forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
boolean_unmask_ops.cu
130 lines (111 loc) · 3.43 KB
/
boolean_unmask_ops.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include <algorithm>
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/boolean_unmask_ops.h"
namespace caffe2 {
namespace {
__global__ void ComputeIndicesKernel(
const int numMasks,
const int maskSize,
int* indices,
bool* const masks[]) {
CUDA_1D_KERNEL_LOOP(i, maskSize) {
for (int j = 0; j < numMasks; ++j) {
if (masks[j][i]) {
indices[i] = j;
return;
}
}
CUDA_KERNEL_ASSERT(false);
}
}
__global__ void FillValuesKernel(
const int numMasks,
const int maskSize,
const size_t itemSize,
const int* indices,
char* const values[],
int* valueSizes,
char* dest) {
CUDA_1D_KERNEL_LOOP(j, numMasks) {
int k = 0;
for (int i = 0; i < maskSize; ++i) {
if (indices[i] == j) {
for (int h = 0; h < itemSize; ++h) {
dest[i * itemSize + h] = values[j][k * itemSize + h];
}
++k;
}
}
CUDA_KERNEL_ASSERT(valueSizes[j] == k);
}
}
} // namespace
template <>
class BooleanUnmaskOp<CUDAContext> final : public Operator<CUDAContext> {
public:
BooleanUnmaskOp(const OperatorDef& def, Workspace* ws)
: Operator<CUDAContext>(def, ws) {}
bool RunOnDevice() override {
int maskSize = Input(0).numel();
int numMasks = InputSize() / 2;
const auto& meta = Input(1).meta();
auto* out = Output(0);
out->Resize(maskSize);
auto* dest = (char*)out->raw_mutable_data(meta);
ReinitializeTensor(&hostMasks_, {numMasks}, at::dtype<bool*>().device(CPU));
auto* hostMasksData = hostMasks_.mutable_data<bool*>();
ReinitializeTensor(
&hostValues_, {numMasks}, at::dtype<char*>().device(CPU));
auto* hostValuesData = hostValues_.mutable_data<char*>();
ReinitializeTensor(
&hostValueSizes_, {numMasks}, at::dtype<int>().device(CPU));
auto* hostValueSizesData = hostValueSizes_.mutable_data<int>();
for (int i = 0; i < numMasks; ++i) {
auto& mask = Input(i * 2);
CAFFE_ENFORCE_EQ(mask.dim(), 1);
CAFFE_ENFORCE_EQ(mask.numel(), maskSize);
hostMasksData[i] = const_cast<bool*>(mask.data<bool>());
const auto& value = Input(i * 2 + 1);
CAFFE_ENFORCE_EQ(value.dim(), 1);
hostValuesData[i] = (char*)value.raw_data();
hostValueSizesData[i] = value.numel();
}
masks_.CopyFrom(hostMasks_);
values_.CopyFrom(hostValues_);
valueSizes_.CopyFrom(hostValueSizes_);
ReinitializeTensor(&indices_, {maskSize}, at::dtype<int>().device(CUDA));
auto* indicesData = indices_.mutable_data<int>();
ComputeIndicesKernel<<<
std::min(maskSize, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
numMasks, maskSize, indicesData, masks_.data<bool*>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
auto* valueSizesData = valueSizes_.mutable_data<int>();
FillValuesKernel<<<
std::min(numMasks, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
numMasks,
maskSize,
meta.itemsize(),
indicesData,
values_.data<char*>(),
valueSizesData,
dest);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
private:
Tensor indices_;
Tensor masks_{CUDA};
Tensor values_{CUDA};
Tensor valueSizes_{CUDA};
Tensor hostMasks_;
Tensor hostValues_;
Tensor hostValueSizes_;
};
REGISTER_CUDA_OPERATOR(BooleanUnmask, BooleanUnmaskOp<CUDAContext>);
} // caffe2