forked from rlcode/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
breakout_a3c.py
351 lines (277 loc) · 13 KB
/
breakout_a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import gym
import time
import random
import threading
import numpy as np
import tensorflow as tf
from skimage.color import rgb2gray
from skimage.transform import resize
from keras.models import Model
from keras.optimizers import RMSprop
from keras.layers import Dense, Flatten, Input
from keras.layers.convolutional import Conv2D
from keras import backend as K
# global variables for A3C
global episode
episode = 0
EPISODES = 8000000
# In case of BreakoutDeterministic-v3, always skip 4 frames
# Deterministic-v4 version use 4 actions
env_name = "BreakoutDeterministic-v4"
# This is A3C(Asynchronous Advantage Actor Critic) agent(global) for the Cartpole
# In this example, we use A3C algorithm
class A3CAgent:
def __init__(self, action_size):
# environment settings
self.state_size = (84, 84, 4)
self.action_size = action_size
self.discount_factor = 0.99
self.no_op_steps = 30
# optimizer parameters
self.actor_lr = 2.5e-4
self.critic_lr = 2.5e-4
self.threads = 8
# create model for actor and critic network
self.actor, self.critic = self.build_model()
# method for training actor and critic network
self.optimizer = [self.actor_optimizer(), self.critic_optimizer()]
self.sess = tf.InteractiveSession()
K.set_session(self.sess)
self.sess.run(tf.global_variables_initializer())
self.summary_placeholders, self.update_ops, self.summary_op = self.setup_summary()
self.summary_writer = tf.summary.FileWriter('summary/breakout_a3c', self.sess.graph)
def train(self):
# self.load_model("./save_model/breakout_a3c")
agents = [Agent(self.action_size, self.state_size, [self.actor, self.critic], self.sess, self.optimizer,
self.discount_factor, [self.summary_op, self.summary_placeholders,
self.update_ops, self.summary_writer]) for _ in range(self.threads)]
for agent in agents:
time.sleep(1)
agent.start()
while True:
time.sleep(60*10)
self.save_model("./save_model/breakout_a3c")
# approximate policy and value using Neural Network
# actor -> state is input and probability of each action is output of network
# critic -> state is input and value of state is output of network
# actor and critic network share first hidden layer
def build_model(self):
input = Input(shape=self.state_size)
conv = Conv2D(16, (8, 8), strides=(4, 4), activation='relu')(input)
conv = Conv2D(32, (4, 4), strides=(2, 2), activation='relu')(conv)
conv = Flatten()(conv)
fc = Dense(256, activation='relu')(conv)
policy = Dense(self.action_size, activation='softmax')(fc)
value = Dense(1, activation='linear')(fc)
actor = Model(inputs=input, outputs=policy)
critic = Model(inputs=input, outputs=value)
actor._make_predict_function()
critic._make_predict_function()
actor.summary()
critic.summary()
return actor, critic
# make loss function for Policy Gradient
# [log(action probability) * advantages] will be input for the back prop
# we add entropy of action probability to loss
def actor_optimizer(self):
action = K.placeholder(shape=[None, self.action_size])
advantages = K.placeholder(shape=[None, ])
policy = self.actor.output
good_prob = K.sum(action * policy, axis=1)
eligibility = K.log(good_prob + 1e-10) * advantages
actor_loss = -K.sum(eligibility)
entropy = K.sum(policy * K.log(policy + 1e-10), axis=1)
entropy = K.sum(entropy)
loss = actor_loss + 0.01*entropy
optimizer = RMSprop(lr=self.actor_lr, rho=0.99, epsilon=0.01)
updates = optimizer.get_updates(self.actor.trainable_weights, [], loss)
train = K.function([self.actor.input, action, advantages], [loss], updates=updates)
return train
# make loss function for Value approximation
def critic_optimizer(self):
discounted_reward = K.placeholder(shape=(None, ))
value = self.critic.output
loss = K.mean(K.square(discounted_reward - value))
optimizer = RMSprop(lr=self.critic_lr, rho=0.99, epsilon=0.01)
updates = optimizer.get_updates(self.critic.trainable_weights, [], loss)
train = K.function([self.critic.input, discounted_reward], [loss], updates=updates)
return train
def load_model(self, name):
self.actor.load_weights(name + "_actor.h5")
self.critic.load_weights(name + "_critic.h5")
def save_model(self, name):
self.actor.save_weights(name + "_actor.h5")
self.critic.save_weights(name + '_critic.h5')
# make summary operators for tensorboard
def setup_summary(self):
episode_total_reward = tf.Variable(0.)
episode_avg_max_q = tf.Variable(0.)
episode_duration = tf.Variable(0.)
tf.summary.scalar('Total Reward/Episode', episode_total_reward)
tf.summary.scalar('Average Max Prob/Episode', episode_avg_max_q)
tf.summary.scalar('Duration/Episode', episode_duration)
summary_vars = [episode_total_reward, episode_avg_max_q, episode_duration]
summary_placeholders = [tf.placeholder(tf.float32) for _ in range(len(summary_vars))]
update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))]
summary_op = tf.summary.merge_all()
return summary_placeholders, update_ops, summary_op
# make agents(local) and start training
class Agent(threading.Thread):
def __init__(self, action_size, state_size, model, sess, optimizer, discount_factor, summary_ops):
threading.Thread.__init__(self)
self.action_size = action_size
self.state_size = state_size
self.actor, self.critic = model
self.sess = sess
self.optimizer = optimizer
self.discount_factor = discount_factor
self.summary_op, self.summary_placeholders, self.update_ops, self.summary_writer = summary_ops
self.states, self.actions, self.rewards = [],[],[]
self.local_actor, self.local_critic = self.build_localmodel()
self.avg_p_max = 0
self.avg_loss = 0
# t_max -> max batch size for training
self.t_max = 20
self.t = 0
# Thread interactive with environment
def run(self):
# self.load_model('./save_model/breakout_a3c')
global episode
env = gym.make(env_name)
step = 0
while episode < EPISODES:
done = False
dead = False
# 1 episode = 5 lives
score, start_life = 0, 5
observe = env.reset()
next_observe = observe
# this is one of DeepMind's idea.
# just do nothing at the start of episode to avoid sub-optimal
for _ in range(random.randint(1, 30)):
observe = next_observe
next_observe, _, _, _ = env.step(1)
# At start of episode, there is no preceding frame. So just copy initial states to make history
state = pre_processing(next_observe, observe)
history = np.stack((state, state, state, state), axis=2)
history = np.reshape([history], (1, 84, 84, 4))
while not done:
step += 1
self.t += 1
observe = next_observe
# get action for the current history and go one step in environment
action, policy = self.get_action(history)
# change action to real_action
if action == 0: real_action = 1
elif action == 1: real_action = 2
else: real_action = 3
if dead:
action = 0
real_action = 1
dead = False
next_observe, reward, done, info = env.step(real_action)
# pre-process the observation --> history
next_state = pre_processing(next_observe, observe)
next_state = np.reshape([next_state], (1, 84, 84, 1))
next_history = np.append(next_state, history[:, :, :, :3], axis=3)
self.avg_p_max += np.amax(self.actor.predict(np.float32(history / 255.)))
# if the ball is fall, then the agent is dead --> episode is not over
if start_life > info['ale.lives']:
dead = True
start_life = info['ale.lives']
score += reward
reward = np.clip(reward, -1., 1.)
# save the sample <s, a, r, s'> to the replay memory
self.memory(history, action, reward)
# if agent is dead, then reset the history
if dead:
history = np.stack((next_state, next_state, next_state, next_state), axis=2)
history = np.reshape([history], (1, 84, 84, 4))
else:
history = next_history
#
if self.t >= self.t_max or done:
self.train_model(done)
self.update_localmodel()
self.t = 0
# if done, plot the score over episodes
if done:
episode += 1
print("episode:", episode, " score:", score, " step:", step)
stats = [score, self.avg_p_max / float(step),
step]
for i in range(len(stats)):
self.sess.run(self.update_ops[i], feed_dict={
self.summary_placeholders[i]: float(stats[i])
})
summary_str = self.sess.run(self.summary_op)
self.summary_writer.add_summary(summary_str, episode + 1)
self.avg_p_max = 0
self.avg_loss = 0
step = 0
# In Policy Gradient, Q function is not available.
# Instead agent uses sample returns for evaluating policy
def discount_rewards(self, rewards, done):
discounted_rewards = np.zeros_like(rewards)
running_add = 0
if not done:
running_add = self.critic.predict(np.float32(self.states[-1] / 255.))[0]
for t in reversed(range(0, len(rewards))):
running_add = running_add * self.discount_factor + rewards[t]
discounted_rewards[t] = running_add
return discounted_rewards
# update policy network and value network every episode
def train_model(self, done):
discounted_rewards = self.discount_rewards(self.rewards, done)
states = np.zeros((len(self.states), 84, 84, 4))
for i in range(len(self.states)):
states[i] = self.states[i]
states = np.float32(states / 255.)
values = self.critic.predict(states)
values = np.reshape(values, len(values))
advantages = discounted_rewards - values
self.optimizer[0]([states, self.actions, advantages])
self.optimizer[1]([states, discounted_rewards])
self.states, self.actions, self.rewards = [], [], []
def build_localmodel(self):
input = Input(shape=self.state_size)
conv = Conv2D(16, (8, 8), strides=(4, 4), activation='relu')(input)
conv = Conv2D(32, (4, 4), strides=(2, 2), activation='relu')(conv)
conv = Flatten()(conv)
fc = Dense(256, activation='relu')(conv)
policy = Dense(self.action_size, activation='softmax')(fc)
value = Dense(1, activation='linear')(fc)
actor = Model(inputs=input, outputs=policy)
critic = Model(inputs=input, outputs=value)
actor._make_predict_function()
critic._make_predict_function()
actor.set_weights(self.actor.get_weights())
critic.set_weights(self.critic.get_weights())
actor.summary()
critic.summary()
return actor, critic
def update_localmodel(self):
self.local_actor.set_weights(self.actor.get_weights())
self.local_critic.set_weights(self.critic.get_weights())
def get_action(self, history):
history = np.float32(history / 255.)
policy = self.local_actor.predict(history)[0]
action_index = np.random.choice(self.action_size, 1, p=policy)[0]
return action_index, policy
# save <s, a ,r> of each step
# this is used for calculating discounted rewards
def memory(self, history, action, reward):
self.states.append(history)
act = np.zeros(self.action_size)
act[action] = 1
self.actions.append(act)
self.rewards.append(reward)
# 210*160*3(color) --> 84*84(mono)
# float --> integer (to reduce the size of replay memory)
def pre_processing(next_observe, observe):
processed_observe = np.maximum(next_observe, observe)
processed_observe = np.uint8(resize(rgb2gray(processed_observe), (84, 84), mode='constant') * 255)
return processed_observe
if __name__ == "__main__":
global_agent = A3CAgent(action_size=3)
global_agent.train()