-
Notifications
You must be signed in to change notification settings - Fork 3
/
ui.R
88 lines (78 loc) · 3.81 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Load required packages/libraries
source("setup.R")
# outcome_type
outcome_type <- c("Fatal and non-fatal",
"Fatal",
"Non-fatal")
# "Overall Population"
sub_population <- c("Male Population" = 1,
"Female Population" = 2)
total_sub_population <- c("Total population" = 1,
"Sex-stratified" = 2)
plot_options <- c("Meta-Analysis" = 1,
"Dose range" = 2)
broad_outcomes <- c("All-cause mortality" = 1,
"Cardiovascular diseases" = 2,
"Cancers" = 3,
"Depression" = 4,
"Neurological disorders" = 5)
shinyUI(fluidPage(
titlePanel(fluidRow(
column(4, tags$a(img(src="MRCEpid_core_logo2021_RGB.png", style = "height:50px"), href="https://www.mrc-epid.cam.ac.uk", target="_blank", align="left")),
column(4, offset = 4, tags$a(img(src="LOGO_ERC-FLAG_EU_cropped.jpg", style = "height:50px"), href="https://www.mrc-epid.cam.ac.uk/research/studies/glasst/", target="_blank"), align="right")
)
, "Meta-Analyses Physical Activity"),
width="100%", height="100%",
sidebarPanel(
radioButtons(inputId = "in_outcome_cat", label = "Outcome category:", choices = broad_outcomes, inline = TRUE),
selectInput(inputId = "in_outcome", label = "Outcome:", choices = uoutcome$outcome,
selected = uoutcome$outcome[[which(uoutcome$outcome == "All-cause mortality")]]),
fluidRow(
column(4, radioButtons(inputId = "in_outcome_type", label = "Outcome type:", choices = outcome_type, selected = outcome_type[2])),
column(4, radioButtons("total_sub_population", "Population: ", total_sub_population)),
column(4, with_tippy(radioButtons(inputId = "in_main_quantile", label = "Knots (person years quantiles)",
c("0-37.5-75th" = "0.75",
"0-42.5-85th" = "0.85",
"0-47.5-95th" = "0.95")),
"Knots are where we allow shape changes. Using person years (%), it is at three locations (0th, 37.5th and 75th, as an example) ",
placement = "top"))
),
fluidRow(column(4, checkboxInput(inputId = "y_axis_log10", label = "logarithmic y-axis (log10)", value = TRUE))),
conditionalPanel(
condition = "input.total_sub_population != 1",
radioButtons("plot_options", "Plot options: ", plot_options, inline = TRUE)
),
shinyBS::bsCollapse(shinyBS::bsCollapsePanel("Potential Impact Fraction (PIF)",
DT::dataTableOutput("PIF"),
DT::dataTableOutput("dose_range")
),
shinyBS::bsCollapsePanel("Dose distribution", "This shows distribution of Marginal MET hours per week",
uiOutput("generic_warning_message"),
DT::dataTableOutput("dose_distr"),
plotlyOutput("dose_distr_plot"))
)
),
mainPanel(
tabsetPanel(
tabPanel("Analysis",
plotlyOutput("top_plot"),
downloadButton("download_top_data", "Download data", icon = shiny::icon("file-download")),
plotlyOutput("bottom_plot"),
downloadButton("download_bottom_data", "Download data", icon = shiny::icon("file-download"))
),
tabPanel("Total Population Data",
uiOutput("overall_warning_message"),
DT::dataTableOutput("overall_datatable")
),
tabPanel("Male Population Data",
uiOutput("male_sub_warning_message"),
DT::dataTableOutput("male_population_datatable")
),
tabPanel("Female Population Data",
uiOutput("female_sub_warning_message"),
DT::dataTableOutput("female_population_datatable")
),
id = "main_panel"
)
)
))