diff --git a/dockerfile/cuda11.1.1.dockerfile b/dockerfile/cuda11.1.1.dockerfile index 6b3a2acb2..060985db1 100644 --- a/dockerfile/cuda11.1.1.dockerfile +++ b/dockerfile/cuda11.1.1.dockerfile @@ -149,7 +149,8 @@ ADD third_party third_party RUN make -C third_party cuda ADD . . -RUN python3 -m pip install --no-cache-dir .[nvworker] && \ +RUN python3 -m pip install --upgrade setuptools==65.7 && \ + python3 -m pip install --no-cache-dir .[nvworker] && \ make cppbuild && \ make postinstall && \ rm -rf .git diff --git a/docs/cli.md b/docs/cli.md index 1f6b13a7a..b35595ccb 100644 --- a/docs/cli.md +++ b/docs/cli.md @@ -295,6 +295,53 @@ Run result summary and output the results in html format: sb result summary --data-file outputs/results-summary.jsonl --rule-file rule.yaml --output-file-format html ``` +### `sb result generate-baseline` + +Generate the baseline file automatically from multiple machines results according to rules defined in rule file. + +```bash title="SB CLI" +sb result generate-baseline --data-file + --summary-rule-file + [--diagnosis-rule-file] + [--baseline-file] + [--decimal-place-value] + [--output-dir] +``` + +#### Required arguments + +| Name | Description | +|-----------------------------|-----------------------------------------| +| `--data-file` `-d` | Path to raw data file. | +| `--summary-rule-file` `-sr` | Path to summary rule file. | + +#### Optional arguments + +| Name | Default | Description | +|-------------------------------|---------|-----------------------------------------------------------------------------| +| `--diagnosis-rule-file` `-dr` | `None` | Path to diagnosis rule file. Default: None. | +| `--baseline-file` `-b` | `None` | Path to previous baseline file. Default: None. | +| `--decimal-place-value` | 2 | Number of valid decimal places to show in output. Default: 2. | +| `--output-dir` | `None` | Path to output directory, outputs/{datetime} will be used if not specified. | + +#### Global arguments + +| Name | Default | Description | +|---------------|---------|--------------------| +| `--help` `-h` | N/A | Show help message. | + +#### Examples + +Run result generate-baseline to generate baseline.json file: +```bash title="SB CLI" +sb result generate-baseline --data-file outputs/results-summary.jsonl --summary-rule-file summary-rule.yaml --diagnosis-rule-file diagnosis-rule.yaml +``` + +Run result generate-baseline and merge with previous baseline: +```bash title="SB CLI" +sb result generate-baseline --data-file outputs/results-summary.jsonl --summary-rule-file summary-rule.yaml --diagnosis-rule-file diagnosis-rule.yaml --baseline-file previous-baseline.json +``` + ### `sb run` Run the SuperBench benchmarks distributedly. diff --git a/docs/user-tutorial/baseline-generation.md b/docs/user-tutorial/baseline-generation.md new file mode 100644 index 000000000..8e020293e --- /dev/null +++ b/docs/user-tutorial/baseline-generation.md @@ -0,0 +1,49 @@ +--- +id: baseline-generation +--- + +# Baseline Generation + +## Introduction + +This tool is to generate a baseline json file based on the raw benchmark results of multiple machines. + +## Usage + +1. [Install SuperBench](../getting-started/installation.mdx) on the local machine. + +2. Prepare the raw data and rule files on the local machine. + +3. Generate the baseline file automatically using `sb result generate-baseline` command. The detailed command can be found from [SuperBench CLI](../cli.md). + + ```bash + sb result generate-baseline --data-file ./results-summary.jsonl --summary-rule-file ./summary-rule.yaml --diagnosis-rule-file ./diagnosis-rule.yaml --output-dir ${output-dir} + ``` + +4. Find the output result file named 'baseline.json' under ${output_dir}. + +## Input + +The input includes 4 files: + +- **Raw Data**: jsonl file including multiple nodes' results automatically generated by SuperBench runner. + +:::tip Tips +Raw data file can be found at ${output-dir}/results-summary.jsonl after each successful run. +::: + +- **Summary Rule File**: It uses YAML format and defines how to generate the result summary including how to classify the metrics and what statistical methods (P50, mean, etc.) are applied. + +- **Diagnosis Rule File(optional)**: It uses YAML format and includes each metrics' rules to filter defective machines for diagnosis, and will not filter machines if not specified. + +- **Previous Baseline File(optional)**: It is baseline file in json format that got from previous run and plan to merge into the latest baseline. + +### Rule File + +**Summary Rule File** is the same with rule file defined in [Result Summary](./result-summary.md) + +**Diagnosis Rule File** is the same with rule file defined in [Data Diagnosis](./data-diagnosis.md) + +## Output + +The baseline file (baseline.json) from multiple machines will be generated under ${output_dir}. diff --git a/superbench/analyzer/__init__.py b/superbench/analyzer/__init__.py index f4e27944d..38ec50b93 100644 --- a/superbench/analyzer/__init__.py +++ b/superbench/analyzer/__init__.py @@ -8,5 +8,9 @@ from superbench.analyzer.diagnosis_rule_op import RuleOp, DiagnosisRuleType from superbench.analyzer.summary_op import SummaryOp, SummaryType from superbench.analyzer.result_summary import ResultSummary +from superbench.analyzer.baseline_generation import BaselineGeneration -__all__ = ['DataDiagnosis', 'DiagnosisRuleType', 'RuleOp', 'RuleBase', 'SummaryOp', 'SummaryType', 'ResultSummary'] +__all__ = [ + 'DataDiagnosis', 'DiagnosisRuleType', 'RuleOp', 'RuleBase', 'SummaryOp', 'SummaryType', 'ResultSummary', + 'BaselineGeneration' +] diff --git a/superbench/analyzer/baseline_generation.py b/superbench/analyzer/baseline_generation.py new file mode 100644 index 000000000..b6844c0cb --- /dev/null +++ b/superbench/analyzer/baseline_generation.py @@ -0,0 +1,194 @@ +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT license. + +"""A module for baseline generation.""" + +from copy import deepcopy +from pathlib import Path +import json +import re + +from joblib import Parallel, delayed +import pandas as pd + +from superbench.common.utils import logger +from superbench.analyzer import file_handler +from superbench.analyzer import data_analysis +from superbench.analyzer import DataDiagnosis +from superbench.analyzer import ResultSummary +from superbench.analyzer.diagnosis_rule_op import RuleOp, DiagnosisRuleType + + +class BaselineGeneration(DataDiagnosis): + """The class to generate baseline for raw data.""" + def fix_threshold_outlier_detection(self, data_series, single_metric_with_baseline, metric, rule_op): + """Fix threshold outlier detection algorithm. + + Step 0: Put all data in the collection. + Step 1: Regenerate the collection. + Calculate the average number in the collection as the baseline. + Remove all data which cannot pass the fix threshold based on the new baseline. + Step 2: If no data has been removed from Step 1, go to Step 3; otherwise, go to Step 1. + Step 3: Use the baseline and fix threshold for Outlier Detection. + + Args: + data_series (pd.Series): data of the metric. + single_metric_with_baseline (dict): baseline of the single metric in 'metrics' in 2-layer dict format. + metric (str): the name of the metric to execute the algorithm. + rule_op (function): diagnosis rule op function. + + Returns: + tuple: the baseline of the metric, normal data of the metric. + """ + if single_metric_with_baseline['metrics'][metric] \ + is not None and single_metric_with_baseline['metrics'][metric] != -1: + return single_metric_with_baseline['metrics'][metric] + tmp_single_metric_with_baseline = deepcopy(single_metric_with_baseline) + tmp_single_metric_with_baseline['metrics'] = {} + clean = False + while clean is False: + clean = True + baseline_val = data_series.mean() + for val in data_series.index: + tmp_single_metric_with_baseline['metrics'][metric] = baseline_val + if baseline_val == 0: + break + data_row = pd.Series([data_series[val]], index=[metric]) + details = [] + categories = set() + summary_data_row = pd.Series(index=[metric], dtype=float) + violated_num = rule_op(data_row, tmp_single_metric_with_baseline, summary_data_row, details, categories) + if violated_num: + data_series = data_series.drop(val) + clean = False + baseline = tmp_single_metric_with_baseline['metrics'][metric] + return baseline, data_series + + def get_aggregate_data(self, raw_data_file, summary_rule_file): + r"""Aggregate raw data according to the summary rule file. + + If the metric is aggregated by rank (:\d+), remove the rank info to generate the metric name and aggregate data. + If the metric is aggregated by regex pattern, aggregate the data and copy to all metrics matches this pattern. + + Args: + raw_data_file (str): the file name of the raw data file. + summary_rule_file (str): the file name of the summary rule file. + + Returns: + DataFrame: aggregated data + """ + self.rs = ResultSummary() + rules = self.rs._preprocess(raw_data_file, summary_rule_file) + # parse rules for result summary + if not self.rs._parse_rules(rules): + return + aggregated_df = pd.DataFrame() + for rule in self.rs._sb_rules: + single_metric_rule = self.rs._sb_rules[rule] + metrics = list(single_metric_rule['metrics'].keys()) + data_df_of_rule = self.rs._raw_data_df[metrics] + if self.rs._sb_rules[rule]['aggregate']: + # if aggregate is True, aggregate in ranks + if self.rs._sb_rules[rule]['aggregate'] is True: + data_df_of_rule = data_analysis.aggregate(data_df_of_rule) + # if aggregate is not empty and is a pattern in regex, aggregate according to pattern + else: + pattern = self.rs._sb_rules[rule]['aggregate'] + data_df_of_rule_with_short_name = data_analysis.aggregate(data_df_of_rule, pattern) + data_df_of_rule = pd.DataFrame(columns=metrics) + # restore the columns of data_fd to full metric names + for metric in metrics: + short = '' + match = re.search(pattern, metric) + if match: + metric_in_list = list(metric) + for i in range(1, len(match.groups()) + 1): + metric_in_list[match.start(i):match.end(i)] = '*' + short = ''.join(metric_in_list) + data_df_of_rule[metric] = data_df_of_rule_with_short_name[short] + aggregated_df = pd.concat([aggregated_df, data_df_of_rule], axis=1) + return aggregated_df + + def generate_baseline(self, algo, aggregated_df, diagnosis_rule_file, baseline): + """Generate the baseline in json format. + + Args: + algo (str): the algorithm to generate the baseline. + aggregated_df (DataFrame): aggregated data. + diagnosis_rule_file (str): the file name of the diagnosis rules which used in fix_threshold algorithm. + baseline (dict): existing baseline of some metrics. + + Returns: + dict: baseline of metrics defined in diagnosis_rule_files for fix_threshold algorithm or + defined in rule_summary_files for mean. + """ + # re-organize metrics by benchmark names + self._benchmark_metrics_dict = self._get_metrics_by_benchmarks(list(self._raw_data_df.columns)) + if algo == 'mean': + mean_df = self._raw_data_df.mean() + for metric in self._raw_data_df.columns: + if metric in baseline: + return baseline[metric] + baseline[metric] = mean_df[metric] + elif algo == 'fix_threshold': + # read diagnosis rules + rules = file_handler.read_rules(diagnosis_rule_file) + if not self._parse_rules_and_baseline(rules, baseline): + return baseline + else: + for rule in self._sb_rules: + single_metric_rule = self._sb_rules[rule] + metrics = list(single_metric_rule['metrics'].keys()) + function_name = self._sb_rules[rule]['function'] + rule_op = RuleOp.get_rule_func(DiagnosisRuleType(function_name)) + outputs = Parallel(n_jobs=-1)( + delayed(self.fix_threshold_outlier_detection) + (aggregated_df[metric], single_metric_rule, metric, rule_op) for metric in metrics + ) + for index, out in enumerate(outputs): + baseline[metrics[index]] = out[0] + aggregated_df[metrics[index]] = out[1] + return baseline + + def run( + self, raw_data_file, summary_rule_file, diagnosis_rule_file, pre_baseline_file, algorithm, output_dir, digit=2 + ): + """Export baseline to json file. + + Args: + raw_data_file (str): Path to raw data jsonl file. + summary_rule_file (str): the file name of the summary rule file. + diagnosis_rule_file (str): the file name of the diagnosis rules which used in fix_threshold algorithm. + pre_baseline_file (str): the file name of the previous baseline file. + algorithm (str): the algorithm to generate the baseline. + output_dir (str): the directory to save the baseline file. + digit (int): the number of digits after the decimal point. + """ + try: + # aggregate results from different devices + self._raw_data_df = self.get_aggregate_data(raw_data_file, summary_rule_file) + # read existing baseline + baseline = {} + if pre_baseline_file: + baseline = file_handler.read_baseline(pre_baseline_file) + # generate baseline accordint to rules in diagnosis and fix threshold outlier detection method + baseline = self.generate_baseline(algorithm, self._raw_data_df, diagnosis_rule_file, baseline) + for metric in baseline: + val = baseline[metric] + if metric in self._raw_data_df: + if isinstance(self._raw_data_df[metric].iloc[0], float): + baseline[metric] = f'%.{digit}g' % val if abs(val) < 1 else f'%.{digit}f' % val + elif isinstance(self._raw_data_df[metric].iloc[0], int): + baseline[metric] = int(val) + else: + try: + baseline[metric] = float(val) + except Exception as e: + logger.error('Analyzer: {} baseline is not numeric, msg: {}'.format(metric, str(e))) + baseline = json.dumps(baseline, indent=2, sort_keys=True) + baseline = re.sub(r': \"(\d+.?\d*)\"', r': \1', baseline) + with (Path(output_dir) / 'baseline.json').open('w') as f: + f.write(baseline) + + except Exception as e: + logger.error('Analyzer: generate baseline failed, msg: {}'.format(str(e))) diff --git a/superbench/analyzer/file_handler.py b/superbench/analyzer/file_handler.py index 2337435ea..f9f4065f9 100644 --- a/superbench/analyzer/file_handler.py +++ b/superbench/analyzer/file_handler.py @@ -39,7 +39,7 @@ def read_raw_data(raw_data_path): raw_data_df = raw_data_df.rename(raw_data_df['node']) raw_data_df = raw_data_df.drop(columns=['node']) except Exception as e: - logger.log_and_raise(exception=IOError, msg='Analyzer: invalid raw data fomat - {}'.format(str(e))) + logger.log_and_raise(exception=IOError, msg='Analyzer: invalid raw data format - {}'.format(str(e))) return raw_data_df diff --git a/superbench/cli/_commands.py b/superbench/cli/_commands.py index 2122034a3..e8ae9af05 100644 --- a/superbench/cli/_commands.py +++ b/superbench/cli/_commands.py @@ -31,6 +31,7 @@ def load_command_table(self, args): with CommandGroup(self, 'result', 'superbench.cli._result_handler#{}') as g: g.command('diagnosis', 'diagnosis_command_handler') g.command('summary', 'summary_command_handler') + g.command('generate-baseline', 'generate_baseline_command_handler') return super().load_command_table(args) def load_arguments(self, command): @@ -77,6 +78,18 @@ def load_arguments(self, command): with ArgumentsContext(self, 'result') as ac: ac.argument('raw_data_file', options_list=('--data-file', '-d'), type=str, help='Path to raw data file.') ac.argument('rule_file', options_list=('--rule-file', '-r'), type=str, help='Path to rule file.') + ac.argument( + 'summary_rule_file', + options_list=('--summary-rule-file', '-sr'), + type=str, + help='Path to summary rule file.' + ) + ac.argument( + 'diagnosis_rule_file', + options_list=('--diagnosis-rule-file', '-dr'), + type=str, + help='Path to diagnosis rule file.' + ) ac.argument( 'baseline_file', options_list=('--baseline-file', '-b'), type=str, help='Path to baseline file.' ) diff --git a/superbench/cli/_help.py b/superbench/cli/_help.py index fb7f87973..8f7b0874e 100644 --- a/superbench/cli/_help.py +++ b/superbench/cli/_help.py @@ -187,6 +187,27 @@ --output-file-format html """.format(cli_name=CLI_NAME) +helps['result generate-baseline'] = """ + type: command + short-summary: > + Generate the baseline of benchmarking results from jsonline file + according to rules defined in rule file. + examples: + - name: run result generate-baseline to generate baseline.json file + text: > + {cli_name} result generate-baseline + --data-file outputs/results-summary.jsonl + --summary-rule-file summary-rule.yaml + --diagnosis-rule-file diagnosis-rule.yaml + - name: run result generate-baseline and merge with previous baseline + text: > + {cli_name} result generate-baseline + --data-file outputs/results-summary.jsonl + --summary-rule-file summary-rule.yaml + --diagnosis-rule-file diagnosis-rule.yaml + --baseline-file previous-baseline.json +""".format(cli_name=CLI_NAME) + class SuperBenchCLIHelp(CLIHelp): """SuperBench CLI help loader.""" diff --git a/superbench/cli/_result_handler.py b/superbench/cli/_result_handler.py index 94515a9d3..7d90bc2b6 100644 --- a/superbench/cli/_result_handler.py +++ b/superbench/cli/_result_handler.py @@ -7,6 +7,7 @@ from superbench.analyzer import DataDiagnosis from superbench.analyzer import ResultSummary +from superbench.analyzer import BaselineGeneration from superbench.common.utils import create_sb_output_dir from superbench.cli._handler import check_argument_file @@ -73,3 +74,45 @@ def summary_command_handler(raw_data_file, rule_file, output_dir=None, output_fi ResultSummary().run(raw_data_file, rule_file, sb_output_dir, output_file_format, decimal_place_value) except Exception as ex: raise RuntimeError('Failed to run summary command.') from ex + + +def generate_baseline_command_handler( + raw_data_file, + summary_rule_file, + diagnosis_rule_file=None, + baseline_file=None, + output_dir=None, + decimal_place_value=2 +): + """Run result generate-baseline. + + If diagnosis_rule_file is None, use mean of the data as baseline. + If diagnosis_rule_file is not None, use the rules in diagnosis_rule_file to execute fix_threshold algorithm. + + Args: + raw_data_file (str): Path to raw data jsonl file. + summary_rule_file (str): the file name of the summary rule file. + diagnosis_rule_file (str): the file name of the diagnosis rules which used in fix_threshold algorithm. + baseline_file (str): the file name of the previous baseline file that plan to merge with current baseline. + output_dir (str): the directory to save the baseline file. + decimal_place_value (int): the number of digits after the decimal point. + """ + try: + # Create output directory + sb_output_dir = create_sb_output_dir(output_dir) + # Check arguments + check_argument_file('raw_data_file', raw_data_file) + check_argument_file('rule_file', summary_rule_file) + algorithm = 'mean' + if diagnosis_rule_file: + algorithm = 'fix_threshold' + check_argument_file('rule_file', diagnosis_rule_file) + if baseline_file: + check_argument_file('baseline_file', baseline_file) + # Run result generate-baseline + BaselineGeneration().run( + raw_data_file, summary_rule_file, diagnosis_rule_file, baseline_file, algorithm, sb_output_dir, + decimal_place_value + ) + except Exception as ex: + raise RuntimeError('Failed to run generate-baseline command.') from ex diff --git a/tests/analyzer/test_generate_baseline.py b/tests/analyzer/test_generate_baseline.py new file mode 100644 index 000000000..27eacd420 --- /dev/null +++ b/tests/analyzer/test_generate_baseline.py @@ -0,0 +1,76 @@ +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT License. + +"""Tests for BaselineGeneration module.""" + +import unittest +import json +from pathlib import Path + +from superbench.analyzer import BaselineGeneration +import superbench.analyzer.file_handler as file_handler + + +class TestBaselineGeneration(unittest.TestCase): + """Test for BaselineGeneration class.""" + def setUp(self): + """Method called to prepare the test fixture.""" + self.parent_path = Path(__file__).parent + self.test_raw_data = str(self.parent_path / 'test_generate_baseline_results.jsonl') + self.test_summary_rule_file = str(self.parent_path / 'test_generate_baseline_summary_rules.yaml') + self.test_diagnosis_rule_file = str(self.parent_path / 'test_generate_baseline_diagnosis_rules.yaml') + self.output_baseline_file = str(self.parent_path / 'baseline.json') + self.pre_baseline_file = str(self.parent_path / 'pre_baseline.json') + + def tearDown(self): + """Method called after the test method has been called and the result recorded.""" + for file in [self.output_baseline_file, self.pre_baseline_file]: + p = Path(file) + if p.is_file(): + p.unlink() + + def test_baseline_generation_run(self): + """Test for the run process of result generate-baseline.""" + # Test - generate baseline without previous baseline + BaselineGeneration().run( + self.test_raw_data, + self.test_summary_rule_file, + self.test_diagnosis_rule_file, + None, + 'fix_threshold', + str(self.parent_path), + digit=2 + ) + baseline = file_handler.read_baseline(self.output_baseline_file) + expected_baseline = { + 'kernel-launch/event_time': 0.0055, + 'kernel-launch/wall_time': 0.009, + 'mem-bw/d2h_bw': 26.22, + 'mem-bw/h2d_bw': 26.07 + } + assert (expected_baseline == baseline) + + # Test - generate baseline with previous baseline + pre_baseline = {'gemm-flops/FP32': 18318.4, 'gemm-flops/FP16': 33878} + with open(self.pre_baseline_file, 'w') as f: + json.dump(pre_baseline, f) + + BaselineGeneration().run( + self.test_raw_data, + self.test_summary_rule_file, + self.test_diagnosis_rule_file, + self.pre_baseline_file, + 'fix_threshold', + str(self.parent_path), + digit=2 + ) + baseline = file_handler.read_baseline(self.output_baseline_file) + expected_baseline = { + 'kernel-launch/event_time': 0.0055, + 'kernel-launch/wall_time': 0.009, + 'mem-bw/d2h_bw': 26.22, + 'mem-bw/h2d_bw': 26.07, + 'gemm-flops/FP32': 18318.4, + 'gemm-flops/FP16': 33878 + } + assert (expected_baseline == baseline) diff --git a/tests/analyzer/test_generate_baseline_diagnosis_rules.yaml b/tests/analyzer/test_generate_baseline_diagnosis_rules.yaml new file mode 100644 index 000000000..2a8dbd9a9 --- /dev/null +++ b/tests/analyzer/test_generate_baseline_diagnosis_rules.yaml @@ -0,0 +1,23 @@ +# SuperBench rules +version: v0.8 +superbench: + rules: + rule0: + function: variance + criteria: 'lambda x:x>0.05' + categories: KernelLaunch + metrics: + - kernel-launch:*.*/.*_time + rule1: + function: variance + criteria: 'lambda x:x<-0.05' + categories: Mem + metrics: + - mem-bw:*.*/.*_bw + failure_rule: + function: value + criteria: 'lambda x:x>0' + categories: FailedTest + metrics: + - kernel-launch:*.*/return_code + - mem-bw:*.*/return_code diff --git a/tests/analyzer/test_generate_baseline_results.jsonl b/tests/analyzer/test_generate_baseline_results.jsonl new file mode 100644 index 000000000..87437ecc2 --- /dev/null +++ b/tests/analyzer/test_generate_baseline_results.jsonl @@ -0,0 +1,3 @@ +{"node": "sb-validation-01", "kernel-launch/return_code:0": 0, "kernel-launch/return_code:1": 0, "kernel-launch/return_code:2": 0, "kernel-launch/return_code:3": 0, "kernel-launch/return_code:4": 0, "kernel-launch/return_code:5": 0, "kernel-launch/return_code:6": 0, "kernel-launch/return_code:7": 0, "kernel-launch/event_time:0": 0.00542, "kernel-launch/event_time:1": 0.00559, "kernel-launch/event_time:2": 0.0054, "kernel-launch/event_time:3": 0.00537, "kernel-launch/event_time:4": 0.00562, "kernel-launch/event_time:5": 0.00558, "kernel-launch/event_time:6": 0.00557, "kernel-launch/event_time:7": 0.00556, "kernel-launch/wall_time:0": 0.00883, "kernel-launch/wall_time:1": 0.00898, "kernel-launch/wall_time:2": 0.0093, "kernel-launch/wall_time:3": 0.00928, "kernel-launch/wall_time:4": 0.00873, "kernel-launch/wall_time:5": 0.0088, "kernel-launch/wall_time:6": 0.00877, "kernel-launch/wall_time:7": 0.00875, "mem-bw/return_code:0": 0, "mem-bw/return_code:1": 0, "mem-bw/return_code:2": 0, "mem-bw/return_code:3": 0, "mem-bw/return_code:4": 0, "mem-bw/return_code:5": 0, "mem-bw/return_code:6": 0, "mem-bw/return_code:7": 0, "mem-bw/h2d_bw:0": 26.1, "mem-bw/h2d_bw:1": 26.1, "mem-bw/h2d_bw:2": 26.2, "mem-bw/h2d_bw:3": 26.1, "mem-bw/h2d_bw:4": 26.1, "mem-bw/h2d_bw:5": 26.1, "mem-bw/h2d_bw:6": 26.1, "mem-bw/h2d_bw:7": 26.1, "mem-bw/d2h_bw:0": 26.3, "mem-bw/d2h_bw:1": 26.3, "mem-bw/d2h_bw:2": 26.3, "mem-bw/d2h_bw:3": 26.3, "mem-bw/d2h_bw:4": 26.3, "mem-bw/d2h_bw:5": 26.3, "mem-bw/d2h_bw:6": 26.3, "mem-bw/d2h_bw:7": 26.3} +{"node": "sb-validation-02", "kernel-launch/return_code:0": 0, "kernel-launch/return_code:1": 0, "kernel-launch/return_code:2": 0, "kernel-launch/return_code:3": 0, "kernel-launch/return_code:4": 0, "kernel-launch/return_code:5": 0, "kernel-launch/return_code:6": 0, "kernel-launch/return_code:7": 0, "kernel-launch/event_time:0": 0.00542, "kernel-launch/event_time:1": 0.00531, "kernel-launch/event_time:2": 0.00538, "kernel-launch/event_time:3": 0.00544, "kernel-launch/event_time:4": 0.00559, "kernel-launch/event_time:5": 0.0055, "kernel-launch/event_time:6": 0.00557, "kernel-launch/event_time:7": 0.00562, "kernel-launch/wall_time:0": 0.00884, "kernel-launch/wall_time:1": 0.00927, "kernel-launch/wall_time:2": 0.0089, "kernel-launch/wall_time:3": 0.00933, "kernel-launch/wall_time:4": 0.00882, "kernel-launch/wall_time:5": 0.0093, "kernel-launch/wall_time:6": 0.00884, "kernel-launch/wall_time:7": 0.00884, "mem-bw/return_code:0": 0, "mem-bw/return_code:1": 0, "mem-bw/return_code:2": 0, "mem-bw/return_code:3": 0, "mem-bw/return_code:4": 0, "mem-bw/return_code:5": 0, "mem-bw/return_code:6": 0, "mem-bw/return_code:7": 0, "mem-bw/h2d_bw:0": 26.1, "mem-bw/h2d_bw:1": 26.1, "mem-bw/h2d_bw:2": 26.1, "mem-bw/h2d_bw:3": 26.2, "mem-bw/h2d_bw:4": 26.1, "mem-bw/h2d_bw:5": 26.1, "mem-bw/h2d_bw:6": 26.1, "mem-bw/h2d_bw:7": 26.1, "mem-bw/d2h_bw:0": 26.3, "mem-bw/d2h_bw:1": 26.3, "mem-bw/d2h_bw:2": 26.3, "mem-bw/d2h_bw:3": 26.3, "mem-bw/d2h_bw:4": 26.2, "mem-bw/d2h_bw:5": 26.2, "mem-bw/d2h_bw:6": 26.3, "mem-bw/d2h_bw:7": 26.3} +{"node": "sb-validation-03", "kernel-launch/return_code:0": 0, "kernel-launch/return_code:1": 0, "kernel-launch/return_code:2": 0, "kernel-launch/return_code:3": 0, "kernel-launch/return_code:4": 0, "kernel-launch/return_code:5": 0, "kernel-launch/return_code:6": 0, "kernel-launch/return_code:7": 0, "kernel-launch/event_time:0": 0.00561, "kernel-launch/event_time:1": 0.00564, "kernel-launch/event_time:2": 0.00585, "kernel-launch/event_time:3": 0.00553, "kernel-launch/event_time:4": 0.00542, "kernel-launch/event_time:5": 0.00542, "kernel-launch/event_time:6": 0.00542, "kernel-launch/event_time:7": 0.00538, "kernel-launch/wall_time:0": 0.0089, "kernel-launch/wall_time:1": 0.00928, "kernel-launch/wall_time:2": 0.00954, "kernel-launch/wall_time:3": 0.00938, "kernel-launch/wall_time:4": 0.00885, "kernel-launch/wall_time:5": 0.00931, "kernel-launch/wall_time:6": 0.0088, "kernel-launch/wall_time:7": 0.00877, "mem-bw/return_code:0": 0, "mem-bw/return_code:1": 0, "mem-bw/return_code:2": 0, "mem-bw/return_code:3": 0, "mem-bw/return_code:4": 0, "mem-bw/return_code:5": 0, "mem-bw/return_code:6": 0, "mem-bw/return_code:7": 0, "mem-bw/h2d_bw:0": 26.0, "mem-bw/h2d_bw:1": 25.9, "mem-bw/h2d_bw:2": 25.8, "mem-bw/h2d_bw:3": 25.8, "mem-bw/h2d_bw:4": 26.1, "mem-bw/h2d_bw:5": 26.1, "mem-bw/h2d_bw:6": 26.1, "mem-bw/h2d_bw:7": 26.1, "mem-bw/d2h_bw:0": 26.1, "mem-bw/d2h_bw:1": 26.2, "mem-bw/d2h_bw:2": 26.0, "mem-bw/d2h_bw:3": 26.2, "mem-bw/d2h_bw:4": 26.1, "mem-bw/d2h_bw:5": 26.2, "mem-bw/d2h_bw:6": 25.9, "mem-bw/d2h_bw:7": 25.9} diff --git a/tests/analyzer/test_generate_baseline_summary_rules.yaml b/tests/analyzer/test_generate_baseline_summary_rules.yaml new file mode 100644 index 000000000..d82b2cb63 --- /dev/null +++ b/tests/analyzer/test_generate_baseline_summary_rules.yaml @@ -0,0 +1,11 @@ +# SuperBench rules +version: v0.8 +superbench: + rules: + micro-aggregation: + statistics: mean + categories: MICRO + aggregate: True + metrics: + - mem-bw:*.*/.*_bw + - kernel-launch:*.*/.*_time diff --git a/website/sidebars.js b/website/sidebars.js index 391b150ab..44f42763a 100644 --- a/website/sidebars.js +++ b/website/sidebars.js @@ -33,6 +33,7 @@ module.exports = { 'user-tutorial/system-config', 'user-tutorial/data-diagnosis', 'user-tutorial/result-summary', + 'user-tutorial/baseline-generation', 'user-tutorial/monitor', 'user-tutorial/container-images', ],