diff --git a/inst/ms/TEST_TABLE.qmd b/inst/ms/TEST_TABLE.qmd index 37a63ca..ee3ced4 100644 --- a/inst/ms/TEST_TABLE.qmd +++ b/inst/ms/TEST_TABLE.qmd @@ -83,7 +83,6 @@ library(kableExtra) library(tinytable) ``` - ## Introduction {#sec-introduction} Expert judgement is frequently used to inform forecasting about @@ -1233,7 +1232,6 @@ aggreCAT::confidence_score_evaluation( ) ``` - ```{r} #| label: tbl-multi-method-workflow-eval #| tbl-cap: "AUC and Classification Accuracy for forecasts from the aggregation methods 'ShiftWAgg', 'ArMean', 'IntWAgg', 'IndIntWAgg', 'ReasonWAgg' and 'BayTriVar' for a subset of the repliCATS pilot study claims (`focal_claims`) and known outcomes." @@ -1613,31 +1611,54 @@ rapidly and easily analysing the results of IDEA protocol and other structured elicitation procedures where mathematical aggregation of human forecasts is required. -\newpage -\blandscape - - -```{r} +::: {.content-hidden unless-format="html"} +```{r, include = TRUE, echo = FALSE} #| label: tbl-method-summary-table #| tbl-cap: "Summary of aggregation methods and functions, including data requirements and sources." -#| echo: FALSE -#| include: FALSE aggreCAT:::method_summary_table %>% - ungroup %>% - # filter(str_detect(aggregator_fun_desc, "[?]",negate = TRUE)) %>% #drop Eng/CompWAgg - mutate(aggregator_function = glue::glue("**{aggregator_function}**")) %>% - tidyr::unite(agg_name_description, - aggregator_function, - aggregator_fun_desc, sep = " ") %>% - select(-agg_name_description) %>% - mutate(supp_data_requirements = tidyr::replace_na(supp_data_requirements, " ")) %>% - distinct(judgement_data_sources_eqns) %>% - tt() + ungroup %>% + # filter(str_detect(aggregator_fun_desc, "[?]",negate = TRUE)) %>% #drop Eng/CompWAgg + mutate(aggregator_function = glue::glue("**{aggregator_function}**")) %>% + tidyr::unite(agg_name_description, + aggregator_function, + aggregator_fun_desc, sep = " ") %>% + select(-agg_name_description) %>% + mutate(supp_data_requirements = tidyr::replace_na(supp_data_requirements, " ")) %>% + rename("Method" = type, + "Description" = "type_desc", + "Data Requirements" = "supp_data_requirements", + "Weighting Function" = "weighting_fn", + "Elicitation Rounds" = "number_rounds", + "Elicitation Method" = "elicitation_method", + "Data Sources" = "judgement_data_sources_eqns") %>% + tt() %>% + group_tt( + i = list( + "AverageWAgg(): Averaged best estimates" = 1, + "LinearWAgg() Linearly-weighted best estimates" = 6, + "IntervalWAgg() Linearly-weighted best estimates, with weights influenced by interval widths" = 11, + "ShiftingWAgg() Weighted by judgemetns that shift most after discussion" = 17, + "ReasoningWAgg() Linearly-weighted best estimates, with weights constructed from supplementary reasoning data" = 22, + "ExtremisationWAgg() Takes the average of best-estimates and transforms it using the cumulative distribution function of a beta distribution" = 24, + "DistributionWAgg() Calculates the arithmetic mean of distributions created from expert judgements." = 26, + "BayesianWAgg() Bayesian aggregation methods with either uninformative or informative prior distributions" = 28 + ) + ) + ``` +::: +::: {.content-hidden unless-format="pdf"} +```{=tex} +\newpage +\blandscape +``` -```{r, include = TRUE} +```{r} +#| echo: false +#| include: true +#| results: asis aggreCAT:::method_summary_table %>% ungroup %>% # filter(str_detect(aggregator_fun_desc, "[?]",negate = TRUE)) %>% #drop Eng/CompWAgg @@ -1658,8 +1679,7 @@ aggreCAT:::method_summary_table %>% escape = FALSE, booktabs = TRUE, longtable = TRUE, - caption = "\\label{tbl-method-summary-table} Summary of aggregation methods and functions, including data requirements and sources.", - format = "latex") %>% + caption = "Summary of aggregation methods and functions, including data requirements and sources. \\label{tbl-method-summary-table}", format = "latex") %>% kableExtra::column_spec(column = c(1,3,4,6,7), width = "10em") %>% kableExtra::column_spec(column = c(5), width = "5em") %>% kableExtra::column_spec(column = c(2), width = "20em") %>% @@ -1676,6 +1696,7 @@ aggreCAT:::method_summary_table %>% kableExtra::pack_rows("DistributionWAgg() Calculates the arithmetic mean of distributions created from expert judgements.", 26,27) %>% kableExtra::pack_rows("BayesianWAgg() Bayesian aggregation methods with either uninformative or informative prior distributions", 28,29) ``` +::: ## Listings {.unnumbered} @@ -1776,10 +1797,15 @@ p <- plot_judgements %>% ggplot2::scale_colour_brewer(palette = "Set1") ``` +:::{.content-hidden unless-format="pdf"} + ```{=tex} \elandscape \newpage ``` + +::: + ## Computational details {.unnumbered} The analyses and results in this paper were obtained using the following @@ -1801,4 +1827,4 @@ Agency (DARPA) under cooperative agreement No.HR001118S0047. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. -::: \ No newline at end of file +:::