You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
and will be removed in a future version. Please use 'DataFrame.transpose' instead.
return bound(*args, **kwds)
获取嵌入向量时发生错误: [WinError 10061] 由于目标计算机积极拒绝,无法连接。
❌ create_final_entities
Steps to reproduce
ollama local instead the openai
GraphRAG Config Used
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_chat # or azure_openai_chat
model: mistral
model_supports_json: true # recommended if this is available for your model.
api_base: http://192.168.0.17:11434/v1
max_tokens: 4000
request_timeout: 180.0
api_base: https://.openai.azure.com
api_version: 2024-02-15-preview
organization: <organization_id>
deployment_name: <azure_model_deployment_name>
tokens_per_minute: 150_000 # set a leaky bucket throttle
requests_per_minute: 10_000 # set a leaky bucket throttle
max_retries: 10
max_retry_wait: 10.0
sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
concurrent_requests: 25 # the number of parallel inflight requests that may be made
temperature: 0 # temperature for sampling
top_p: 1 # top-p sampling
n: 1 # Number of completions to generate
parallelization:
stagger: 0.3
num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_embedding # or azure_openai_embedding
model: nomic-embed-text
api_base: http://192.168.0.17:11434/v1
# api_base: https://.openai.azure.com
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# batch_size: 16 # the number of documents to send in a single request
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 1200
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\.txt$"
{"type": "error", "data": "Error executing verb "text_embed" in create_final_entities: iteration over a 0-d array", "stack": "Traceback (most recent call last):\n File "C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py", line 415, in _execute_verb\n result = await result\n ^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py", line 105, in text_embed\n return await _text_embed_in_memory(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py", line 130, in _text_embed_in_memory\n result = await strategy_exec(texts, callbacks, cache, strategy_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 62, in run\n embeddings = await _execute(llm, text_batches, ticker, semaphore)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 108, in _execute\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 108, in \n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nTypeError: iteration over a 0-d array\n", "source": "iteration over a 0-d array", "details": null}
{"type": "error", "data": "Error running pipeline!", "stack": "Traceback (most recent call last):\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\run.py", line 323, in run_pipeline\n result = await workflow.run(context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py", line 369, in run\n timing = await self._execute_verb(node, context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py", line 415, in _execute_verb\n result = await result\n ^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py", line 105, in text_embed\n return await _text_embed_in_memory(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py", line 130, in _text_embed_in_memory\n result = await strategy_exec(texts, callbacks, cache, strategy_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 62, in run\n embeddings = await _execute(llm, text_batches, ticker, semaphore)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 108, in _execute\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 108, in \n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nTypeError: iteration over a 0-d array\n", "source": "iteration over a 0-d array", "details": null}
AND
14:56:36,162 graphrag.index.reporting.file_workflow_callbacks INFO Error executing verb "text_embed" in create_final_entities: iteration over a 0-d array details=None
14:56:36,162 graphrag.index.run ERROR error running workflow create_final_entities
Traceback (most recent call last):
TypeError: iteration over a 0-d array
14:56:36,164 graphrag.index.reporting.file_workflow_callbacks INFO Error running pipeline! details=None
Additional Information
GraphRAG Version:
Operating System:
Python Version:
Related Issues:
The text was updated successfully, but these errors were encountered:
zw-change
added
the
triage
Default label assignment, indicates new issue needs reviewed by a maintainer
label
Jul 19, 2024
Describe the issue
and will be removed in a future version. Please use 'DataFrame.transpose' instead.
return bound(*args, **kwds)
获取嵌入向量时发生错误: [WinError 10061] 由于目标计算机积极拒绝,无法连接。
❌ create_final_entities
Steps to reproduce
ollama local instead the openai
GraphRAG Config Used
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_chat # or azure_openai_chat
model: mistral
model_supports_json: true # recommended if this is available for your model.
api_base: http://192.168.0.17:11434/v1
max_tokens: 4000
request_timeout: 180.0
api_base: https://.openai.azure.com
api_version: 2024-02-15-preview
organization: <organization_id>
deployment_name: <azure_model_deployment_name>
tokens_per_minute: 150_000 # set a leaky bucket throttle
requests_per_minute: 10_000 # set a leaky bucket throttle
max_retries: 10
max_retry_wait: 10.0
sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
concurrent_requests: 25 # the number of parallel inflight requests that may be made
temperature: 0 # temperature for sampling
top_p: 1 # top-p sampling
n: 1 # Number of completions to generate
parallelization:
stagger: 0.3
num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_embedding # or azure_openai_embedding
model: nomic-embed-text
api_base: http://192.168.0.17:11434/v1
# api_base: https://.openai.azure.com
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# batch_size: 16 # the number of documents to send in a single request
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 1200
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\.txt$"
cache:
type: file # or blob
base_dir: "cache"
connection_string: <azure_blob_storage_connection_string>
container_name: <azure_blob_storage_container_name>
storage:
type: file # or blob
base_dir: "output/${timestamp}/artifacts"
connection_string: <azure_blob_storage_connection_string>
container_name: <azure_blob_storage_container_name>
reporting:
type: file # or console, blob
base_dir: "output/${timestamp}/reports"
connection_string: <azure_blob_storage_connection_string>
container_name: <azure_blob_storage_container_name>
entity_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 1
summarize_descriptions:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 1
community_reports:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt"
max_length: 2000
max_input_length: 8000
cluster_graph:
max_cluster_size: 10
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
num_walks: 10
walk_length: 40
window_size: 2
iterations: 3
random_seed: 597832
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: false
raw_entities: false
top_level_nodes: false
local_search:
text_unit_prop: 0.5
community_prop: 0.1
conversation_history_max_turns: 5
top_k_mapped_entities: 10
top_k_relationships: 10
llm_temperature: 0 # temperature for sampling
llm_top_p: 1 # top-p sampling
llm_n: 1 # Number of completions to generate
max_tokens: 12000
global_search:
llm_temperature: 0 # temperature for sampling
llm_top_p: 1 # top-p sampling
llm_n: 1 # Number of completions to generate
max_tokens: 12000
data_max_tokens: 12000
map_max_tokens: 1000
reduce_max_tokens: 2000
concurrency: 32
Logs and screenshots
{"type": "error", "data": "Error executing verb "text_embed" in create_final_entities: iteration over a 0-d array", "stack": "Traceback (most recent call last):\n File "C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py", line 415, in _execute_verb\n result = await result\n ^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py", line 105, in text_embed\n return await _text_embed_in_memory(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py", line 130, in _text_embed_in_memory\n result = await strategy_exec(texts, callbacks, cache, strategy_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 62, in run\n embeddings = await _execute(llm, text_batches, ticker, semaphore)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 108, in _execute\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 108, in \n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nTypeError: iteration over a 0-d array\n", "source": "iteration over a 0-d array", "details": null}
{"type": "error", "data": "Error running pipeline!", "stack": "Traceback (most recent call last):\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\run.py", line 323, in run_pipeline\n result = await workflow.run(context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py", line 369, in run\n timing = await self._execute_verb(node, context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py", line 415, in _execute_verb\n result = await result\n ^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py", line 105, in text_embed\n return await _text_embed_in_memory(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py", line 130, in _text_embed_in_memory\n result = await strategy_exec(texts, callbacks, cache, strategy_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 62, in run\n embeddings = await _execute(llm, text_batches, ticker, semaphore)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 108, in _execute\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py", line 108, in \n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nTypeError: iteration over a 0-d array\n", "source": "iteration over a 0-d array", "details": null}
AND
14:56:36,162 graphrag.index.reporting.file_workflow_callbacks INFO Error executing verb "text_embed" in create_final_entities: iteration over a 0-d array details=None
14:56:36,162 graphrag.index.run ERROR error running workflow create_final_entities
Traceback (most recent call last):
TypeError: iteration over a 0-d array
14:56:36,164 graphrag.index.reporting.file_workflow_callbacks INFO Error running pipeline! details=None
Additional Information
The text was updated successfully, but these errors were encountered: