forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
channel_backprop_stats_op.cu
213 lines (188 loc) · 6.01 KB
/
channel_backprop_stats_op.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/channel_backprop_stats_op.h"
namespace caffe2 {
namespace {
// based on "Optimizing Parallel Reduction in CUDA" by Mark Harris
// note - volatile keyword is needed to allow doing a warp reduction without
// synchronization on recent architectures
template <unsigned int blockSize>
__device__ void warpReduce(volatile float* sdata, unsigned int tid) {
// note - the if statements are "free" as they are resolved at compile time
if (blockSize >= 64)
sdata[tid] += sdata[tid + 32];
if (blockSize >= 32)
sdata[tid] += sdata[tid + 16];
if (blockSize >= 16)
sdata[tid] += sdata[tid + 8];
if (blockSize >= 8)
sdata[tid] += sdata[tid + 4];
if (blockSize >= 4)
sdata[tid] += sdata[tid + 2];
if (blockSize >= 2)
sdata[tid] += sdata[tid + 1];
}
template <unsigned int blockSize>
__global__ void ChannelBackpropStatsBlockKernel(
int N,
int C,
int valsPerChannel,
const float* X,
const float* dY,
const float* mean,
const float* invStddev,
float* dBiasBlocks,
float* dScaleBlocks) {
__shared__ float dBiasData[blockSize];
__shared__ float dScaleData[blockSize];
auto tid = threadIdx.x;
auto numBlocksPerChannel = (valsPerChannel + blockSize - 1) / blockSize;
auto localBlockIndex = blockIdx.x % numBlocksPerChannel;
auto inputIndex = (blockIdx.x / numBlocksPerChannel) * valsPerChannel +
localBlockIndex * blockSize + tid;
auto n = blockIdx.x / numBlocksPerChannel / C;
auto c = (blockIdx.x / numBlocksPerChannel) % C;
dBiasData[tid] = 0;
dScaleData[tid] = 0;
if (localBlockIndex * blockSize + tid < valsPerChannel) {
dBiasData[tid] += dY[inputIndex];
dScaleData[tid] +=
(X[inputIndex] - mean[c]) * invStddev[c] * dY[inputIndex];
}
__syncthreads();
if (blockSize >= 512) {
if (tid < 256) {
dBiasData[tid] += dBiasData[tid + 256];
dScaleData[tid] += dScaleData[tid + 256];
}
__syncthreads();
}
if (blockSize >= 256) {
if (tid < 128) {
dBiasData[tid] += dBiasData[tid + 128];
dScaleData[tid] += dScaleData[tid + 128];
}
__syncthreads();
}
if (blockSize >= 128) {
if (tid < 64) {
dBiasData[tid] += dBiasData[tid + 64];
dScaleData[tid] += dScaleData[tid + 64];
}
__syncthreads();
}
if (tid < 32) {
warpReduce<blockSize>(dBiasData, tid);
warpReduce<blockSize>(dScaleData, tid);
}
// output block data sorted by C to simplify second reduction
if (tid == 0) {
auto outputIndex = (c * N + n) * numBlocksPerChannel + localBlockIndex;
dBiasBlocks[outputIndex] = dBiasData[0];
dScaleBlocks[outputIndex] = dScaleData[0];
}
}
template <unsigned int blockSize>
__global__ void ChannelBackpropStatsFinalSumsKernel(
int N,
int C,
int numSumsPerChannel,
const float* dBiasScratch,
const float* dScaleScratch,
float* dBias,
float* dScale) {
__shared__ float dBiasData[blockSize];
__shared__ float dScaleData[blockSize];
auto tid = threadIdx.x;
auto inputIndex = blockIdx.x * N * numSumsPerChannel + tid;
dBiasData[tid] = 0;
dScaleData[tid] = 0;
for (auto i = inputIndex; i < (blockIdx.x + 1) * N * numSumsPerChannel;
i += blockSize) {
dBiasData[tid] += dBiasScratch[i];
dScaleData[tid] += dScaleScratch[i];
}
__syncthreads();
if (blockSize >= 512) {
if (tid < 256) {
dBiasData[tid] += dBiasData[tid + 256];
dScaleData[tid] += dScaleData[tid + 256];
}
__syncthreads();
}
if (blockSize >= 256) {
if (tid < 128) {
dBiasData[tid] += dBiasData[tid + 128];
dScaleData[tid] += dScaleData[tid + 128];
}
__syncthreads();
}
if (blockSize >= 128) {
if (tid < 64) {
dBiasData[tid] += dBiasData[tid + 64];
dScaleData[tid] += dScaleData[tid + 64];
}
__syncthreads();
}
if (tid < 32) {
warpReduce<blockSize>(dBiasData, tid);
warpReduce<blockSize>(dScaleData, tid);
}
if (tid == 0) {
dBias[blockIdx.x] = dBiasData[0];
dScale[blockIdx.x] = dScaleData[0];
}
}
} // namespace
template <>
bool ChannelBackpropStatsOp<CUDAContext>::RunOnDevice() {
const auto& X = Input(INPUT);
const auto& dY = Input(OUTPUT_GRAD);
const auto& mean = Input(SAVED_MEAN);
const auto& invStddev = Input(SAVED_INV_STDDEV);
CAFFE_ENFORCE(X.dim() >= 3 && X.dim() <= 5);
const int N = X.dim32(0);
const int C = X.dim32(1);
const int H = X.dim32(2);
const int W = X.dim() > 3 ? X.dim32(3) : 1;
const int D = X.dim() > 4 ? X.dim32(4) : 1;
const auto Xarr = X.data<float>();
const auto dYarr = dY.data<float>();
const auto meanArr = mean.data<float>();
const auto invStddevArr = invStddev.data<float>();
auto dBias = Output(BIAS_GRAD, {C}, at::dtype<float>());
auto dScale = Output(SCALE_GRAD, {C}, at::dtype<float>());
const auto valsPerChannel = H * W * D;
const auto numBlocksPerChannel = CAFFE_GET_BLOCKS(valsPerChannel);
const auto numBlocksTotal = numBlocksPerChannel * N * C;
ReinitializeTensor(
&dBiasScratch_, {numBlocksTotal}, at::dtype<float>().device(CUDA));
ReinitializeTensor(
&dScaleScratch_, {numBlocksTotal}, at::dtype<float>().device(CUDA));
ChannelBackpropStatsBlockKernel<CAFFE_CUDA_NUM_THREADS>
<<<numBlocksTotal, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
N,
C,
valsPerChannel,
Xarr,
dYarr,
meanArr,
invStddevArr,
dBiasScratch_.mutable_data<float>(),
dScaleScratch_.mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
ChannelBackpropStatsFinalSumsKernel<CAFFE_CUDA_NUM_THREADS>
<<<C, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
N,
C,
numBlocksPerChannel,
dBiasScratch_.data<float>(),
dScaleScratch_.data<float>(),
dBias->template mutable_data<float>(),
dScale->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(
ChannelBackpropStats,
ChannelBackpropStatsOp<CUDAContext>);
} // namespace caffe2