-
Notifications
You must be signed in to change notification settings - Fork 97
/
testPUR-Reg.py
333 lines (294 loc) · 12.4 KB
/
testPUR-Reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import sys
sys.path.append("../")
from hydroDL import master
from hydroDL.post import plot, stat
import matplotlib.pyplot as plt
from hydroDL.data import camels
from hydroDL.master import loadModel
from hydroDL.model import train
import numpy as np
import pandas as pd
import torch
import json
import os
import random
interfaceOpt = 1
# set it the same as which you used to train your model
# ==1 default, the recommended and more interpretable version
# ==0 the "pro" version
# Define root directory of database and output
# Modify this based on your own location of CAMELS dataset and saved models
rootDatabase = os.path.join(
os.path.sep, "scratch", "Camels"
) # CAMELS dataset root directory
camels.initcamels(
rootDatabase
) # initialize three camels module-scope variables in camels.py: dirDB, gageDict, statDict
rootOut = os.path.join(
os.path.sep, "data", "rnnStreamflow"
) # Model output root directory
# The directory you defined in training to save the model under the above rootOut
exp_name = "PUR"
exp_disp = "Testrun"
save_path = os.path.join(rootOut, exp_name, exp_disp)
random.seed(159654)
# this random is only used for fractional FDC scenarios and
# to sample which basins in the target region have FDCs.
# same as training, get the 7 regions basin ID for testing
gageinfo = camels.gageDict
hucinfo = gageinfo["huc"]
gageid = gageinfo["id"]
# get the id list of each region
regionID = list()
regionNum = list()
regionDivide = [
[1, 2],
[3, 6],
[4, 5, 7],
[9, 10],
[8, 11, 12, 13],
[14, 15, 16, 18],
[17],
] # seven regions
for ii in range(len(regionDivide)):
tempcomb = regionDivide[ii]
tempregid = list()
for ih in tempcomb:
tempid = gageid[hucinfo == ih].tolist()
tempregid = tempregid + tempid
regionID.append(tempregid)
regionNum.append(len(tempregid))
# test trained models
testgpuid = 0 # which gpu used for testing
torch.cuda.set_device(testgpuid)
# # test models ran by different random seeds.
# # final reported results are the mean of predictions from different seeds
# seedid = [159654, 109958, 257886, 142365, 229837, 588859]
seedid = [159654] # take this seed as an example
gageinfo = camels.gageDict
gageid = gageinfo["id"]
subName = "Sub"
tRange = [19951001, 20051001] # testing periods
testEpoch = 300 # test the saved model after trained how many epochs
FDCMig = True # option for Fractional FDC experiments, migrating 1/3 or 1/10 FDCs to all basins in the target region
FDCrange = [19851001, 19951001]
FDCstr = str(FDCrange[0]) + "-" + str(FDCrange[1])
expName = "Full" # testing full-attribute model as an example. Could be 'Full', 'Noattr', '5attr'
caseLst = ["-".join(["Reg-85-95", subName, expName])] # PUR: 'Reg-85-95-Sub-Full'
caseLst.append(
"-".join(["Reg-85-95", subName, expName, "FDC"]) + FDCstr
) # PUR with FDC: 'Reg-85-95-Sub-Full-FDC' + LCTstr
# samFrac = [1/3, 1/10] # Fractional FDCs available in the target region
samFrac = [1 / 3]
migOptLst = [
False,
False,
] # the list indicating if it's migration experiment for each one in caseLst
if FDCMig == True:
for im in range(len(samFrac)):
caseLst.append("-".join(["Reg-85-95", subName, expName, "FDC"]) + FDCstr)
migOptLst.append(True)
# caseLst summarizes all the experiment directories needed for testing
# Get the randomly sampled basin ID in the target region that have FDCs and save to file for the future use
# the sampled basin should be the same for different ensemble members
# this part only needs to be ran once to generate sample file. The following section will read the saved file
sampleIndLst = list()
for ir in range(len(regionID)):
testBasin = regionID[ir]
sampNum = round(1 / 3 * len(testBasin)) # or 1/10
sampleIn = random.sample(range(0, len(testBasin)), sampNum)
sampleIndLst.append(sampleIn)
samLstFile = os.path.join(save_path, "samp103Lst.json") # or 'samp110Lst.json'
with open(samLstFile, "w") as fp:
json.dump(sampleIndLst, fp, indent=4)
# Load the sample Ind
indfileLst = ["samp103Lst.json"] # ['samp103Lst.json', 'samp110Lst.json']
sampleInLstAll = list()
for ii in range(len(indfileLst)):
samLstFile = os.path.join(save_path, indfileLst[ii])
with open(samLstFile, "r") as fp:
tempind = json.load(fp)
sampleInLstAll.append(tempind)
for iEns in range(len(seedid)): # test trained models with different seeds
tempseed = seedid[iEns]
predtempLst = []
regcount = 0
# for iT in range(len(regionID)): # test all the 7 regions
for iT in range(0, 1): # take region 1 as an example
testBasin = regionID[iT] # testing basins
testInd = [gageid.tolist().index(x) for x in testBasin]
trainBasin = list(set(gageid.tolist()) - set(testBasin))
trainInd = [gageid.tolist().index(x) for x in trainBasin]
testregdic = "Reg-" + str(iT + 1) + "-Num" + str(regionNum[iT])
# Migrate FDC for fractional experiment based on the nearest distance
if FDCMig == True:
FDCList = []
testlat = gageinfo["lat"][testInd]
testlon = gageinfo["lon"][testInd]
for iF in range(len(samFrac)):
sampleInLst = sampleInLstAll[iF]
samplelat = testlat[sampleInLst[iT]]
samplelon = testlon[sampleInLst[iT]]
nearID = list()
# calculate distances to the gages with FDC available
# and identify using the FDC of which gage for each test basin
for ii in range(len(testlat)):
dist = np.sqrt(
(samplelat - testlat[ii]) ** 2 + (samplelon - testlon[ii]) ** 2
)
nearID.append(np.argmin(dist))
FDCLS = gageid[testInd][sampleInLst[iT]][nearID].tolist()
FDCList.append(FDCLS)
outLst = [
os.path.join(save_path, str(tempseed), testregdic, x) for x in caseLst
]
# all the directories to test in this list
icount = 0
imig = 0
for out in outLst:
# testing sequence: LSTM, LSTM with FDC, LSTM with fractional FDC migration
if interfaceOpt == 1:
# load testing data
mDict = master.readMasterFile(out)
optData = mDict["data"]
df = camels.DataframeCamels(subset=testBasin, tRange=tRange)
x = df.getDataTs(varLst=optData["varT"], doNorm=False, rmNan=False)
obs = df.getDataObs(doNorm=False, rmNan=False, basinnorm=False)
c = df.getDataConst(varLst=optData["varC"], doNorm=False, rmNan=False)
# do normalization and remove nan
# load the saved statDict
statFile = os.path.join(out, "statDict.json")
with open(statFile, "r") as fp:
statDict = json.load(fp)
seriesvarLst = optData["varT"]
climateList = optData["varC"]
attr_norm = camels.transNormbyDic(c, climateList, statDict, toNorm=True)
attr_norm[np.isnan(attr_norm)] = 0.0
xTest = camels.transNormbyDic(x, seriesvarLst, statDict, toNorm=True)
xTest[np.isnan(xTest)] = 0.0
if attr_norm.size == 0: # [], no-attribute case
attrs = None
else:
attrs = attr_norm
if optData["lckernel"] is not None:
if migOptLst[icount] is True:
# the case migrating FDCs
dffdc = camels.DataframeCamels(
subset=FDCList[imig], tRange=optData["lckernel"]
)
imig = imig + 1
else:
dffdc = camels.DataframeCamels(
subset=testBasin, tRange=optData["lckernel"]
)
datatemp = dffdc.getDataObs(
doNorm=False, rmNan=False, basinnorm=True
)
# normalize data
dadata = camels.transNormbyDic(
datatemp, "runoff", statDict, toNorm=True
)
dadata = np.squeeze(dadata) # dim Ngrid*Nday
fdcdata = master.master.calFDC(dadata)
print("FDC was calculated and used!")
xIn = (xTest, fdcdata)
else:
xIn = xTest
# load and forward the model for testing
testmodel = loadModel(out, epoch=testEpoch)
filePathLst = master.master.namePred(
out, tRange, "All", epoch=testEpoch
) # prepare the name of csv files to save testing results
train.testModel(testmodel, xIn, c=attrs, filePathLst=filePathLst)
# read out predictions
dataPred = np.ndarray([obs.shape[0], obs.shape[1], len(filePathLst)])
for k in range(len(filePathLst)):
filePath = filePathLst[k]
dataPred[:, :, k] = pd.read_csv(
filePath, dtype=float, header=None
).values
# transform back to the original observation
temppred = camels.transNormbyDic(
dataPred, "runoff", statDict, toNorm=False
)
pred = camels.basinNorm(temppred, np.array(testBasin), toNorm=False)
elif interfaceOpt == 0:
if migOptLst[icount] is True:
# for FDC migration case
df, pred, obs = master.test(
out,
tRange=tRange,
subset=testBasin,
basinnorm=True,
epoch=testEpoch,
reTest=True,
FDCgage=FDCList[imig],
)
imig = imig + 1
else:
# for other ordinary cases
df, pred, obs = master.test(
out,
tRange=tRange,
subset=testBasin,
basinnorm=True,
epoch=testEpoch,
reTest=True,
)
## change the units ft3/s to m3/s
obs = obs * 0.0283168
pred = pred * 0.0283168
# concatenate results in different regions to one array
# and save the array of different experiments to a list
if regcount == 0:
predtempLst.append(pred)
else:
predtempLst[icount] = np.concatenate(
[predtempLst[icount], pred], axis=0
)
icount = icount + 1
if regcount == 0:
obsAll = obs
else:
obsAll = np.concatenate([obsAll, obs], axis=0)
regcount = regcount + 1
# concatenate results of different seeds to the third dim of array
if iEns == 0:
predLst = predtempLst
else:
for ii in range(len(outLst)):
predLst[ii] = np.concatenate([predLst[ii], predtempLst[ii]], axis=2)
# predLst: List of all experiments with shape: Ntime*Nbasin*Nensemble
# get the ensemble mean from simulations of different seeds
ensLst = []
for ii in range(len(outLst)):
temp = np.nanmean(predLst[ii], axis=2, keepdims=True)
ensLst.append(temp)
# plot boxplots for different experiments
statDictLst = [stat.statError(x.squeeze(), obsAll.squeeze()) for x in ensLst]
keyLst = ["NSE", "KGE"] # which metric to show
dataBox = list()
for iS in range(len(keyLst)):
statStr = keyLst[iS]
temp = list()
for k in range(len(statDictLst)):
data = statDictLst[k][statStr]
data = data[~np.isnan(data)]
temp.append(data)
dataBox.append(temp)
plt.rcParams["font.size"] = 14
labelname = ["PUR", "PUR-FDC", "PUR-1/3FDC"]
xlabel = ["NSE", "KGE"]
fig = plot.plotBoxFig(dataBox, xlabel, labelname, sharey=False, figsize=(6, 5))
fig.patch.set_facecolor("white")
fig.show()
# save evaluation results
outpath = os.path.join(save_path, "TestResults", expName)
if not os.path.isdir(outpath):
os.makedirs(outpath)
EnsEvaFile = os.path.join(outpath, "EnsEva" + str(testEpoch) + ".npy")
np.save(EnsEvaFile, statDictLst)
obsFile = os.path.join(outpath, "obs.npy")
np.save(obsFile, obsAll)
predFile = os.path.join(outpath, "pred" + str(testEpoch) + ".npy")
np.save(predFile, predLst)