-
Notifications
You must be signed in to change notification settings - Fork 2.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add algorithm trading example. #1587
Open
lwwang1995
wants to merge
5
commits into
microsoft:main
Choose a base branch
from
lwwang1995:algorithm_trading_demo
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
62 changes: 62 additions & 0 deletions
62
examples/rl_algorithm_trading/exp_configs/train_at_opds.yml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
simulator: | ||
data_granularity: 5 | ||
time_per_step: 30 | ||
vol_limit: null | ||
fee_rate: 0.002 | ||
env: | ||
concurrency: 24 | ||
parallel_mode: shmem | ||
action_interpreter: | ||
class: CategoricalATActionInterpreter | ||
kwargs: | ||
values: [-1, 0, 1] | ||
max_step: 8 | ||
module_path: qlib.rl.algorithm_trading.interpreter | ||
state_interpreter: | ||
class: FullHistoryATStateInterpreter | ||
kwargs: | ||
data_dim: 5 | ||
data_ticks: 48 # 48 = 240 min / 5 min | ||
max_step: 8 | ||
processed_data_provider: | ||
class: PickleProcessedDataProvider | ||
module_path: qlib.rl.data.pickle_styled | ||
kwargs: | ||
data_dir: ./data/pickle_dataframe/feature | ||
module_path: qlib.rl.algorithm_trading.interpreter | ||
reward: | ||
class: LongShortReward | ||
kwargs: | ||
trans_fee: 0.002 | ||
scale: 1000 | ||
module_path: qlib.rl.algorithm_trading.reward | ||
data: | ||
source: | ||
task_dir: ./data/tasks | ||
data_dir: ./data/pickle_dataframe/backtest | ||
total_time: 240 | ||
default_start_time_index: 0 | ||
default_end_time_index: 235 | ||
proc_data_dim: 5 | ||
num_workers: 0 | ||
queue_size: 20 | ||
network: | ||
class: Recurrent | ||
module_path: qlib.rl.algorithm_trading.network | ||
policy: | ||
class: PPO | ||
kwargs: | ||
lr: 0.0001 | ||
module_path: qlib.rl.algorithm_trading.policy | ||
runtime: | ||
seed: 42 | ||
use_cuda: false | ||
trainer: | ||
max_epoch: 500 | ||
repeat_per_collect: 20 | ||
earlystop_patience: 5 | ||
episode_per_collect: 10000 | ||
batch_size: 1024 | ||
val_every_n_epoch: 5 | ||
checkpoint_path: ./outputs/algorithm_trading | ||
checkpoint_every_n_iters: 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
|
||
from .interpreter import ( | ||
FullHistoryATStateInterpreter, | ||
CategoricalATActionInterpreter, | ||
) | ||
from .network import Recurrent | ||
from .policy import AllOne, PPO | ||
from .reward import LongShortReward | ||
from .simulator_simple import SingleAssetAlgorithmTradingSimple | ||
from .state import SAATMetrics, SAATState | ||
|
||
__all__ = [ | ||
"FullHistoryATStateInterpreter", | ||
"CategoricalATActionInterpreter", | ||
"Recurrent", | ||
"AllOne", | ||
"PPO", | ||
"LongShortReward", | ||
"SingleAssetAlgorithmTradingSimple", | ||
"SAATMetrics", | ||
"SAATState", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
from __future__ import annotations | ||
|
||
from typing import Any, List, Optional, cast | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from gym import spaces | ||
|
||
from qlib.rl.data.base import ProcessedDataProvider | ||
from qlib.rl.interpreter import ActionInterpreter, StateInterpreter | ||
from qlib.rl.algorithm_trading.state import SAATState | ||
from qlib.typehint import TypedDict | ||
|
||
__all__ = [ | ||
"FullHistoryATStateInterpreter", | ||
"CategoricalATActionInterpreter", | ||
"FullHistoryATObs", | ||
] | ||
|
||
from qlib.utils import init_instance_by_config | ||
|
||
|
||
def canonicalize(value: int | float | np.ndarray | pd.DataFrame | dict) -> np.ndarray | dict: | ||
"""To 32-bit numeric types. Recursively.""" | ||
if isinstance(value, pd.DataFrame): | ||
return value.to_numpy() | ||
if isinstance(value, (float, np.floating)) or (isinstance(value, np.ndarray) and value.dtype.kind == "f"): | ||
return np.array(value, dtype=np.float32) | ||
elif isinstance(value, (int, bool, np.integer)) or (isinstance(value, np.ndarray) and value.dtype.kind == "i"): | ||
return np.array(value, dtype=np.int32) | ||
elif isinstance(value, dict): | ||
return {k: canonicalize(v) for k, v in value.items()} | ||
else: | ||
return value | ||
|
||
|
||
class FullHistoryATObs(TypedDict): | ||
data_processed: Any | ||
data_processed_prev: Any | ||
cur_tick: Any | ||
cur_step: Any | ||
num_step: Any | ||
position: Any | ||
position_history: Any | ||
|
||
|
||
class FullHistoryATStateInterpreter(StateInterpreter[SAATState, FullHistoryATObs]): | ||
"""The observation of all the history, including today (until this moment), and yesterday. | ||
|
||
Parameters | ||
---------- | ||
max_step | ||
Total number of steps (an upper-bound estimation). For example, 390min / 30min-per-step = 13 steps. | ||
data_ticks | ||
Equal to the total number of records. For example, in SAAT per minute, | ||
the total ticks is the length of day in minutes. | ||
data_dim | ||
Number of dimensions in data. | ||
processed_data_provider | ||
Provider of the processed data. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
max_step: int, | ||
data_ticks: int, | ||
data_dim: int, | ||
processed_data_provider: dict | ProcessedDataProvider, | ||
) -> None: | ||
super().__init__() | ||
|
||
self.max_step = max_step | ||
self.data_ticks = data_ticks | ||
self.data_dim = data_dim | ||
self.processed_data_provider: ProcessedDataProvider = init_instance_by_config( | ||
processed_data_provider, | ||
accept_types=ProcessedDataProvider, | ||
) | ||
|
||
def interpret(self, state: SAATState) -> FullHistoryATObs: | ||
processed = self.processed_data_provider.get_data( | ||
stock_id=state.task.stock_id, | ||
date=pd.Timestamp(state.task.start_time.date()), | ||
feature_dim=self.data_dim, | ||
time_index=state.ticks_index, | ||
) | ||
|
||
position_history = np.full(self.max_step + 1, 0.0, dtype=np.float32) # Initialize position is 0 | ||
position_history[1 : len(state.history_steps) + 1] = state.history_steps["position"].to_numpy() | ||
|
||
# The min, slice here are to make sure that indices fit into the range, | ||
# even after the final step of the simulator (in the done step), | ||
# to make network in policy happy. | ||
return cast( | ||
FullHistoryATObs, | ||
canonicalize( | ||
{ | ||
"data_processed": np.array(self._mask_future_info(processed.today, state.cur_time)), | ||
"data_processed_prev": np.array(processed.yesterday), | ||
"cur_tick": _to_int32(min(int(np.sum(state.ticks_index < state.cur_time)), self.data_ticks - 1)), | ||
"cur_step": _to_int32(min(state.cur_step, self.max_step - 1)), | ||
"num_step": _to_int32(self.max_step), | ||
"position": _to_float32(state.position), | ||
"position_history": _to_float32(position_history[: self.max_step]), | ||
}, | ||
), | ||
) | ||
|
||
@property | ||
def observation_space(self) -> spaces.Dict: | ||
space = { | ||
"data_processed": spaces.Box(-np.inf, np.inf, shape=(self.data_ticks, self.data_dim)), | ||
"data_processed_prev": spaces.Box(-np.inf, np.inf, shape=(self.data_ticks, self.data_dim)), | ||
"cur_tick": spaces.Box(0, self.data_ticks - 1, shape=(), dtype=np.int32), | ||
"cur_step": spaces.Box(0, self.max_step - 1, shape=(), dtype=np.int32), | ||
# TODO: support arbitrary length index | ||
"num_step": spaces.Box(self.max_step, self.max_step, shape=(), dtype=np.int32), | ||
"position": spaces.Box(-np.inf, np.inf, shape=()), | ||
"position_history": spaces.Box(-np.inf, np.inf, shape=(self.max_step,)), | ||
} | ||
return spaces.Dict(space) | ||
|
||
@staticmethod | ||
def _mask_future_info(arr: pd.DataFrame, current: pd.Timestamp) -> pd.DataFrame: | ||
arr = arr.copy(deep=True) | ||
arr.loc[current:] = 0.0 # mask out data after this moment (inclusive) | ||
return arr | ||
|
||
|
||
class CategoricalATActionInterpreter(ActionInterpreter[SAATState, int, float]): | ||
"""Convert a discrete policy action to a continuous action, then multiplied by ``task.cash``. | ||
|
||
Parameters | ||
---------- | ||
values | ||
It can be a list of length $L$: $[a_1, a_2, \\ldots, a_L]$. | ||
Then when policy givens decision $x$, $a_x$ times order amount is the output. | ||
It can also be an integer $n$, in which case the list of length $n+1$ is auto-generated, | ||
i.e., $[0, 1/n, 2/n, \\ldots, n/n]$. | ||
max_step | ||
Total number of steps (an upper-bound estimation). For example, 390min / 30min-per-step = 13 steps. | ||
""" | ||
|
||
def __init__(self, values: List[int], max_step: Optional[int] = None) -> None: | ||
super().__init__() | ||
|
||
self.action_values = values | ||
self.max_step = max_step | ||
|
||
@property | ||
def action_space(self) -> spaces.Discrete: | ||
return spaces.Discrete(len(self.action_values)) | ||
|
||
def interpret(self, state: SAATState, action: int) -> str: | ||
assert 0 <= action < len(self.action_values) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. state is unused here |
||
if self.action_values[action] == -1: | ||
return "short" | ||
elif self.action_values[action] == 1: | ||
return "long" | ||
else: | ||
return "hold" | ||
|
||
|
||
def _to_int32(val): | ||
return np.array(int(val), dtype=np.int32) | ||
|
||
|
||
def _to_float32(val): | ||
return np.array(val, dtype=np.float32) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add readme like this:
examples/rl_order_execution/README.md