-
Notifications
You must be signed in to change notification settings - Fork 0
/
commons.py
88 lines (74 loc) · 3.32 KB
/
commons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import random
import numpy as np
class InfiniteDataLoader(torch.utils.data.DataLoader):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset_iterator = super().__iter__()
def __iter__(self):
return self
def __next__(self):
try:
batch = next(self.dataset_iterator)
except StopIteration:
self.dataset_iterator = super().__iter__()
batch = next(self.dataset_iterator)
return batch
def make_deterministic(seed=0):
"""Make results deterministic. If seed == -1, do not make deterministic.
Running your script in a deterministic way might slow it down.
Note that for some packages (eg: sklearn's PCA) this function is not enough.
"""
seed = int(seed)
if seed == -1:
return
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setup_logging(output_folder, exist_ok=False, console="debug",
info_filename="info.log", debug_filename="debug.log"):
"""Set up logging files and console output.
Creates one file for INFO logs and one for DEBUG logs.
Args:
output_folder (str): creates the folder where to save the files.
exist_ok (boolean): if False throw a FileExistsError if output_folder already exists
debug (str):
if == "debug" prints on console debug messages and higher
if == "info" prints on console info messages and higher
if == None does not use console (useful when a logger has already been set)
info_filename (str): the name of the info file. if None, don't create info file
debug_filename (str): the name of the debug file. if None, don't create debug file
"""
import os
import sys
import logging
import traceback
if not exist_ok and os.path.exists(output_folder):
raise FileExistsError(f"{output_folder} already exists!")
os.makedirs(output_folder, exist_ok=True)
base_formatter = logging.Formatter('%(asctime)s %(message)s', "%Y-%m-%d %H:%M:%S")
logger = logging.getLogger('')
logger.setLevel(logging.DEBUG)
if info_filename != None:
info_file_handler = logging.FileHandler(f'{output_folder}/{info_filename}')
info_file_handler.setLevel(logging.INFO)
info_file_handler.setFormatter(base_formatter)
logger.addHandler(info_file_handler)
if debug_filename != None:
debug_file_handler = logging.FileHandler(f'{output_folder}/{debug_filename}')
debug_file_handler.setLevel(logging.DEBUG)
debug_file_handler.setFormatter(base_formatter)
logger.addHandler(debug_file_handler)
if console != None:
console_handler = logging.StreamHandler()
if console == "debug": console_handler.setLevel(logging.DEBUG)
if console == "info": console_handler.setLevel(logging.INFO)
console_handler.setFormatter(base_formatter)
logger.addHandler(console_handler)
def my_handler(type_, value, tb):
logger.info("\n" + "".join(traceback.format_exception(type, value, tb)))
logging.info("Experiment finished (with some errors)")
sys.excepthook = my_handler