-
Notifications
You must be signed in to change notification settings - Fork 1
/
precision.py
101 lines (81 loc) · 3.3 KB
/
precision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from __future__ import print_function
import io
import sys
import os
import time
import argparse
import numpy as np
import picamera
from builtins import input
from readchar import readchar, readkey
from openflexure_stage import OpenFlexureStage
from openflexure_microscope import load_microscope
from openflexure_microscope.microscope import picamera_supports_lens_shading
import scipy
from scipy import ndimage, signal
import matplotlib.pyplot as plt
from contextlib import contextmanager, closing
import data_file
import cv2
from camera_stuff import find_template
#import h5py
import threading
import queue
def movement(step_size, event, ms):
while not event.wait(1):
ms.stage.move_rel([0, 0, step_size])
def printProgressBar(iteration, total, length = 10):
percent = 100.0 * iteration / total
filledLength = int(length * iteration // total)
bar = '*' * filledLength + '-' * (length - filledLength)
print('Progress: |%s| %d%% Completed' % (bar, percent), end = '\r')
if iteration == total:
print()
if __name__ == "__main__":
with load_microscope("microscope_settings.npz", dummy_stage = False) as ms, \
closing(data_file.Datafile(filename = "precision.hdf5")) as df:
assert picamera_supports_lens_shading(), "You need the updated picamera module with lens shading!"
camera = ms.camera
stage = ms.stage
N_frames = 2000
step_size = 30
framerate = 100
backlash = 256
camera.resolution=(640,480)
camera.framerate = framerate
stage.backlash = backlash
cam_pos = df.new_group("data", "precision")
data = np.zeros((N_frames, 3))
outputs = [io.BytesIO() for i in range(N_frames)]
camera.start_preview(resolution=(640,480))
stage.move_rel([-backlash, -backlash, -backlash])
stage.move_rel([backlash, backlash, backlash])
image = ms.rgb_image().astype(np.float32)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
mean = np.mean(image)
templ8 = (image - mean)[100:-100, 100:-100]
event = threading.Event()
initial_stage_position = stage.position
t = threading.Thread(target = movement, args = (step_size, event, ms), name = 'thread1')
t.start()
try:
start_t = time.time()
camera.capture_sequence(outputs, 'jpeg', use_video_port=True)
end_t = time.time()
finally:
event.set()
t.join()
stage.move_abs(initial_stage_position)
camera.stop_preview()
print ("Stopping...")
print("Recorded {} frames in {} seconds ({} fps)".format(N_frames, end_t - start_t, N_frames / (end_t - start_t)))
print("Camera framerate was set to {}, and reports as {}".format(framerate, camera.framerate))
for j, k in enumerate(outputs):
frame_data = np.fromstring(k.getvalue(), dtype = np.uint8)
frame = cv2.imdecode(frame_data, 1)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
data[j, 1:], corr = find_template(templ8, frame - np.mean(frame), return_corr = True, fraction = 0.5)
data[j, 0] = float(j) / float(framerate)
printProgressBar(j, N_frames)
print("")
df.add_data(data, cam_pos, "data")