-
Notifications
You must be signed in to change notification settings - Fork 0
/
seqskip_train_Reptile_seq1eH_adapt.py
408 lines (309 loc) · 15.1 KB
/
seqskip_train_Reptile_seq1eH_adapt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 29 13:44:03 2018
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
#from torch.optim.lr_scheduler import StepLR
from torch.backends import cudnn
import numpy as np
import glob, os
import argparse
from tqdm import trange, tqdm
from spotify_data_loader_v2 import SpotifyDataloader
from utils.eval import evaluate
from blocks.highway_glu_dil_conv_v2 import HighwayDCBlock
#from blocks.multihead_attention import MultiHeadAttention
cudnn.benchmark = True
parser = argparse.ArgumentParser(description="Sequence Skip Prediction")
parser.add_argument("-c","--config",type=str, default="./config_init_dataset.json")
parser.add_argument("-s","--save_path",type=str, default="./save/exp_Reptile_seeq1eH_adapt/")
parser.add_argument("-l","--load_continue_latest",type=str, default=None)
parser.add_argument("-glu","--use_glu", type=bool, default=False)
parser.add_argument("-w","--class_num",type=int, default = 2)
parser.add_argument("-e","--epochs",type = int, default= 10)
parser.add_argument("-i","--iterations",type=int, default= 5) # K inner-iteration
parser.add_argument("-lr","--learning_rate", type=float, default = 0.001)
parser.add_argument("-b","--train_batch_size", type=int, default = 2048)
parser.add_argument("-tsb","--test_batch_size", type=int, default = 1024)
parser.add_argument("-disp","--validate_every", type=int, default=100)
parser.add_argument("-g","--gpu",type=int, default=0)
args = parser.parse_args()
# Hyper Parameters
USE_GLU = args.use_glu
INPUT_DIM = 74
EPOCHS = args.epochs
CLASS_NUM = args.class_num
ITERATIONS = args.iterations
LEARNING_RATE = args.learning_rate
TR_BATCH_SZ = args.train_batch_size
TS_BATCH_SZ = args.test_batch_size
GPU = args.gpu
# Model-save directory
MODEL_SAVE_PATH = args.save_path
os.makedirs(os.path.dirname(MODEL_SAVE_PATH), exist_ok=True)
hist_trloss = list()
hist_tracc = list()
hist_vloss = list()
hist_vacc = list()
np.set_printoptions(precision=3)
class SeqEncoder(nn.Module):
def __init__(self, input_ch, e_ch,
h_k_szs, h_dils,
causality=True,
use_glu=False):
super(SeqEncoder, self).__init__()
h_io_chs = [e_ch]*len(h_k_szs)
self.front_1x1 = nn.Conv1d(input_ch, e_ch,1)
self.h_block = HighwayDCBlock(h_io_chs, h_k_szs, h_dils, causality=causality, use_glu=use_glu)
self.mid_1x1 = nn.Sequential(nn.Conv1d(e_ch,e_ch,1), nn.ReLU(),
nn.Conv1d(e_ch,e_ch,1), nn.ReLU())
self.last_1x1 = nn.Sequential(nn.Conv1d(e_ch,e_ch,1))
def forward(self, x): # Input:bx(input_dim)*20
x = self.front_1x1(x) # bx128*20
x = self.h_block(x) # bx128*20
x = self.mid_1x1(x) # bx128*20
return self.last_1x1(x) # bx128*20
class SeqModel(nn.Module):
def __init__(self, input_dim=INPUT_DIM, e_ch=128, d_ch=128, use_glu=USE_GLU):
super(SeqModel, self).__init__()
self.e_ch = e_ch
self.d_ch = d_ch
self.enc = SeqEncoder(input_ch=input_dim, e_ch=e_ch,
h_k_szs=[2,2,2,3,1,1], #h_k_szs=[2,2,2,3,1,1],
h_dils=[1,2,4,8,1,1], #h_dils=[1,2,4,8,1,1],
use_glu=use_glu) # bx128*10
self.classifier = nn.Conv1d(e_ch,1,1)
def forward(self, x):
x = self.enc(x) # bx128*10
return self.classifier(x).squeeze(1) # bx20
def clone(self):
clone = SeqModel()
clone.load_state_dict(self.state_dict())
if self.is_cuda():
clone.cuda(GPU)
return clone
def set_learning_rate(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def get_loss(input, target):
return F.binary_cross_entropy_with_logits(input=input, target=target)
def do_base_learning_adam(model, train_iter, lr_inner, n_inner, state=None):
new_model = SeqModel()
new_model.load_state_dict(model.state_dict()) # copy? looks okay
inner_optimizer = torch.optim.SGD(new_model.parameters(), lr=lr_inner)
if state is not None:
inner_optimizer.load_state_dict(state)
# K steps of gradient descent
for i in range(n_inner):
x, labels, y_mask, num_items, index = train_iter.next() # FIXED 13.Dec. SEPARATE LOGS. QUERY SHOULT NOT INCLUDE LOGS
# Sample data for 'support' and 'query': ex) 15 items = 7 sup, 8 queries...
batch_sz = num_items.shape[0]
# x: the first 10 items out of 20 are support items left-padded with zeros. The last 10 are queries right-padded.
x = x.permute(0,2,1) # bx70*20
x_feat = torch.zeros(batch_sz, 74, 20)
x_feat[:,:70,:] = x.clone()
x_feat[:,:41,10:] = 0
x_feat[:, 70,:10] = 1
x_feat[:, 71:74,:10] = labels[:,:10,:].permute(0,2,1).clone()
x_feat = Variable(x_feat).cuda(GPU)
# y
y = labels[:,:,1].clone()
# y_mask
y_mask_que = y_mask.clone()
y_mask_que[:,:10] = 0
# Forward & update
y_hat = new_model(x_feat) # y_hat: b*20
# Calcultate BCE loss
loss = get_loss(input=y_hat*y_mask_que.cuda(GPU), target=y.cuda(GPU)*y_mask_que.cuda(GPU))
# Backward pass - Update fast net
inner_optimizer.zero_grad()
loss.backward()
inner_optimizer.step()
return new_model, inner_optimizer.state_dict()
def do_base_eval(new_model, val_iter):
x, labels, y_mask, num_items, index = val_iter.next() # FIXED 13.Dec. SEPARATE LOGS. QUERY SHOULT NOT INCLUDE LOGS
# Sample data for 'support' and 'query': ex) 15 items = 7 sup, 8 queries...
batch_sz = num_items.shape[0]
num_query = num_items[:,1].detach().numpy().flatten()
# x: the first 10 items out of 20 are support items left-padded with zeros. The last 10 are queries right-padded.
x = x.permute(0,2,1) # bx70*20
x_feat = torch.zeros(batch_sz, 74, 20)
x_feat[:,:70,:] = x.clone()
x_feat[:,:41,10:] = 0
x_feat[:, 70,:10] = 1
x_feat[:, 71:74,:10] = labels[:,:10,:].permute(0,2,1).clone()
x_feat = Variable(x_feat).cuda(GPU)
# y
y = labels[:,:,1].clone()
# y_mask
y_mask_que = y_mask.clone()
y_mask_que[:,:10] = 0
# Forward & update
y_hat = new_model(x_feat) # y_hat: b*20
# Calcultate BCE loss
loss = get_loss(input=y_hat*y_mask_que.cuda(GPU), target=y.cuda(GPU)*y_mask_que.cuda(GPU))
# Decision
y_prob = torch.sigmoid(y_hat*y_mask_que.cuda(GPU)).detach().cpu().numpy() # bx20
y_pred = (y_prob[:,10:]>0.5).astype(np.int) # bx10
y_numpy = labels[:,10:,1].numpy() # bx10
# Acc
n_corrects = np.sum((y_pred==y_numpy)*y_mask_que[:,10:].numpy())
n_query = np.sum(num_query)
accuracy = n_corrects/n_query
tqdm.write("base_eval_acc:{0:.2f}".format(accuracy))
return loss.item()
def do_evaluation(net, test_iter, iterations):
losses = []
accuracies = []
net.eval()
for iteration in np.arange(iterations):
x, labels, y_mask, num_items, index = test_iter.next() # FIXED 13.Dec. SEPARATE LOGS. QUERY SHOULT NOT INCLUDE LOGS
# Sample data for 'support' and 'query': ex) 15 items = 7 sup, 8 queries...
#num_support = num_items[:,0].detach().numpy().flatten() # If num_items was odd number, query has one more item.
num_query = num_items[:,1].detach().numpy().flatten()
batch_sz = num_items.shape[0]
# x: the first 10 items out of 20 are support items left-padded with zeros. The last 10 are queries right-padded.
x = x.permute(0,2,1) # bx70*20
x_feat = torch.zeros(batch_sz, 74, 20)
x_feat[:,:70,:] = x.clone()
x_feat[:,:41,10:] = 0
x_feat[:, 70,:10] = 1
x_feat[:, 71:74,:10] = labels[:,:10,:].permute(0,2,1).clone()
x_feat = Variable(x_feat).cuda(GPU)
# y
y = labels[:,:,1].clone()
# y_mask
y_mask_que = y_mask.clone()
y_mask_que[:,:10] = 0
# Forward & update
y_hat = net(x_feat) # y_hat: b*20
# Calcultate BCE loss
loss = get_loss(input=y_hat*y_mask_que.cuda(GPU), target=y.cuda(GPU)*y_mask_que.cuda(GPU))
# Decision
y_prob = torch.sigmoid(y_hat*y_mask_que.cuda(GPU)).detach().cpu().numpy() # bx20
y_pred = (y_prob[:,10:]>0.5).astype(np.int) # bx10
y_numpy = labels[:,10:,1].numpy() # bx10
# Acc
n_corrects = np.sum((y_pred==y_numpy)*y_mask_que[:,10:].numpy())
n_query = np.sum(num_query)
accuracy = n_corrects/n_query
losses.append(loss.item())
accuracies.append(accuracy)
return np.mean(losses), np.mean(accuracies)
#%%
# Main
def main():
# Trainset stats: 2072002577 items from 124950714 sessions
print('Initializing dataloader...')
mtrain_loader = SpotifyDataloader(config_fpath=args.config,
mtrain_mode=True,
data_sel=(0, 124050714), # 80% 트레인
batch_size=TR_BATCH_SZ,
shuffle=True,
seq_mode=True) # seq_mode implemented
mval_loader = SpotifyDataloader(config_fpath=args.config,
mtrain_mode=True, # True, because we use part of trainset as testset
data_sel=(124050714, 124950714),#(99965071, 124950714), # 20%를 테스트
batch_size=TS_BATCH_SZ,
shuffle=False,
seq_mode=True)
# Build model, optimizer, and set states
meta_net = SeqModel().cuda(GPU)
meta_optimizer = torch.optim.Adan(meta_net.parameters(), lr=LEARNING_RATE)
train_metalosses =[]
test_metalosses = []
inner_optimizer_state = None
lr_inner = 0.001
lr_outer = 0.001
n_inner = 5
# Load checkpoint
if args.load_continue_latest is None:
START_EPOCH = 0
else:
latest_fpath = max(glob.iglob(MODEL_SAVE_PATH + "check*.pth"),key=os.path.getctime)
checkpoint = torch.load(latest_fpath, map_location='cuda:{}'.format(GPU))
tqdm.write("Loading saved model from '{0:}'... loss: {1:.6f}".format(latest_fpath,checkpoint['loss']))
meta_net.load_state_dict(checkpoint['SM_state'])
meta_optimizer.load_state_dict(checkpoint['SM_opt_state'])
START_EPOCH = checkpoint['ep']
# Main loop
for epoch in trange(START_EPOCH, EPOCHS, desc='epochs', position=0, ascii=True):
tqdm.write('Train...')
tr_sessions_iter = iter(mtrain_loader)
val_sessions_iter = iter(mval_loader)
total_corrects = 0
total_query = 0
total_trloss = 0
for session in trange(len(tr_sessions_iter), desc='sessions', position=1, ascii=True):
# Train Inner loop: Take k gradient steps
new_model, inner_optimizer_state = do_base_learning_adam(meta_net, tr_sessions_iter, lr_inner, n_inner, inner_optimizer_state)
# Meta-learn:
train_metaloss = do_base_eval(new_model, tr_sessions_iter)
# Inject updates into each .grad
for p, new_p in zip(meta_net.parameters(), new_model.parameters()):
if p.grad is None:
p.grad = Variable(torch.zeros(p.size()).cuda(GPU))
p.grad.data.add_(p.data - new_p.data)
# Update meta-parameters
meta_optimizer.step()
meta_optimizer.zero_grad()
############# Validation
new_model = do_base_learning(model, wave, lr_inner, n_inner)
test_metaloss = do_base_eval(new_model, wave)
x, labels, y_mask, num_items, index = tr_sessions_iter.next() # FIXED 13.Dec. SEPARATE LOGS. QUERY SHOULT NOT INCLUDE LOGS
# Sample data for 'support' and 'query': ex) 15 items = 7 sup, 8 queries...
num_support = num_items[:,0].detach().numpy().flatten() # If num_items was odd number, query has one more item.
num_query = num_items[:,1].detach().numpy().flatten()
batch_sz = num_items.shape[0]
# x: the first 10 items out of 20 are support items left-padded with zeros. The last 10 are queries right-padded.
x = x.permute(0,2,1) # bx70*20
x_feat = torch.zeros(batch_sz, 74, 20)
x_feat[:,:70,:] = x.clone()
x_feat[:,:41,10:] = 0
x_feat[:, 70,:10] = 1
x_feat[:, 71:74,:10] = labels[:,:10,:].permute(0,2,1).clone()
x_feat = Variable(x_feat).cuda(GPU)
# y
y = labels[:,:,1].clone()
# y_mask
y_mask_que = y_mask.clone()
y_mask_que[:,:10] = 0
# Forward & update
y_hat = SM(x_feat) # y_hat: b*20
# Calcultate BCE loss
loss = F.binary_cross_entropy_with_logits(input=y_hat*y_mask_que.cuda(GPU), target=y.cuda(GPU)*y_mask_que.cuda(GPU))
total_trloss += loss.item()
SM.zero_grad()
loss.backward()
SM_optim.step()
# Decision
y_prob = torch.sigmoid(y_hat*y_mask_que.cuda(GPU)).detach().cpu().numpy() # bx20
y_pred = (y_prob[:,10:]>0.5).astype(np.int) # bx10
y_numpy = labels[:,10:,1].numpy() # bx10
# Acc
total_corrects += np.sum((y_pred==y_numpy)*y_mask_que[:,10:].numpy())
total_query += np.sum(num_query)
# Restore GPU memory
del loss, y_hat
if (session+1)%500 == 0:
hist_trloss.append(total_trloss/900)
hist_tracc.append(total_corrects/total_query)
# Prepare display
sample_sup = labels[0,(10-num_support[0]):10].long().numpy().flatten()
sample_que = y_numpy[0,:num_query[0]].astype(int)
sample_pred = y_pred[0,:num_query[0]]
sample_prob = y_prob[0,10:10+num_query[0]]
tqdm.write("S:" + np.array2string(sample_sup) +'\n'+
"Q:" + np.array2string(sample_que) + '\n' +
"P:" + np.array2string(sample_pred) + '\n' +
"prob:" + np.array2string(sample_prob))
tqdm.write("tr_session:{0:} tr_loss:{1:.6f} tr_acc:{2:.4f}".format(session, hist_trloss[-1], hist_tracc[-1]))
total_corrects = 0
total_query = 0
total_trloss = 0
if __name__ == '__main__':
main()