forked from JPedroRBelo/pyMDQN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validate.py
328 lines (229 loc) · 7.73 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#!/usr/bin/env python
import signal
import torch
import torchvision.transforms as T
import numpy as np
from PIL import Image
from pathlib import Path
import copy
from TrainNQL import TrainNQL
import os.path
from os import path
import torch.nn as nn
from pathlib import Path
from RobotNQL import RobotNQL
from environment import Environment
import pickle
import time
import shutil
import logging
import sys
import subprocess
from subprocess import Popen
from os.path import abspath, dirname, join
logger = logging.getLogger()
logger.setLevel(logging.INFO) # process everything, even if everything isn't printed
ch = logging.StreamHandler()
ch.setLevel(logging.INFO) # or any other level
logger.addHandler(ch)
def openSim(process,command):
process.terminate()
time.sleep(5)
process = Popen(command)
time.sleep(5)
return process
def killSim(process):
process.terminate()
time.sleep(10)
def signalHandler(sig, frame):
process.terminate()
sys.exit(0)
def datavalidation(episode,cfg):
hspos = 0
hsneg = 0
wave = 0
wait = 0
look = 0
t_steps=cfg.t_steps
dirname_rgb='dataset/RGB/ep'+str(episode)
dirname_dep='dataset/Depth/ep'+str(episode)
dirname_model='validation/'+str(episode)
agent = RobotNQL(epi=episode,cfg=cfg,validation=True)
env = Environment(cfg,epi=episode)
simulation_speed = cfg.simulation_speed
Path(dirname_rgb).mkdir(parents=True, exist_ok=True)
Path(dirname_dep).mkdir(parents=True, exist_ok=True)
Path(dirname_model).mkdir(parents=True, exist_ok=True)
env = Environment(cfg,epi=episode)
file_recent_rewards = 'validation/'+str(episode)+'/recent_rewards.dat'
file_recent_actions='validation/'+str(episode)+'/recent_actions.dat'
file_reward_history='validation/'+str(episode)+'/reward_history.dat'
file_action_history='validation/'+str(episode)+'/action_history.dat'
file_ep_rewards='validation/'+str(episode)+'/ep_rewards.dat'
if(not path.exists(file_recent_rewards)):
torch.save([],file_recent_rewards)
if(not path.exists(file_recent_actions)):
torch.save([],file_recent_actions)
if(not path.exists(file_reward_history)):
torch.save([],file_reward_history)
if(not path.exists(file_action_history)):
torch.save([],file_action_history)
if(not path.exists(file_ep_rewards)):
torch.save([],file_ep_rewards)
recent_rewards=torch.load(file_recent_rewards)
recent_actions=torch.load(file_recent_actions)
reward_history=torch.load(file_reward_history)
action_history=torch.load(file_action_history)
ep_rewards=torch.load(file_ep_rewards)
fh = logging.FileHandler('validation/'+str(episode)+'/results.log')
fh.setLevel(logging.INFO) # or any level you want
logger.addHandler(fh)
aset = cfg.actions
testing = -1
init_step = 0
'''
if(len(reward_history)!=episode):
if((len(recent_rewards)>0) and (len(recent_rewards)<=t_steps+1)):
init_step = len(recent_rewards)
'''
aux_total_rewards = 0
'''
for i in range(init_step):
aux_total_rewards = aux_total_rewards+recent_rewards[i]
'''
actions = []
rewards = []
if(init_step!=0):
actions= recent_actions
rewards= recent_rewards
total_reward = aux_total_rewards
print(init_step)
env.send_data_to_pepper("step"+str(init_step))
env.send_data_to_pepper("episode"+str(episode))
env.send_data_to_pepper("speed"+str(simulation_speed))
env.send_data_to_pepper("workdir"+str(Path(__file__).parent.absolute()))
env.send_data_to_pepper("fov"+str(cfg.robot_fov))
env.close_connection()
env = Environment(cfg,epi=episode)
reward = 0 #temp
terminal = 0
screen = None
depth = None
screen, depth, reward, terminal = env.perform_action('-',init_step+1)
step=init_step+1
while step <=t_steps+1:
print("Step=",step)
action_index=0
numSteps=0
action_index = agent.perceive(screen,depth, terminal, False, numSteps,step,testing)
step=step+1
if action_index == None:
action_index=1
if not terminal:
screen,depth,reward,terminal=env.perform_action(aset[action_index],step)
else:
screen,depth, reward, terminal = env.perform_action('-',step)
if step >= t_steps:
terminal=1
#handshake reward calc
if(aset[action_index]=='4'):
#reward = min(reward,cfg.hs_success_reward)
#reward = max(reward,cfg.hs_fail_reward)
if reward>0:
reward = cfg.hs_success_reward
else:
reward = cfg.hs_fail_reward
else:
reward = cfg.neutral_reward
rewards.append(reward)
actions.append(action_index)
total_reward=total_reward+reward
if aset[action_index]=='4':
if reward>0 :
hspos = hspos+1
elif reward==cfg.hs_fail_reward :
hsneg = hsneg+1
elif aset[action_index]=='1':
wait = wait+1
elif aset[action_index]=='2':
look = look+1
elif aset[action_index]=='3':
wave = wave+1
logger.info('###################')
logger.info("STEP:\t"+str(step))
logger.info('Wait\t'+str(wait))
logger.info('Look\t'+str(look))
logger.info('Wave\t'+str(wave))
logger.info('HS Suc.\t'+str(hspos))
logger.info('HS Fail\t'+str(hsneg))
if(hspos+hsneg):
logger.info('Acuracy\t'+str(((hspos)/(hspos+hsneg))))
logger.info('================>')
logger.info("Total Reward: "+str(total_reward))
logger.info('================>')
torch.save(rewards,file_recent_rewards)
torch.save(actions,file_recent_actions)
reward_history.append(rewards)
action_history.append(actions)
ep_rewards.append(total_reward)
print('\n')
torch.save(ep_rewards,file_ep_rewards)
torch.save(reward_history,file_reward_history)
torch.save(action_history, file_action_history)
torch.save([],file_recent_rewards)
torch.save([],file_recent_actions)
env.close_connection()
def main(cfg,ep):
torch.manual_seed(torch.initial_seed())
global process
process = Popen('false') # something long running
signal.signal(signal.SIGINT, signalHandler)
ep_validation = "validation"
n_validation = ep
name_ep=ep_validation+str(n_validation)
print(name_ep)
Path('validation/'+name_ep).mkdir(parents=True, exist_ok=True)
shutil.copy(cfg.__file__,'validation/'+name_ep+'/')
#shutil.copy('validation/'+ep_validation+str(n_validation-1)+'/modelDepth.net','validation/'+name_ep+'/')
#shutil.copy('validation/'+ep_validation+str(n_validation-1)+'/tModelDepth.net','validation/'+name_ep+'/')
#shutil.copy('validation/'+ep_validation+str(n_validation-1)+'/modelGray.net','validation/'+name_ep+'/')
#shutil.copy('validation/'+ep_validation+str(n_validation-1)+'/tModelGray.net','validation/'+name_ep+'/')
#shutil.copy('results/ep60/modelDepth.net','validation/'+name_ep+'/')
#shutil.copy('results/ep60/tModelDepth.net','validation/'+name_ep+'/')
#shutil.copy('results/ep60/modelGray.net','validation/'+name_ep+'/')
#shutil.copy('results/ep60/tModelGray.net','validation/'+name_ep+'/')
episodeLoad = str(ep)
shutil.copy('results/ep'+episodeLoad+'/modelDepth.net','validation/'+name_ep+'/')
shutil.copy('results/ep'+episodeLoad+'/tModelDepth.net','validation/'+name_ep+'/')
shutil.copy('results/ep'+episodeLoad+'/modelGray.net','validation/'+name_ep+'/')
shutil.copy('results/ep'+episodeLoad+'/tModelGray.net','validation/'+name_ep+'/')
command = './simDRLSR.x86_64'
directory = '../Simulator0.270/'
command = abspath(join(directory,command))
process = openSim(process,command)
env=Environment(cfg,epi=name_ep)
env.send_data_to_pepper("start")
time.sleep(1)
env.close_connection()
time.sleep(1)
#Execute data generation phase script
datavalidation(name_ep,cfg)
env=Environment(cfg,epi=name_ep)
env.send_data_to_pepper("stop")
killSim(process)
if __name__ == "__main__":
'''
import validate_config6 as vcfg
main(vcfg)
import validate_config7 as vcfg
main(vcfg)
import validate_config8 as vcfg
main(vcfg)
import validate_config9 as vcfg
main(vcfg)
'''
import validation.configValidation as cfg
episode=torch.load('files/episode.dat')
main(cfg,13)
#for i in range(episode):
# main(cfg,i)