-
Notifications
You must be signed in to change notification settings - Fork 2
/
image_loader.py
390 lines (325 loc) · 14.5 KB
/
image_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import numpy as np
import random
import pickle
import torch
from tqdm import tqdm
from PIL import Image
PATH = ["./data/cub/","./data/min/"]
SPLITS = ["train", "val", "test"]
def numpy_img_to_torch(batch):
"""Preprocess images
Process numpy images:
1. Normalize by dividing by 255.0
2. Set datatype to be float32
3. Make sure the input dimensions are (batch size, channels, height, width)
4. Convert to torch.Tensor type
Returns
-------
torch.Tensor
Processed images ready to be fed as input to Conv2D
"""
return torch.from_numpy((batch/255.0).astype('float32'))\
.permute(0, 3, 1, 2)
class ImageLoader:
"""
Data loader for images
...
Attributes
----------
N : int
Number of classes per query/support set
k : int
Number of examples in all support sets
k_test : int
Number of examples in query sets of meta-validation and -test tasks
img_size : int
Reshape all images to this size
class_map : dict
Maps classes onto integers
class_index : int
Integer that will be assigned to a new class (after which it is incremented by 1)
imdict : dict
Stores images for episodic sampling. [mode]->[class]->list of examples
images : dict
Stores images for batch sampling. [mode]-> list of images
labels
Stores labels of images for batch sampling: [mode] -> list of labels
Methods
----------
_load_data()
Prepare and load data into the loader object
_sample_batch(self, size, mode)
Sample a flat batch of data (no explicit task structure)
_sample_episode(mode)
Sample an episode consisting of a support and query set
_draw_fn(return_props=False)
Generates an actual sine function
generator(mode, batch_size)
Return a generator object that iterates over episodes
"""
def __init__(self, N, k, k_test, img_size, path, cross=False, num_train_tasks=40000,
num_val_tasks=600,seed=1337):
"""
initialize random seed used to generate sine wave data
Parameters
----------
N : int
Number of classes to sample
k : int
Examples per class in support set
k_test : int
Number of examples per class in query sets
img_size : int
Reshape all images to this size
path : str
Root directory of images (which contains directories train/val/test)
cross : boolean, optional
Whether this data loader is used in cross-domain context. If so, merge
validation and test data into a single bin. (default=False)
seed : int, optional
Randoms seed to use
"""
# Set seeds for reproducability.
np.random.seed(seed)
random.seed(seed)
self.N = N
self.k = k
self.k_test = k_test
self.num_train_tasks = num_train_tasks
self.num_val_tasks = num_val_tasks
self.img_size = img_size # 2-tuple (width, height)
self.class_index = 0
# Store data for episodic sampling
self.imdict = None
# Store data for flat minibatches
self.images = {split:[] for split in SPLITS}
self.labels = {split:[] for split in SPLITS}
self.tasks = {split:[] for split in SPLITS}
# Pointers to current episode
self.ptr = {"train":0, "val":0, "test":0} #eval:0
# Load the image data.
self._load_images(path=path, dump=True, overwrite=False)
def _sample_batch(self, size, mode):
"""Sample a flat batch of data
Samples a batch of data from all meta-training data
Parameters
----------
size : int
Size of the batch to sample
mode : str
Current mode of operation, one of: train/val/test
Returns
----------
X
Inputs of the batch
Y
Labels of the batch
"""
num_images = len(self.images[mode])
# use this instead of np randint to avoid seed interference
indices = np.random.randint(0, num_images, size=size)
# np.array([random.randint(0, num_images - 1) for _ in range(size)])
X = self.images[mode][indices]
Y = self.labels[mode][indices]
return X, Y, None, None
def _sample_episode(self, mode, **kwargs):
"""Sample a single task
Samples an episode consisting of a task for the given mode.
1. Sample N classes uniformly at random
2. For each of the N classes, sample k examples for the support set
and k (if mode=train) or k_test (if mode = val/test) examples for
the query set. Append these in linear fashion.
3. Shuffle support and query sets
Parameters
----------
mode : str
Current mode of operation, one of: train/val/test
**kwargs : dict
Keyword arguments to ignore
Returns
----------
train_X, train_Y
The support set with inputs train_X and labels train_Y
Numpy arrays if self.use_torch=False, else torch.Tensors.
test_X, test_Y
The query set with inputs test_X and labels test_Y
Numpy arrays if self.use_torch=False, else torch.Tensors.
"""
idx = self.ptr[mode]
self.ptr[mode] += 1
support_indices, train_y, query_indices, test_y = self.tasks[mode][idx]
train_x = self.images[mode][support_indices]
test_x = self.images[mode][query_indices]
return train_x, train_y, test_x, test_y
def generator(self, episodic, batch_size, mode, reset_ptr, **kwargs):
"""Data generator
Iterate over all tasks (if episodic), or for a fixed number of episodes (if episodic=False)
and yield batches of data at every step.
Parameters
----------
episodic : boolean
Whether to return a task (train_x, train_y, test_x, test_y) or a flat batch (x, y)
batch_size : int
Size of flat batch to draw (only applicable if episodic=False)
mode : str
"train"/"val"/"test": mode of operation
reset_ptr : boolean, optional
Whether to reset the episode pointer for the given mode
**kwargs : dict
Other optional keyword arguments to keep flexibility with other data loaders which use other
args like N (number of classes)
Returns
----------
generator
Yields episodes = (train_x, train_y, test_x, test_y)
"""
if reset_ptr:
self.ptr[mode] = 0
# Number of data points a meta-learning system sees during meta-train time
if mode == "train":
num_iters = self.num_train_tasks
else:
num_iters = self.num_val_tasks
if episodic:
print(f"\n[*] Creating episodic generator for '{mode}' mode")
gen_fn = self._sample_episode
else:
print(f"\n[*] Creating batch generator for '{mode}' mode")
assert mode=="train", f"Tried to sample flat batch in '{mode}' mode"
gen_fn = self._sample_batch
# Print warning message if required
if batch_size > self.k:
print(f"\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
print(f"WARNING: batch_size > k")
print(f"@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
for idx in range(num_iters):
yield gen_fn(mode=mode, size=batch_size)
def total_classes(self, mode):
"""Get total number of classes for a given mode
Parameters
----------
mode : str
Mode (train/val/test)
Returns
----------
int
Number of classes in a certain mode
"""
return len(np.unique(self.labels[mode]))
def _load_images(self, path, dump=True, overwrite=False):
"""Loads JPG images
Assumption: path is structured as [train/val/test] -> [classes] -> [images]
If so, then:
1. Check if images from path have been loaded before.
If so, load them for speed!
2. Else, we have to process all images ourselves
a. Iterate over train/val/test folders
b. Iterate over all classes in the folder
c. Iterate over all images in the class folder
d. Add the processed iamges
Parameters
----------
path : str
Root directory of images (with directories train/val/test)
dump : boolean, optional
Whether to store the processed images for next time
(default=True)
overwrite : boolean, optional
Whether to overwrite an existing data.pkl with loaded images
(default=False)
"""
# Name of the pickle file
dat_file = f"N{self.N}k{self.k}test{self.k_test}-imgsize{self.img_size[0]}.pkl"
# Check if earlier data dump exists. If so, return it
if os.path.exists(os.path.join(path, dat_file)) and not overwrite:
print(f"[*] Found previous data file. Loading now...")
with open(os.path.join(path, dat_file),"rb") as f:
self.images, self.labels, self.tasks = pickle.load(f)
for split in ["train", "val", "test"]:
print(len(self.tasks[split]))
return
self.imdict = dict() # [split] -> [class] -> [indices of images with class]
print(f"[*] Failed to find data file. Creating one now...")
# No data.pkl exists, so we have to create one
# Traverse hierarchy of directories to fill imdict
for split in SPLITS:
image_ptr = 0
print(f" - Processing {split} images")
self.imdict[split] = dict()
# E.g. ./data/min/train/ or ./data/cub/val
split_dir = os.path.join(path, split)
for classdir in os.listdir(split_dir):
# Create list to hold images with the given class <classdir>
self.imdict[split][classdir] = []
self.class_index += 1
# Full path to the class directory
full_class_dir = os.path.join(split_dir, classdir)
# Iterate over all images of the given class and store them in the
# appropriate data structures
for imagefile in os.listdir(full_class_dir):
# Ignore non-JPG images
if ".jpg" in imagefile:
# full path to image
image_location = os.path.join(full_class_dir, imagefile)
# Load the image using the PIL library
img = Image.open(image_location)
# Resize image to self.img_size
new_img = np.asarray(img.resize(self.img_size))
# neglect outliers which are not RGB
if len(new_img.shape) > 2:
self.imdict[split][classdir].append(image_ptr)
self.images[split].append(new_img)
self.labels[split].append(self.class_index - 1)
image_ptr += 1
# Convert image indices to numpy array for fast indexing
self.imdict[split][classdir] = np.array(self.imdict[split][classdir], dtype=np.int32)
# Convert images and labels to torch.Tensor for fast indexing
self.images[split] = numpy_img_to_torch(np.array(self.images[split]))
self.labels[split] = torch.from_numpy(np.array(self.labels[split]).astype("long"))
# [split] -> [list of tasks]
# every task is a tuple (support indices, query indices)
self.tasks = {split:[] for split in SPLITS}
split_to_count = {
"train": self.num_train_tasks,
"val": self.num_val_tasks,
"test": self.num_val_tasks
}
print(split_to_count)
# Examples in the support and query set for a single class
total_size = self.k + self.k_test
# Generate tasks
print(f"[*] Generating tasks")
for sid, split in enumerate(SPLITS):
num_tasks = split_to_count[split]
classes = list(self.imdict[split].keys())
# Generate <num_tasks> tasks
for i in range(num_tasks):
N_classes = random.sample(classes, self.N)
support_indices = np.array([], dtype=np.int32)
query_indices = np.array([], dtype=np.int32)
support_labels = []
query_labels = []
# For every of the N classes, sample k+k_test images
for cid, classname in enumerate(N_classes):
pool = self.imdict[split][classname] # pool of image indices to pick from
indices = np.random.choice(pool, size=total_size)
support_indices = np.concatenate([support_indices, indices[:self.k]])
query_indices = np.concatenate([query_indices, indices[self.k:]])
support_labels = support_labels + [cid for _ in range(self.k)]
query_labels = query_labels + [cid for _ in range(self.k_test)]
# Randomly permute the support and query sets
perm = np.random.permutation(len(support_indices))
support_indices = support_indices[perm]
support_labels = torch.Tensor(np.array(support_labels)[perm]).long()
perm = np.random.permutation(len(query_indices))
query_indices = query_indices[perm]
query_labels = torch.Tensor(np.array(query_labels)[perm]).long()
self.tasks[split].append(tuple([support_indices, support_labels,
query_indices, query_labels]))
store_obj = tuple([self.images, self.labels, self.tasks])
# Dump pickle file called data.pkl to avoid doing this entire
# time-consuming process again
if dump:
with open(os.path.join(path, dat_file),"wb+") as f:
pickle.dump(store_obj, f, protocol=4)