forked from SethHWeidman/ODSC_Neural_Nets_11-04-17
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_net.py
39 lines (27 loc) · 1019 Bytes
/
neural_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
def neural_net_pass(net, x, y):
pred = net.forwardpass(x)
loss = net.loss(pred, y)
net.backpropogate(loss)
return pred
def one_epoch(net, X, Y):
'''
Run one epoch an element at a time through the net.
'''
for index in range(X.shape[0]):
x_batch = np.array(X[index], ndmin=2)
y_batch = np.array(Y[index], ndmin=2)
neural_net_pass(net, x_batch, y_batch)
return net
def shuffle_data(X_train, Y_train):
train_size = X_train.shape[0]
indices = list(range(train_size))
np.random.shuffle(indices)
return X_train[indices], Y_train[indices]
def net_accuracy(net, X_test, Y_test, predict=True):
P = net.forwardpass(X_test, predict)
preds = [np.argmax(x) for x in P]
actuals = [np.argmax(x) for x in Y_test]
accuracy = sum(np.array(preds) == np.array(actuals)) * 1.0 / len(preds)
print("Neural Net MNIST Classification Accuracy:", round(accuracy, 3) * 100, "percent")
return accuracy