diff --git a/localization/v2.4.x/site/en/reference/schema.json b/localization/v2.4.x/site/en/reference/schema.json
index 6d07edbc9..b2390ab59 100644
--- a/localization/v2.4.x/site/en/reference/schema.json
+++ b/localization/v2.4.x/site/en/reference/schema.json
@@ -1 +1 @@
-{"codeList":["from pymilvus import FieldSchema\nid_field = FieldSchema(name=\"id\", dtype=DataType.INT64, is_primary=True, description=\"primary id\")\nage_field = FieldSchema(name=\"age\", dtype=DataType.INT64, description=\"age\")\nembedding_field = FieldSchema(name=\"embedding\", dtype=DataType.FLOAT_VECTOR, dim=128, description=\"vector\")\n\n# The following creates a field and use it as the partition key\nposition_field = FieldSchema(name=\"position\", dtype=DataType.VARCHAR, max_length=256, is_partition_key=True)\n","from pymilvus import FieldSchema\n\nfields = [\n FieldSchema(name=\"id\", dtype=DataType.INT64, is_primary=True),\n # configure default value `25` for field `age`\n FieldSchema(name=\"age\", dtype=DataType.INT64, default_value=25, description=\"age\"),\n embedding_field = FieldSchema(name=\"embedding\", dtype=DataType.FLOAT_VECTOR, dim=128, description=\"vector\")\n]\n","from pymilvus import FieldSchema, CollectionSchema\nid_field = FieldSchema(name=\"id\", dtype=DataType.INT64, is_primary=True, description=\"primary id\")\nage_field = FieldSchema(name=\"age\", dtype=DataType.INT64, description=\"age\")\nembedding_field = FieldSchema(name=\"embedding\", dtype=DataType.FLOAT_VECTOR, dim=128, description=\"vector\")\n\n# Enable partition key on a field if you need to implement multi-tenancy based on the partition-key field\nposition_field = FieldSchema(name=\"position\", dtype=DataType.VARCHAR, max_length=256, is_partition_key=True)\n\n# Set enable_dynamic_field to True if you need to use dynamic fields. \nschema = CollectionSchema(fields=[id_field, age_field, embedding_field], auto_id=False, enable_dynamic_field=True, description=\"desc of a collection\")\n","from pymilvus import Collection\ncollection_name1 = \"tutorial_1\"\ncollection1 = Collection(name=collection_name1, schema=schema, using='default', shards_num=2)\n","import pandas as pd\ndf = pd.DataFrame({\n \"id\": [i for i in range(nb)],\n \"age\": [random.randint(20, 40) for i in range(nb)],\n \"embedding\": [[random.random() for _ in range(dim)] for _ in range(nb)],\n \"position\": \"test_pos\"\n})\n\ncollection, ins_res = Collection.construct_from_dataframe(\n 'my_collection',\n df,\n primary_field='id',\n auto_id=False\n )\n"],"headingContent":"Manage Schema","anchorList":[{"label":"Manage Schema","href":"Manage-Schema","type":1,"isActive":false},{"label":"Field schema","href":"Field-schema","type":2,"isActive":false},{"label":"Collection schema","href":"Collection-schema","type":2,"isActive":false},{"label":"What's next","href":"Whats-next","type":2,"isActive":false}]}
\ No newline at end of file
+{"codeList":["from pymilvus import FieldSchema\nid_field = FieldSchema(name=\"id\", dtype=DataType.INT64, is_primary=True, description=\"primary id\")\nage_field = FieldSchema(name=\"age\", dtype=DataType.INT64, description=\"age\")\nembedding_field = FieldSchema(name=\"embedding\", dtype=DataType.FLOAT_VECTOR, dim=128, description=\"vector\")\n\n# The following creates a field and use it as the partition key\nposition_field = FieldSchema(name=\"position\", dtype=DataType.VARCHAR, max_length=256, is_partition_key=True)\n","from pymilvus import FieldSchema\n\nfields = [\n FieldSchema(name=\"id\", dtype=DataType.INT64, is_primary=True),\n # configure default value `25` for field `age`\n FieldSchema(name=\"age\", dtype=DataType.INT64, default_value=25, description=\"age\"),\n embedding_field = FieldSchema(name=\"embedding\", dtype=DataType.FLOAT_VECTOR, dim=128, description=\"vector\")\n]\n","from pymilvus import FieldSchema, CollectionSchema\nid_field = FieldSchema(name=\"id\", dtype=DataType.INT64, is_primary=True, description=\"primary id\")\nage_field = FieldSchema(name=\"age\", dtype=DataType.INT64, description=\"age\")\nembedding_field = FieldSchema(name=\"embedding\", dtype=DataType.FLOAT_VECTOR, dim=128, description=\"vector\")\n\n# Enable partition key on a field if you need to implement multi-tenancy based on the partition-key field\nposition_field = FieldSchema(name=\"position\", dtype=DataType.VARCHAR, max_length=256, is_partition_key=True)\n\n# Set enable_dynamic_field to True if you need to use dynamic fields. \nschema = CollectionSchema(fields=[id_field, age_field, embedding_field], auto_id=False, enable_dynamic_field=True, description=\"desc of a collection\")\n","from pymilvus import Collection,connections\nconn = connections.connect(host=\"127.0.0.1\", port=19530)\ncollection_name1 = \"tutorial_1\"\ncollection1 = Collection(name=collection_name1, schema=schema, using='default', shards_num=2)\n","import pandas as pd\ndf = pd.DataFrame({\n \"id\": [i for i in range(nb)],\n \"age\": [random.randint(20, 40) for i in range(nb)],\n \"embedding\": [[random.random() for _ in range(dim)] for _ in range(nb)],\n \"position\": \"test_pos\"\n})\n\ncollection, ins_res = Collection.construct_from_dataframe(\n 'my_collection',\n df,\n primary_field='id',\n auto_id=False\n )\n"],"headingContent":"Manage Schema","anchorList":[{"label":"Manage Schema","href":"Manage-Schema","type":1,"isActive":false},{"label":"Field schema","href":"Field-schema","type":2,"isActive":false},{"label":"Collection schema","href":"Collection-schema","type":2,"isActive":false},{"label":"What's next","href":"Whats-next","type":2,"isActive":false}]}
\ No newline at end of file
diff --git a/localization/v2.4.x/site/en/reference/schema.md b/localization/v2.4.x/site/en/reference/schema.md
index c72790d0b..0e1fcc8fe 100644
--- a/localization/v2.4.x/site/en/reference/schema.md
+++ b/localization/v2.4.x/site/en/reference/schema.md
@@ -39,7 +39,7 @@ title: Manage Schema
Field schema properties
-
Properties
+
Properties
Description
Note
@@ -157,7 +157,7 @@ fields = [
Collection schema properties
-
Properties
+
Properties
Description
Note
@@ -200,7 +200,8 @@ position_field = FieldSchema(name="position"
schema = CollectionSchema(fields=[id_field, age_field, embedding_field], auto_id=False, enable_dynamic_field=True, description="desc of a collection")