forked from rlcode/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sarsa_agent.py
79 lines (64 loc) · 2.61 KB
/
sarsa_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import random
from collections import defaultdict
from environment import Env
# SARSA agent learns every time step from the sample <s, a, r, s', a'>
class SARSAgent:
def __init__(self, actions):
self.actions = actions
self.learning_rate = 0.01
self.discount_factor = 0.9
self.epsilon = 0.1
self.q_table = defaultdict(lambda: [0.0, 0.0, 0.0, 0.0])
# with sample <s, a, r, s', a'>, learns new q function
def learn(self, state, action, reward, next_state, next_action):
current_q = self.q_table[state][action]
next_state_q = self.q_table[next_state][next_action]
new_q = (current_q + self.learning_rate *
(reward + self.discount_factor * next_state_q - current_q))
self.q_table[state][action] = new_q
# get action for the state according to the q function table
# agent pick action of epsilon-greedy policy
def get_action(self, state):
if np.random.rand() < self.epsilon:
# take random action
action = np.random.choice(self.actions)
else:
# take action according to the q function table
state_action = self.q_table[state]
action = self.arg_max(state_action)
return action
@staticmethod
def arg_max(state_action):
max_index_list = []
max_value = state_action[0]
for index, value in enumerate(state_action):
if value > max_value:
max_index_list.clear()
max_value = value
max_index_list.append(index)
elif value == max_value:
max_index_list.append(index)
return random.choice(max_index_list)
if __name__ == "__main__":
env = Env()
agent = SARSAgent(actions=list(range(env.n_actions)))
for episode in range(1000):
# reset environment and initialize state
state = env.reset()
# get action of state from agent
action = agent.get_action(str(state))
while True:
env.render()
# take action and proceed one step in the environment
next_state, reward, done = env.step(action)
next_action = agent.get_action(str(next_state))
# with sample <s,a,r,s',a'>, agent learns new q function
agent.learn(str(state), action, reward, str(next_state), next_action)
state = next_state
action = next_action
# print q function of all states at screen
env.print_value_all(agent.q_table)
# if episode ends, then break
if done:
break