forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
machine_uart.c
611 lines (533 loc) · 23.1 KB
/
machine_uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2021 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE.
#include "py/mphal.h"
#include "ticks.h"
#include "fsl_common.h"
#include "fsl_lpuart.h"
#include "fsl_iomuxc.h"
#include CLOCK_CONFIG_H
#include "modmachine.h"
#include "pin.h"
#define DEFAULT_UART_BAUDRATE (115200)
#define DEFAULT_BUFFER_SIZE (256)
#define MIN_BUFFER_SIZE (32)
#define MAX_BUFFER_SIZE (32766)
#define UART_HWCONTROL_RTS (1)
#define UART_HWCONTROL_CTS (2)
#define UART_HWCONTROL_MASK (UART_HWCONTROL_RTS | UART_HWCONTROL_CTS)
#define UART_INVERT_TX (1)
#define UART_INVERT_RX (2)
#define UART_INVERT_MASK (UART_INVERT_TX | UART_INVERT_RX)
#define UART_IRQ_RXIDLE (1)
#define UART_IRQ_TXIDLE (2)
#define MP_UART_ALLOWED_FLAGS (UART_IRQ_RXIDLE | UART_IRQ_TXIDLE)
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
struct _lpuart_handle handle;
lpuart_config_t config;
LPUART_Type *lpuart;
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
uint8_t id;
uint8_t invert;
uint16_t tx_status;
uint8_t *txbuf;
uint16_t txbuf_len;
bool new;
uint16_t mp_irq_trigger; // user IRQ trigger mask
uint16_t mp_irq_flags; // user IRQ active IRQ flags
mp_irq_obj_t *mp_irq_obj; // user IRQ object
} machine_uart_obj_t;
typedef struct _iomux_table_t {
uint32_t muxRegister;
uint32_t muxMode;
uint32_t inputRegister;
uint32_t inputDaisy;
uint32_t configRegister;
} iomux_table_t;
static const uint8_t uart_index_table[] = MICROPY_HW_UART_INDEX;
static LPUART_Type *uart_base_ptr_table[] = LPUART_BASE_PTRS;
static const iomux_table_t iomux_table_uart[] = {
IOMUX_TABLE_UART
};
static const iomux_table_t iomux_table_uart_cts_rts[] = {
IOMUX_TABLE_UART_CTS_RTS
};
static const char *_parity_name[] = {"None", "", "0", "1"}; // Is defined as 0, 2, 3
static const char *_invert_name[] = {"None", "INV_TX", "INV_RX", "INV_TX|INV_RX"};
static const char *_flow_name[] = {"None", "RTS", "CTS", "RTS|CTS"};
#define RX (iomux_table_uart[index + 1])
#define TX (iomux_table_uart[index])
#define RTS (iomux_table_uart_cts_rts[index + 1])
#define CTS (iomux_table_uart_cts_rts[index])
bool lpuart_set_iomux(int8_t uart) {
int index = (uart - 1) * 2;
if (TX.muxRegister != 0) {
IOMUXC_SetPinMux(TX.muxRegister, TX.muxMode, TX.inputRegister, TX.inputDaisy, TX.configRegister, 0U);
IOMUXC_SetPinConfig(TX.muxRegister, TX.muxMode, TX.inputRegister, TX.inputDaisy, TX.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_OUT, PIN_DRIVE_6, TX.configRegister));
IOMUXC_SetPinMux(RX.muxRegister, RX.muxMode, RX.inputRegister, RX.inputDaisy, RX.configRegister, 0U);
IOMUXC_SetPinConfig(RX.muxRegister, RX.muxMode, RX.inputRegister, RX.inputDaisy, RX.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_IN, PIN_DRIVE_6, RX.configRegister));
return true;
} else {
return false;
}
}
bool lpuart_set_iomux_rts(int8_t uart) {
MP_STATIC_ASSERT(MP_ARRAY_SIZE(iomux_table_uart) == MP_ARRAY_SIZE(iomux_table_uart_cts_rts));
int index = (uart - 1) * 2;
if (RTS.muxRegister != 0) {
IOMUXC_SetPinMux(RTS.muxRegister, RTS.muxMode, RTS.inputRegister, RTS.inputDaisy, RTS.configRegister, 0U);
IOMUXC_SetPinConfig(RTS.muxRegister, RTS.muxMode, RTS.inputRegister, RTS.inputDaisy, RTS.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_OUT, PIN_DRIVE_6, RTS.configRegister));
return true;
} else {
return false;
}
}
bool lpuart_set_iomux_cts(int8_t uart) {
int index = (uart - 1) * 2;
if (CTS.muxRegister != 0) {
IOMUXC_SetPinMux(CTS.muxRegister, CTS.muxMode, CTS.inputRegister, CTS.inputDaisy, CTS.configRegister, 0U);
IOMUXC_SetPinConfig(CTS.muxRegister, CTS.muxMode, CTS.inputRegister, CTS.inputDaisy, CTS.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_IN, PIN_DRIVE_6, CTS.configRegister));
return true;
} else {
return false;
}
}
void LPUART_UserCallback(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *userData) {
machine_uart_obj_t *self = userData;
uint16_t mp_irq_flags = 0;
if (status == kStatus_LPUART_TxIdle) {
self->tx_status = kStatus_LPUART_TxIdle;
mp_irq_flags = UART_IRQ_TXIDLE;
} else if (status == kStatus_LPUART_IdleLineDetected) {
mp_irq_flags = UART_IRQ_RXIDLE;
}
// Check the flags to see if the user handler should be called
if (self->mp_irq_trigger & mp_irq_flags) {
self->mp_irq_flags = mp_irq_flags;
mp_irq_handler(self->mp_irq_obj);
}
if (status == kStatus_LPUART_RxRingBufferOverrun) {
; // Ringbuffer full, deassert RTS if flow control is enabled
}
}
static void machine_uart_ensure_active(machine_uart_obj_t *uart) {
if (uart->lpuart->CTRL == 0) {
mp_raise_OSError(EIO);
}
}
void machine_uart_set_baudrate(mp_obj_t uart_in, uint32_t baudrate) {
machine_uart_obj_t *uart = MP_OBJ_TO_PTR(uart_in);
#if defined(MIMXRT117x_SERIES)
// Use the Lpuart1 clock value, which is set for All UART devices.
LPUART_SetBaudRate(uart->lpuart, baudrate, CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart1));
#else
LPUART_SetBaudRate(uart->lpuart, baudrate, CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot));
#endif
}
/******************************************************************************/
// MicroPython bindings for UART
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \
{ MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INVERT_TX) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INVERT_RX) }, \
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_IRQ_RXIDLE) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_TXIDLE), MP_ROM_INT(UART_IRQ_TXIDLE) }, \
static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, flow=%s, "
"rxbuf=%d, txbuf=%d, timeout=%u, timeout_char=%u, invert=%s, irq=%d)",
self->id, self->config.baudRate_Bps, 8 - self->config.dataBitsCount,
_parity_name[self->config.parityMode], self->config.stopBitCount + 1,
_flow_name[(self->config.enableTxCTS << 1) | self->config.enableRxRTS],
self->handle.rxRingBufferSize, self->txbuf_len, self->timeout, self->timeout_char,
_invert_name[self->invert], self->mp_irq_trigger);
}
static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_flow,
ARG_timeout, ARG_timeout_char, ARG_invert, ARG_rxbuf, ARG_txbuf};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1 } },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// Parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Set baudrate if configured.
if (args[ARG_baudrate].u_int > 0) {
self->config.baudRate_Bps = args[ARG_baudrate].u_int;
}
// Set bits if configured.
if (args[ARG_bits].u_int > 0) {
self->config.dataBitsCount = 8 - args[ARG_bits].u_int;
}
// Set parity if configured.
if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) {
if (args[ARG_parity].u_obj == mp_const_none) {
self->config.parityMode = kLPUART_ParityDisabled;
} else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) {
self->config.parityMode = kLPUART_ParityOdd;
} else {
self->config.parityMode = kLPUART_ParityEven;
}
}
// Set stop bits if configured.
if (args[ARG_stop].u_int > 0) {
self->config.stopBitCount = args[ARG_stop].u_int - 1;
}
// Set flow if configured.
if (args[ARG_flow].u_int >= 0) {
if (args[ARG_flow].u_int & ~UART_HWCONTROL_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("bad flow mask"));
}
if (args[ARG_flow].u_int & UART_HWCONTROL_RTS) {
if (!lpuart_set_iomux_rts(uart_index_table[self->id])) {
mp_raise_ValueError(MP_ERROR_TEXT("rts not available"));
}
self->config.enableRxRTS = true;
}
if (args[ARG_flow].u_int & UART_HWCONTROL_CTS) {
if (!lpuart_set_iomux_cts(uart_index_table[self->id])) {
mp_raise_ValueError(MP_ERROR_TEXT("cts not available"));
}
self->config.enableTxCTS = true;
}
}
// Set timeout if configured.
if (args[ARG_timeout].u_int >= 0) {
self->timeout = args[ARG_timeout].u_int;
}
// Set timeout_char if configured.
if (args[ARG_timeout_char].u_int >= 0) {
self->timeout_char = args[ARG_timeout_char].u_int;
}
// Set line inversion if configured.
if (args[ARG_invert].u_int >= 0) {
if (args[ARG_invert].u_int & ~UART_INVERT_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("bad inversion mask"));
}
self->invert = args[ARG_invert].u_int;
}
self->tx_status = kStatus_LPUART_TxIdle;
self->config.enableTx = true;
self->config.enableRx = true;
// Set the RX buffer size if configured.
size_t rxbuf_len = DEFAULT_BUFFER_SIZE;
if (args[ARG_rxbuf].u_int > 0) {
rxbuf_len = args[ARG_rxbuf].u_int;
if (rxbuf_len < MIN_BUFFER_SIZE) {
rxbuf_len = MIN_BUFFER_SIZE;
} else if (rxbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("rxbuf too large"));
}
}
// Set the TX buffer size if configured.
size_t txbuf_len = DEFAULT_BUFFER_SIZE;
if (args[ARG_txbuf].u_int > 0) {
txbuf_len = args[ARG_txbuf].u_int;
if (txbuf_len < MIN_BUFFER_SIZE) {
txbuf_len = MIN_BUFFER_SIZE;
} else if (txbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("txbuf too large"));
}
}
// Initialise the UART peripheral if any arguments given, or it was not initialised previously.
if (n_args > 0 || kw_args->used > 0 || self->new) {
self->new = false;
// may be obsolete
if (self->config.baudRate_Bps == 0) {
self->config.baudRate_Bps = DEFAULT_UART_BAUDRATE;
}
// Make sure timeout_char is at least as long as a whole character (13 bits to be safe).
uint32_t min_timeout_char = 13000 / self->config.baudRate_Bps + 1;
if (self->timeout_char < min_timeout_char) {
self->timeout_char = min_timeout_char;
}
#if defined(MIMXRT117x_SERIES)
// Use the Lpuart1 clock value, which is set for All UART devices.
LPUART_Init(self->lpuart, &self->config, CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart1));
#else
LPUART_Init(self->lpuart, &self->config, CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot));
#endif
self->config.rxIdleType = kLPUART_IdleTypeStartBit;
self->config.rxIdleConfig = kLPUART_IdleCharacter4;
LPUART_Init(self->lpuart, &self->config, BOARD_BOOTCLOCKRUN_UART_CLK_ROOT);
LPUART_TransferCreateHandle(self->lpuart, &self->handle, LPUART_UserCallback, self);
uint8_t *buffer = m_new(uint8_t, rxbuf_len + 1);
LPUART_TransferStartRingBuffer(self->lpuart, &self->handle, buffer, rxbuf_len);
self->txbuf = m_new(uint8_t, txbuf_len); // Allocate the TX buffer.
self->txbuf_len = txbuf_len;
LPUART_EnableInterrupts(self->lpuart, kLPUART_IdleLineInterruptEnable);
// The Uart supports inverting, but not the fsl API, so it has to coded directly
// And it has to be done after LPUART_Init.
if (self->invert & UART_INVERT_RX) {
LPUART_EnableRx(self->lpuart, false);
self->lpuart->STAT |= 1 << LPUART_STAT_RXINV_SHIFT;
LPUART_EnableRx(self->lpuart, true);
}
if (self->invert & UART_INVERT_TX) {
LPUART_EnableTx(self->lpuart, false);
self->lpuart->CTRL |= 1 << LPUART_CTRL_TXINV_SHIFT;
LPUART_EnableTx(self->lpuart, true);
}
// Send long break; drop that code for a shorter break duration
LPUART_EnableTx(self->lpuart, false);
self->lpuart->STAT |= 1 << LPUART_STAT_BRK13_SHIFT;
LPUART_EnableTx(self->lpuart, true);
}
}
static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Get UART bus.
int uart_id = mp_obj_get_int(args[0]);
if (uart_id < 0 || uart_id > MICROPY_HW_UART_NUM || uart_index_table[uart_id] == 0) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id);
}
// Create the UART object and fill it with defaults.
uint8_t uart_hw_id = uart_index_table[uart_id]; // the hw uart number 1..n
machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type);
self->id = uart_id;
self->lpuart = uart_base_ptr_table[uart_hw_id];
self->invert = false;
self->timeout = 1;
self->timeout_char = 1;
self->new = true;
self->mp_irq_obj = NULL;
LPUART_GetDefaultConfig(&self->config);
// Configure board-specific pin MUX based on the hardware device number.
bool uart_present = lpuart_set_iomux(uart_hw_id);
if (uart_present) {
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
} else {
return mp_const_none;
}
}
// uart.deinit()
static void mp_machine_uart_deinit(machine_uart_obj_t *self) {
LPUART_SoftwareReset(self->lpuart);
}
static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) {
machine_uart_ensure_active(self);
size_t count = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle);
return count;
}
static bool mp_machine_uart_txdone(machine_uart_obj_t *self) {
return self->tx_status == kStatus_LPUART_TxIdle;
}
static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) {
machine_uart_ensure_active(self);
self->lpuart->CTRL |= 1 << LPUART_CTRL_SBK_SHIFT; // Set SBK bit
self->lpuart->CTRL &= ~LPUART_CTRL_SBK_MASK; // Clear SBK bit
}
// Reset all defined UARTs
void machine_uart_deinit_all(void) {
for (int i = 0; i < MICROPY_HW_UART_NUM; i++) {
if (uart_index_table[i] != 0) {
LPUART_SoftwareReset(uart_base_ptr_table[uart_index_table[i]]);
}
}
}
static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
self->mp_irq_trigger = new_trigger;
return 0;
}
static mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (info_type == MP_IRQ_INFO_FLAGS) {
return self->mp_irq_flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return self->mp_irq_trigger;
}
return 0;
}
static const mp_irq_methods_t uart_irq_methods = {
.trigger = uart_irq_trigger,
.info = uart_irq_info,
};
static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) {
if (self->mp_irq_obj == NULL) {
self->mp_irq_trigger = 0;
self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self));
}
if (any_args) {
// Check the handler
mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj;
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable"));
}
// Check the trigger
mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int;
mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS;
if (trigger != 0 && not_supported) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%04x unsupported"), not_supported);
}
self->mp_irq_obj->handler = handler;
self->mp_irq_obj->ishard = args[MP_IRQ_ARG_INIT_hard].u_bool;
self->mp_irq_trigger = trigger;
}
return self->mp_irq_obj;
}
static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint64_t t = ticks_us64() + (uint64_t)self->timeout * 1000;
uint64_t timeout_char_us = (uint64_t)self->timeout_char * 1000;
lpuart_transfer_t xfer;
uint8_t *dest = buf_in;
size_t avail;
size_t nget;
machine_uart_ensure_active(self);
for (size_t received = 0; received < size;) {
// Wait for the first/next character.
while ((avail = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle)) <= 0) {
if (ticks_us64() > t) { // timed out
if (received <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
} else {
return received;
}
}
MICROPY_EVENT_POLL_HOOK
}
// Get as many bytes as possible to meet the need.
nget = avail < (size - received) ? avail : size - received;
xfer.data = dest + received;
xfer.dataSize = nget;
LPUART_TransferReceiveNonBlocking(self->lpuart, &self->handle, &xfer, NULL);
received += nget;
t = ticks_us64() + timeout_char_us;
}
return size;
}
static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
lpuart_transfer_t xfer;
uint64_t t;
size_t remaining = size;
size_t offset = 0;
uint8_t fifo_size = FSL_FEATURE_LPUART_FIFO_SIZEn(0);
machine_uart_ensure_active(self);
// First check if a previous transfer is still ongoing,
// then wait at least the number of remaining character times.
t = ticks_us64() + (uint64_t)(self->handle.txDataSize + fifo_size) * (13000000 / self->config.baudRate_Bps + 1000);
while (self->tx_status != kStatus_LPUART_TxIdle) {
if (ticks_us64() > t) { // timed out, hard error
*errcode = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
}
MICROPY_EVENT_POLL_HOOK
}
// Check if the first part has to be sent semi-blocking.
if (size > self->txbuf_len) {
// Send the first block.
xfer.data = (uint8_t *)buf_in;
offset = xfer.dataSize = size - self->txbuf_len;
self->tx_status = kStatus_LPUART_TxBusy;
LPUART_TransferSendNonBlocking(self->lpuart, &self->handle, &xfer);
// Wait at least the number of character times for this chunk.
t = ticks_us64() + (uint64_t)xfer.dataSize * (13000000 / self->config.baudRate_Bps + 1000);
while (self->tx_status != kStatus_LPUART_TxIdle) {
// Wait for the first/next character to be sent.
if (ticks_us64() > t) { // timed out
if (self->handle.txDataSize >= size) {
*errcode = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
} else {
return size - self->handle.txDataSize;
}
}
MICROPY_EVENT_POLL_HOOK
}
remaining = self->txbuf_len;
} else {
// The data fits into the tx buffer.
offset = 0;
remaining = size;
}
// Send the remaining data without waiting for completion.
memcpy(self->txbuf, (uint8_t *)buf_in + offset, remaining);
xfer.data = self->txbuf;
xfer.dataSize = remaining;
self->tx_status = kStatus_LPUART_TxBusy;
LPUART_TransferSendNonBlocking(self->lpuart, &self->handle, &xfer);
return size;
}
static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
machine_uart_ensure_active(self);
uintptr_t flags = arg;
ret = 0;
if (flags & MP_STREAM_POLL_RD) {
uint32_t count;
count = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle);
if (count > 0) {
ret |= MP_STREAM_POLL_RD;
}
}
if ((flags & MP_STREAM_POLL_WR) && (self->tx_status == kStatus_LPUART_TxIdle)) {
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
// The timeout is estimated using the buffer size and the baudrate.
// Take the worst case assumptions at 13 bit symbol size times 2.
uint64_t timeout = (uint64_t)(3 + self->txbuf_len) * 13000000ll * 2 /
self->config.baudRate_Bps + ticks_us64();
do {
if (mp_machine_uart_txdone(self)) {
return 0;
}
MICROPY_EVENT_POLL_HOOK
} while (ticks_us64() < timeout);
*errcode = MP_ETIMEDOUT;
ret = MP_STREAM_ERROR;
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}