-
Notifications
You must be signed in to change notification settings - Fork 1
/
scsc_swin.py
executable file
·529 lines (420 loc) · 17.6 KB
/
scsc_swin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
def channel_shuffle_v2(x, m):
batchsize, num_channels, height, width = x.data.size()
# reshape
x = x.reshape(batchsize * num_channels // m,
m, height * width)
x = x.permute(1, 0, 2)
# flatten
x = x.reshape(m, batchsize, num_channels // m, height, width)
xs = [x[i] for i in range(m)]
return torch.cat(xs, dim=1)
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.channel = channel
self.mid_channel = max(channel // reduction, 32)
self.fc = nn.Sequential(
nn.Linear(channel, self.mid_channel, bias=False),
nn.ReLU(inplace=True),
nn.Linear(self.mid_channel, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
def flops(self, N):
flops = 0
# x = self.conv0(x)
flops += N * self.channel * self.mid_channel *2
return flops
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class DynamicDWConv(nn.Module):
def __init__(self, dim, kernel_size, bias=True, stride=1, padding=1, groups=1, reduction=4):
super().__init__()
self.dim = dim
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.conv1 = nn.Conv2d(dim, dim // reduction, 1, bias=False)
self.bn = nn.BatchNorm2d(dim // reduction)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(dim // reduction, dim * kernel_size * kernel_size, 1)
if bias:
self.bias = nn.Parameter(torch.zeros(dim))
else:
self.bias = None
def forward(self, x):
b, c, h, w = x.shape
weight = self.conv2(self.relu(self.bn(self.conv1(self.pool(x)))))
weight = weight.view(b * self.dim, 1, self.kernel_size, self.kernel_size)
x = F.conv2d(x.reshape(1, -1, h, w), weight, self.bias.repeat(b), stride=self.stride, padding=self.padding,
groups=b * self.groups)
x = x.view(b, c, x.shape[-2], x.shape[-1])
return x
class DWBlock(nn.Module):
def __init__(self, dim, window_size, dynamic=False):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.dynamic = dynamic
# pw-linear
self.conv0 = nn.Conv2d(dim, dim, 1, bias=False)
self.bn0 = nn.BatchNorm2d(dim)
if dynamic:
self.conv = DynamicDWConv(dim, kernel_size=window_size, stride=1, padding=window_size // 2, groups=dim)
else:
self.conv = nn.Conv2d(dim, dim, kernel_size=window_size, stride=1, padding=window_size // 2, groups=dim)
self.bn = nn.BatchNorm2d(dim)
self.relu = nn.ReLU(inplace=True)
# pw-linear
self.conv2 = nn.Conv2d(dim, dim, 1, bias=False)
self.bn2 = nn.BatchNorm2d(dim)
def forward(self, x):
B, H, W, C = x.shape
x = x.permute(0, 3, 1, 2)
x = self.conv0(x)
x = self.bn0(x)
x = self.relu(x)
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = x.permute(0, 2, 3, 1)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# x = self.conv0(x)
flops += N * self.dim * self.dim
# x = self.conv(x)
if self.dynamic:
flops += (
N * self.dim + self.dim * self.dim / 4 + self.dim / 4 * self.dim * self.window_size * self.window_size)
flops += N * self.dim * self.window_size * self.window_size
# x = self.conv2(x)
flops += N * self.dim * self.dim
# batchnorm + relu
flops += 8 * self.dim * N
return flops
class SCSC_block(nn.Module):
def __init__(self, dim, window_sizes, mg):
super().__init__()
self.m = len(window_sizes)
self.dim =dim
self.window_sizes = window_sizes
self.mg = mg
self.chunk_planes = dim//self.m
self.reduction_c = nn.Conv2d(dim, self.chunk_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.chunk_planes)
self.act1 = nn.GELU()
self.layers = nn.ModuleList()
for kernel_size in window_sizes:
self.layers.append(nn.Conv2d(self.chunk_planes, self.chunk_planes, kernel_size, stride=1, padding=kernel_size//2, groups=self.chunk_planes, bias=False))
self.bn2 = nn.BatchNorm2d(self.chunk_planes*self.m)
self.act2 = nn.GELU()
self.recover_c = nn.Conv2d(self.chunk_planes, dim, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(dim)
#self.act3 = nn.GELU()
self.routing_fc = nn.Conv2d(self.chunk_planes, self.m*self.mg, kernel_size=1, stride=1, bias=False)
self.se = SELayer(dim)
def forward(self, input):
n, h, w, c = input.shape
x = input.permute(0, 3, 1, 2)
x = self.reduction_c(x)
x = self.bn1(x)
x_reduc = self.act1(x)
tmp_xs = []
for layer in self.layers:
tmp_x = layer(x_reduc)
tmp_xs.append(tmp_x)
x = channel_shuffle_v2(torch.cat(tmp_xs, dim=1), self.m)
x = self.bn2(x)
x = self.act2(x)
x = x.reshape(n, self.m, self.mg, self.chunk_planes//self.mg, h*w).permute(0,4,2,3,1).contiguous()
routing_x = F.sigmoid(self.routing_fc(x_reduc))
routing_x = routing_x.reshape(n, self.m, self.mg, h*w, 1).permute(0,3,2,1,4).contiguous()
x = torch.matmul(x, routing_x)
x = x.reshape(n, h, w, self.chunk_planes).permute(0,3,1,2).contiguous()
x = self.recover_c(x)
x = self.bn3(x)
#x = self.act3(x)
x = self.se(x)
x = x.permute(0, 2, 3, 1)
return x
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# x = self.reduction_c(x)
flops += N * self.dim * self.chunk_planes
# x = self.conv(x)
for window_size in self.window_sizes:
flops += N * self.chunk_planes * window_size * window_size
# x = matmul(x)
flops += N * self.mg * (self.chunk_planes//self.mg) * self.m
# x = self.recover_c(x)
flops += N * self.chunk_planes * self.dim
# batchnorm + relu
flops += 8 * self.dim * N
#se
flops += self.se.flops(N)
return flops
class SpatialBlock(nn.Module):
def __init__(self, dim, input_resolution, window_sizes, mg,
mlp_ratio=4., drop=0., drop_path=0., dynamic=False, act_layer=nn.GELU):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.window_sizes = window_sizes
self.mlp_ratio = mlp_ratio
self.dynamic = dynamic
self.attn2conv = SCSC_block(dim, window_sizes, mg)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.bn = nn.BatchNorm2d(dim)
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.attn2conv(x.view(B, H, W, C))
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
shortcut = x
x = self.bn(x.view(B, H, W, C).permute(0, 3, 1, 2)).permute(0, 2, 3, 1).view(B, H * W, C)
x = shortcut + self.drop_path(self.mlp(x))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution} " \
f"window_size={self.window_sizes}, mlp_ratio={self.mlp_ratio}"
def flops(self):
flops = 0
H, W = self.input_resolution
# batchnorm
flops += 2 * self.dim * H * W
# attn2conv
flops += self.attn2conv.flops(H * W)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
return flops
class PatchMerging(nn.Module):
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
def flops(self):
H, W = self.input_resolution
flops = H * W * self.dim
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
return flops
class BasicLayer(nn.Module):
def __init__(self, dim, input_resolution, depth, window_sizes, mg,
mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm,
downsample=None, use_checkpoint=False, dynamic=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SpatialBlock(dim=dim, input_resolution=input_resolution,
window_sizes=window_sizes,
mg=mg,
mlp_ratio=mlp_ratio,
drop=drop,
dynamic=dynamic,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
class PatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x
def flops(self):
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class SCSC_Swin(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 6, 2], window_size_l=[[3,9,13],[3,7,11],[3,5,7],[3,5]], mg=4, mlp_ratio=4.,
drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm,
ape=False, patch_norm=True, use_checkpoint=False, dynamic=False, **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
assert self.num_layers==len(window_size_l)
for i_layer, window_sizes in enumerate(window_size_l):
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
window_sizes=window_sizes,
mg=mg,
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
dynamic=dynamic)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {}
def forward_features(self, x):
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
flops += self.num_features * self.num_classes
return flops