-
Notifications
You must be signed in to change notification settings - Fork 2
/
toy_loader.py
311 lines (253 loc) · 9.58 KB
/
toy_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import csv
import numpy as np
import torch
import pickle
import random
from functools import partial
DIRNAME = "./data/sine/"
FILES = ["train.csv", "val.csv", "test.csv"]
SIZES = [70000, 1000, 2000] # Number of functions per split (train/val/test)
TOTAL = sum(SIZES)
class ProblemLoader:
"""
Data loader for sine wave regression
...
Attributes
-------
ptr : dict
Mapping of operation mode to episode index -> [train/val/test]->[episode index]
k : int
Number of examples in all support sets
k_test : int
Number of examples in query sets
functions : dict
Dictionary of functions -> [train/val/test] -> list of (amplitude,phase) pairs
episodic_fn_data : dict
Episode container [train/val/test]-> list of episodes (train_x, train_y, test_x, test_y)
flat_fn_data : dict
Container used for sampling flat batches (without task structure)
[train/val/test]->[x/y]->all inputs/labels of that mode
Methods
-------
_load_data()
Prepare and load data into the loader object
_sample_batch(self, size, mode)
Sample a flat batch of data (no explicit task structure)
_sample_episode(mode)
Sample an episode consisting of a support and query set
_draw_props()
Generates a random amplitude and phase
_draw_fn(return_props=False)
Generates an actual sine function
_get_fn(amplitude, phase)
Returns a sine function with the given amplitude and phase
-- Not used at the moment
generator(mode, batch_size)
Return a generator object that iterates over episodes
"""
def __init__(self, k, k_test, vary=[True]*4, seed=1337, **kwargs):
"""
initialize random seed used to generate sine wave data
Parameters
-------
k : int
Sizes of support sets (and size of query set during meta-training time)
k_test : int
Sizes of query sets
seed : int, optional
Randoms seed to use
**kwargs : dict, optional
Trash can for optional arguments that are ignored (but has to stay for function call uniformity)
"""
random.seed(seed)
np.random.seed(seed)
self.k = k
self.k_test = k_test
self.vary = vary #[bool]*4 [vary amplitude, vary frequency, vary phase, vary outshift]
self.ampl_range = [0.1, 5.0]
self.freq_range = [0.8, 3]
self.phase_range = [0, np.pi]
self.outshift_range = [-2.0, 2.0]
print(f"[vary amplitude, vary freq, vary phase, vary outshift]] = {[int(x) for x in self.vary]}")
# fixed values in case we do no vary
self.fixed_ampl = 1
self.fixed_phase = 0
self.fixed_freq = 1
self.fixed_outshift = 0
def _draw_props(self, train):
"""Generate random amplitude and phase
Select amplitude and phase uniformly at random.
Interval for amplitude : [0.1, 5.0]
Interval for phase : [0, 3.14...(pi)]
Returns
----------
amplitude
Amplitude of the sine function
Phase
Phase of the sine function
"""
vary_ampl, vary_freq, vary_phase, vary_outshift = self.vary
ampl, freq, phase, outshift = self.fixed_ampl, self.fixed_freq, self.fixed_phase, self.fixed_outshift
if vary_ampl:
ampl = np.random.uniform(*self.ampl_range)
if vary_freq:
freq = np.random.uniform(*self.freq_range)
if vary_phase:
phase = np.random.uniform(*self.phase_range)
if vary_outshift:
outshift = np.random.uniform(*self.outshift_range)
# for s in ["ampl", "freq", "phase", "outshift"]:
# vary = eval(f"vary_{s}")
# print(vary)
# if vary:
# print(f"{s} = np.random.uniform(*self.{s}_range)")
# exec(f"{s} = np.random.uniform(*self.{s}_range)")
# else:
# print(f"{s} = self.fixed_{s}")
# exec(f"{s} = self.fixed_{s}")
# print(freq, phase, outshift)
return ampl, freq, phase, outshift
def _draw_fn(self, return_props=False, train=True):
"""Generate random sine function
Randomly generate sine function fn that takes as input a real-valued x
and returns y=fn(x)
The function has the form fn(x) = phase * np.sin(x + phase)
Parameters
----------
return_props : bool, optional
Whether to return the amplitude and phase
Returns
----------
function
The generated sine function
amplitude (optional)
Amplitude of the function
phase (optional)
Phase of the function
"""
ampl, freq, phase, outshift = self._draw_props(train)
def fn(x):
return ampl * np.sin(freq*x + phase) + outshift
if return_props:
return fn, ampl, freq, phase, outshift
return fn
def _get_fn(self, amplitude, freq, phase, outshift):
"""Construct sine function
Use the provided amplitude and phase to return the corresponding
sine function
Parameters
----------
amplitude : float
Amplitude of the function
phase : float
Phase of the function
Returns
----------
function
The sine function with user-defined amplitude and phase
"""
def fn(x):
return amplitude * np.sin(freq*x + phase) + outshift
return fn
def _generate_data(self, k, k_test, fn, tensor=True):
"""Generate input, output pairs for a given sine function
Return input and output vectors x, y. Every y_i = fn(x_i)
Parameters
----------
k : int
Number of (x,y) pairs to generate
k_test : int
Number of examples in query set
fn : function
Sine function to use for data point generation
tensor : bool, optional
Whether to return x and y as torch.Tensor objects
(default is np.array with dtype=float32)
Returns
----------
train_x
Inputs of support set, randomly sampled from [-5,5]
train_y
Outputs of support set
test_x
Inputs of query set drawn at random from [-5,5]
test_y
Outputs of query set
"""
x = np.linspace(-5.0, 5.0, k+k_test).reshape(-1, 1).astype('float32')
y = fn(x).reshape(-1, 1).astype('float32')
train_x, train_y, test_x, test_y = x[:k], y[:k], x[k:], y[k:]
if tensor:
return torch.from_numpy(train_x), torch.from_numpy(train_y),\
torch.from_numpy(test_x), torch.from_numpy(test_y)
return train_x, train_y, test_x, test_y
def _sample_episode(self, return_props, **kwargs):
"""Sample a single episode
Look up and return the current episode for the given mode
Parameters
----------
mode : str
"train"/"val"/"test": mode of operation
**kwargs : dict
Trashcan for additional args
Returns
----------
train_x
Inputs of support sets
train_y
Outputs of support set
test_x
Inputs of query set
test_y
Outputs of query set
"""
if not return_props:
fn = self._draw_fn(return_props=False)
else:
fn, amplitude, freq, phase, outshift = self._draw_fn(return_props=True)
train_x, train_y, test_x, test_y = self._generate_data(self.k, self.k_test, fn)
if not return_props:
return train_x, train_y, test_x, test_y
return train_x, train_y, test_x, test_y, [fn, amplitude, phase, freq, outshift]
def generator(self, episodic, batch_size, mode, return_props=False, **kwargs):
"""Data generator
Iterate over all tasks (if episodic), or for a fixed number of episodes (if episodic=False)
and yield batches of data at every step.
Parameters
----------
episodic : boolean
Whether to return a task (train_x, train_y, test_x, test_y) or a flat batch (x, y)
mode : str
"train"/"val"/"test": mode of operation
batch_size : int
Size of flat batch to draw
reset_ptr : boolean, optional
Whether to reset the episode pointer for the given mode
**kwargs : dict
Other optional keyword arguments to keep flexibility with other data loaders which use other
args like N (number of classes)
Returns
----------
generator
Yields episodes = (train_x, train_y, test_x, test_y)
"""
if mode == "train":
iters = 70000
amode = 0
elif mode == "val":
iters = 1000
amode = 1
else:
iters = 2000
amode = 1
# If episodic set number of iterations to the number of tasks
if episodic:
print(f"\n[*] Creating episodic generator for '{mode}' mode")
gen_fn = partial(self._sample_episode, return_props=return_props)
else:
print("Sine loader has to be set to episodic mode")
import sys; sys.exit()
print(f"[*] Generator set to perform {iters} iterations")
for _ in range(iters):
yield gen_fn(mode=amode, size=batch_size)