBSUiJZQYEQRZC59F67dq3UfT6fj6ZNm8LHxwfm5ubyykVINeIm9Wbtaf4TRXu1QKJxSHXz+eef49atW1Xda3S6FIbP58PHxwdhYWGIjo6Gu7s760hETclcIAUFBSkiByFvRQVS4+natSt0dHTw5MkTJCcno2XLlqwjKb2jR4/i1q1bVZ+RFqzTqDdfX1+EhYUhJiYGH3zwAes4RE3Vq/M2Ly8P27Ztw507dwAA7du3x5QpU2BhQZ8KRDHEy9IAVCA1BgMDA3h7e+PSpUuIjIykAuktsrOzcevWLQBAr169cCPxBuNE6k08ULu2JakIkQeZxyCdP38eTk5OWL9+PfLy8pCXl4f169ejRYsWOH/+vCIyEoKEhASUlZVB30QfFvZUiDcGGodUd+LPvo4dO8LS0pJxGvUnnq8uKSkJOTk5jNMQdSVzgTR79myMHTsWycnJOHToEA4dOoRHjx5h3LhxmD17tiIyEvJf91q7ZjQeppFQgVR34nMkPmdEsSwsLCRXV9Ll/kRRZO5ie/DgAQ4cOAAtLS3JNi0tLYSEhGD37t1yDUeImPhD0L59/aaSILLz9fUFj89DSkoKQvaHwKTpf8v10CXr0qhAanxdu3ZFUlISHj58yDoKUVMyF0geHh64c+dOtblR7ty5Azc3N7kFI+RVNEC78RkbG+O90Pdg3dIaxpbGrOMordzcXNy8eRMAaBHVRhQaGooNGzbA2Jh+N4li1KlAunHjvwGHH3/8MebMmYMHDx5IzWi6adMmrFq1SjEpiUZ79uwZHj16BB6PB3sXakFqTK29W7OOoPTOnz8PjuPQrl07Wjy1Edna2rKOQNRcnQokd3d38Hg8qRmqFyxYUG2/9957D2PHjpVfOkLwX+tRu3btIDASME5DiDTqXiNEPdWpQEpOTlZ0DkJq9eTJE+jq6kqWGCCNh+M4RO2NQvL1ZAxbMIy62mpABRI7W7Zswe7duzFr1ixMmjSJdRyiZupUIDk6Oio6ByG1+vDDDzFt2jQUFRVhY+JG1nE0Co/HQ+K5RGQmZeLxjcfo2Kcj60hKJT8/H/Hx8QCoQGIhNTUV0dHRaNeuHRVIRO7qVCAdPXoUAwcOhI6ODo4ePfrGfYcOHSqXYIS8Sk9PD3p6eqxjaCSfET4oKy6jAfI1uHDhAjiOQ5s2bWhMDAPjxo1D+/bt0aNHD9ZRiBqqU4EUGBiIzMxMWFlZITAwsNb9eDwehEKhvLIRQpSA+wB31hGUFnWvNY7lEctr3t57OTp16tS4YYjGqNNEkSKRCFZWVpL/r+1GxRGRt23btqFz585Yv3496yiEVLN06VL8/fffmDFjBusohBA5k2km7YqKCvTt2xdJSUmKykOIlEuXLiE+Ph7Pnj1jHUWjFWYXIu5EHJKv0wUbrzIxMcHQoUPh5eXFOorGunv3LlavXo2DBw+yjkLUjEwFko6OjtScSIQo2ldffYUDBw5g/PjxrKNotNhjsTj2wzHEHY9jHYUQKWFhYfj000+xbds21lGImpF5Ju2JEydi27ZtNCkkUZhq4w2aADezb6IDOjDJQ4CWni1x/rfzeBT3CJyIe/sTNEBoaCiKi4sRFBQEZ2dn1nE0lnj6j5iYGHAcR2s1ErmRuUCqrKzE9u3b8e+//8LT0xOGhoZSj69Zs0Zu4QghyqFZ+2bQEeigJL8EWY+ygD6sE7HFcRw2b96MtLQ09OrViwokhjp16gSBQIC8vDzcv3+/2jJYhNSXzAVSYmIiPDw8AAD379+XeyBCxBLPJiI3PRcu3V1g1cKKdRyNpqWjBSc3JyRdTsKjuEes4zAnEomwYsUKhIeH0yXmjOnq6sLLywsXL15ETEwMFUhEbmQukM6dO6eIHIRUk3A6AQ+uPIDAUEAFkhJo6dWyqkC6RgWSlpYWJk+ejMmTJ7OOQgB07dpVUiAFBQWxjkPUhEyDtAFg6tSpKCoqqra9uLgYU6dOlUsoQjgRhyd3ngAATVCoJFp6tgQAPL7xGGVlZYzTEPIf8Tik6OhoxkmIOpG5QNq1axdevnxZbfvLly+xe/duuYQiJOdJDkqLSqGtpw3rVrRCujJo6tQURhZGqCyrRFRUFOs4zFRUVGDt2rW4efOm1ALehJ2uXbsCAG7evIkXL14wTkPURZ0LpMLCQhQUFIDjOBQVFaGwsFByy8vLw8mTJyWTSRLSUE9uV7Ue2bWxg5a2FuM0BKiaKV/civTvv/8yTsPOlStXMG/ePLzzzjtUICkJOzs7ODg4QCQS4erVq6zjEDVR5wLJzMwMFhYW4PF4aNOmDczNzSU3S0tLTJ06FbNnz1ZkVqJB0hLTAADNOlD3mjIRF0hhYWGMk7Ajfu99+/YFny9zIzxREOpmI/JW50Ha586dA8dx6NOnDw4ePAgLCwvJY7q6unB0dISdnZ1CQhLNI25BcujgwDgJeVULjxYAgGvXriEvLw/m5uaMEzU+cYHUr18/xknIq7p164a//vpLo7t/iXzVuUASL8aYnJyM5s2b02RcRGFKX5TiWUrV0iJUICkXk6YmsHS0xPPHz3H27FmMHDmSdaRGVVBQgMuXLwOgAknZdOvWDUBVC5JIJKLWPdJgMv8G3blzB5cuXZLc37RpE9zd3fHee+8hLy9PruGIZnpy+wnAAeZ25jA0N3z7E0ij0uRxSBERERAKhXB2doajoyPrOOQV7u7u0NfXR25uLs3RR+RC5gJp/vz5KCwsBFB1xUBISAgGDRqE5ORkhISEyD0g0TzUvabcXLq7YOrUqXj33XdZR2l01L2mvHR0dDB16lR8+umnEAgErOMQNSDzRJHJyclo3749AODgwYN499138c033yAuLg6DBg2Se0CiedJuVQ3QduhIBZIyauHRAstDlrOOwQQVSMpt48aNrCMQNSJzC5Kuri5KSkoAVDWx9+/fHwBgYWEhaVkipL6EQqGkBYkmiCTKJDU1Fffv34eWlhbeeecd1nEIIQomc4HUo0cPhISEYOXKlbhy5QoGDx4MoGpdtmbN6A8aaZhbt26hvKQcuvq6tLyIEhMKhbhy5QoOHTrEOkqjEbceeXt7w9TUlHEaUpvCwkKEhYXRF3bSYDIXSBs3boS2tjYOHDiAzZs3w97eHgDwzz//YMCAAXIPSDSLmZkZer3fC17DvMDXoqtQlFVMTAx8fHwwY8YMiEQi1nEaBXWvqQYfHx/0798fFy9eZB2FqDiZxyA1b94cx48fr7b9xx9/lEsgotmaN2+Od6ZS94Wy8/b2hoODAzw9PZGfny81L5o6EolECA8PB0AFkrLr2rUrSktLackR0mB1KpAKCwthYmIi+f83Ee9HCFFfOjo6ePz4scbMhxYfH4/nz5/DyMgIPj4+rOOQN/j555+hq6vLOgZRA3UqkMzNzZGRkQErKyuYmZnV+KHIcRx4PB6EQqHcQxLNkJ+fjwsXLqBEVAIDUwPWcchbaEpxBFR98Zs7dy5EIhF0dHRYxyFvQMURkZc6FUhnz56VNKGfO3dOoYGI5jp//jyGDRuGpo5N8eHOD1nHIXX08OFDNGvWDHp6eqyjyNXyiOVS902H0cBsVSISiVBRUaF2v5ek8dSpQBIvM/L6/xMiT+Xl5WjXrh0ELWmSN1XRs2dPXLx4EWFhYfD392cdhxAAwNKlS7FhwwZ89dVXtIg6qTeZB2knJSXh77//RkpKCng8Hlq2bIlhw4ahZcuWishHNMioUaMwatQoLA1fyjoKqaOWLVuqfYGUk5aDgmcFaO7aHNq6/31kvt7CBADLe1ffRhqftrY28vPzERUVRQUSqTeZrqMODQ1F+/bt8dlnn+HgwYPYv38/Pv30U7i4uOCHH35QVEaiYejyftUhvqLr9OnTjJMoTtyJOPz26W84sfYE6yikjsQL10ZFRTFOQlRZnf8SnTt3DosXL8YXX3yB58+fIyMjA5mZmcjOzsbChQuxcOFCnD9/XpFZiRorKSlBRUUF6xhERgEBAeDz+UhISEBKSgrrOAohMBLA0NwQLT2olVxVeHt7g8/nIyUlBenp6azjEBVV5wJpy5Yt+N///ofly5fD3Nxcst3CwgIrVqzA1KlTsXnzZoWEJOrv119/hZmZGRYtWsQ6CpFB06ZN0aNHDwDAkSNH2IZRkJ4TeyJkfwja927POgqpIxMTE7i6ugIAoqOjGachqqrOBdKVK1fw/vvv1/r4+++/j5iYGLmEIponKioKJSUlMDIyYh2FyGj48OEAgMOHDzNOojh8LT60tLVYxyAyoG420lB1LpCysrLg5ORU6+MtWrRAZmamPDIRDST+lif+UCOqIzAwEABw8eJFZGdnsw0jZ5kPMsGJONYxSD1QgUQaqs4FUmlp6Rsn4NLR0UF5ebnMATZt2gQnJycIBAL4+PjgypUrb9x///79cHFxgUAggKurK06ePCn1+KFDh9C/f380adIEPB4P8fHx1Y7Ru3dv8Hg8qdusWbNkzk7k48mTJ0hNTQWfz0eXLl1YxyEycnJyQufOnSESiXDs2DHWceSmMLsQP0//GT+O/RHlL2X/bCNsiQuk2NhYlJaWMk5DVJFMl/n/+uuvtXaBFBUVyfzi+/btQ0hICLZs2QIfHx+sXbsWAQEBuHfvHqysqq/kHhUVhfHjxyM0NBRDhgzBnj17EBgYiLi4OHTs2BEAUFxcjB49emDMmDGYPn16ra89ffp0rFixQnLfwIBmbmZF3Hrk5uZGXWwqKjAwENevX8fhw4cxdepU1nHk4u7FuwAAM2sz6OrT7MyqpkWLFrC2tkZWVhZiY2PRvXt31pGIiqlzgdS8eXP88ssvb91HFmvWrMH06dMxZcoUAFUDwU+cOIHt27dj4cKF1fZft24dBgwYgPnz5wMAVq5cibCwMGzcuBFbtmwBAMk4qbddUWNgYAAbG5s6Zy0rK0NZWZnk/tvWpCN1R91rqunVeYCymmUBAP45/Q+KiopgbGzMKJX8iAskl54ujJOQ+uDxeOjWrRsOHz6MqKgoKpCIzOrcxZaSkoLk5OS33uqqvLwcsbGxUpPL8fl8+Pv713rVQXR0dLXJ6AICAup1lcIff/wBS0tLdOzYEYsWLUJJSckb9w8NDYWpqank5uDgIPNrkpqJxwj4+voyTkLqy6qFFcztzCGsEKrFnEg5OTlIiU8BALj0oAJJVdE4JNIQzGbke/78OYRCIaytraW2W1tb1zrYOzMzU6b9a/Pee+/h999/x7lz57Bo0SL89ttvmDhx4hufs2jRIhQUFEhuaWlpMr0mqVlpaSni4uIAUAuSKuPxeJKWFnW4mu348ePgRBysW1rDwt6CdRxST68WSBxHg+2JbGReakQdzJgxQ/L/rq6usLW1Rd++ffHw4UO0atWqxufo6enRoocKEBsbi4qKCtjY2LzxKkmi/Nr1aIfbEbfRqlWrGpfhAFRnKQ5xkefSi1qPVJmHhwd0dXXx7NkzpKWlyTwMhGg2Zi1IlpaW0NLSQlZWltT2rKysWscG2djYyLR/Xfn4+AAAHjx40KDjENm92r3G4/EYpyEN0axDM8z5c47UxQ+qqLi4WNJN2K5HO8ZpSEMIBAKcO3cOeXl5VBwRmTErkHR1deHp6Ynw8HDJNpFIhPDw8FrHovj6+krtDwBhYWENHrsingrA1ta2QcchshMXSNS9pvrEU2aoulOnTqG0tBTmduawaln9alqiWrp16wYzMzPWMYgKYtrFFhISgqCgIHh5ecHb2xtr165FcXGx5Kq2SZMmwd7eHqGhoQCAOXPmwM/PD6tXr8bgwYOxd+9eXLt2DVu3bpUcMzc3F6mpqZL1d+7duwegqvXJxsYGDx8+xJ49ezBo0CA0adIEN27cwLx589CrVy906tSpkc+AZuM4jq5gU0MVFRVIvp4MJzcn8PiqVzAdOnQIQNXVa+pQ8BFC6ofpsuljx47FDz/8gKVLl8Ld3R3x8fE4deqUZCB2amoqMjIyJPt369YNe/bswdatW+Hm5oYDBw7gyJEjkjmQAODo0aPo3LkzBg8eDAAYN24cOnfuLJkGQFdXF//++y/69+8PFxcXfPLJJxg5cqRaTXCnKtLT0/H8+XPo6OjAw8ODdRwiBxzHoW3bttgdshtP7jxhHUdm5eXlOH78OADqXlMXQqEQCxcuhJ+fH03PQmQitxYkf39/PHr0CI8ePZLpecHBwQgODq7xsYiIiGrbRo8ejdGjR9d6vMmTJ2Py5Mm1Pu7g4IDIyEiZMhLFsLe3R2FhIe7evQuBQMA6DpEDHo+Hrl27IisvC4XZqvfH6OzZsygsLISNjQ2atW/GOg6RAy0tLfz1119ITk7GlStXqk0VQ0ht5FYgDR8+HM+fP5fX4Yiae/0qp6MRR6u2q8hVTqR2GzduROvrrcHXYtpAXS/iq9cCAwNVsnuQ1GzhwoXQ0dGhYRREJnIrkGbPni2vQxFCVJiFhYXKFEevF+qPdR7DuqU1RowYgUu4xCYUkbtXp3YhpK4a9CmWlpZGEyaSenmR+wJbZ2zF6Z9O02rpaooTcXiR+4J1DJl0HdUVs7bNom4YQojsBVJlZSWWLFkCU1NTODk5wcnJCaampli8eDEqKioUkZGoodSbqchIykBybDJ1ZaihtMQ0/Dj2R+xZuId1lHqhq9fUz82bN7Fu3Trcvn2bdRSiImTuYvvoo49w6NAhfPfdd5L5h6Kjo7F8+XLk5ORg8+bNcg9J1I+jmyNGLB5Bf4jUlIW9BV7kvkDR8yIUZBXA1NqUdaQ34jgO96Pvo0XnFtDV12UdhyjAl19+iYMHDyI0NBTt27dnHYeoAJlbkPbs2YOdO3di5syZ6NSpEzp16oSZM2di27Zt2LNHNb8tksZnaGYI176u6Nin49t3JirH0NwQDh2rFnS+e/Eu4zRvl/UwC3u/2Iu149ZCWClkHYcoQK9evQAA58+fZ5yEqAqZCyQ9Pb0a18xq0aIFdHXpmxchpIpLj6p1zO5cuMM4ydu9yH0BcztzOHZyhJa2Fus4RAHEBdLFixdRWVnJOA1RBTJ3sQUHB2PlypXYsWOHZPHWsrIyfP3117XOZ0Q0U00Lli7vvRxXrlzBxT0X0cqrFWzb0PIu6qp9r/Y4s/kMHic8Rs6THDRp1oR1pFq19m6Nj37/COUvy1lHITKq68LIrq6uMDU1RUFBARISEuDp6an4cESl1alAGjFihNT9f//9F82aNYObmxsAICEhAeXl5ejbt6/8ExK1c/DgQYT/Eo7cp7kYOn8o6zhEQUytTeHs44ykmCRcO3oNAR8GsI70RjweD3oGeqxjEAXR0tJCjx49cOLECZw/f54KJPJWdepiMzU1lbqNHDkSQ4YMgYODAxwcHDBkyBCMGDECpqbKPRCTKAfxGADHTo6MkxBF6zKsCwAg/p94VJQq51WuyXHJqCynLhdNQOOQiCzq1IK0Y8cORecgGqKkpATXrl0DUHUlG1Fvrb1bw8zWDPkZ+Ug8mwgMYJ1IWn5mPn6b/xv0TfTx0W8fQWBES96oM3GBdOHCBYhEIvD5qjGhKWGj3r8d2dnZuHjxIi5evIjs7Gx5ZiJqLCYmBpWVlTCxMlH6S79Jw/H4PHgN9QIAXD1yFRynXJOCXjt2DZyIg00rGyqONICnpycMDAyQk5ND8yGRt5K5QCouLsbUqVNha2uLXr16oVevXrCzs8O0adNQUlKiiIxEjUi611wdaQ4kDdF5YGdo6WghIykDV65cYR1HorS0FHHH4wAAXQK7ME5DGoOOjg66desGgLrZyNvJXCCFhIQgMjISx44dQ35+PvLz8/H3338jMjISn3zyiSIyEjUi/lBq3qk54ySksRiYGkjmu/rpp58Yp/nPX3/9hZeFL2FqbYo2vm1YxyGNhMYhkbqS+TL/gwcP4sCBA+jdu7dk26BBg6Cvr48xY8bQTNqkVsIKIaKjowHQ+CNN02VYFyScTsC+fftgPcIaBqYG1fZ5/bJsRdu4cSMAwPNdT5VZXJc03KsFEsdx1JJNaiXzp0JJSQmsra2rbbeysqIuNvJG6ffSUVpaCktLS1g2t2QdhzQiOxc7tPdrj5UrVyrFRIxXrlzB1atXoaWjBY/BHqzjkEbk7e0NXV1dZGRk4OHDh6zjECUmc4Hk6+uLZcuWobS0VLLt5cuX+PLLLyVrsxFSk8c3HgOo+gZH39o0C4/Hw+jlozF//nzoGbKfa2jTpk0AgA69O8DQzJBxGtKY9PX1MWnSJMydOxfa2jJ3ohANIvNvx9q1azFgwIBqE0UKBAKcPn1a7gGJ+hAXSD179kQ+8tmGIRrr+fPn2LdvHwAanK0Jappp+5dffmn8IETlyFwgubq6IikpCX/88Qfu3q1ahHL8+PGYMGEC9PX15R6QqAeRUIS0xDQAVS1IRwuPMk5EWCgrK8PNf28i61EW/Gf4M8mwbds2lJWVwdPTE/bt7JlkIIQoP5kKpIqKCri4uOD48eOYPn26ojIRNZT1KAtlxWUwNjaGm5sbjl6gAkkTpaWl4dDXhwAe4DnEE+Z25o36+kKhUHIhSXBwMFJ4KY36+kR5lJSU4PLly+jUqROaNFHedQIJOzKNQdLR0ZEae0RIXQmMBOjxXg/MnDkTWlrsB+kSNlq3bg33Ae7oHdSbyVikEydO4PHjx7CwsMDYsWMb/fWJ8vD390efPn1w6tQp1lGIkpJ5kPbs2bPx7bfforKS1i4idWdua46+0/vi+++/Zx2FMDbss2HwC/Kr8VJ/Rdu2bRsAYNq0aTQkQMN169YN9vb2ePnyJesoREnJPAbp6tWrCA8Px5kzZ+Dq6gpDQ+krQA4dOiS3cIQQIk+//fYbfvvtNwwePJh1FMLY119/je+//56uqCW1krlAMjMzw8iRIxWRhaipopwiZD7IhEMHB9ZRiJIQCUW4F3UPj2IfYdDHg8DjN84fKRMTE8yePbtRXosoNz099tNNEOUmc4G0Y8cOReQgaux+1H0cX3McTp2dsGrIKtZxiBJ4WfgSh785jIrSCjR1bArv4d4Kfb2nT5+iSZMmEAhoQVoiTSQS4eXLl9V6Qwip8xgkkUiEb7/9Ft27d0eXLl2wcOFC6rsldcMDLOwt0NyV1l8jVQzNDdFvZj8AwL9b/0Veep7CXquyshLDhw+Hp6cnbt26pbDXIarnl19+gZWVFRYtWsQ6ClFCdS6Qvv76a3z++ecwMjKCvb091q1bR03VpE48h3jio98/gt8kP9ZRiBLxGuoFJ3cnVJRW4Oj3RyESiRTyOg8fPkRqairS09NhZmamkNcgqsnMzAw5OTm0cC2pUZ0LpN27d+Onn37C6dOnceTIERw7dgx//PGHwj7UiPqhBUHJq3h8HobOHwodgQ5S4lOwZcsWhbxO27ZtcevWLRw5cgT29jQxJPlPz549AQA3btxAXp7iWjGJaqrzX6zU1FQMGjRIct/f3x88Hg/p6ekKCUbUQ0lBCYSVQtYxiJIytzOXzKi9YMECJCcnK+R1mjRpAj8/asEk0mxsbNCmTRtwHIdLly6xjkOUTJ0LpMrKymoDHHV0dFBRUSH3UER9nN50Gt8N+w4JpxNYRyFKqsuwLnDs5Iji4mJMmzZNbq3SP/zwA/bs2QOO4+RyPKKeevXqBQA4d+4c4yRE2dT5KjaO4zB58mSpSyNLS0sxa9YsqdH/NA8SEeM4Do/iHqG8pBwmTU1YxyFKisfnYeiCofh1+q84d+4ctm7dilmzZjXomLGxsVi4cCGEQiGaNWsm+SNIyOv69u2LX3/9FWFhYayjECVT5xakoKAgWFlZwdTUVHKbOHEi7OzspLYRIpadko0XOS+grasNh440BxKpnYW9BVatqpoCYv78+UhJSan3scrKyhAUFAShUIjRo0dTcUTeqG/fvgCAmzdvIjMzk3Eaokzq3IJE8x8RWT289hAA4NjJEdq6Mk+5RTRMcHAwDhw4gAsXLuB///sfwsLC6jXL8fLly3Hr1i1YWVnhp59+UkBSok6aNm2Kzp074/r16/j3338xceJE1pGIkqDLiojCJMdWDbht6dWScRKiCvh8PrZt2wZ9fX2Eh4dj586dMh8jJiYG3333HQBgy5YtsLS0lHNKoo769+8PANTNRqRQgUQUory8HCkJKQCAlp5UIJG6cXZ2xjfffAMtLS306NGjzs978eIFvv32WwwZMgQikQgTJkzA8OHDFZiUqJN+/aomLQ0LC6NB/USC+j2IQkRHR6OitAKG5oawbmnNOg5RIR999BGsra3h7Ows2fbrr7+if//+aN5cejb2oqIibNy4EatXr0ZOTg4AoEOHDli/fn2jZiaqrXv37hAIBMjIyMCtW7fQsWNH1pGIEqACiSiEuKm6pUfLRluIlKgHLS0tjB8/XnI/MTERM2bMgK6uLpKTk2Fra4vCwkJs2LABa9asQW5uLgCgdevWWLx4MSZMmABt7f8+2pZHLK/xdZb3rnk70TwCgQC9evXCmTNnEBYWRgUSAUAFElEQSYFE449IA3EcBz8/P1haWsLW1hYAsHbtWixbtgwA0KZNG7Qf2R6ufV2RrJWMry5+JXkuFUGkrvr3748zZ87g0aNHrKMQJUFjkIjc5eXl4dq1awBo/BFpOFdXV5w9exa7du2SbAsODoa3tzd+//133L59G2793WgpG9IgU6ZMwbNnz7BhwwbWUYiSoBYkIndnz56FSCSCpaMlTRBJ5ILH4+G7K99JbRv47UAkIQlaWlqMUhF1YmFhwToCUTL0lYvI3avjjwghRNXQIuwEoAKJKEBBQQG0tLRo/BEhRKUkJibinXfeodnXCQAqkIgC/Pnnn8jJyUErr1asoxBCSJ1ZWFggIiICUVFRkqsjieZiXiBt2rQJTk5OEAgE8PHxwZUrV964//79++Hi4gKBQABXV1ecPHlS6vFDhw6hf//+aNKkCXg8HuLj46sdo7S0FLNnz0aTJk1gZGSEkSNHIisrS55vS+OZmprS8iKEEKW2PGK51G3r/a347bffcO/ePZibm7OORxhjWiDt27cPISEhWLZsGeLi4uDm5oaAgAA8e/asxv2joqIwfvx4TJs2DdevX0dgYCACAwORmJgo2ae4uBg9evTAt99+W+vrzps3D8eOHcP+/fsRGRmJ9PR0jBgxQu7vTxOVlpayjkAIIfU2ceJEODs712sdQKJemBZIa9aswfTp0zFlyhS0b98eW7ZsgYGBAbZv317j/uvWrcOAAQMwf/58tGvXDitXroSHhwc2btwo2ef999/H0qVL4e/vX+MxCgoKsG3bNqxZswZ9+vSBp6cnduzYgaioKMTExCjkfWoKoVAIBwcH+Pr64unTp6zjEEIIIfXGrEAqLy9HbGysVCHD5/Ph7++P6OjoGp8THR1drfAJCAiodf+axMbGoqKiQuo4Li4uaN68+RuPU1ZWhsLCQqkbkXbz5k08f/4cd+7cgbU1LS9CCFFNO3bswKhRo/DgwQPWUQhDzAaJPH/+HEKhsNofUmtra9y9e7fG52RmZta4f2ZmZp1fNzMzE7q6ujAzM5PpOKGhofjyyy/r/Dqa4vVlHObunYvBTQZLLfVACCGqZPfu3YiIiECfPn3QunVr1nEII8wHaauKRYsWoaCgQHJLS0tjHUkpmVqb1tq9SQghqqBfv34AgDNnzjBOQlhiViBZWlpCS0ur2tVjWVlZsLGxqfE5NjY2Mu1f2zHKy8uRn58v03H09PRgYmIidSOEEKJ+xAXSuXPnUFlZyTgNYYVZgaSrqwtPT0+Eh4dLtolEIoSHh8PX17fG5/j6+krtD1TN2lzb/jXx9PSEjo6O1HHu3buH1NRUmY5DpD2KfYQ9C/cg4XQC6yiEENIgHh4esLCwQGFh4VunniHqi+lAkZCQEAQFBcHLywve3t5Yu3YtiouLMWXKFADApEmTYG9vj9DQUADAnDlz4Ofnh9WrV2Pw4MHYu3cvrl27hq1bt0qOmZubi9TUVKSnpwOoKn6AqpYjGxsbmJqaYtq0aQgJCYGFhQVMTEzw0UcfwdfXF127dm3kM6A+kmKSkHQ5CUZNjFhHIYSQBtHS0kLfvn2xf/9+hIWFoVu3bqwjEQaYjkEaO3YsfvjhByxduhTu7u6Ij4/HqVOnJAOxU1NTkZGRIdm/W7du2LNnD7Zu3Qo3NzccOHAAR44cQceOHSX7HD16FJ07d8bgwYMBAOPGjUPnzp2xZcsWyT4//vgjhgwZgpEjR6JXr16wsbHBoUOHGuldq6dHsY8AAC09aXkRQojqE3ezideWJJqH+aVGwcHBCA4OrvGxiIiIattGjx6N0aNH13q8yZMnY/LkyW98TYFAgE2bNmHTpk2yRCW1KMopwrPkZwCPCiRCiHoQF0gxMTEoKCiAqakp40SksTEvkIjqE7ce2ba2hYGpAeM0hBDScE5OTnB2dkZSUhIiIiIwbNgwyWOvT28CAMt7V99GVBtd5k8aLCkmCQDQqgstTksIUR/iVqRTp04xTkJYoAKJNEhleSWSLlcVSG27t2WchhBC5GfIkCEAqsa2ikQixmlIY6MCiTRISnwKykvKYdTECPYu9qzjEEKI3PTp0wdGRkZIT0/HtWvXWMchjYwKJNIgdy9VLQvTtltb8Pi0+jUhRH3o6elh0KBBAIAjR46wDUMaHQ3SJvUmEolwP+o+AMClhwvjNIQQIn9z5szBqFGjMGDAANZRSCOjAonU27Vr11D0vAi6BrpwcndiHYcQQuSOJonUXFQgkXr7+++/AQDO3s7Q1qVfJdJwNV0+DdAl1ISQxkdjkEi9nT59GgBdvUYIUW/Z2dn46quvMH36dNZRSCOir/3krWqbFO38+fOYumYqda8RQtRaeXk5lixZAh6Ph5UrV7KOQxoJFUik3gwMDGhwNiFE7dnb2yMkJAQdOnSAoaEh6zikkVCBRAghhLzF6tWrWUcgjYwKJCKz4rxiuLm5YejQoeC/w6f5jwghaofWWyNUIBGZ3Yu6hxs3bkBHRwdD+g5hHYcQQhrF48ePcfjwYaQghcZeagAqkIjM2vVqhzFuY6Cvr4+buMk6DiGENIpNmzbh+++/h2tfVyqQNABd5k9kpm+sj4kTJ2LkyJGsoxBCSKMJDAwEANyPuQ9hhZBtGKJwVCARQgghdeDj4wNra2uUFZchJSGFdRyiYFQgEZlc+P0CLv15CU+fPmUdhRBCGpWWlhaGDh0KALh78S7jNETRqEAidSYSihC9Pxr/bv0XDx48YB2HEEIanbib7d6le+BEHNswRKGoQCJ1lnozFS8LX0LfRB/du3dnHYcQQhpdnz59oKuvi6LnRUi/n846DlEgKpBInYmblNt2awttbboAkhCieQQCAVp7twZA3WzqjgokUiccx+HepXsAaHFaQohmE38Gij8TiXqiZgAC4O2zxmY9zEJ+Zj609bTRyqtV4wUjhBAl49zVGXwtPrJTspHzJAdNmjVhHYkoALUgkToRNyW38moFHYEO4zSEEMKOvrG+ZKJI6mZTX1QgkbfiOA43wm4AqJpFmxBCNJ1LDxcAQOLZRMZJiKJQgUTeKi0xDXnpedDV10W7nlQgEUJIh3c6gK/NR2ZSJrIeZbGOQxSAxiCRt4o/HQ8AaO/XHrr6umzDEEKIEjAwNUC/mf3Q1Kkpmjo2ZR2HKAAVSOSNXr58idsRtwEAbgFujNMQQojy6DqqK+sIRIGoi4280d9//42y4jKYWpvCsZMj6ziEEEJIo6ACibzR8ePHAQBu/d3A4/MYpyGEEOVSkFWAM5vPIDg4mHUUImfUxUbeaNeuXeC582DpYMk6CiGEKJ2XRS8R/Vc0YnVjsWLFClhYWLCOROSEWpDIG2lpaaGVVyuYWpuyjkIIIUrHprUNfEb5YP/+/TA2NmYdh8gRtSCRGnEch8rKSlpzjRBC3mLA7AEY2nso6xhEzqgFidQo434GHBwcsGTJEtZRCCGEkEZHBRKp0a1zt5CZmYmkpCTWUQghROk9fvwYS5YswZo1a1hHIXJCBRKpUZ//9cHff/+NTz/9lHUUQghReteuXcNXX32F1atXQygUso5D5IAKJFIjLW0tDB06FF5eXqyjEEKI0hsyZAjMzc2Rnp6O8PBw1nGIHFCBRKrhOI51BEIIUSl6enp47733AAA7d+5kG4bIBRVIREpJQQk2TtqIs9vPorKyknUcQghRGUFBQQCAw4cPo6CggHEa0lBUIBEpN8NvIvdJLh7EPKBL/AkhRAZeXl5o3749SktLsX//ftZxSANRgUSkJJxOAEAL0xJCiKx4PJ6kFYm62VQfFUhE4lnyM2TczwBfi4+OfTuyjkMIISonq2UWeHweLl26hI//+BjLI5azjkTqiQokIhF/Kh4A4NzVGYZmhmzDEEKICjK2NEYrr1YAgPjT8WzDkAahAokAAMqKyxB3Ig4A4DHYg3EaQghRXe4D3AEAccfjUFFWwTYMqTelKJA2bdoEJycnCAQC+Pj44MqVK2/cf//+/XBxcYFAIICrqytOnjwp9TjHcVi6dClsbW2hr68Pf3//ajNCOzk5gcfjSd1WrVol9/emKmJPxKKsuAyWzS3h7OPMOg4hhKgsl54uMLU2RXFesWRcJ1E9zAukffv2ISQkBMuWLUNcXBzc3NwQEBCAZ8+e1bh/VFQUxo8fj2nTpuH69esIDAxEYGAgEhMTJft89913WL9+PbZs2YLLly/D0NAQAQEBKC0tlTrWihUrkJGRIbl99NFHCn2vyqqiogKXD1wGAPiO8QWPz2OciBBCVJeWtha6juoKAIjeH00za6so5gXSmjVrMH36dEyZMgXt27fHli1bYGBggO3bt9e4/7p16zBgwADMnz8f7dq1w8qVK+Hh4YGNGzcCqGo9Wrt2LRYvXoxhw4ahU6dO2L17N9LT03HkyBGpYxkbG8PGxkZyMzSsfdxNWVkZCgsLpW7qYu/evSjMLoSRhRE69evEOg4hhKg8j8EeEBgLoKWthfT0dNZxSD0wLZDKy8sRGxsLf39/yTY+nw9/f39ER0fX+Jzo6Gip/QEgICBAsn9ycjIyMzOl9jE1NYWPj0+1Y65atQpNmjRB586d8f33379xYsTQ0FCYmppKbg4ODjK/X2XEcRy+//57AID3CG9o69LcR4QQ0lC6+rr430//wwfbP1Cbvxeahulfw+fPn0MoFMLa2lpqu7W1Ne7evVvjczIzM2vcPzMzU/K4eFtt+wDAxx9/DA8PD1hYWCAqKgqLFi1CRkZGrSsxL1q0CCEhIZL7hYWFavFLf+bMGdy8eRM6Ah14DaV11wghRF6aNGsidb+2S/6X9655O2FLY5sLXi12OnXqBF1dXcycOROhoaHQ09Ortr+enl6N21XdDz/8AKCqOVjfWJ9xGkIIUT/FxcVVC9iasE5CZMG0i83S0hJaWlrIysqS2p6VlQUbG5san2NjY/PG/cX/leWYAODj44PKykqkpKTI+jZUFsdxGDZsGFq3bi0ZUEgIIUR+yorL0KJFCwwbNgzZKdms4xAZMC2QdHV14enpWVVZ/z+RSITw8HD4+vrW+BxfX1+p/QEgLCxMsn+LFi1gY2MjtU9hYSEuX75c6zEBID4+Hnw+H1ZWVg15SyqFx+MhODgY9+/fh5mNGes4hBCidvQM9dCjRw+0bNkSL3JfsI5DZMC8iy0kJARBQUHw8vKCt7c31q5di+LiYkyZMgUAMGnSJNjb2yM0NBQAMGfOHPj5+WH16tUYPHgw9u7di2vXrmHr1q0Aqv7oz507F1999RWcnZ3RokULLFmyBHZ2dggMDARQNdD78uXLeOedd2BsbIzo6GjMmzcPEydOhLm5OZPzwBKPR5f1E0KIomzduhVmZmb46uJXrKMQGTAvkMaOHYvs7GwsXboUmZmZcHd3x6lTpySDrFNTU8Hn/9fQ1a1bN+zZsweLFy/G559/DmdnZxw5cgQdO/63dtiCBQtQXFyMGTNmID8/Hz169MCpU6cgEAgAVI0n2rt3L5YvX46ysqrmz3nz5kmNS1J3P/74I5o0aYJx48ZBV1eXdRxCCFFblpaWrCOQemBeIAFAcHAwgoODa3wsIiKi2rbRo0dj9OjRtR6Px+NhxYoVWLFiRY2Pe3h4ICYmpl5Z1UFeXh6WLFmC4uJi2Nraol+/fqwjEUKI2qssr0Ti2US49HCBwEjAOg55C6UokEjj0tbWxuLFixEZGVltTilCCCGKsWfRHiTHJaOkoATdxnZjHYe8BRVIGkRqDo6ugE9XHxp/RAghjcS1ryuS45IRcyAGPiN8oKWjxToSeQPmS40QQgghmsDV3xVGTYxQ9LwIN8Nvso5D3oIKJA1SUVqB3Z/sxv3o++A4jnUcQgjRKNq62ug6smrOuQu/X0Blee3LWxH2qEDSIJf2XkJyXDJOrjsJYQWtLk0IIY3Na5gXjJoYIfdpLi4fvMw6DnkDKpA0xOPHj3Hpz0sAgH6z+tGitIQQwoCegR78p1ddHHP+t/MoyilinIjUhgokDbFgwQJUllfC0c0R7f3as45DCCEaq1O/TrBvZ4/yl+UI3xr+9icQJqhA0gCRkZH466+/wOPzMCB4AF25RgghDPH4PAz8eCAAIOFMgkbPy6fMqJ9FzQmFQsyZMwcA4DHEAzata1+wlxBCSOOwd7GH+wB3xJ+Kx0cffYTLly9LrRohD1JTu7y6vXfN24k0akFSc7/88gsSEhJgZmaGPlP7sI5DCCHk//Wd3he6Brq4du0adu7cyToOeQ0VSGosLy8PixcvBgCsWLECBqYGjBMRQggRM7Iwgl+QHwBg0aJFKCgoYJyIvIoKJDW2fPly5OTkoEOHDvjggw9YxyGEEPIan+E+8PDwwJw5c6Cnp8c6DnkFjUFSU7du3cKmTZsAAGvXroW2Nv2oCSFE2WjpaOHq1atyH39EGo5+ImqI4zjMmzcPQqEQgYGBtCAtIYQosVeLI6FQSCsdKAkqkNTQo0ePcOnSJejq6mL16tWs4xBCCKmDiIgIdO7cGcePH2cdhYAKJLXUqlUr3L9/H7///jtatmzJOg4hhJA6OHXqFG7evElfbJUEDUxRU/b29hg9ejTrGIQQQuroiy++wIsXL7By5UrWUQioQFIr33//PVxcXPDuu++yjkIIIURGxsbG2LhxI+sY9aZuE1NSF5uauHjxIj777DMMHToU8fHxrOMQQghpAI7j8PPPP+Ps2bOso2gsakFSE97e3ggODkZ5eTnc3d1ZxyGEENIA27dvx6xZs2BlZYXr16/Dzs6OdSSNQy1IakJXVxfr16/HTz/9xDoKIYSQBho/fjw6deqEZ8+eYdy4caisrGQdSeNQgaTiTp48KfUPhyYbI4QQ1WdgYIADBw7A2NgYFy5cwBdffME6ksahv6Yq7MiRIxg8eDD69u2L8vJy1nEIIYTIkbOzM3bs2AEA+O677/D3338zTqRZqEBSUY8ePcLkyZMBAF5eXtDV1WUbiBBCiNyNHDkSc+fOBQAEBQXh0aNHbANpECqQVMzyiOX49NCn6NqnKwoKCuDQwQEGAw1YxyKEEKIg3377LXx9fVFQUIBhw4YhOzubdSSNQAWSiinMLsTOuTuR/TgbxpbGGLVsFLS0tVjHIoQQoiC6urr466+/YGNjg8TERPTu3RuZmZmsY6k9usxfhaSmpmLn3J3IS8+DqbUpJq2eBJOmJqxjEUIIUbBmzZohMjISffr0we3bt+Hn54fw8HA0a9ZM7q+lbhM+1he1IKmI5ORk+Pn5IS89D2a2Zpi8djIs7C1YxyKEENJI2rRpg/Pnz8PR0RH3799Hr169kJKSwjqW2qICSQU8ePBA8g/BopkFJq+dDDMbM9axCCGENLKWLVsiMjISrVq1wpMnT3D37l3WkdQWdbEpoVebN5+nPseukF14kfMCLi4uGLRyEIwtjdmFI4QQwpSjoyMiIyORkJCAAQMGsI6jtqgFSYk9S36GnXN34kXOC1i1sEJERAQVR4QQQmBvb49BgwZJ7j98+BCJiYkME6kfakFScpyIg01rG7z/w/uwtrYG7rBORAghRJmkpqaiT58+yMvLw8mTJ9GjRw+FvZYmDeCmAkmJWbWwQtCPQTBuYgx9E33WcQghhCghY2NjODo6QktLC25ubqzjqA0qkJScVQsr1hEIIYQoMXNzc5w9exZPnjyBsXHVMAyO4/D07lPYu9gzTqe6qEAihBBCGGto15W2tjacnJwk9zdv3oxfZ/8K7xHe8J/hDx09nYaH1DBUIBFCCCFKrD7Fk3h+pCuHriA5NhmBiwJh19ZO/uFkUNP7UOaxS3QVGyGEEKJmvvvuO0z4dgKMLIyQ/Tgbv8z6BX8t+wuZD2iJkrqiFiRCCCFEDbX2bo0Ptn+Af9b/g8Szibhz/g7unL+DjGMZWLJkCby8vFhHlFDG1iVqQSKEEELUlIGpAUYuGYkPtn+Ajn06Ajzg6NGj6NKlCwYNGoTo6GjWEZUWFUiEEEKImrNqYYWRS0Zi9s7ZeP/998Hj8/DPP/+gW7ducHJzwnuh79U61klTUYFECCGEaAjL5pbYvXs3gncHw32gO/hafDy+8Rj5mfmSfcpKylCcX8wupJKgMUiEEEKIhrGwt8CwBcPQO6g3Es8mol2vdpLHEsMTcWLtCXQZ1gUDPx7IMCVbVCARQgghKqqh8yeZWpui+/juUtsyH2SCE3Ewbvrf2p+F2YXo06cPKuwq4NDBAc3aN4OBqUF9Y6sEpehi27RpE5ycnCAQCODj44MrV668cf/9+/fDxcUFAoEArq6uOHnypNTjHMdh6dKlsLW1hb6+Pvz9/ZGUlCS1T25uLiZMmAATExOYmZlh2rRpePHihdzfGyGEEKJKBs8bjI9+/widB3aWbEu7lYZz587h4h8X8efnf+L7wO+x7r11+H3B7zi5/iTWrVuHpJgk5DzJgbBSyDC9/DBvQdq3bx9CQkKwZcsW+Pj4YO3atQgICMC9e/dgZVV9mY2oqCiMHz8eoaGhGDJkCPbs2YPAwEDExcWhY8eOAKrmf1i/fj127dqFFi1aYMmSJQgICMDt27chEAgAABMmTEBGRgbCwsJQUVGBKVOmYMaMGdizZ0+jvn9CCCFE2VjYW0jdd+jggJ9//hmbD2/Gk9tP8Dz1OfIz8pGfkY+HVx/i6uGrkn15fB5MrU1hbmOOSWsmSbYnxSShoqwCDh0dYNykqnWqoqKicd5QPTAvkNasWYPp06djypQpAIAtW7bgxIkT2L59OxYuXFht/3Xr1mHAgAGYP38+AGDlypUICwvDxo0bsWXLFnAch7Vr12Lx4sUYNmwYAGD37t2wtrbGkSNHMG7cONy5cwenTp3C1atXJfNAbNiwAYMGDcIPP/wAOzu2s40SQgghysSkqQlmjJ6B9DbpAICXhS+R9SgLuU9zkfs0F9Zl1rgYfxG5T3NRWVaJ/Ix8cCJO6hiRuyPx9M5TjF05Fi49XAAAe/fuxaRJk6Ctpw09Az30nd5XquWKJaYFUnl5OWJjY7Fo0SLJNj6fD39//1rnZoiOjkZISIjUtoCAABw5cgQAkJycjMzMTPj7+0seNzU1hY+PD6KjozFu3DhER0fDzMxMapIsf39/8Pl8XL58GcOHD6/2umVlZSgrK5PcLygoAAAUFhbK/sbfoqy4rMbthYWFb3ws9EJojY8t6rmo1uOK8yvDY+LHNfkxQDl+FvRzop+TOjwGKMfPQh1/TnwtPmydbWHrbAug6u9M6IVQcByHopwiFGQVQCgUoqy4TPL+rZysAA7QN9GXHCcrKwsAUFlWicqySpS/LJc8poi/r68el+O4N+/IMfT06VMOABcVFSW1ff78+Zy3t3eNz9HR0eH27NkjtW3Tpk2clZUVx3Ecd+nSJQ4Al56eLrXP6NGjuTFjxnAcx3Fff/0116ZNm2rHbtq0KffTTz/V+LrLli3jANCNbnSjG93oRjc1uKWlpb2xRmHexaYqFi1aJNVyJRKJkJubiyZNmoDH4ynkNQsLC+Hg4IC0tDSYmJgo5DVUFZ2b2tG5qRmdl9rRuakdnZuaqfJ54TgORUVFbx1Ow7RAsrS0hJaWlqSJTSwrKws2NjY1PsfGxuaN+4v/m5WVBVtbW6l93N3dJfs8e/ZM6hiVlZXIzc2t9XX19PSgp6cntc3MzOzNb1BOTExMVO4XsLHQuakdnZua0XmpHZ2b2tG5qZmqnhdTU9O37sP0Mn9dXV14enoiPDxcsk0kEiE8PBy+vr41PsfX11dqfwAICwuT7N+iRQvY2NhI7VNYWIjLly9L9vH19UV+fj5iY2Ml+5w9exYikQg+Pj5ye3+EEEIIUU3Mu9hCQkIQFBQELy8veHt7Y+3atSguLpZc1TZp0iTY29sjNLRqAPKcOXPg5+eH1atXY/Dgwdi7dy+uXbuGrVu3AgB4PB7mzp2Lr776Cs7OzpLL/O3s7BAYGAgAaNeuHQYMGIDp06djy5YtqKioQHBwMMaNG0dXsBFCCCGEfYE0duxYZGdnY+nSpcjMzIS7uztOnToFa2trAEBqair4/P8aurp164Y9e/Zg8eLF+Pzzz+Hs7IwjR45I5kACgAULFqC4uBgzZsxAfn4+evTogVOnTknmQAKAP/74A8HBwejbty/4fD5GjhyJ9evXN94brwM9PT0sW7asWtceoXPzJnRuakbnpXZ0bmpH56ZmmnBeeBz3tuvcCCGEEEI0i1IsNUIIIYQQokyoQCKEEEIIeQ0VSIQQQgghr6ECiRBCCCHkNVQgKbFNmzbByckJAoEAPj4+uHLlCutIje78+fN49913YWdnBx6PJ1lzT4zjOCxduhS2trbQ19eHv78/kpKS2IRtRKGhoejSpQuMjY1hZWWFwMBA3Lt3T2qf0tJSzJ49G02aNIGRkRFGjhxZbZJVdbN582Z06tRJMnmdr68v/vnnH8njmnhOarNq1SrJtChimnp+li9fDh6PJ3VzcXGRPK6p5wUAnj59iokTJ6JJkybQ19eHq6srrl27JnlcnT+DqUBSUvv27UNISAiWLVuGuLg4uLm5ISAgoNoM4OquuLgYbm5u2LRpU42Pf/fdd1i/fj22bNmCy5cvw9DQEAEBASgtLW3kpI0rMjISs2fPRkxMDMLCwlBRUYH+/fujuLhYss+8efNw7Ngx7N+/H5GRkUhPT8eIESMYpla8Zs2aYdWqVYiNjcW1a9fQp08fDBs2DLdu3QKgmeekJlevXsXPP/+MTp06SW3X5PPToUMHZGRkSG4XL16UPKap5yUvLw/du3eHjo4O/vnnH9y+fRurV6+Gubm5ZB+1/gx+40pthBlvb29u9uzZkvtCoZCzs7PjQkNDGaZiCwB3+PBhyX2RSMTZ2Nhw33//vWRbfn4+p6enx/35558MErLz7NkzDgAXGRnJcVzVedDR0eH2798v2efOnTscAC46OppVTCbMzc25X3/9lc7J/ysqKuKcnZ25sLAwzs/Pj5szZw7HcZr9O7Ns2TLOzc2txsc0+bx89tlnXI8ePWp9XN0/g6kFSQmVl5cjNjYW/v7+km18Ph/+/v6Ijo5mmEy5JCcnIzMzU+o8mZqawsfHR+POU0FBAQDAwsICABAbG4uKigqpc+Pi4oLmzZtrzLkRCoXYu3cviouL4evrS+fk/82ePRuDBw+WOg8A/c4kJSXBzs4OLVu2xIQJE5CamgpAs8/L0aNH4eXlhdGjR8PKygqdO3fGL7/8Inlc3T+DqUBSQs+fP4dQKJTMJi5mbW2NzMxMRqmUj/hcaPp5EolEmDt3Lrp37y6ZUT4zMxO6urrVFlTWhHNz8+ZNGBkZQU9PD7NmzcLhw4fRvn17jT4nYnv37kVcXJxk6aZXafL58fHxwc6dO3Hq1Cls3rwZycnJ6NmzJ4qKijT6vDx69AibN2+Gs7MzTp8+jQ8++AAff/wxdu3aBUD9P4OZLzVCCGmY2bNnIzExUWrMhCZr27Yt4uPjUVBQgAMHDiAoKAiRkZGsYzGXlpaGOXPmICwsTGrZJQIMHDhQ8v+dOnWCj48PHB0d8ddff0FfX59hMrZEIhG8vLzwzTffAAA6d+6MxMREbNmyBUFBQYzTKR61ICkhS0tLaGlpVbtKIisrCzY2NoxSKR/xudDk8xQcHIzjx4/j3LlzaNasmWS7jY0NysvLkZ+fL7W/JpwbXV1dtG7dGp6enggNDYWbmxvWrVun0ecEqOoqevbsGTw8PKCtrQ1tbW1ERkZi/fr10NbWhrW1tUafn1eZmZmhTZs2ePDggUb/3tja2qJ9+/ZS29q1ayfpflT3z2AqkJSQrq4uPD09ER4eLtkmEokQHh4OX19fhsmUS4sWLWBjYyN1ngoLC3H58mW1P08cxyE4OBiHDx/G2bNn0aJFC6nHPT09oaOjI3Vu7t27h9TUVLU/N68TiUQoKyvT+HPSt29f3Lx5E/Hx8ZKbl5cXJkyYIPl/TT4/r3rx4gUePnwIW1tbjf696d69e7XpQ+7fvw9HR0cAGvAZzHqUOKnZ3r17OT09PW7nzp3c7du3uRkzZnBmZmZcZmYm62iNqqioiLt+/Tp3/fp1DgC3Zs0a7vr169zjx485juO4VatWcWZmZtzff//N3bhxgxs2bBjXokUL7uXLl4yTK9YHH3zAmZqachEREVxGRobkVlJSItln1qxZXPPmzbmzZ89y165d43x9fTlfX1+GqRVv4cKFXGRkJJecnMzduHGDW7hwIcfj8bgzZ85wHKeZ5+RNXr2KjeM09/x88sknXEREBJecnMxdunSJ8/f35ywtLblnz55xHKe55+XKlSuctrY29/XXX3NJSUncH3/8wRkYGHC///67ZB91/gymAkmJbdiwgWvevDmnq6vLeXt7czExMawjNbpz585xAKrdgoKCOI6rusx0yZIlnLW1Naenp8f17duXu3fvHtvQjaCmcwKA27Fjh2Sfly9fch9++CFnbm7OGRgYcMOHD+cyMjLYhW4EU6dO5RwdHTldXV2uadOmXN++fSXFEcdp5jl5k9cLJE09P2PHjuVsbW05XV1dzt7enhs7diz34MEDyeOael44juOOHTvGdezYkdPT0+NcXFy4rVu3Sj2uzp/BPI7jODZtV4QQQgghyonGIBFCCCGEvIYKJEIIIYSQ11CBRAghhBDyGiqQCCGEEEJeQwUSIYQQQshrqEAihBBCCHkNFUiEEEIIIa+hAokQQggh5DVUIBFCSAPxeDwcOXKEdQxCiBxRgUQIUQnZ2dn44IMP0Lx5c+jp6cHGxgYBAQG4dOkS62iEEDWkzToAIYTUxciRI1FeXo5du3ahZcuWyMrKQnh4OHJyclhHI4SoIWpBIoQovfz8fFy4cAHffvst3nnnHTg6OsLb2xuLFi3C0KFDAQBr1qyBq6srDA0N4eDggA8//BAvXryQHGPnzp0wMzPD8ePH0bZtWxgYGGDUqFEoKSnBrl274OTkBHNzc3z88ccQCoWS5zk5OWHlypUYP348DA0NYW9vj02bNr0xb1paGsaMGQMzMzNYWFhg2LBhSElJkTweEREBb29vGBoawszMDN27d8fjx4/le9IIIQ1CBRIhROkZGRnByMgIR44cQVlZWY378Pl8rF+/Hrdu3cKuXbtw9uxZLFiwQGqfkpISrF+/Hnv37sWpU6cQERGB4cOH4+TJkzh58iR+++03/Pzzzzhw4IDU877//nu4ubnh+vXrWLhwIebMmYOwsLAac1RUVCAgIADGxsa4cOECLl26BCMjIwwYMADl5eWorKxEYGAg/Pz8cOPGDURHR2PGjBng8XjyOVmEEPngCCFEBRw4cIAzNzfnBAIB161bN27RokVcQkJCrfvv37+fa9KkieT+jh07OADcgwcPJNtmzpzJGRgYcEVFRZJtAQEB3MyZMyX3HR0duQEDBkgde+zYsdzAgQMl9wFwhw8f5jiO43777Teubdu2nEgkkjxeVlbG6evrc6dPn+ZycnI4AFxERITsJ4EQ0mioBYkQohJGjhyJ9PR0HD16FAMGDEBERAQ8PDywc+dOAMC///6Lvn37wt7eHsbGxnj//feRk5ODkpISyTEMDAzQqlUryX1ra2s4OTnByMhIatuzZ8+kXtvX17fa/Tt37tSYMyEhAQ8ePICxsbGk5cvCwgKlpaV4+PAhLCwsMHnyZAQEBODdd9/FunXrkJGR0dDTQwiRMyqQCCEqQyAQoF+/fliyZAmioqIwefJkLFu2DCkpKRgyZAg6deqEgwcPIjY2VjJOqLy8XPJ8HR0dqePxeLwat4lEonpnfPHiBTw9PREfHy91u3//Pt577z0AwI4dOxAdHY1u3bph3759aNOmDWJiYur9moQQ+aMCiRCistq3b4/i4mLExsZCJBJh9erV6Nq1K9q0aYP09HS5vc7rxUtMTAzatWtX474eHh5ISkqClZUVWrduLXUzNTWV7Ne5c2csWrQIUVFR6NixI/bs2SO3vISQhqMCiRCi9HJyctCnTx/8/vvvuHHjBpKTk7F//3589913GDZsGFq3bo2Kigps2LABjx49wm+//YYtW7bI7fUvXbqE7777Dvfv38emTZuwf/9+zJkzp8Z9J0yYAEtLSwwbNgwXLlxAcnIyIiIi8PHHH+PJkydITk7GokWLEB0djcePH+PMmTNISkqqteAihLBB8yARQpSekZERfHx88OOPP+Lhw4eoqKiAg4MDpk+fjs8//xz6+vpYs2YNvv32WyxatAi9evVCaGgoJk2aJJfX/+STT3Dt2jV8+eWXMDExwZo1axAQEFDjvgYGBjh//jw+++wzjBgxAkVFRbC3t0ffvn1hYmKCly9f4u7du9i1axdycnJga2uL2bNnY+bMmXLJSgiRDx7HcRzrEIQQoqycnJwwd+5czJ07l3UUQkgjoi42QgghhJDXUIFECCGEEPIa6mIjhBBCCHkNtSARQgghhLyGCiRCCCGEkNdQgUQIIYQQ8hoqkAghhBBCXkMFEiGEEELIa6hAIoQQQgh5DRVIhBBCCCGvoQKJEEIIIeQ1/wdk37ebTSx0wgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize the results\n", + "with torch.no_grad():\n", + " pred_probs = qcbm()\n", + "\n", + "plt.plot(x_input, target_probs, linestyle=\"-.\", color=\"black\", label=r\"$\\pi(x)$\")\n", + "plt.bar(x_input, pred_probs, color=\"green\", alpha=0.5, label=\"samples\")\n", + "plt.xlabel(\"Samples\")\n", + "plt.ylabel(\"Prob. Distribution\")\n", + "\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b7f5ff14-793c-4dc3-aad2-eed38aa3e5a5", + "metadata": {}, + "source": [ + "## References\n", + "\n", + "1. Liu, Jin-Guo, and Lei Wang. \"Differentiable learning of quantum circuit born machines.\" Physical Review A 98.6 (2018): 062324." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python (tq-env)", + "language": "python", + "name": "tq-env" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 2ada759b6e0c3251230491b8f937978667b043ab Mon Sep 17 00:00:00 2001 From: Gopal Ramesh Dahale <49199003+Gopal-Dahale@users.noreply.github.com> Date: Thu, 6 Jun 2024 21:22:29 +0530 Subject: [PATCH 06/11] fix tab Co-authored-by: GenericP3rson <41024739+GenericP3rson@users.noreply.github.com> --- torchquantum/algorithm/qcbm.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/torchquantum/algorithm/qcbm.py b/torchquantum/algorithm/qcbm.py index 09798f8d..f4078b90 100644 --- a/torchquantum/algorithm/qcbm.py +++ b/torchquantum/algorithm/qcbm.py @@ -33,7 +33,7 @@ def k_expval(self, px, py): Kernel expectation value Args: - px: First probability distribution + px: First probability distribution py: Second probability distribution Returns: From d5ebf7ad4af424f4dbe33aa6da25ca3d364c9f86 Mon Sep 17 00:00:00 2001 From: Gopal Ramesh Dahale <49199003+Gopal-Dahale@users.noreply.github.com> Date: Thu, 6 Jun 2024 21:22:41 +0530 Subject: [PATCH 07/11] fix tab Co-authored-by: GenericP3rson <41024739+GenericP3rson@users.noreply.github.com> --- torchquantum/algorithm/qcbm.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/torchquantum/algorithm/qcbm.py b/torchquantum/algorithm/qcbm.py index f4078b90..a5e426a3 100644 --- a/torchquantum/algorithm/qcbm.py +++ b/torchquantum/algorithm/qcbm.py @@ -34,7 +34,7 @@ def k_expval(self, px, py): Args: px: First probability distribution - py: Second probability distribution + py: Second probability distribution Returns: Expectation value of the RBF Kernel. From f10103610e47a370910295209800b56d9fef8963 Mon Sep 17 00:00:00 2001 From: Gopal Ramesh Dahale <49199003+Gopal-Dahale@users.noreply.github.com> Date: Thu, 6 Jun 2024 21:22:55 +0530 Subject: [PATCH 08/11] fix spacing Co-authored-by: GenericP3rson <41024739+GenericP3rson@users.noreply.github.com> --- torchquantum/algorithm/qcbm.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/torchquantum/algorithm/qcbm.py b/torchquantum/algorithm/qcbm.py index a5e426a3..c0b6e5e3 100644 --- a/torchquantum/algorithm/qcbm.py +++ b/torchquantum/algorithm/qcbm.py @@ -45,7 +45,7 @@ def k_expval(self, px, py): def forward(self, px, py): """ Squared MMD loss. - + Args: px: First probability distribution py: Second probability distribution From 98b4f366bf90554ca2760134e7cad27fac6a8686 Mon Sep 17 00:00:00 2001 From: Gopal Ramesh Dahale <49199003+Gopal-Dahale@users.noreply.github.com> Date: Thu, 6 Jun 2024 21:23:07 +0530 Subject: [PATCH 09/11] fix tab Co-authored-by: GenericP3rson <41024739+GenericP3rson@users.noreply.github.com> --- torchquantum/algorithm/qcbm.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/torchquantum/algorithm/qcbm.py b/torchquantum/algorithm/qcbm.py index c0b6e5e3..12a63dfb 100644 --- a/torchquantum/algorithm/qcbm.py +++ b/torchquantum/algorithm/qcbm.py @@ -46,7 +46,7 @@ def forward(self, px, py): """ Squared MMD loss. Args: - px: First probability distribution + px: First probability distribution py: Second probability distribution Returns: From 11e50291a806ff3cd16fb65871065a4c9c7eb67e Mon Sep 17 00:00:00 2001 From: Gopal Ramesh Dahale <49199003+Gopal-Dahale@users.noreply.github.com> Date: Thu, 6 Jun 2024 21:23:15 +0530 Subject: [PATCH 10/11] fix tab Co-authored-by: GenericP3rson <41024739+GenericP3rson@users.noreply.github.com> --- torchquantum/algorithm/qcbm.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/torchquantum/algorithm/qcbm.py b/torchquantum/algorithm/qcbm.py index 12a63dfb..fdd5a416 100644 --- a/torchquantum/algorithm/qcbm.py +++ b/torchquantum/algorithm/qcbm.py @@ -47,7 +47,7 @@ def forward(self, px, py): Squared MMD loss. Args: px: First probability distribution - py: Second probability distribution + py: Second probability distribution Returns: Squared MMD loss. From 75955c6febfd04cbbd414d1c6be5b6c196df9ea4 Mon Sep 17 00:00:00 2001 From: Gopal Dahale Date: Thu, 6 Jun 2024 21:40:46 +0530 Subject: [PATCH 11/11] black formatted --- torchquantum/algorithm/qcbm.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/torchquantum/algorithm/qcbm.py b/torchquantum/algorithm/qcbm.py index fdd5a416..35a6fb75 100644 --- a/torchquantum/algorithm/qcbm.py +++ b/torchquantum/algorithm/qcbm.py @@ -33,8 +33,8 @@ def k_expval(self, px, py): Kernel expectation value Args: - px: First probability distribution - py: Second probability distribution + px: First probability distribution + py: Second probability distribution Returns: Expectation value of the RBF Kernel. @@ -45,7 +45,8 @@ def k_expval(self, px, py): def forward(self, px, py): """ Squared MMD loss. - Args: + + Args: px: First probability distribution py: Second probability distribution @@ -61,13 +62,12 @@ class QCBM(nn.Module): Quantum Circuit Born Machine (QCBM) Attributes: - ansatz: An Ansatz object - n_wires: Number of wires in the ansatz used. + ansatz: An Ansatz object + n_wires: Number of wires in the ansatz used. Methods: - __init__: Initialize the QCBM object. - forward: Returns the probability distribution (output from measurement). - + __init__: Initialize the QCBM object. + forward: Returns the probability distribution (output from measurement). """ def __init__(self, n_wires, ansatz): @@ -75,8 +75,8 @@ def __init__(self, n_wires, ansatz): Initialize QCBM object Args: - ansatz (Ansatz): An Ansatz object - n_wires (int): Number of wires in the ansatz used. + ansatz (Ansatz): An Ansatz object + n_wires (int): Number of wires in the ansatz used. """ super().__init__()