forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
checkpoint.py
833 lines (712 loc) · 31.3 KB
/
checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
## @package checkpoint
# Module caffe2.python.checkpoint
import os
import logging
from caffe2.python import core, context
from caffe2.python.net_builder import ops
from caffe2.python.task import (
final_output,
Node,
Task,
TaskGroup,
TaskOutput,
WorkspaceType,
)
logger = logging.getLogger(__name__)
class Job(context.Managed):
"""
A Job defines three TaskGroups: the `init_group`, the `epoch_group` and the
`exit_group` which will be run by a JobRunner.
The `init_group` will be run only once at startup. Its role is to
initialize globally persistent blobs such as model weights, accumulators
and data file lists.
The `epoch_group` will be run in a loop after init_group. The loop will
exit when any of the stop signals added with `add_stop_condition` is True
at the end of an epoch.
The download_group will be run only once, after all the executions of
epoch_group finish. Its role is to collect the distribute scattered
parameters back after training.
The `exit_group` will be run only once at the very end of the job, the
role of this group is to save the results of training in the end of the job.
Jobs are context-driven, so that Tasks can be added to the active Job
without having to explicitly pass the job object around.
Example of usage:
def build_reader(partitions):
with Job.current().init_group:
reader = HiveReader(init_reader, ..., partitions)
Task(step=init_reader)
with Job.current().epoch_group:
limited_reader = ReaderWithLimit(reader, num_iter=10000)
data_queue = pipe(limited_reader, num_threads=8)
Job.current().add_stop_condition(limited_reader.data_finished())
return data_queue
def build_hogwild_trainer(reader, model):
with Job.current().init_group:
Task(step=model.param_init_net)
with Job.current().epoch_group:
pipe(reader, processor=model, num_threads=8)
with Job.current().exit_group:
Task(step=model.save_model_net)
with Job() as job:
reader = build_reader(partitions)
model = build_model(params)
build_hogwild_trainer(reader, model)
"""
def __init__(self,
init_group=None, epoch_group=None,
download_group=None, exit_group=None,
stop_conditions=None, nodes_to_checkpoint=None):
self.init_group = init_group or TaskGroup(
workspace_type=WorkspaceType.GLOBAL)
self.epoch_group = epoch_group or TaskGroup()
self.download_group = download_group or TaskGroup()
self.exit_group = exit_group or TaskGroup()
self.stop_conditions = stop_conditions or []
self._nodes_to_checkpoint = nodes_to_checkpoint
def nodes_to_checkpoint(self):
if self._nodes_to_checkpoint:
return self._nodes_to_checkpoint
else:
return self.init_group.used_nodes()
def compile(self, session_class):
self._nodes_to_checkpoint = self.nodes_to_checkpoint()
self.init_group = session_class.compile(self.init_group)
self.epoch_group = session_class.compile(self.epoch_group)
self.download_group = session_class.compile(self.download_group)
self.exit_group = session_class.compile(self.exit_group)
def __enter__(self):
super(Job, self).__enter__()
self.epoch_group.__enter__()
return self
def __exit__(self, *args):
self.epoch_group.__exit__()
super(Job, self).__exit__(*args)
def add_stop_condition(self, output):
if isinstance(output, core.BlobReference):
t = Task(outputs=[output], group=self.epoch_group)
output = t.outputs()[0]
assert isinstance(output, TaskOutput)
self.stop_conditions.append(output)
def get_ckpt_filename(node_name, epoch):
"""Returns the checkpoint filename.
Args:
node_name: A string. The name of the node.
epoch: An integer. The checkpoint epoch.
Returns:
ckpt_filename: A string. The filename of the checkpoint.
"""
return node_name + '.' + str(epoch)
def db_name(epoch, node_name, db_prefix, path_prefix=None):
"""Returns the full db name where checkpoint files are saved.
Args:
epoch: An integer. The checkpoint epoch.
node_name: A string. The name of the node.
db_prefix: A string. The prefix used to construct full db name.
path_prefix: A string. Optional param used to construct db name or path
where checkpoint files are are stored.
Returns:
db_name: A string. The absolute path of full_db_name where checkpoint
files are saved
"""
if path_prefix:
db_name = path_prefix + get_ckpt_filename(node_name, epoch)
else:
ckpt_filename = get_ckpt_filename(node_name, epoch)
db_name = os.path.join(db_prefix, ckpt_filename)
return db_name
class CheckpointManager(object):
"""
Controls saving and loading of workspaces on every epoch boundary of a job.
If a CheckpointManager instance is passed to JobRunner, then JobRunner will
call `init`, `read` and `save` at different moments in between epoch runs.
Args:
db_prefix: The prefix used to construct full db name. Since `absolute_path`
is set to True, this will be used as db_name in SaveOp.
node_name: Name of the node where this checkpoint_manager is used.
db_type: Type of database to use for storing checkpoint.
metadata_handler: An optional object capable of reading/writing
checkpoint info in storage of choice.
"""
BLOB_NAMES = "blob_names"
def __init__(self, db_prefix, node_name, db_type, metadata_handler=None):
self._db_prefix = db_prefix
self._node_name = node_name
self._db_type = db_type
self._metadata_handler = metadata_handler
# make sure these blobs are the first in the checkpoint file.
self._net = core.Net('!!checkpoint_mngr')
self._blob_names = self._net.AddExternalInput(self.BLOB_NAMES)
self._names_output = None
self._path_prefix = None
self._path_type = None
self._current_db_name = None
self._current_checkpoint_duration = None
"""
Initialize the checkpoint manager. Determines all blobs that need to be saved
or loads from a checkpoint.
Args:
nodes: An array of nodes where this checkpoint manager is running. Should
only contain a single node.
retrieve_from_epoch: Set to a number to load blobs from this epoch.
path_prefix: Used to construct db name or path where checkpoint files are
stored.
path_type: Indicate the type of path where checkpoint files are stored.
"""
def init(
self,
nodes=None,
retrieve_from_epoch=None,
path_prefix=None,
path_type=None
):
"""
Build a Task that will be run once after the job's `init_group` is run.
This task will determine which blobs need to be checkpointed.
If retrieve_from_epoch is not None, then the checkpoint metadata is
retrieved from a previously saved checkpoint.
"""
assert nodes is None or len(nodes) == 1, (
'CheckpointManager only supports single node.')
with Task(outputs=[self._blob_names]) as task:
if retrieve_from_epoch is None:
ops.GetAllBlobNames(
[],
self._blob_names,
include_shared=False)
else:
full_db_name = db_name(retrieve_from_epoch,
self._node_name, self._db_prefix, path_prefix)
db_type = path_type or self._db_type
logger.info("Initializing checkpoints from = %s"
% full_db_name)
ops.Load(
[], self._blob_names,
db=full_db_name,
db_type=db_type,
absolute_path=True,
keep_device=True,
)
self._names_output = task.outputs()[0]
return task
def blob_list(self):
assert self._names_output
return self._names_output.fetch().tolist()
def _timed_task(self, cp_op_name, add_op):
"""
Build a Task that will measure the time span of checkpoint operations,
once operation is done, time can be read from _current_checkpoint_duration.
Args:
cp_op_name: A string name of the checkpoint operation.
add_op: A functor to add the checkpoint operation.
Returns:
A task with timer.
"""
with Task(name=cp_op_name) as task:
with ops.task_init():
timer = ops.TimerBegin([], counter_name=self._node_name)
add_op()
with ops.task_exit():
time_span_blob = ops.TimerGetAndEnd(timer)
self._current_checkpoint_duration = final_output(time_span_blob)
return task
def collect_checkpoint_stats(self, stats):
"""
Add one checkpoint stats into the stats.
Args:
stats: A dict of checkpoint stats that will be reported.
"""
if self._current_db_name and self._current_checkpoint_duration:
stats[self._current_db_name] = self._current_checkpoint_duration.fetch()[0]
else:
logger.info(
"Failed to collect checkpoint stats: {}".format(
self._current_db_name
)
)
def load(self, epoch, path_prefix=None, path_type=None):
"""
Build a Task that will be run by JobRunner when the job is to be
resumed from a given epoch. This task will run a Load op that will
load and deserialize all relevant blobs from a persistent storage.
"""
self._current_db_name = db_name(
epoch, self._node_name, self._db_prefix, path_prefix
)
db_type = path_type or self._db_type
logger.info("Loading checkpoints from = %s" % self._current_db_name)
def add_op():
ops.Load(
[],
self.blob_list(),
db=self._current_db_name,
db_type=db_type,
absolute_path=True,
keep_device=True,
)
return self._timed_task('checkpoint_load', add_op)
def load_blobs_from_checkpoint(self, blob_names, epoch):
"""
Builds a Task that loads only the necessary blobs from a checkpoint of
the given epoch. The necessary blobs are given in the blob_names
argument.
Args:
blob_names: A list of strings. Each string is the name of a
blob.
epoch: The checkpoint epoch to load from.
Returns:
A Task which loads the specified blobs from the checkpoint of the
given epoch.
"""
self._current_db_name = db_name(epoch, self._node_name, self._db_prefix)
logger.info('Load from %s' % self._current_db_name)
def add_op():
ops.Load(
[],
blob_names,
db=self._current_db_name,
db_type=self._db_type,
absolute_path=True,
allow_incomplete=True)
return self._timed_task('checkpoint_partial_load', add_op)
def check_db_exists(self, epoch):
logger.info('Check existence of %s' %
db_name(epoch, self._node_name, self._db_prefix))
with Task() as task:
existence = ops.Const(False)
ops.DBExists(
[],
[existence],
db_name=db_name(epoch, self._node_name, self._db_prefix),
db_type=self._db_type,
absolute_path=True)
task.add_output(existence)
return task
def report_checkpoint_stats(self, action_name):
"""
Report checkpoint operation stats for current node.
Args:
action_name: A string of the name of checkpoint operation.
"""
all_stats = {}
self.collect_checkpoint_stats(all_stats)
if self._metadata_handler:
self._metadata_handler.report(action_name, all_stats)
def save(self, epoch):
"""
Build a Task that is run once after `init_group` and after each
epoch is run. This will execute a Save ops to serialize and persist
blobs present in the global workspace.
"""
self._current_db_name = db_name(epoch, self._node_name, self._db_prefix)
logger.info('Saving to %s' % self._current_db_name)
def add_op():
ops.Save(
self.blob_list(), [],
db=self._current_db_name,
db_type=self._db_type,
absolute_path=True)
return self._timed_task('checkpoint_save', add_op)
def write_checkpoint_metadata(self, epoch):
"""
Write metadata for checkpoint
Args:
epoch: An integer. The epoch-id for which checkpoint metadata is
written
"""
if self._metadata_handler is not None:
self._metadata_handler.write(epoch=epoch)
def get_resume_from_epoch_id(self, user_epoch=None):
"""
Identify the epoch-id from which Job must resume
Args:
user_epoch: An integer. Optional parameter for user to explicitly
identify the epoch-id to load checkpoint from
Returns:
epoch: the epoch-id to load checkpoints from
or None if no checkpoints were written
"""
last_epoch = user_epoch
if self._metadata_handler is not None:
last_epoch = self._metadata_handler.last_epoch(user_epoch=user_epoch)
return last_epoch
def set_params(self, nodes, path_prefix=None, path_type=None):
"""Set parameters associated with CP manager
Args:
nodes: An array of nodes where this checkpoint manager is running.
path_prefix: Used to construct db name or path where checkpoint files are
stored.
path_type: Indicate the type of path where checkpoint files are stored.
"""
if path_prefix:
self._path_prefix = path_prefix
if path_type:
self._path_type = path_type
if self._metadata_handler:
self._metadata_handler.set_params(
db_prefix=self._db_prefix,
db_type=self._db_type,
node_names=[str(self._node_name)],
path_prefix=self._path_prefix,
path_type=self._path_type)
def cp_accessible(self, epoch=None):
"""Returns True if Checkpoint data is accessible
Args:
epoch: An integer. The epoch of the checkpoint. If None,
it implies we need to check if checkpoint directory is accessible
Returns:
is_cp_accessible: A boolean. Returns True if Checkpoint data is accessible
"""
if self._metadata_handler is not None:
return self._metadata_handler.cp_accessible(epoch)
else:
return True
class MultiNodeCheckpointManager(object):
"""
Coordinates checkpointing and checkpointing across multiple nodes.
Each of `init`, `load` and `save` will build TaskGroups which will
trigger checkpointing on each of the nodes involved in a distributed job.
Args:
db_prefix: The prefix used to construct full db name. Since `absolute_path`
is set to True, this will be used as db_name in SaveOp.
db_type: Type of database to use for storing checkpoint.
metadata_handler: An optional object capable of reading/writing
checkpoint info in storage of choice.
"""
def __init__(self, db_prefix, db_type, metadata_handler=None):
self._node_managers = None
self._db_prefix = db_prefix
self._db_type = db_type
self._metadata_handler = metadata_handler
self._path_prefix = None
self._path_type = None
def _task_group(self, func, *args, **kw):
assert self._node_managers is not None, 'init must be called first.'
with TaskGroup(WorkspaceType.GLOBAL) as task_group:
for node, manager in self._node_managers:
with Node(node):
func(manager, *args, **kw)
return task_group
"""
Args:
nodes: An array of nodes where this checkpoint manager is running.
retrieve_from_epoch: Set to a number to load blobs from this epoch.
path_prefix: Used to construct db name or path where checkpoint files are
stored.
path_type: Indicate the type of path where checkpoint files are stored.
"""
def init(
self, nodes, retrieve_from_epoch=None, path_prefix=None, path_type=None
):
if self._node_managers is not None:
assert [node for node, _ in self._node_managers] == nodes
return TaskGroup(WorkspaceType.GLOBAL)
self._node_managers = []
for node in nodes:
with Node(node):
manager = CheckpointManager(
db_prefix=self._db_prefix,
node_name=str(node),
db_type=self._db_type)
self._node_managers.append((node, manager))
return self._task_group(
CheckpointManager.init,
nodes=[node],
retrieve_from_epoch=retrieve_from_epoch,
path_prefix=path_prefix,
path_type=path_type)
def load(self, epoch, path_prefix=None, path_type=None):
return self._task_group(
CheckpointManager.load,
epoch,
path_prefix=path_prefix,
path_type=path_type)
def load_blobs_locally(self, nodes, blob_names, epoch, session):
"""Loads the necessary blobs from the checkpoints to the current node.
Args:
blob_names: A list of strings. Each string is the name of a
blob.
epoch: An integer. The checkpoint epoch to load from.
session: A Session object to execute the Load ops.
"""
if self._node_managers is not None:
assert [node for node, _ in self._node_managers] == nodes
else:
self._node_managers = []
for node in nodes:
with Node(node):
manager = CheckpointManager(
db_prefix=self._db_prefix,
node_name=str(node),
db_type=self._db_type)
self._node_managers.append((node, manager))
assert self._node_managers is not None, 'must initialize node managers'
for _, manager in self._node_managers:
existence_task = manager.check_db_exists(epoch)
session.run(existence_task)
existence = existence_task.outputs()[0].fetch()
if not existence:
logger.info('DB %s does not exist!' %
db_name(epoch, manager._node_name, manager._db_prefix))
return False
load_task = manager.load_blobs_from_checkpoint(blob_names, epoch)
session.run(load_task)
logger.info('Successfully loaded from checkpoints.')
return True
def get_ckpt_db_name(self, node_name, epoch):
"""Returns the DB name of the given node and the given epoch.
The DB name is effectively the checkpoint path of the given node and
the given epoch.
Args:
node_name: A string. The node name of interest.
epoch: An integer. The epoch of the checkpoint.
Returns:
checkpoint_db_name: A string. The checkpoint path of the given
node and the given epoch.
"""
for node, manager in self._node_managers:
if str(node) == node_name:
return db_name(epoch, manager._node_name, manager._db_prefix)
def report_checkpoint_stats(self, action_name):
"""
Report the checkpoint stats for all the nodes, we need to aggregate all
the node's stats together so that we know which node's checkpoint
operation dominates.
Args:
action_name: A string of the name of checkpoint operation.
"""
all_stats = {}
for _, manager in self._node_managers:
manager.collect_checkpoint_stats(all_stats)
logger.debug("checkpoint stats: {}".format(all_stats))
if self._metadata_handler:
self._metadata_handler.report(action_name, all_stats)
def save(self, epoch):
"""
Build a Task that will execute a Save ops to serialize and persist
blobs present in the global workspace.
"""
return self._task_group(CheckpointManager.save, epoch)
def write_checkpoint_metadata(self, epoch):
"""
Write metadata for checkpoint
Args:
epoch: An integer. The epoch-id for which checkpoint metadata is
written
"""
if self._metadata_handler is not None:
self._metadata_handler.write(epoch=epoch)
def get_resume_from_epoch_id(self, user_epoch=None):
"""
Identify the epoch-id from which Job must resume
Args:
user_epoch: An integer. Optional parameter for user to explicitly
identify the epoch-id to load checkpoint from
Returns:
epoch: the epoch-id to load checkpoints from
or None if no checkpoints were written
"""
last_epoch = user_epoch
if self._metadata_handler is not None:
last_epoch = self._metadata_handler.last_epoch(user_epoch=user_epoch)
return last_epoch
def set_params(self, nodes, path_prefix=None, path_type=None):
"""Set parameters associated with CP manager
Args:
nodes: An array of nodes where this checkpoint manager is running.
path_prefix: Used to construct db name or path where checkpoint files are
stored.
path_type: Indicate the type of path where checkpoint files are stored.
"""
self._node_names = [str(node) for node in nodes]
if path_prefix:
self._path_prefix = path_prefix
if path_type:
self._path_type = path_type
if self._metadata_handler:
self._metadata_handler.set_params(
db_prefix=self._db_prefix,
db_type=self._db_type,
node_names=self._node_names,
path_prefix=self._path_prefix,
path_type=self._path_type)
def cp_accessible(self, epoch=None):
"""Returns True if Checkpoint data is accessible
Args:
epoch: An integer. The epoch of the checkpoint. If None,
it implies we need to check if checkpoint directory is accessible
Returns:
is_cp_accessible: A boolean. Returns True if Checkpoint data is accessible
"""
if self._metadata_handler is not None:
return self._metadata_handler.cp_accessible(epoch)
else:
return True
class UploadTaskGroupBuilder(object):
"""A simple class to upload checkpoints."""
def build(self, epoch, checkpoint_manager):
"""Builds the task group to upload checkpoints.
Args:
epoch: An integer. The checkpoint epoch to be uploaded.
checkpoint_manager: Can be a CheckpointManager for single machine
or a MultiNodeCheckpointManager for multi-machine. The manager
that initializes/saves/loads checkpoints.
Raises:
NotImplementedError: This base class only has the interface,
the implementation will be in the subclasses.
"""
raise NotImplementedError()
class JobRunner(object):
"""
Implement the runtime logic for jobs with checkpointing at the level of
epoch. Can be used to run either single-host or distributed jobs. Job
runner is a callable to be called once from the master, passing a session
as an argument. This call will block until the Job execution is complete.
If a checkpoint_manager is passed, checkpoints will be taken after
initialization and after each epoch execution. If, in addition,
`resume_from_epoch` is an epoch number, the corresponding checkpoint will
be loaded and job execution will continue from the given epoch. In
this case, the job's init_group will not be run.
Refer to checkpoint_test.py for an example.
"""
def __init__(self, job, checkpoint_manager=None, resume_from_epoch=None,
upload_task_group_builder=None):
"""Initializes the JobRunner.
Args:
job: A Job object. The job to be executed.
checkpoint_manager: Can be a CheckpointManager for single machine
or a MultiNodeCheckpointManager for multi-machine. The manager
that initializes/saves/loads checkpoints.
resume_from_epoch: An integer. The epoch to resume from.
upload_task_group_builder: A subclass of the
UploadTaskGroupBuilder. Creates a task group to upload
checkpoints.
"""
self.resume_from_epoch = resume_from_epoch
self.checkpoint_manager = checkpoint_manager
self.job = job
self.upload_task_group_builder = upload_task_group_builder
def train(self, session):
"""Runs the training flow.
Args:
session: A Session object. Valid choises are: LocalSession,
LocalHostScheduler, and DistributedSession. It is used to
execute one TaskGroup a time.
"""
# identify the epoch we must resume from
if self.checkpoint_manager:
self.checkpoint_manager.set_params(nodes=self.job.nodes_to_checkpoint())
self.resume_from_epoch = self.checkpoint_manager.\
get_resume_from_epoch_id(self.resume_from_epoch)
if self.resume_from_epoch is not None:
logger.info('Resuming from epoch {}'.format(self.resume_from_epoch))
# Initialize all the nodes.
from_scratch = self.resume_from_epoch is None
if from_scratch:
session.run(self.job.init_group)
if self.checkpoint_manager:
logger.info('Preparing checkpoints ...')
session.run(self.checkpoint_manager.init(
self.job.nodes_to_checkpoint(),
retrieve_from_epoch=self.resume_from_epoch))
# Save the first checkpoint before training starts, or resume from
# a previously saved checkpoint.
if from_scratch:
self.save_checkpoints(0, session)
else:
logger.info('Loading checkpoints for epoch {} ...'.format(
self.resume_from_epoch))
session.run(
self.checkpoint_manager.load(self.resume_from_epoch))
self.checkpoint_manager.report_checkpoint_stats('checkpoint_load')
logger.info('Checkpoint loaded')
logger.info("Finished initializing")
# Start training.
epoch = 1 if from_scratch else self.resume_from_epoch + 1
while True:
logger.info('Starting epoch %d' % epoch)
session.run(self.job.epoch_group)
logger.info('Finished epoch %d' % epoch)
stop_conditions = [o.fetch() for o in self.job.stop_conditions]
if self.checkpoint_manager:
self.save_checkpoints(epoch, session)
if any(stop_conditions):
logger.info('Stopping')
break
epoch += 1
logger.info('Finished training')
# Upload the checkpoints.
if (self.upload_task_group_builder):
upload_task_group = self.upload_task_group_builder.build(
epoch, self.checkpoint_manager)
session.run(upload_task_group)
logger.info('Finished uploading the checkpoints')
# Download the parameters to save
session.run(self.job.download_group)
logger.info('Finished downloading the parameters')
# Finally run the exit step to save nets
session.run(self.job.exit_group)
logger.info('Finished running the exit group')
return epoch
def load_blobs_from_checkpoints(self, blob_names, epoch, session):
"""Loads the necessary blobs from the checkpoints.
Checkpoints store the snapshots of the workspace in each node.
Sometimes we only need to load a subset of the blobs from the
checkpoints. One common scenario is to load only the model blobs from
the checkpoints for evaluation purpose. Given the names of the
necessary blobs, this function goes over all the checkpoints of all the
nodes, but only loads the blobs specified in the blob_names to the
current workspace.
Args:
blob_names: A list of strings. Each string is the name of a
blob.
epoch: An integer. The checkpoint epoch to load from.
session: A Session object to execute the load ops.
Raises:
ValueError: When the checkpoint manager is invalid.
"""
if not self.checkpoint_manager:
raise ValueError('Checkpoint manager is None')
logger.info('Loading checkpoint for epoch {} ...'.format(epoch))
result = self.checkpoint_manager.load_blobs_locally(
self.job.nodes_to_checkpoint(), blob_names, epoch, session)
self.checkpoint_manager.report_checkpoint_stats('checkpoint_partial_load')
return result
def save_checkpoints(self, epoch, session):
"""Triggers operation to save checkpoints
This method will trigger the Save ops to serialize and persist the
blobs present in the global workspaace.
Args:
epoch: An integer. The checkpoint epoch-id that we are saving.
session: A Session object to execute the save ops.
Raises:
ValueError: When the checkpoint manager is invalid.
"""
if not self.checkpoint_manager:
raise ValueError('Checkpoint manager is None')
try:
is_accessible = self.checkpoint_manager.cp_accessible(epoch=None)
if is_accessible:
logger.info('Saving checkpoints for epoch {}'.format(epoch))
session.run(self.checkpoint_manager.save(epoch))
self.checkpoint_manager.write_checkpoint_metadata(epoch)
logger.info('Checkpoints saved')
self.checkpoint_manager.report_checkpoint_stats('checkpoint_save')
else:
logger.warning("Checkpoint files cannot be accessed!")
except Exception as ex:
logger.warning("Unable to write checkpoint for epoch {}. Error={}".
format(epoch, ex))
def epoch_limiter(job, num_epochs):
"""
Creates a task that will output True when a given
number of epochs has finished.
"""
with job.init_group:
init_net = core.Net('epoch_counter_init')
counter = init_net.CreateCounter([], init_count=num_epochs - 1)
Task(step=init_net)
with job.epoch_group:
epoch_net = core.Net('epoch_countdown')
finished = epoch_net.CountDown(counter)
output = Task(step=epoch_net, outputs=finished).outputs()[0]
job.add_stop_condition(output)