-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathadaptive_max_pool2d.py
86 lines (60 loc) · 2.54 KB
/
adaptive_max_pool2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
from time import time
from copy import deepcopy
def benchmark(input_size, output_size, iters):
warmups = int(iters/100)
input = torch.randn(input_size)
model = torch.nn.AdaptiveMaxPool2d(output_size)
for i in range(warmups):
output = model(input)
t1 = time()
for i in range(iters):
output = model(input)
t2 = time()
ttime = (t2 - t1) / iters * 1000
print('AdaptiveMaxPool2d(contiguous): input_size', input_size, '; output_size: ', output_size, 'time: {:.3f} ms'.format(ttime))
input2 = input.to(memory_format=torch.channels_last)
model2 = deepcopy(model).to(memory_format=torch.channels_last)
for i in range(warmups):
output2 = model2(input2)
t3 = time()
for i in range(iters):
output2 = model2(input2)
t4 = time()
ttime = (t4 - t3) / iters * 1000
print('AdaptiveMaxPool2d(channels_last): input_size', input_size, '; output_size: ', output_size, 'time: {:.3f} ms'.format(ttime))
#benchmark([1, 2048, 7, 7], [2, 2], 10000)
#benchmark([128, 2048, 7, 7], [2, 2], 1000)
#benchmark([1, 2048, 7, 7], [1, 1], 10000)
#benchmark([128, 2048, 7, 7], [1, 1], 1000)
### smoke test
def cmp(t1, t2, msg, debug=False):
if debug:
print(t1.size(), 'sum: {:.6f}'.format(t1.sum().item()))
print(t2.size(), 'sum: {:.6f}'.format(t2.sum().item()))
res = torch.allclose(t1, t2, atol=5e-7)
print(msg, res, "; size: ", t2.size(), "; stride: ", t2.stride(),
"; is_channels_last: ", t2.is_contiguous(memory_format=torch.channels_last))
def test_channels_last(input_size, output_size):
input = torch.randn(input_size)
input2 = input.to(memory_format=torch.channels_last)
input.requires_grad_()
input2.requires_grad_()
model = torch.nn.AdaptiveMaxPool2d(output_size, return_indices=True)
model2 = deepcopy(model).to(memory_format=torch.channels_last)
output, indices = model(input)
output2, indices2 = model2(input2)
grad_output = torch.randn(output.size())
grad_output2 = grad_output.to(memory_format=torch.channels_last)
output.backward(grad_output)
output2.backward(grad_output2)
grad_input = input.grad
grad_input2 = input2.grad
cmp(output, output2, "output:")
cmp(indices, indices2, "indice:")
cmp(grad_input, grad_input2, "grad_input:")
print("### grad_input2.data_ptr(): ", hex(grad_input2.data_ptr()))
#test_channels_last([1, 1, 2, 2, ], [1, 1])
test_channels_last([16, 2048, 7, 7], [1, 1])
test_channels_last([128, 19, 4, 4], [2, 2])
#test_channels_last([2, 9, 4, 4], [2, 2])